
Consistency Flow Model Achieves One-step Denoising
Error Correction Codes

Haoyu Lei1, Chin Wa Lau2, Kaiwen Zhou3, Nian Guo2, Farzan Farnia1

1 The Chinese University of Hong Kong, Computer Science & Engineering Department
2 Huawei Technologies Co., Ltd., Theory Lab

3 The Chinese University of Hong Kong, System Engineering & Engineering Management Department

Abstract
Error Correction Codes (ECC) are fundamental to reliable
digital communication, yet designing neural decoders that are
both accurate and computationally efficient remains challeng-
ing. Recent denoising diffusion decoders with transformer
backbones achieve state-of-the-art performance, but their it-
erative sampling limits practicality in low-latency settings.
We introduce the Error Correction Consistency Flow Model
(ECCFM), an architecture-agnostic training framework for
high-fidelity one-step decoding. By casting the reverse de-
noising process as a Probability Flow Ordinary Differential
Equation (PF-ODE) and enforcing smoothness through a dif-
ferential time regularization, ECCFM learns to map noisy
signals along the decoding trajectory directly to the original
codeword in a single inference step. Across multiple decod-
ing benchmarks, ECCFM attains lower bit-error rates (BER)
than autoregressive and diffusion-based baselines, with no-
table improvements on longer codes, while delivering infer-
ence speeds up from 30x to 100x faster than denoising diffu-
sion decoders.

Introduction
Error Correction Codes (ECC) play a central role in mod-
ern digital communications and have been essential in a
wide range of applications, including wireless communica-
tion and data storage. The core task of an ECC decoder is to
recover a message from a received signal corrupted by noise
during transmission. Recently, inspired by the great success
of deep neural networks in domains such as computer vi-
sion (He et al. 2016), generative modeling (Goodfellow et al.
2020; Ho, Jain, and Abbeel 2020; Song et al. 2020), and
natural language processing (Vaswani et al. 2017; Brown
et al. 2020), neural network-based ECC decoders were intro-
duced, which have been shown to be capable of improving
the performance scores of conventional, problem-specific al-
gorithms such as Belief Propagation (BP)(Richardson and
Urbanke 2002) and Min-Sum (MS)(Fossorier, Mihaljevic,
and Imai 1999).

The existing neural decoders can be categorized into two
groups. Early model-based approaches (Lugosch and Gross
2017; Nachmani and Wolf 2019; Zhu et al. 2020; Dai et al.
2021; Kwak et al. 2022) achieved successful results by in-
tegrating neural networks into conventional decoding algo-
rithms. However, their reliance on problem-specific struc-

Figure 1: Illustration of our proposed Error Correction Con-
sistency Flow Model (ECCFM). ECCFM learns to map re-
ceived signals from the trajectories to a single, consistent
codeword prediction x0, represented by a δ function.

tures can limit their applicability as a general-purpose de-
coder. To address this limitation and train a general-purpose
decoder, model-free decoders enable the extension of a
general neural bet architecture without prior knowledge of
the decoding algorithm. While the early proposals apply-
ing fully connected neural net architectures (Gruber et al.
2017; Cammerer et al. 2017; Kim et al. 2018) could lead
to overfitting, the preprocessing techniques that utilize mag-
nitude and syndrome vectors (Bennatan, Choukroun, and
Kisilev 2018) have been effective in reducing the error.
These improvements have led to efficient transformer-based
decoders (Choukroun and Wolf 2022b), which leverage the
self-attention mechanism to improve the numerical perfor-
mance on short block codes. The auto-regressive method in
transformer-based decoders has been improved in several
recent works (Choukroun and Wolf 2024a,b). Notably, the
recent work by (Park et al. 2025) integrates cross-attention
between magnitude and syndrome, resulting in the state-of-
the-art performance in the decoding task.

In parallel, the remarkable success of diffusion generative
models (Ho, Jain, and Abbeel 2020; Song et al. 2020) across
various domains (Rombach et al. 2022; He et al. 2022; Lou,
Meng, and Ermon 2023; Chen et al. 2024; Nie et al. 2025)
has inspired a new direction for deep learning-based ECC.
Diffusion models train a noise estimator to gradually denoise



a noisy input data and reverse a forward noise manipulation
process, generating high-quality samples by an iterative ap-
plication of a neural net denoiser to an input Gaussian noise.
The DDECC method (Choukroun and Wolf 2022a) extends
the denoising diffusion framework to ECC, naturally mod-
eling the AWGN channel as a forward diffusion process. In
this setup, a time-dependent transformer learns to denoise
the received signal iteratively, recovering the original code-
word. This framework provides complementary gains over
auto-regressive methods and establishes a new state-of-the-
art in terms of Bit Error Rates (BER), particularly for long
codes and low SNR, due to its iterative refinement denoising
process.

However, the iterative denoising of DDECC has intro-
duced a new challenge: the multi-step sampling process in-
curs significant computational overhead and high latency, re-
ducing the practicality of the approach in real-world applica-
tions. This motivates the following question: Can a decoder
maintain the performance achieved by the denoising diffu-
sion frameworks at a lower latency that meets the latency
requirements of several communication settings?

In this work, we aim to address this question by proposing
Error Correction Consistency Flow Models (ECCFM), an
architecture-agnostic training framework designed to con-
struct high-fidelity, one-step denosing decoders. Inspired by
recent advances in consistency models (Song et al. 2023),
we formulate the decoding process as a Probability-Flow Or-
dinary Differential Equation (PF-ODE), which seeks to learn
an optimal trajectory from the noisy signal distribution to the
clean codeword distribution as shown in Figure 1. However,
a key challenge in the ECC setting is that the noise level can-
not be measured by a continuous timestep as in image gen-
eration; instead, it is indicated by the sum of syndrome error
in (Choukroun and Wolf 2023). A direct adaptation of con-
sistency models struggles to learn this highly non-smooth
decoding trajectory.

To overcome the mentioned challenge, we propose a dif-
ferential time condition, using a soft-syndrome formulation
from (Lau et al. 2025) to regularize the reverse ODE process.
This ensures the decoding trajectory is smooth for single-
step mapping. Building upon this theoretical foundation, the
ECCFM decoder is trained directly with a consistency ob-
jective and a soft-syndrome regularization term, enabling it
to map any noisy received signal to the estimated original
codeword in a single, efficient inference step.

We demonstrate the effectiveness of ECCFM through sev-
eral numerical experiments on a diverse set of standard
codes, including BCH, Low-Density Parity-Check (LDPC),
Polar, MacKay, and CCSDS. The results show that EC-
CFM can improve Bit-Error-Rate (BER) compared to lead-
ing auto-regressive methods, exhibiting particularly strong
gains on longer codes with code lengths above 200. No-
tably, it achieves an inference speedup of 30x to 100x over
the existing iterative denoising diffusion methods in a single
step, while maintaining comparable decoding performance.
In our numerical evaluation, ECCFM offers a model-free
training diagram for building ECC decoders that achieves
near state-of-the-art performance with low latency, and re-
quires only a single-step inference suited for most real-world

applications.

Preliminaries
Error Correction Codes. In the error correction code set-
ting, we consider a linear codebook C, defined by a k × n
generator matrix G and an (n − k) × n parity-check ma-
trix H . Note that these matrices satisfy GH⊤ = 0 over the
binary field F2. The encoder maps a message m ∈ {0, 1}k
to an n-bit codeword x ∈ C ⊂ {0, 1}n via the linear trans-
formation x = mG. The codeword x is then modulated us-
ing Binary Phase-Shift Keying (BPSK), where 0 7→ +1 and
1 7→ −1, resulting in the signal xs ∈ {−1,+1}n. We sup-
pose this signal is transmitted over an Additive White Gaus-
sian Noise (AWGN) channel. The received signal y is given
by: y = xs+ z, where the noise vector z is sampled from an
isotropic Gaussian distribution, z ∼ N (0, σ2In).

