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ABSTRACT

The goal of multi-objective reinforcement learning (MORL) is to learn poli-
cies that simultaneously optimize multiple competing objectives. In practice, an
agent’s preferences over the objectives may not be known apriori, and hence, we
require policies that can generalize to arbitrary preferences at test time. In this
work, we propose a new data-driven setup for offline MORL, where we wish
to learn a preference-agnostic policy agent using only a finite dataset of offline
demonstrations of other agents and their preferences. The key contributions of
this work are two-fold. First, we introduce D4MORL, (D)atasets for MORL that
are specifically designed for offline settings. It contains 1.8 million annotated
demonstrations obtained by rolling out reference policies that optimize for ran-
domly sampled preferences on 6 MuJoCo environments with 2-3 objectives each.
Second, we propose Pareto-Efficient Decision Agents (PEDA), a family of offline
MORL algorithms that builds and extends return-conditioned offline methods in-
cluding Decision Transformers (Chen et al., 2021) and RvS (Emmons et al., 2022)
via a novel preference-and-return conditioned policy. Empirically, we show that
PEDA closely approximates the behavioral policy on the D4MORL benchmark
and provides an excellent approximation of the Pareto-front with appropriate con-
ditioning, as measured by the hypervolume and sparsity metrics.

1 INTRODUCTION

We are interested in learning agents for multi-objective reinforcement learning (MORL) that opti-
mize for one or more competing objectives. This setting is commonly observed in many real-world
scenarios. For instance, an autonomous driving car might trade off high speed and energy savings
depending on the user’s preferences. If the user has a relatively high preference for speed, the agent
will move fast regardless of power usage; on the other hand, if the user tries to save energy, the agent
will keep a more steady speed. One key challenge with MORL is that different users might have dif-
ferent preferences on the objectives and systematically exploring policies for each preference might
be expensive, or even impossible. In the online setting, prior work considers several approximations
based on scalarizing the vector-valued rewards of different objectives based on a single preference
(Lin, 2005), learning an ensemble of policies based on enumerating preferences (Mossalam et al.,
2016a, Xu et al., 2020), or extensions of single-objective algorithms such as Q-learning to vectorized
value functions (Yang et al., 2019).

We introduce the setting of offline multi-objective reinforcement learning for high-dimensional state
and action spaces, where our goal is to train an MORL policy agent using an offline dataset of
demonstrations from multiple agents with known preferences. Similar to the single-task setting, of-
fline MORL can utilize auxiliary logged datasets to minimize interactions when deploying agents,
thus improving data efficiency and minimizing interactions when deploying agents in high-risk set-
tings. In addition to its practical utility, offline RL (Levine et al., 2020) has enjoyed major successes
in the last few years (Kumar et al., 2020, Kostrikov et al., 2021, Chen et al., 2021) on challenging
high-dimensional environments for continuous control. Our contributions in this work are two-fold
in introducing benchmarking datasets and a new family of MORL algorithms, as described below.

We introduce Datasets for Multi-Objective Reinforcement Learning (D4MORL), a collection of 1.8
million trajectories on 6 multi-objective MuJoCo environments (Xu et al., 2020). Here, 5 environ-
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ments consist of 2 objectives and 1 environment consists of 3 objectives. For each environment
in D4MORL, we collect demonstrations from 2 pretrained behavioral agents: expert and amateur,
where the relative expertize is defined in terms of the Pareto-efficiency of the agents and measured
empirically via their hypervolumes. Furthermore, we also include 3 kinds of preference distribu-
tions with varying entropies to expose additional data-centric aspects for downstream benchmark-
ing. Lack of MORL datasets and large-scale benchmarking has been a major challenge for basic
research (Hayes et al., 2021), and we hope that D4MORL can aid future research in the field.

Next, we propose Pareto-Efficient Decision Agents (PEDA), a family of offline MORL algorithms
that extends return-conditioned methods including Decision Transformer (DT) (Chen et al., 2021)
and RvS (Emmons et al., 2022) to the multi-objective setting. These methods learn a return-
conditioned policy via a supervised loss on the predicted actions. In recent work, these methods
have successfully scaled to agents that demonstrate broad capabilities in multi-task settings (Lee
et al., 2022 Reed et al., 2022). For MORL, we introduce a novel preference and return conditioned
policy network and train it via a supervised learning loss. At test time, naively conditioning on
the default preferences and maximum possible returns leads to out-of-distribution behavior for the
model, as neither has it seen maximum returns for all objectives in the training data nor is it possible
to simultaneously maximize all objectives under competition. We address this issue by learning to
map preferences to appropriate returns and hence, enabling predictable generalization at test-time.