The objective of a decoder is to estimate the original
codeword x̂ from the noisy signal y. An essential tool for
error detection is the syndrome, calculated from a hard-
demodulated formulation of the received signal, yb, per-
formed as yb = bin(sign(y)). Here sign(y) is +1 for y ≥ 0
and−1 otherwise, and the bin function maps {−1,+1} back
to {1, 0}. The syndrome is then computed as s = Hy⊤b . An
error is detected if the syndrome is a non-zero vector (i.e.,
s(y) ̸= 0). Following the pre-processing technique proposed
by (Bennatan, Choukroun, and Kisilev 2018), the input vec-
tor to the neural network is [|y|, s(y)] with length n+(n−k)
to avoid overfitting.
Denoising Diffusion Error Correction Codes. Diffusion
Models (DMs) (Ho, Jain, and Abbeel 2020; Song and Er-
mon 2019; Song et al. 2020) are generative models that
generate samples from a target data distribution, pdata(x0)
by reversing a predefined forward noising process (Sohl-
Dickstein et al. 2015). In the forward diffusion process, a
data sample x0 is gradually perturbed with Gaussian noise
over a continuous time interval t ∈ [0, T ]. The applica-
tion of diffusion models to error correction was pioneered
by DDECC (Choukroun and Wolf 2023). Its core insight is
to model the transmission of a BPSK-modulated codeword
x0 ∈ {−1, 1}n over an AWGN channel as the forward diffu-
sion process. A received signal y is treated as a noisy sample
xt at a specific timestep t, where the noise schedule is de-
signed to match the channel’s characteristics. This forward
process is described as:

y := xt = x0 +

√
β̄tϵ, (1)

where ϵ ∼ N (0, I), and the cumulative noise variance
β̄t =

∑t
i=1 βi corresponds to the channel’s noise level σ2.

Decoding is then performed via an iterative reverse denois-
ing process, starting with the received signal y := xt and
applying the denoising update rule for multiple steps, with a
trained denoising network ϵθ(·, ·) predicting the multiplica-
tive noise:

xt−1 = xt −
√

β̄tβt

β̄t + βt
(xt − sign(xt)ϵθ(xt, t)), (2)

A key innovation in DDECC is its conditioning mechanism.
In the ECC domain, the number of parity check errors (syn-
drome sum), et =

∑
i s(y)i, serves as a direct measure of



the noisy level in a received signal y. Therefore, DDECC
conditions its denoising network ϵθ on the sum of syndrome
error et instead of a timestep t, making the diffusion models
adapted to the structure of the error correction problem. The
denoising network is trained to learn the hard prediction of
the multiplicative noise with a Binary Cross-Entropy (BCE)
loss:

L(θ) = −Eet,x0,ϵ log(ϵθ(x0 +

√
β̄tϵ, et), ϵ̃b), (3)

where ϵ̃b = bin(x0(x0 +
√
β̄tϵ)) denotes the target binary

multiplicative noise.

Consistency Flow for One-step decoding
Error Correction Consistency Flow Property
Despite its impressive decoding performance, a drawback of
the DDECC algorithm is the computational overhead during
inference due to its iterative denoising mechanism. Inspired
by the recent success of Consistency Models (CMs) (Song
et al. 2023; Song and Dhariwal 2023) in image generation,
we propose the first approach for training consistency mod-
els for Error Correction Codes (ECC). Consistency Mod-
els (CMs) (Song et al. 2023) were introduced to overcome
the inference computational costs by enabling fast, one-step
generation. The core principle is that: any two points (xt, t)
and (xr, r) on the same PF-ODE trajectory should map to
the same origin point x0. CMs build upon Eq. 14 and learn a
function fθ(xt, t) that directly estimates the trajectory from
noisy data to clean data with a single step:

fθ(xt, t) = x0, (4)

The training objective of CMs is to enforce the self-
consistency property across a discrete time steps. The con-
tinuous time interval [0, T ] is discretized into N − 1 sub-
intervals, defined by timesteps 1 = t1 < · · · < tN = T .
The model is then trained to minimize the following loss,
which enforces that the model’s output remains consistent at
adjacent points on the same PF-ODE trajectory:

LStandard-CM(θ) := E[w(t)d (fθ(xt, t), fθ(xr, r))], (5)

Here, fθ is the consistency network being trained and w(t)
denotes the time schedule. This function is defined by two
fundamental properties proposed by (Song et al. 2023; Song
and Dhariwal 2023): 1) Boundary Condition: At timestep
t = 0, the function is the identity: fθ(x0, 0) = x0. 2)
Self-Consistency: For any two points (xt, t) and (xr, r)
on the same trajectory, the function yields the same output:
fθ(xt, t) = fθ(xr, r).

First, we highlight that these properties are naturally in-
herent to ECC tasks. The received signal y is treated as a
noisy sample xt from a clean codeword x0 during the for-
ward diffusion process, and then the Boundary Condition
trivially holds. The Self-Consistency property is also intrin-
sic to the decoding task. For any ground-truth codeword x0,
all possible noisy signals y with the same channel noise z
and different noise levels t belong to trajectories that all lead
back to x0. This highlights the motivation for designing a
consistency function in decoding tasks.

Unlike generation tasks, which aim to sample from a tar-
get data distribution pdata, the goal in ECC is to decode a
single, ground-truth codeword x0 corresponding to a given
received noisy signal y. The ideal target distribution for the
decoder is therefore a point mass at the correct codeword,
which we model conceptually as a Dirac delta function,
δ(x − x0). Based on this, we propose that a consistency-
based decoder should satisfy the following Error Correction
Consistency Flow condition:
Error Correction Self-consistency. Given a trajectory
{y := xt}t∈[0,T ], we learn the consistency function as f :
(xt, t; θ) 7→ δ(x−x0), holding the Error Correction Consis-
tency Flow property: for a given ground-truth codeword x0,
all points (xt, t) on any trajectory originating from x0 map
directly back to it, i.e. fθ(xt, t) = δ(x− x0), ∀t ∈ [0, T ].
This implies that for any two noisy signal xt and xr de-
rived from the same x0, their consistency function outputs
must be identical and correct: fθ(xt, t) = fθ(xr, r) =
δ(x− x0), ∀t, r ∈ [0, T ].

To train a consistency model fθ that achieves this prop-
erty, a naive adaptation of the vanilla consistency loss would
be to minimize the distance between two noisy signal from
the same trajectory similar to Eq. 5. However, this standard
consistency objective is indirect; it only enforces relative
consistency between outputs. In decoding tasks, the ground
truth x0 is known during training, and consistency models
are optimized to decode the clean codeword. We leverage
this property by proposing the Error Correction Consistency
Flow Loss (EC-CM), which directly minimizes the distance
of each estimation to the ground truth xg and optimizes for
the upper bound of the standard consistency loss by Triangle
Inequality:

LEC-CM(θ) := E[d (fθ(xt, t), δ(x− x0))

+ d (fθ(xr, r), δ(x− x0))]

≥ LStandard-CM(θ)

(6)

It provides a tighter and direct training objective in decod-
ing tasks. Instead of only encouraging two noisy estimates
to agree with each other, it forces both to agree with the cor-
rect codeword, directly optimizing for the Error Correction
Consistency property. This fundamental change requires all
decoding trajectories mapping to their origin codeword as
demonstrated in Figure 1, and the learned solution distribu-
tion is expected to center on x0.

Differential Consistency Condition for Smooth
Trajectory
The training objective of a consistency model is to learn a
function fθ(xt, t) that maps any point on a trajectory back
to its origin x0. This is enforced by both satisfying the self-
consistency property and the boundary condition, which is
rooted in the differential equation df

dt = 0. Following Eq. 10
and 11 in (Geng et al. 2024), the consistency function fθ is
parameterized to satisfy these conditions:

fθ(xt, t) = x0 ⇔
df

dt
= 0, fθ(x0, 0) = x0, (7)

In practice, this differential form is discretized for training
using a finite-difference approximation, by dividing the time



Figure 2: Training Dynamics from iterative denoising to 1-step consistency decoding. DDECC’s iterative diffusion denoising
learns a noise predictor, ϵθ(·, et), requiring a multi-step iterative process to reverse the noise and decode the codeword. Our
ECCFM, fθ(·, e†), directly learns the mapping from any noisy signal to the original clean codeword. By using the smooth
soft-syndrome condition (e†), it achieves successful decoding in a single step.

Figure 3: Decoding trajectories for models conditioned on
Hard Syndrome versus Soft Syndrome on a POLAR(64,48)
code. The soft-syndrome conditioning results in a smoother
path to a valid codeword.

horizon into N − 1 sub-intervals 1 = t1 < · · · < tN = T :

0 =
df

dt
≈ fθ(xt, t)− fθ(xr, r)

t− r
, (8)

where dt = ∆t = t− r, t > r ≥ 0.
A critical problem arises when applying the consistency

framework to ECC decoding tasks: the time variables t and
r, which represent noise levels, are not directly observable
from the received signals. A seemingly natural solution, pro-
posed in DDECC (Choukroun and Wolf 2023), is to use the
sum of syndrome error, et, as a measurement of the noise
level, since an error count of zero (et = 0) indicates a valid
codeword. The hard syndrome is computed as s = Hy⊤b ,
where H is the parity-check matrix. The sum of syndrome

Algorithm 1: Error Correction Consistency Training

Require: Model fθ, parity-check matrix H, learning rate
η, syndrome weight λ, denoising steps N , time scaling
factor α.
for training batch x0 do

t ∼ U{1, . . . , N}, r = αt
ϵ ∼ N (0, I)

xt ← x0 +
√
β̄t · ϵ,xr ← x0 +

√
β̄r · ϵ

e†t = LSoft-syn(xt, H), e†r = LSoft-syn(xr, H)
Compute LEC-CM according to Eq.
Compute LTotal according to Eq. 11
θ ← θ − η · ∇θLTotal

end for

error, et =
∑

i s(xt)i, is then the sum of binary syndrome
bits.

However, naively replacing the continuous time variables
t and r in Eq. 8 with their discrete, integer-valued counter-
parts et and er violates the core assumption of a smooth, dif-
ferential trajectory. As we demonstrate in Figure 3, the tra-
jectory defined by the syndrome error is highly non-smooth
and clustered: A small change in the noisy signal can cause
an abrupt jump in the syndrome error count, invalidating the
finite-difference approximation; And it is common for two
different noisy signals, xt and xr, to have the same syn-
drome error count (et = er), leading to instability during
training.

Therefore, the discrete and non-smooth nature of the syn-
drome error makes it an unsuitable conditioning variable for



standard consistency model training in ECC, which necessi-
tates a smooth and differential measure of noise level along
the denoising trajectory. We then propose replacing this dis-
crete error sum condition with a continuous and differen-
tiable alternative. Inspired by (Lau et al. 2025), we introduce
the soft syndrome as the basis for the consistency noise con-
dition. The soft syndrome, s†, is a fully differentiable func-
tion that leverages the log-likelihood ratios of the received
signal y: and offers a continuous measure of how close each
parity-check equation is to being fulfilled.
Differential Soft-syndrome Error Condition. Similar to
the conventional hard sum of syndrome error, we compute
the soft-syndrome error condition e† for each row j of the
parity-check matrix as:

LSoft-syn(y,H) = e† :=
1

n− k

∑
j

log s†j , (9)

This soft-syndrome error condition is computed as the bi-
nary cross-entropy between the estimated syndrome and the
all-zero syndrome, which requires valid codewords to satisfy
all parity-check equations. We use the mean-field approx-
imation to provide differential conditions to estimate the
probability of satisfying zero-syndrome conditions in Eq. 9:

s†j =
1

2
+

1

2

∏
{i:Hj,i=1}

(
2 · sigmoid

(2yi
σ2

)
− 1

)
, (10)

This metric is zero if and only if the codeword is valid, yet
it varies smoothly and continuously with the received signal
y. By using e†t as the time condition, we provide the con-
sistency model with a smooth, differentiable trajectory from
a noisy signal to a valid codeword, resolving the instability
and degeneracy issues of the hard error sum and enabling
stable training.

Error Correction Consistency Training Dynamics
Building upon the differential time conditions via soft-
syndrome in Eq. 9, we make it able to learn a smooth tra-
jectory satisfying consistency conditions as shown in Fig-
ure 2. Given a codeword xs ∈ {−1,+1}n modulated us-
ing BPSK, and the signal received is then perturbed with
an AWGN channel y = xs + z = xs · z̃s, where z̃s de-
notes the multiplicative noise. We follow the standard pre-
processing techniques proposed by (Bennatan, Choukroun,
and Kisilev 2018), the input of the neural network is a con-
catenated vector representing magnitude and hard syndrome
[|y|, s(y)] with length 2n − k. For the forward process in
AWGN channel, we build the trajectory by adding the same
Gaussian noise ϵ ∼ N (0, I) with a different time schedule√
β̄t, where t ∈ [0, ..., N ] and N denotes the pre-defined

forward noising steps. Thus, during training, we sample dif-
ferent noisy signals y1 := xt, y2 := xr with different noise
levels t ∼ U{0, ..., N} and r = αt, i.e.xt := x0 +

√
β̄t · ϵ,

xr := x0 +
√
β̄r · ϵ, where α ∈ [0, 1] denotes the time scal-

ing factor. Then a consistency model fθ predicts the clean
codeword. Following Eq. , we get the consistency loss for
two different noisy signals yt, yr, which learns the mapping
to their original clean codeword x0. We further add the soft-
syndrome loss in Eq. 9 as the regularization term to stabilize

training and propose the total loss for ECCFM:

LTotal(θ) = E
[
w(t)

(
d(fθ(xt, e

†
t), δ(x− x0))

+ d(fθ(xr, e
†
r), δ(x− x0))

)
+ λ ·

(
LSoft-syn(fθ(xt, e

†
t), H)

+ LSoft-syn(fθ(xr, e
†
r), H)

)]
(11)

where d(·, ·) is a distance metric, such as Binary Cross-
Entropy (BCE) in this work, and λ is a hyperparameter that
weights the syndrome regularization term. Once trained ac-
cording to Algorithm 1, the learned consistency function
fθ can decode the noisy received signal y in a one step:
x̂0 = fθ(y, e

†
t), as shown in Appendix 2, Algorithm 2.

Numerical Results
Datasets. We evaluate our proposed ECCFM framework on
the following set of standard error correction codes, includ-
ing BCH, Polar, and LDPC codes (MacKay, CCSDS, and
WRAN variants). Our evaluation considers multiple code
lengths (n), rates (k/n), and Signal-to-Noise Ratios (SNRs),
specifically Eb/N0 values from 4 to 6 dB, to ensure a robust
assessment of performance.
Evaluation Metrics. We evaluate decoding performance
using two standard metrics following established bench-
marks (Choukroun and Wolf 2022b, 2023; Park et al. 2025):
Bit Error Rate (BER) and Frame Error Rate (FER). BER
measures the fraction of individual bits that are incorrectly
decoded. FER (also known as Block Error Rate, BLER)
measures the fraction of entire codewords that contain one
or more bit errors. Concerning the latency factor, we evalu-
ate computational efficiency by reporting inference time and
throughput (decoded samples per second).
Baselines. We numerically compared the results with mul-
tiple baselines for the decoding task, including: 1) Con-
ventional BP-based decoders: BP (Bennatan, Choukroun,
and Kisilev 2018) and ARBP (Nachmani and Wolf 2021).
2) Auto-regressive model-free decoders: ECCT (Choukroun
and Wolf 2022b), and CrossMPT (Park et al. 2025). 3) De-
noising diffusion model-free decoders: DDECC (Choukroun
and Wolf 2023).
Experimental Setup. We reproduced the results for all
model-free baselines (ECCT, CrossMPT, DDECC) by im-
plementing them with their publication-stated hyperparame-
ters. Our primary ECCFM model utilizes a Transformer ar-
chitecture with cross-attention, using N = 6 layers and a
hidden dimension of d = 128, and all the other three base-
lines (ECCT, CrossMPT, DDECC) apply the same model
architecture to ensure fair comparison. ECCFM was trained
for 1500 epochs using the Adam optimizer on a single GPU.
The learning rate was managed by a cosine decay scheduler,
starting at 10−4 and decreasing to 5×10−7. Detailed training
configurations and hyperparameter selections are provided
in Appendix 4.