Empirically, we find PEDA performs exceedingly well on D4MORL and closely approximates the
reference Pareto-frontier of the behavioral policy used for data generation. In the multi-objective
HalfCheetah environment, compared with an average upper bound on the hypervolume of 5.79ˆ106

achieved by the behavioral policy, PEDA achieves an average hypervolume of 5.77 ˆ 106 on the
Expert and 5.76 ˆ 106 on the Amateur datasets.

2 RELATED WORK

Multi-Objective Reinforcement Learning Predominant works in MORL focus on the online
setting where the goal is to train agents that can generalize to arbitrary preferences. This can be
achieved by training a single preference-conditioned policy (Yang et al., 2019; Parisi et al., 2016)),
or an ensemble of single-objective policies for a finite set of preferences (Mossalam et al., 2016b;
Xu et al., 2020; Zhang & Li, 2007)). Many of these algorithms consider vectorized variants of stan-
dard algorithms such as Q-learning (Mossalam et al., 2016b; Yang et al., 2019), often augmented
with strategies to guide the policy ensemble towards the Pareto front using evolutionary or incre-
mentally updated algorithms (Xu et al., 2020; Zhang & Li, 2007; Mossalam et al., 2016b; Roijers
et al., 2014; Huang et al., 2022)). Other approaches have also been studied, such as framing MORL
as a meta-learning problem (Chen et al., 2018), learning the action distribution for each objective
(Abdolmaleki et al., 2020), and learning the relationship between objectives (Zhan & Cao, 2019)
among others. In contrast to these online MORL works, our focus is on learning a single policy that
works for all preferences using only offline datasets.

There are also a few works that study decision making with multiple objectives in the offline setting
and sidestep any interaction with the environments. Wu et al., 2021 propose a provably efficient
offline MORL algorithm for tabular MDPs based on dual gradient ascent. Satija et al., 2021 study
learning of safe policies by extending the approach of Laroche et al., 2017 to the offline MORL
setting. Their proposed algorithm assumes knowledge of the behavioral policy used to collect the
offline data and is demonstrated primarily on tabular MDPs with finite state and action spaces. In
contrast, we are interested in developing dataset benchmarks and algorithms for scalable offline
policy optimization in high-dimensional MDPs with continuous states and actions.

Multi-Task Reinforcement Learning MORL is also closely related to multi-task reinforcement
learning, where every task can be interpreted as a distinct objective. There is an extensive body of
work in learning multi-task policies both in the online and offline setups (Wilson et al., 2007; Lazaric
& Ghavamzadeh, 2010; Teh et al., 2017) inter alia. However, the key difference is that typical MTRL
benchmarks and algorithms do not consider solving multiple tasks that involve inherent trade-offs.
Consequently, there is no notion of Pareto efficiency and an agent can simultaneously excel in all
the tasks without accounting for user preferences.
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Reinforcement Learning Via Supervised Learning A body of recent works have formulated of-
fline reinforcement learning as an autoregressive sequence modeling problem using Decision Trans-
formers (DT) or Trajectory Transformers ( Chen et al., 2021, Janner et al., 2021) The key idea in
DT is to learn a transformer-based policy that conditions on the past history and a dynamic esti-
mate of the returns (a.k.a. returns-to-go). Follow-up works consider online learning (Zheng et al.,
2022) as well as simpler variants that rely only on multi-layer perceptrons (Emmons et al., 2022).
Such agents are generally more stable and robust to optimize due to the simplicity of loss function
and easier to scale to more complex settings such as environments with high-dimensional actions or
states, as shown in recent works in multi-task RL (Lee et al., 2022; Reed et al., 2022).