Overall Performance. Following established bench-
marks (Choukroun and Wolf 2022b, 2023; Park et al. 2025),



Table 1: Performance comparison of various decoders across different codes and Signal-to-Noise Ratios (Eb/N0). The results
are reported in terms of − ln(BER) (the higher, the better). All model-free methods use a fixed model architecture (N = 6,
d = 128). Best results are shown in bold and the second-best results are shown in underline, respectively.

Architecture BP-based decoders Model-free decoders

Code Type Parameters
BP ARBP ECCT CrossMPT DDECC ECCFM(Ours)

4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

BCH
(63,36) 4.03 5.42 7.26 4.57 6.39 8.92 4.69 6.48 9.06 4.94 6.74 9.28 5.02 6.82 9.88 5.00 6.89 9.76
(63,45) 4.36 5.55 7.26 4.97 6.90 9.41 5.47 7.56 10.51 5.73 7.98 10.80 5.68 8.08 11.22 5.70 8.03 11.04

POLAR

(64,32) 4.26 5.38 6.50 5.57 7.43 9.82 6.87 9.21 12.15 7.42 9.94 13.28 7.04 9.44 12.70 7.55 10.31 13.80
(64,48) 4.74 5.94 7.42 5.41 7.19 9.30 6.21 8.31 10.85 6.36 8.53 11.09 5.93 8.00 10.44 6.56 8.78 11.52

(128,64) 4.10 5.11 6.15 4.84 6.78 9.30 5.79 8.45 11.10 7.45 9.71 14.31 7.71 11.40 13.85 8.01 12.22 16.71
(128,86) 4.49 5.65 6.97 5.39 7.37 10.13 6.29 8.98 12.82 7.43 10.80 15.13 7.61 10.50 13.88 7.78 11.21 16.05
(128,96) 4.61 5.79 7.08 5.27 7.44 10.20 6.30 9.04 12.40 7.06 10.25 13.23 7.14 10.31 13.66 7.21 10.52 14.32

LDPC
(121,60) 4.82 7.21 10.87 5.22 8.31 13.07 5.12 8.21 12.80 5.75 9.42 15.21 5.42 9.11 13.82 6.02 9.94 15.55
(121,70) 5.88 8.76 13.04 6.45 10.01 14.77 6.30 10.11 15.50 7.06 11.29 17.10 6.91 11.02 17.15 7.35 12.23 17.60
(121,80) 6.66 9.82 13.98 7.22 11.03 15.90 7.27 11.21 17.02 7.87 12.65 17.72 7.61 11.89 16.18 8.25 13.33 18.69

MacKay (96,48) 6.84 9.40 12.57 7.43 10.65 14.65 7.37 10.55 14.72 7.85 11.72 15.49 8.03 12.44 15.79 7.92 12.25 16.08

CCSDS (128,64) 6.55 9.65 13.78 7.25 10.99 16.36 6.82 10.60 15.87 7.56 11.87 16.80 7.77 12.35 17.22 7.95 12.68 17.01

we conducted a decoding performance comparison mea-
sured in − ln(BER). Our method was evaluated versus
two classes of decoders: conventional BP-based algorithms
(BP and ARBP) and model-free neural decoders (ECCT,
CrossMPT, and DDECC). To ensure a fair comparison, all
neural models were implemented with a fixed architecture
(N = 6 layers, d = 128 hidden dimensions). Furthermore,
to ensure statistical significance, each simulation was run
until at least 500 error codes were observed, under a max-
imum of 107 test instances.

As shown in Table 1, our proposed ECCFM framework
consistently achieves better performance across the tested
code families, including BCH, Polar, LDPC, CCSDS and
MacKay with different code rates (n, k). In the test cases,
ECCFM achieves the best or second-best BER, perform-
ing better than autoregressive and diffusion-based neural de-
coders and showing considerable gain over POLAR codes.
This result indicates the applicability and effectiveness of
the proposed consistency-based training approach.

Performance on Longer Codes. To further evaluate
scalability, we conducted a focused evaluation on longer
codes commonly used in practical communication systems:
LDPC(n = 204, k = 102), LDPC(n = 408, k = 204),
WRAN(n = 384, k = 320), and Polar(n = 512, k = 384).
All methods were implemented with the same model archi-
tecture (N = 6, d = 128). As illustrated in Figure 4, EC-
CFM improves upon the scores of the neural net baselines
across a range of SNRs (2 dB to 6 dB), highlighting the
scalability and robustness of ECCFM for those challeng-
ing decoding tasks. Additional results on other high-length
codes are presented in Appendix 4, which also suggest per-
formance gain compared to the baselines.

Inference Time and Throughput Comparison. A key
benefit of ECCFM is its ability to perform high-fidelity de-
coding in only one step. To quantify this efficiency gain,
we measured inference time (total seconds to decode 105

samples) and throughput (samples decoded per second). As

shown in Figure 5, ECCFM demonstrates a speed advantage
over diffusion-based methods such as DDECC, achieving
speedups of over 30x for short codes and 100x for medium-
to-long codes. This disparity arises because diffusion mod-
els require several iterative denoising steps for inference,
a computational cost that scales with code complexity as
detailed in Appendix 4. Notably, ECCFM achieves decod-
ing speeds comparable to the fastest auto-regressive baseline
(CrossMPT) due to its one-step nature. Therefore, ECCFM
matches the competitive performance of denoising diffusion
decoders while operating at the high throughput of single-
step auto-regressive decoders.

Ablation Study: Model-Agnostic Property of ECCFM.
We discussed that ECCFM is a model-agnostic training
framework, i.e., its performance could be preserved over
different neural network architectures. To test this, we con-
ducted an ablation study where we decoupled our frame-
work from cross-attention transformer backbone conducted
before. Specifically, we took the underlying architecture of
the ECCT baseline and trained it using our proposed EC-
CFM training objective. We then compared this model di-
rectly against the original ECCT, which uses the same archi-
tecture. The results presented in Appendix 4, Table 3 show
that applying the ECCFM training objective yields improve-
ment in − ln(BER) over the standard ECCT.

Conclusions and Limitations
In this work, we introduced the Error Correction Consis-
tency Flow Model (ECCFM), a novel training framework
for obtaining the successful results of diffusion-based de-
coders with the low latency required for several practi-
cal applications. By reformulating the decoding task as a
one-step consistency mapping and introducing a differen-
tial soft-syndrome error condition, we managed to handle
non-smooth trajectories that previously hindered the ap-
plication of consistency models to ECC. Our experiments
demonstrate that ECCFM achieves comparable Bit-Error-



LDPC(408,204) POLAR(512,384)WRAN(384,320)

B
ER

FE
R

Figure 4: Performance comparison of various decoding baselines on medium-to-long block codes. The plot shows the Bit Error
Rate (BER) at different Signal-to-Noise Ratios (SNRs).

In
fe

re
nc

e 
Ti

m
e 

(s
)

Th
ro

ug
hp

ut
 (S

am
pl

e/
s)

POLAR(64,32) POLAR(128,64) LDPC(204,102) LDPC(408,204)

DDECC ECCT CrossMPT ECCFM(Ours)

Figure 5: Comparison of Inference Time (top) and Throughput (bottom) across various decoding baselines and code types.