3 PRELIMINARIES

Setup and Notation. We operate in the general framework of multi-objective Markov decision
process (MOMDP) with linear preferences (Wakuta, 1995). An MOMDP is represented by the tuple
xS,A,P,R,Ω, f, γy. At each timestep t, the agent with a current state st P S takes an action
at P A to transition into a new state st`1 with probability Ppst`1|st,atq and observes a reward
vector rt “ Rpst,atq P Rn. Here, n is the number of objectives. The vector-valued return R P Rn

of an agent is given by the discounted sum of reward vectors over a time horizon, R “
ř

t γ
trt. We

also assume that there exists a linear utility function f and a space of preferences Ω that can map the
reward vector rt and a preference vector ω P Ω to a scalar reward rt, i.e., rt “ fprt,ωq “ ω⊺rt.
The expected vector return of a policy π is given an Gπ “ rGπ

1 , G
π
2 , . . . , G

π
ns⊺ where the expected

return of the ith objective is given as Gπ
i “ Eat`1„πp¨|st,ωqr

ř

t Rpst,atqis for some predefined time
horizon and preference vector ω. The goal is to train a multi-objective policy πpa|s,ωq such that
the expected scalarized return ω⊺ Gπ “ Erω⊺ ř

t Rpst,atqs is maximized.

Pareto Optimality. In MORL, one cannot optimize all objectives simultaneously, so poli-
cies are evaluated based on the Pareto set of their vector-valued expected returns. Consider a
preference-conditioned policy πpa|s,ωq that is evaluated for m distinct preferences ω1, . . . ,ωm,
and let the resulting policy set be represented as tπpup“1,...,m, where πp “ πpa|s,ω “ ωpq,
and Gπp is the corresponding unweighted expected return. We say the solution Gπp is dom-
inated by Gπq when there is no objective for which πq is worse than πp, i.e., G

πp

i ă G
πq

i
for @i P r1, 2, . . . , ns. If a solution is not dominated, it is part of the Pareto set denoted as
P . The curve traced by the solutions in a Pareto set is also known as the Pareto front. In
MORL, our goal is to define a policy such that its empirical Pareto set is a good approxima-
tion of the true Pareto front. While we do not know the true Pareto front for many problems,
we can define metrics for relative comparisons between different algorithms. Specifically, we
evaluate a Pareto set P based on two metrics, hypervolume and sparsity that we describe next.

Figure 1: Illustration of the Hypervolume
and Sparsity Metrics. Only undominated
solutions (i.e., the Pareto set) are used for
calculating the evaluation metrics.

Definition 1 (Hypervolume). Hypervolume HpP q

measures the space or volume enclosed by the solu-
tions in the Pareto set P :

HpP q “

ż

Rm

1HpP qpzq dz,

where HpP q “ tz P Z|Di : 1 ď i ď |P |, r ĺ z ĺ

P piqu. P piq is the ith solution in P , ĺ is the dominance
relation operator, and 1HpP qpzq equals 1 if z P HpP q

and 0 otherwise. Higher hypervolumes are better.
Definition 2 (Sparsity). Sparsity SpP q measures the
density of the Pareto front covered by a Pareto set P :

SpP q “
1

|P | ´ 1

n
ÿ

i“1

|P |´1
ÿ

k“1

pP̃ipkq ´ P̃ipk ` 1qq2,

where P̃i represents a list sorted as per the values of
the ith objective in P and P̃ipkq is the kth value in the
sorted list. Lower sparsity is better.

See Figure 1 for an illustration and Appendix E for discussion on other possible metrics.
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4 D4MORL: DATASETS FOR OFFLINE MULTI-OBJECTIVE REINFORCEMENT
LEARNING

In offline RL, the goal of an RL agent is to learn the optimal policy using a fixed dataset without
any interactions with the environment (Levine et al., 2020). This perspective brings RL closer to
supervised learning, where the presence of large-scale datasets has been foundational for further
progress in the field. Many such data benchmarks exist for offline RL as well; a notable one is
the D4RL (Fu et al., 2020) benchmark for continuous control which has led to the development of
several state-of-the-art offline RL algorithms (Kostrikov et al., 2021; Kumar et al., 2020; Chen et al.,
2021) that can scale favorably even in high dimensions. To the best of our knowledge, there are
no such existing benchmarks for offline MORL. Even for the online setting, most works in MORL
conduct evaluations on toy MDPs (e.g., gridworld) with a few exceptions that include continuous
control benchmarks, e.g., Chen et al. (2018); Xu et al. (2020). This calls for a much needed push
towards more challenging benchmarks for reliable evaluation of MORL, especially in the offline
setting.