Rates across various standard codes, while offering a con-
sistent inference speedup over denoising diffusion methods.
Despite these successful results, our work has limitations to
be addressed in future research. First, our evaluation is fo-
cused on the AWGN channel; the framework’s performance
and the suitability of the soft-syndrome condition on other
channel models, such as fading channels, remain to be inves-
tigated. Second, the convergence rate and training efficiency
of consistency models highly rely on building a smooth tra-
jectory, which varies in different code types. Future work
can explore adaptive methods for more general decoding
tasks.

References
Bennatan, A.; Choukroun, Y.; and Kisilev, P. 2018. Deep
learning for decoding of linear codes-a syndrome-based ap-
proach. In 2018 IEEE International Symposium on Informa-
tion Theory (ISIT), 1595–1599. IEEE.
Blattmann, A.; Rombach, R.; Ling, H.; Dockhorn, T.; Kim,
S. W.; Fidler, S.; and Kreis, K. 2023. Align your latents:
High-resolution video synthesis with latent diffusion mod-
els. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, 22563–22575.
Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J. D.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; et al. 2020. Language models are few-shot learners. Ad-
vances in neural information processing systems, 33: 1877–
1901.



Cammerer, S.; Gruber, T.; Hoydis, J.; and Ten Brink, S.
2017. Scaling deep learning-based decoding of polar codes
via partitioning. In GLOBECOM 2017-2017 IEEE global
communications conference, 1–6. IEEE.
Chen, H.; Zhang, Y.; Cun, X.; Xia, M.; Wang, X.; Weng, C.;
and Shan, Y. 2024. Videocrafter2: Overcoming data limita-
tions for high-quality video diffusion models. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 7310–7320.
Choukroun, Y.; and Wolf, L. 2022a. Denoising diffusion
error correction codes. arXiv preprint arXiv:2209.13533.
Choukroun, Y.; and Wolf, L. 2022b. Error correction code
transformer. Advances in Neural Information Processing
Systems, 35: 38695–38705.
Choukroun, Y.; and Wolf, L. 2023. Denoising Diffusion Er-
ror Correction Codes. In The Eleventh International Con-
ference on Learning Representations.
Choukroun, Y.; and Wolf, L. 2024a. A foundation model for
error correction codes. In The Twelfth International Confer-
ence on Learning Representations.
Choukroun, Y.; and Wolf, L. 2024b. Learning linear block
error correction codes. In Proceedings of the 41st Interna-
tional Conference on Machine Learning, 8801–8814.
Dai, J.; Tan, K.; Si, Z.; Niu, K.; Chen, M.; Poor, H. V.; and
Cui, S. 2021. Learning to decode protograph LDPC codes.
IEEE Journal on Selected Areas in Communications, 39(7):
1983–1999.
Dhariwal, P.; and Nichol, A. 2021. Diffusion models beat
gans on image synthesis. Advances in neural information
processing systems, 34: 8780–8794.
Fossorier, M. P.; Mihaljevic, M.; and Imai, H. 1999. Re-
duced complexity iterative decoding of low-density parity
check codes based on belief propagation. IEEE Transac-
tions on communications, 47(5): 673–680.
Geng, Z.; Pokle, A.; Luo, W.; Lin, J.; and Kolter, J. Z.
2024. Consistency models made easy. arXiv preprint
arXiv:2406.14548.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2020. Generative adversarial networks. Communications of
the ACM, 63(11): 139–144.
Gruber, T.; Cammerer, S.; Hoydis, J.; and Ten Brink, S.
2017. On deep learning-based channel decoding. In 2017
51st annual conference on information sciences and systems
(CISS), 1–6. IEEE.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.
He, Y.; Yang, T.; Zhang, Y.; Shan, Y.; and Chen, Q. 2022.
Latent video diffusion models for high-fidelity long video
generation. arXiv preprint arXiv:2211.13221.
Ho, J.; Jain, A.; and Abbeel, P. 2020. Denoising Diffusion
Probabilistic Models. In Advances in Neural Information
Processing Systems, volume 33, 6840–6851.

Karras, T.; Aittala, M.; Aila, T.; and Laine, S. 2022. Eluci-
dating the design space of diffusion-based generative mod-
els. Advances in neural information processing systems, 35:
26565–26577.
Kim, H.; Jiang, Y.; Rana, R. B.; Kannan, S.; Oh, S.; and
Viswanath, P. 2018. Communication Algorithms via Deep
Learning. In International Conference on Learning Repre-
sentations.
Kwak, H.-Y.; Kim, J.-W.; Kim, Y.; Kim, S.-H.; and No, J.-
S. 2022. Neural min-sum decoding for generalized LDPC
codes. IEEE Communications Letters, 26(12): 2841–2845.
Kwak, H.-Y.; Yun, D.-Y.; Kim, Y.; Kim, S.-H.; and No, J.-
S. 2023. Boosting learning for LDPC codes to improve the
error-floor performance. Advances in Neural Information
Processing Systems, 36: 22115–22131.
Lau, C. W.; Shi, X.; Zheng, Z.; Cao, H.; and Guo,
N. 2025. Interplay Between Belief Propagation and
Transformer: Differential-Attention Message Passing Trans-
former. arXiv:2509.15637.
Lei, H.; Zhou, K.; Li, Y.; Chen, Z.; and Farnia, F. 2025.
Boosting Generalization in Diffusion-Based Neural Com-
binatorial Solver via Inference Time Adaptation. arXiv
preprint arXiv:2502.12188.
Li, Y.; Guo, J.; Wang, R.; and Yan, J. 2023. T2t: From dis-
tribution learning in training to gradient search in testing for
combinatorial optimization. Advances in Neural Informa-
tion Processing Systems, 36: 50020–50040.
Lou, A.; Meng, C.; and Ermon, S. 2023. Discrete diffusion
modeling by estimating the ratios of the data distribution.
arXiv preprint arXiv:2310.16834.
Lu, C.; Zhou, Y.; Bao, F.; Chen, J.; Li, C.; and Zhu, J. 2022.
Dpm-solver: A fast ode solver for diffusion probabilistic
model sampling in around 10 steps. Advances in neural in-
formation processing systems, 35: 5775–5787.
Lugosch, L.; and Gross, W. J. 2017. Neural offset min-sum
decoding. In 2017 IEEE International Symposium on Infor-
mation Theory (ISIT), 1361–1365. IEEE.
Marinkovic, M.; Piz, M.; Choi, C.-S.; Panic, G.; Ehrig, M.;
and Grass, E. 2010. Performance evaluation of channel cod-
ing for Gbps 60-GHz OFDM-based wireless communica-
tions. In 21st Annual IEEE International Symposium on Per-
sonal, Indoor and Mobile Radio Communications, 994–998.
IEEE.
Matsumine, T.; and Ochiai, H. 2024. Recent advances in
deep learning for channel coding: A survey. IEEE Open
Journal of the Communications Society.
Nachmani, E.; and Wolf, L. 2019. Hyper-graph-network de-
coders for block codes. Advances in Neural Information
Processing Systems, 32.
Nachmani, E.; and Wolf, L. 2021. Autoregressive be-
lief propagation for decoding block codes. arXiv preprint
arXiv:2103.11780.
Nie, S.; Zhu, F.; You, Z.; Zhang, X.; Ou, J.; Hu, J.; Zhou,
J.; Lin, Y.; Wen, J.-R.; and Li, C. 2025. Large language
diffusion models. arXiv preprint arXiv:2502.09992.



Park, S.-J.; Kwak, H.-Y.; Kim, S.-H.; Kim, Y.; and No,
J.-S. 2024. CrossMPT: Cross-attention message-passing
transformer for error correcting codes. arXiv preprint
arXiv:2405.01033.
Park, S.-J.; Kwak, H.-Y.; Kim, S.-H.; Kim, Y.; and No, J.-S.
2025. CrossMPT: Cross-attention Message-passing Trans-
former for Error Correcting Codes. In The Thirteenth Inter-
national Conference on Learning Representations.
Podell, D.; English, Z.; Lacey, K.; Blattmann, A.; Dockhorn,
T.; Müller, J.; Penna, J.; and Rombach, R. 2024. SDXL: Im-
proving Latent Diffusion Models for High-Resolution Im-
age Synthesis. In The Twelfth International Conference on
Learning Representations.
Richardson, T. J.; and Urbanke, R. L. 2002. The capacity of
low-density parity-check codes under message-passing de-
coding. IEEE Transactions on information theory, 47(2):
599–618.
Rombach, R.; Blattmann, A.; Lorenz, D.; Esser, P.; and Om-
mer, B. 2022. High-Resolution Image Synthesis with Latent
Diffusion Models. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
10684–10695.
Sohl-Dickstein, J.; Weiss, E.; Maheswaranathan, N.; and
Ganguli, S. 2015. Deep unsupervised learning using
nonequilibrium thermodynamics. In International confer-
ence on machine learning, 2256–2265. pmlr.
Song, J.; Meng, C.; and Ermon, S. 2020. Denoising diffusion
implicit models. arXiv preprint arXiv:2010.02502.
Song, Y.; and Dhariwal, P. 2023. Improved tech-
niques for training consistency models. arXiv preprint
arXiv:2310.14189.
Song, Y.; Dhariwal, P.; Chen, M.; and Sutskever, I. 2023.
Consistency models. In Proceedings of the 40th Interna-
tional Conference on Machine Learning, 32211–32252.
Song, Y.; and Ermon, S. 2019. Generative modeling by esti-
mating gradients of the data distribution. Advances in neural
information processing systems, 32.
Song, Y.; Sohl-Dickstein, J.; Kingma, D. P.; Kumar, A.; Er-
mon, S.; and Poole, B. 2020. Score-based generative model-
ing through stochastic differential equations. arXiv preprint
arXiv:2011.13456.
Stein, C. 1972. A bound for the error in the normal approx-
imation to the distribution of a sum of dependent random
variables. In Proceedings of the sixth Berkeley symposium
on mathematical statistics and probability, volume 2: Prob-
ability theory, volume 6, 583–603. University of California
Press.
Sun, Z.; and Yang, Y. 2023. Difusco: Graph-based diffusion
solvers for combinatorial optimization. Advances in neural
information processing systems, 36: 3706–3731.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. Advances in neural information pro-
cessing systems, 30.
Zhu, H.; Cao, Z.; Zhao, Y.; and Li, D. 2020. Learning to de-
noise and decode: A novel residual neural network decoder

for polar codes. IEEE Transactions on Vehicular Technol-
ogy, 69(8): 8725–8738.

Reproducibility Checklist

Instructions for Authors:
This document outlines key aspects for assessing repro-

ducibility. Please provide your input by editing this .tex
file directly.

For each question (that applies), replace the “Type your
response here” text with your answer.

Example: If a question appears as

\question{Proofs of all novel claims
are included} {(yes/partial/no)}
Type your response here

you would change it to:

\question{Proofs of all novel claims
are included} {(yes/partial/no)}
yes

Please make sure to:

• Replace ONLY the “Type your response here” text and
nothing else.

• Use one of the options listed for that question (e.g., yes,
no, partial, or NA).

• Not modify any other part of the \question com-
mand or any other lines in this document.

You can \input this .tex file right before
\end{document} of your main file or compile it as
a stand-alone document. Check the instructions on your
conference’s website to see if you will be asked to provide
this checklist with your paper or separately.

1. General Paper Structure

1.1. Includes a conceptual outline and/or pseudocode de-
scription of AI methods introduced (yes/partial/no/NA)
yes

1.2. Clearly delineates statements that are opinions, hypoth-
esis, and speculation from objective facts and results
(yes/no) yes

1.3. Provides well-marked pedagogical references for less-
familiar readers to gain background necessary to repli-
cate the paper (yes/no) yes

2. Theoretical Contributions

2.1. Does this paper make theoretical contributions?
(yes/no) yes

If yes, please address the following points:



2.2. All assumptions and restrictions are stated clearly
and formally (yes/partial/no) yes

2.3. All novel claims are stated formally (e.g., in theorem
statements) (yes/partial/no) yes

2.4. Proofs of all novel claims are included (yes/par-
tial/no) yes

2.5. Proof sketches or intuitions are given for complex
and/or novel results (yes/partial/no) yes

2.6. Appropriate citations to theoretical tools used are
given (yes/partial/no) yes

2.7. All theoretical claims are demonstrated empirically
to hold (yes/partial/no/NA) yes

2.8. All experimental code used to eliminate or disprove
claims is included (yes/no/NA) yes

3. Dataset Usage
3.1. Does this paper rely on one or more datasets? (yes/no)

yes

If yes, please address the following points:

3.2. A motivation is given for why the experiments
are conducted on the selected datasets (yes/par-
tial/no/NA) yes

3.3. All novel datasets introduced in this paper are in-
cluded in a data appendix (yes/partial/no/NA) yes

3.4. All novel datasets introduced in this paper will be
made publicly available upon publication of the pa-
per with a license that allows free usage for research
purposes (yes/partial/no/NA) NA

3.5. All datasets drawn from the existing literature (po-
tentially including authors’ own previously pub-
lished work) are accompanied by appropriate cita-
tions (yes/no/NA) yes

3.6. All datasets drawn from the existing literature
(potentially including authors’ own previously
published work) are publicly available (yes/par-
tial/no/NA) yes

3.7. All datasets that are not publicly available are de-
scribed in detail, with explanation why publicly
available alternatives are not scientifically satisficing
(yes/partial/no/NA) NA

4. Computational Experiments
4.1. Does this paper include computational experiments?

(yes/no) yes

If yes, please address the following points:

4.2. This paper states the number and range of values
tried per (hyper-) parameter during development of

the paper, along with the criterion used for selecting
the final parameter setting (yes/partial/no/NA) yes

4.3. Any code required for pre-processing data is in-
cluded in the appendix (yes/partial/no) partial

4.4. All source code required for conducting and analyz-
ing the experiments is included in a code appendix
(yes/partial/no) partial

4.5. All source code required for conducting and ana-
lyzing the experiments will be made publicly avail-
able upon publication of the paper with a license
that allows free usage for research purposes (yes/-
partial/no) yes

4.6. All source code implementing new methods have
comments detailing the implementation, with refer-
ences to the paper where each step comes from (yes/-
partial/no) yes

4.7. If an algorithm depends on randomness, then the
method used for setting seeds is described in a way
sufficient to allow replication of results (yes/par-
tial/no/NA) yes

4.8. This paper specifies the computing infrastructure
used for running experiments (hardware and soft-
ware), including GPU/CPU models; amount of
memory; operating system; names and versions of
relevant software libraries and frameworks (yes/par-
tial/no) yes

4.9. This paper formally describes evaluation metrics
used and explains the motivation for choosing these
metrics (yes/partial/no) yes

4.10. This paper states the number of algorithm runs used
to compute each reported result (yes/no) yes

4.11. Analysis of experiments goes beyond single-
dimensional summaries of performance (e.g., aver-
age; median) to include measures of variation, con-
fidence, or other distributional information (yes/no)
yes

4.12. The significance of any improvement or decrease in
performance is judged using appropriate statistical
tests (e.g., Wilcoxon signed-rank) (yes/partial/no)
yes

4.13. This paper lists all final (hyper-)parameters used
for each model/algorithm in the paper’s experiments
(yes/partial/no/NA) yes



Preliminary on Diffusion Generative Models
Diffusion Models. Diffusion Models (DMs) (Ho, Jain, and Abbeel 2020; Song and Ermon 2019; Song et al. 2020) are gen-
erative models that generate samples from a target data distribution, pdata(x0) by reversing a predefined forward noising pro-
cess (Sohl-Dickstein et al. 2015). In the forward diffusion process, a data sample x0 is gradually perturbed with Gaussian noise
over a continuous time interval t ∈ [0, T ]. This forward process can be mathematically described as adding noise to obtain a
noisy data point xt =