In this paper, we introduce Datasets for Multi-Objective Reinforcement Learning (D4MORL), a
large-scale benchmark for offline MORL. Our benchmark consists of offline trajectories from 6
multi-objective MuJoCo environments including 5 environments with 2 objectives each viz. MO-
Ant, MO-HalfCheetah, MO-Hopper, MO-Swimmer, MO-Walker2d, and one environment with three
objectives: MO-Hopper-3obj. The objectives are conflicting for each environment; for instance,
the two objectives in MO-Hopper correspond to jumping and running; in MO-HalfCheetah, MO-
Swimmer, and MO-Walker2d, they correspond to the speed and energy savings of the agent. See
Appendix A for more details on the semantics of the target objectives for each environment. These
environments were first introduced in Xu et al. (2020) for online MORL, and as such, we use their
pretrained ensemble policies as building blocks for defining new behavioral polices for dataset col-
lection, which we discuss next.

4.1 TRAJECTORY SAMPLING

The quality of the behavioral policy used for sampling trajectories in the offline dataset is a key factor
for benchmarking downstream offline RL algorithms. In existing benchmarks for single-objective
RL such as D4RL (Fu et al., 2020), the quality of a behavioral policy can be ascertained and varied
based on its closeness to a single expert policy, as measured by their scalar-valued returns. For a
MOMDP, we do not have the notion of a scalar return and hence, a reference expert policy (or set of
policies) should reflect the optimal returns for all possible preferences in the preference space.

We use Prediction-Guided Multi-Objective Reinforcement Learning (PGMORL), a state-of-the-art
MORL algorithm for defining reference expert policies. PGMORL (Xu et al., 2020) uses evolu-
tionary algorithms to train an ensemble of policies to approximate the Pareto set. Each reference
policy in the ensemble is associated with a unique preference; for any new preference, it is mapped
to the closest preference in the reference set. The number of policies in the ensemble can vary
significantly; for instance, we have roughly 70 reference policies for MO-Antand 2445 policies for
harder environments such as MO-Hopper-3obj. Given a desired preference, we define two sets of
behavioral policies:

1. Expert Dataset: We find the best reference policy in the policy ensemble, and always
follow the action taken by the reference policy.

2. Amateur Dataset: As before, we first find the best reference policy in the policy ensem-
ble. With a fixed probability p, we randomly perturb the actions of the reference policies.
Otherwise, with probability 1 ´ p, we take the same action as the reference policy. In
D4MORL, we set p “ 0.65.

Further details are described in Appendix C. In Figure 2, we show the returns of the trajectories
rolled out from the expert and amateur policies for the 2 objective environments evaluated for a
uniform sampling of preferences. We can see that the expert trajectories typically dominate the
amateur trajectories, as desired. For the amateur trajectories, we see more diversity in the empirical
returns for both objectives under consideration. The return patterns for the amateur trajectories vary
across different environments providing a diverse suite of datasets in our benchmark.
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(a) MO-Ant (b) MO-HalfCheetah (c) MO-Hopper (d) MO-Swimmer (e) MO-Walker2d

Figure 2: Empirical returns for expert and amateur trajectory datasets for the two-objective environ-
ments in D4MORL. For each environment and dataset, we randomly plot returns for 300 trajectories.

(a) High Entropy (H=-0.2) (b) Medium Entropy (H=-0.35) (c) Low Entropy (H=-1.54)

Figure 3: Illustration of the preference distributions for 3 objectives. Entropy is estimated on 50K
preference samples using the Vasicek estimator in Scipy (Vasicek, 1976, Virtanen et al., 2020).

4.2 PREFERENCE SAMPLING

The coverage of any offline dataset is an important factor in dictating the performance of downstream
offline RL algorithms (Levine et al., 2020). For MORL, the coverage depends on both the behavioral
MORL policy as well as the distribution of preferences over which this policy is evaluated. We use
the following protocols for sampling from the preference space Ω. First, we restrict our samples
to lie within a physically plausible preference space Ω˚ Ď Ω covered by the behavioral policy πβ .
For instance, MO-Hopper has two objectives: jumping and running. Since the agent can never gain
running rewards without leaving the floor. Thus, the preference of 100% running and 0% jumping
is not achievable and excluded from our preference sampling distribution.

Second, we are primarily interested in offline trajectories that emphasize competition between multi-
ple objectives rather than focusing on a singular objective. To enforce this criteria, we define 3 sam-
pling distributions concentrated around the centroid of the preference simplex. The largest spread
distribution samples uniformly from Ω˚ and is denoted as High-Entropy (High-H). Next, we have
a Medium-Entropy (Med-H) distribution specified via samples of Dirichlet distributions with large
values of their concentration hyperparameters (aka α). Finally, we have a Low-Entropy (Low-H)
distribution that is again specified via samples of Dirichlet distributions, but with low values of their
concentration hyperparameters. We illustrate the samples for each of the preference distributions
along with their empirical entropies in Figure 3. Further details on the sampling distributions are
deferred to Appendix B. By ensuring different levels of coverage, we can test the generalizability
of an MORL policy to preferences unseen during training. In general, we expect Low-H to be the
hardest of the three distributions due to its restricted coverage, followed by Med-H and High-H.