√
αtx0 +

√
1− αtϵt, where ϵt ∼ N (0, I) is standard Gaussian noise and αt ∈ [0, 1] monotonically

decreases with time step t to control the noise level. Denoising Diffusion Probabilistic Models (DDPMs) (Ho, Jain, and Abbeel
2020) ϵθ : X × [T ] 7→ X is trained to predict the noise ϵt at each time step t, also learn the score function of pt(xt) (Song and
Ermon 2019; Song et al. 2020):

min
θ

Ext,ϵt,t

[
∥ϵθ(xt, t)− ϵt∥22

]
= min

θ
Ext,ϵt,t


∥∥∥∥∥∥ϵθ(xt, t) +

√
1− αt∇xt

log pt(xt)︸ ︷︷ ︸
Score Function

∥∥∥∥∥∥
2

2

 , (12)

During inference, samples can be generated by solving the reverse-time SDE starting from t = T to t = 0. Crucially, there
exists a corresponding deterministic process, the probability flow ODE (PF-ODE), whose trajectories share the same marginal
distributions pt(xt)t∈[0,T ] as the SDE (Song et al. 2020). The formulation of PF-ODE can be described and simplified as
following (Karras et al. 2022; Song et al. 2023):

dxt = −σ̇(t)σ(t)∇xt
log pt(xt)dt, (13)

where ϵθ(xt, t) is the learned time-dependent neural network ϵθ(xt, t), known as the denoiser. , is trained to approximate this
expectation: ϵθ(xt, t) ≈ E[x0|xt]. By substituting this approximation and adopting the common noise schedule σ(t) = t
following (Karras et al. 2022; Song et al. 2023), the PF-ODE simplifies to:

dxt

dt
= −t∇xt log pt(xt) =

xt − ϵθ(xt, t)

t
, (14)

Sample generation of diffusion models is performed by solving this PF-ODE backwards in time from t = T to t = 0, starting
from a sample drawn from the prior Gaussian distribution, xT ∼ N (0, σ(T )2I). This requires a numerical ODE solver (e.g.,
Euler (Song and Ermon 2019; Song et al. 2020) or Heun (Karras et al. 2022)) to obtain a solution trajectory {x̂t}t∈[0,T ] that
transforms noise into a data sample.
Consistency Models (CMs). A major concern of DMs is the slow sampling process, which requires sequential calculation of the
denoiser ϵθ. Consistency Models (CMs) (Song et al. 2023) were introduced to overcome this by enabling fast, 1-step generation.
The core principle is the self-consistency property: any two points (xt, t) and (xr, r) on the same PF-ODE trajectory should
map to the same origin point, x0. CMs build upon Eq. 14 and learn a function fθ(xt, t) that directly estimates the trajectory
from noisy data to clean data with a single step:

fθ(xt, t) = x0, (15)

The training objective of CMs is to enforce the consistency property across a discrete set of time steps. The continuous time
interval [0, T ] is discretized into N − 1 sub-intervals, defined by timesteps 1 = t1 < · · · < tN = T . The model is then
trained to minimize the following loss, which enforces that the model’s output is consistent for adjacent points on the same
ODE trajectory:

argmin
θ

E[w(ti)d(fθ(xti+1
, ti+1), fθ−(x̃ti , ti))], (16)

Here, fθ is the network being trained, while fθ− is an exponential moving average (EMA) of fθ’s past samples. The term
x̃ti = xti+1

−(ti−ti+1)ti+1∇xti+1
log pti+1

(xti+1
) is obtained by taking a single ODE solver step backwards from xti+1

using
the score function. This training process can be performed in two ways: by distilling knowledge from a pre-trained diffusion
model, known as Consistency Distillation (CD), or by training from scratch, known as Consistency Training (CT). However,
training CMs is difficult and resource-intensive. It requires a carefully designed curriculum for the number of discretization
steps N to ensure stabilized training. The follow-up works improved the vanilla CMs, such as iCT (Song and Dhariwal 2023),
which proposed enhanced metrics and schedulers, and ECT (Geng et al. 2024), which uses ”pre-training diffusion + consistency
tuning” to stabilize learning.

Related Works
Neural Network-based ECC Decoders. Neural network-based decoders are broadly categorized into model-based and model-
free approaches. Model-based decoders augment conventional algorithms, such as Belief Propagation (BP)(Richardson and
Urbanke 2002) and Min-Sum (MS)(Fossorier, Mihaljevic, and Imai 1999), by using neural networks to learn the message-
passing process. This paradigm has been extensively explored across various architectures and code types (Dai et al. 2021;
Kwak et al. 2022, 2023; Lugosch and Gross 2017; Nachmani and Wolf 2019, 2021; Marinkovic et al. 2010; Zhu et al. 2020),



consistently achieving superior performance over conventional algorithms (Matsumine and Ochiai 2024). However, they are
often limited by challenges in capturing long-range dependencies and the reliance on the underlying decoding algorithm.

In contrast, model-free decoders treat decoding as a learning problem without depending on problem-specific algorithms.
While early fully-connected architectures (Gruber et al. 2017; Cammerer et al. 2017; Kim et al. 2018) struggled with overfitting,
(Bennatan, Choukroun, and Kisilev 2018) proposes the pre-processing by decomposing the magnitude and syndrome vector to
address overfitting issues for model-free decoders. Inspired by the recent breakthrough of Transformers (Vaswani et al. 2017),
ECCT (Choukroun and Wolf 2022b) pioneered by applying self-attention to the channel output, and modeling decoding as
an auto-regressive sequence-to-sequence task. Several works have improved based on this approach: FECCT (Choukroun and
Wolf 2024a) improved generalization, DC-ECCT (Choukroun and Wolf 2024b) enabled joint encoder-decoder training, and
CrossMPT (Park et al. 2025) introduced cross-attention to achieve better performance and efficiency among auto-regressive
methods. Recently, diffusion generative models have emerged as a powerful alternative. DDECC (Choukroun and Wolf 2023)
frames decoding as a denoising process, modeling the AWGN channel as the forward diffusion step, and offers performance
gains over auto-regressive decoders.

Diffusion Generative Models. Diffusion generative models (Sohl-Dickstein et al. 2015; Ho, Jain, and Abbeel 2020; Song
et al. 2020; Karras et al. 2022) learn to reverse a forward noising process by estimating the data’s score function (Stein
1972). They have achieved state-of-the-art performance in synthesizing high-fidelity samples across diverse domains like im-
ages (Dhariwal and Nichol 2021; Rombach et al. 2022; Podell et al. 2024), video (He et al. 2022; Blattmann et al. 2023), text
generation (Lou, Meng, and Ermon 2023; Nie et al. 2025), and graphs (Sun and Yang 2023; Li et al. 2023; Lei et al. 2025).
However, a primary limitation of diffusion models is the significant computational overhead during inference, due to the iter-
ative nature of the denoising process. To mitigate this, numerous accelerated sampling methods have been developed (Song,
Meng, and Ermon 2020; Lu et al. 2022).

This framework is particularly well-suited for Error Correction Code (ECC) decoding, where the AWGN channel naturally
models the forward process (Choukroun and Wolf 2022a). While diffusion-based decoders have reached state-of-the-art perfor-
mance (Choukroun and Wolf 2022a; Park et al. 2024), they inherit the same computational inefficiency compared to methods
like auto-regressive decoders (Choukroun and Wolf 2022b; Park et al. 2024). To address this issue, we draw inspiration from
Consistency Models (CMs) (Song et al. 2023; Song and Dhariwal 2023; Geng et al. 2024), a novel technique for accelerating
diffusion models. CMs are designed to directly learn the reverse denoising trajectory, enabling mapping noisy samples to the
target data distribution in one step and maintaining high generation quality.

Consistency Sampling Algorithm
Once we obtain the well-trained consistency model fθ following Algorithm 1, we can simply apply the one-step sampling to
estimate the codeword x̂0, given any received signals y.