Overall Data Generation Pipeline. The pseudocode for generating the dataset is described in
Algorithm 1. Given a preference distribution, we first sample a preference ω and query the closest
behavioral policy in either the amateur/expert ensemble matching ω. We rollout this policy for
T time steps (or until the end of an episode if sooner) and record the state, action, and reward
information. Each trajectory in our dataset is represented as:

τ “ă ω, s1,a1, r1, . . . , sT ,aT , rT ą
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Algorithm 1 Data Collection in D4MORL

procedure COLLECT(prefDist, nTraj, env,
pretrainedAgents, T)

agents = pretrainedAgents
prefs = prefDist(nTraj)
all trajs = []
for ω in prefs do

agent = closestAgent(agents, ω)
s = env.reset()
done = False
τ = [ω]
t = 0
while (NOT done) AND (t ă T) do

a = agent.get action(s)
s1, done, r = env.step(a)
append s, a, s1, r to τ
s = s1

t = t + 1
append τ to all trajs

return all trajs

For every environment in D4MORL, we collect
50K trajectories of length T “ 500 for both expert
and amateur trajectory distributions under each of
the 3 preference distributions. Overall, this results
in a total of 1.8M trajectories over all 6 environ-
ments, which corresponds to roughly 867M time
steps. We refer the reader to Table 5 in Appendix
B for additional statistics on the dataset.

5 PARETO-EFFICIENT
DECISION AGENTS (PEDA)

In this section, we propose Pareto-Efficient De-
cision Agents (PEDA), a family of offline multi-
objective RL agents that aims to achieve Pareto-
efficiency by extending Decision Transform-
ers (Chen et al., 2021) into multi-objective set-
ting. We first introduce the architecture of Deci-
sion Transformers (DT) and its variant, Reinforce-
ment Learning Via Supervised Learning (RvS),
followed by our modifications extending them to
the multi-objective setting.

DT casts offline RL as a conditional sequence modeling problem that predicts the next action by
conditioning a transformer on past states, actions, and desired returns. The desired returns are
defined as returns-to-go (RTG) gt “

řT
t1“t rt1 , the future returns that this action is intended to

achieve. Therefore, the trajectory is represented by τ “ă s1,a1, g1, . . . , sT ,aT , gT ą. In practice,
we use a causally masked transformer architecture such as GPT (Radford et al., 2019) to process this
sequence and predict the actions by observing the past K timesteps consisting of 3K tokens. DT
and its variants have been shown to be more stable and robust to optimize due to the simplicity of
loss function; easier to scale to more complex settings such as environments with high-dimensional
actions or states, and agents with broad capabilities such as multitask settings (Lee et al., 2022).
Hence, we adopt Decision Transformers (Chen et al., 2021) as the representative base algorithm on
which we build our work.

In follow-up work, Emmons et al. (2022) extend DT and shows that even multi-layer perceptrons
conditioned on the average returns-to-go can achieve similar performance without the use of trans-
formers. They call their model as Reinforcement Learning Via Supervised Learning (RvS). How-
ever, RvS is generally not very stable when conditioned on very large returns, unlike DT.

5.1 MULTI-OBJECTIVE REINFORCEMENT LEARNING VIA SUPERVISED LEARNING

In PEDA, our goal is to train a single preference-conditioned agent for offline MORL. By includ-
ing preference conditioning, we enable the policy to be trained on arbitrary offline data, including
trajectories collected from behavioral policies that are associated with alternate preferences. To pa-
rameterize our policy agents, we extend the DT and RvS architectures to include preference tokens
and vector-valued returns. We refer to such preference-conditioned extensions of these architectures
as MODT(P) and MORVS(P) respectively, which we describe next.