Algorithm 2: Error Correction Consistency One-step Sampling

Require: Consistency Model fθ, parity-check matrix H.
for Test batch noisy signals y do

e†t = LSoft-syn(y,H) ▷ Calculate soft-syndrome
x̂0 = fθ(y, e

†
t) ▷ Estimate clean codeword with one-step

end for

Detailed Experimental Setting
We provide the specific design choices of ECCFM and the listed training hyperparameters. Following the design in (Choukroun
and Wolf 2022b, 2023; Park et al. 2024), we generate the training set by corrupting the all-zero codeword x0 with AWGN noise
z, following the diffusion process y = x0 +

√
β̄N · ϵ, where ϵ ∼ N (0, I). The diffusion process was configured with a total

of N = n − k + 5 steps. We employed a linear variance schedule with βi = 0.01 for short codes and a more fine-grained
βi = 0.0025 for medium-to-long codes. Each epoch consisted of 1,000 steps with a minibatch size of 128. To ensure a fair
comparison, all neural models were implemented with a fixed architecture (N = 6 layers, d = 128 hidden dimensions). Each
test task was run until at least 500 error codes were observed, under a maximum of 107 test instances.

Additional experimental results
Additional Results on Long Codes
As established in Figure 4, ECCFM demonstrates scalability, achieving competitive performance on both short and medium-
to-long codes. To further validate this, we present additional results for LDPC codes of varying lengths and rates, specifically
LDPC(n = 204, k = 102) and LDPC(n = 529, k = 440). The BER and FER results in Figure 6 confirm that ECCFM improves
decoding performance while maintaining its high inference speed.



(a) BER on LDPC(204,102) (b) BER on LDPC(529,440)

(c) FER on LDPC(204,102) (d) FER on LDPC(529,440)

Figure 6: Performance comparison in terms of Bit Error Rate (BER) and Frame Error Rate (FER) for two LDPC codes with
different blocklengths and rates: LDPC(n = 204, k = 102) and LDPC(n = 529, k = 440). Our method is evaluated against
ECCT, CrossMPT, and DDECC.



Table 2: Training hyperparameters and design choices.

Parameters Design Choice
Consistency Loss d(·, ·) = Binary Cross Entropy(x̂0,x0)
Syndrome Weight λ = 0.01
Training Epoch 1500
Mini-batch 1000
Training Batchsize 128
Test Numbers At least 500 error cases and at most 107 total numbers
Test Batchsize 2048 for short codes, 256 for medium-to-long codes
Weighting Function w(t) = 1
Total Diffusion Steps N = n− k + 5
Forward Schedule βi = 0.01 for short codes, βi = 0.0025 for medium-to-long codes
Time Step t ∼ U{1, 2, . . . , N}
Scaling Factor α = 0.8
Initial Learning Rate η = 1e−4

Learning Rate Schedule Cosine Decay
Decay Rate η′ = 5e−7

Exponential Moving Average Ratio EMA= 0.999

Additional Results on Inference Time and Throughput
To evaluate the practical efficiency of ECCFM, we benchmarked its inference time and throughput on both POLAR and LDPC
codes against established baselines (ECCT, CrossMPT, and DDECC). Inference time was measured as the total duration in
seconds to decode 106 samples, while throughput was defined as the number of samples decoded per second. As illustrated in
Figure 5, ECCFM achieves a speedup over the denoising diffusion method, DDECC. The advantage scales with code complex-
ity, growing from a 30x speedup on short codes to over 100x on longer codes. Further analysis, detailed in Figure 7, Figure 8,
Figure 9, and Figure 10 confirms that these efficiency gains are consistent across a wide range of code types, lengths, and rates.
This performance demonstrates that ECCFM provides a significant improvement in decoding speed, particularly for long codes
where latency is a critical bottleneck.

Ablation Study: Model-Agnostic Property of ECCFM
As stated in Numerical Results, ECCFM operates as a model-agnostic training framework, delivering performance gains that
are independent of the model architecture (e.g., GNN, Transformer, or Cross-Attention Transformer). To validate this claim,
we conducted an ablation study. We isolated our training methodology by applying it to the architecture of a different baseline,
ECCT. As detailed in Table 3, we trained the ECCT backbone using the ECCFM objective and compared its performance to the
original ECCT model. The results demonstrate a performance improvement, confirming that our method is adaptable to different
backbones and that the observed gains are attributable to the training framework itself, not the specific model architecture.

Analysis on Computational Overhead of iterative denoising phase
To point out the ECCFM’s speed advantage, we analyzed the iterative convergence of the denoising diffusion framework.
Specifically, we measured the average number of inference steps required for the DDECC model to converge to a valid codeword
(i.e., achieve a zero syndrome, et = 0). As detailed in Table 4, the computational overhead for DDECC increases substantially
under these three conditions: longer codes, lower code rates, and lower SNRs. This is precisely the bottleneck that ECCFM’s
one-step decoding offers a consistent gain in efficiency, particularly in these difficult decoding scenarios.



(a) LDPC(121,60) (b) LDPC(121,70)

(c) LDPC(121,80) (d) LDPC(529,440)

Figure 7: Inference time on LDPC(n = 121, k = 60), LDPC(n = 121, k = 70), LDPC(n = 121, k = 80) and LDPC(n =
529, k = 440), comparing with ECCT, CrossMPT and DDECC.

(a) LDPC(121,60) (b) LDPC(121,70)

(c) LDPC(121,80) (d) LDPC(529,440)

Figure 8: Throughput on LDPC(n = 121, k = 60), LDPC(n = 121, k = 70), LDPC(n = 121, k = 80) and LDPC(n =
529, k = 440).



(a) POLAR(128,86) (b) POLAR(128,96) (c) POLAR(512,384)

Figure 9: Inference time on POLAR(n = 128, k = 86), POLAR(n = 128, k = 96) and POLAR(n = 512, k = 384), comparing
with ECCT, CrossMPT and DDECC.

(a) POLAR(128,86) (b) POLAR(128,96) (c) POLAR(512,384)

Figure 10: Inference time on POLAR(n = 128, k = 86), POLAR(n = 128, k = 96) and POLAR(n = 512, k = 384).



Table 3: Performance comparison of ECCFM versus the standard ECCT, using an identical ECCT backbone on POLAR and
LDPC codes.

Architecture ECCT Backbone

Code Type Parameters ECCT ECCFM(ECCT)

4 5 6 4 5 6

POLAR

(64,32) 6.87 9.21 12.15 7.12 9.77 12.71
(64,48) 6.21 8.31 10.85 6.38 8.55 11.23
(128,64) 5.79 8.45 11.10 7.32 11.03 14.87
(128,86) 6.29 8.98 12.82 7.18 10.17 15.02
(128,96) 6.30 9.04 12.40 6.86 9.94 13.83

LDPC
(121,60) 5.12 8.21 12.80 5.55 8.86 13.97
(121,70) 6.30 10.11 15.50 6.87 11.21 16.13
(121,80) 7.27 11.21 17.02 7.80 12.03 17.95

Table 4: Convergence steps to et = 0 of the DDECC decoder on longer codes across different Signal-to-Noise Ratios (Eb/N0).
The results are reported in terms of the average steps(variance).

Code Type Parameters Converge Steps: Average(Variance)

2 3 4 5 6

POLAR (512,384) 123.40(11.38) 91.34(21.68) 60.24(18.00) 41.40(16.13) 24.99(14.82)

LDPC
(204,102) 57.10(21.51) 39.37(10.50) 29.47(7.50) 21.25(6.90) 14.24(6.31)
(408,204) 112.12(39.47) 76.91(13.18) 58.39(10.38) 42.39(9.62) 28.99(8.81)
(529,440) 89.54(8.07) 59.25(27.75) 27.48(9.78) 17.06(6.95) 9.22(6.03)

WRAN (384,320) 59.66(9.79) 37.59(18.88) 18.57(7.99) 11.23(5.49) 5.91(4.64)