Preference Conditioning. Naively, we can easily incorporate the preference ω into DT by adding
this token for each timestep and feeding it a separate embedding layer. However, empirically we
find that such a model design tends to ignore ω and the correlation between the preferences and
predicted actions is weak. Therefore, we propose to concatenate ω to other tokens before any layers
in MODT(P). Concretely, we define s˚ “ s

À

ω, a˚ “ a
À

ω, and g˚ “ g
À

ω where
À

denotes the concatenation operator. Hence, triples of s˚, a˚, g˚ form the new trajectory. As for
MORVS(P), we concatenate the preference with the states and the average RTGs by default and the
network interprets everything as one single input.
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Multi-Objective Returns-to-Go. Similar to RTG for the single objective case, we can define
vector-valued RTG as gt “

řT
t1“t rt1 Given a preference vector ω, we can scalarize the total

returns-to-go as ĝt “ ωTgt. In principle, the scalarized RTG ĝt can be recovered given the pref-
erence vector ω and the vector-valued RTG gt. However, empirically we find that directly feeding
MODT/MORVS with the preference-weighted RTG vector gt d ω is slightly preferable for stable
training, where d denotes the elementwise product operator.

Another unique challenge in the MORL setting concerns the scale of different objectives. Since
different objectives can signify different physical quantities (e.g., energy and speed), the choice
of scaling can influence policy optimization. We adopt a simple normalization scheme, where the
returns for each objective are normalized by subtracting the minimum observed value for that ob-
jective and dividing it by the range of values (max-min). Note that the maximum and minimum are
computed based on the offline dataset and hence, they are not necessarily the true min/max objective
values. Post this normalization, the values for every objective in the trajectory are on the same scale
between 0 and 1. For evaluating the hypervolume and sparsity, we use the unnormalized values so
that we can make comparisons across different datasets that may have different min/max boundaries.

Training. We follow a simple supervised training procedure where we train the policies on ran-
domly sampled mini-batches with MSE loss (for continuous actions). In MODT and MODT(P),
the input states, actions, and returns-to-go (with concatenated preferences) are treated as tokens and
embedded through one layer of MLP. We apply a layer of MLP and Tanh on the last hidden state
of GPT-2 transformer to predict next action. In MORVS and MORVS(P), we use only information
from the current timestep and MLP layers to predict the next action.

6 EXPERIMENTS

In this section, we evaluate the performance of PEDA on D4MORL benchmark. First, we investi-
gate the benefits of preference conditioning by evaluating on decision transformers (DT) and RvS
(MORVS) where no preference information is available and we scalarize multi-objective vector
returns into weighted sums. We denote our methods with preference conditioning as MODT(P)
and MORVS(P). Second, we compare our methods with classic imitation learning and temporal
difference learning algorithms with preference conditioning.

Imitation learning. Imitation learning simply uses supervised loss to train a mapping from states
(w/ or w/o concatenating preferences) to actions. We use behavioral cloning (BC) here and train
multi-layer MLPs as models named BC (w/o preference) and BC(P) (w/ preference).

Temporal difference learning. Conservative Q-Learning (CQL) (Kumar et al., 2020) is the state-
of-the-art standard offline RL method, which learns a conservative Q-function f : S ˆ A Ñ R
through neural networks. We modify the network architecture such that it also takes preference
vectors as inputs to learn a preference-conditioned Q-function f˚ : S ˆ A ˆ Ω Ñ R. We denote
this method as CQL(P).

6.1 MULTI-OBJECTIVE OFFLINE BENCHMARK

Table 1: Hypervolume performance on High-H-Expert dataset. PEDA variants MODT(P) and
MORVS(P) always approach the expert behavioral policy. (B: Behavioral policy)

Environments B MODT(P) MORVS(P) BC(P) CQL(P) MODT MORVS BC CQL

MO-Ant (106) 6.32 6.02˘.02 6.24˘.07 4.49˘.30 5.76˘.10 5.10˘.16 5.05˘.07 0.78˘.57 3.52˘.45
MO-HalfCheetah (106) 5.79 5.69˘.01 5.77˘.00 5.52˘.04 5.63˘.04 5.59˘.05 4.56˘.56 1.45˘.04 3.78˘.46
MO-Hopper (107) 2.09 1.92˘.01 1.98˘.02 1.40˘.03 0.33˘.39 1.60˘.04 1.72˘.04 0.82˘.42 0.02˘.02
MO-Hopper-3obj (1010) 3.73 3.24˘.09 3.27˘.10 2.29˘.29 0.78˘.24 1.22˘.27 2.33˘.14 0.03˘.01 0.00˘.00
MO-Swimmer (104) 3.25 3.16˘.01 3.22˘.01 3.21˘.01 3.22˘.08 2.49˘.28 3.19˘.01 1.81˘.03 2.08˘.08
MO-Walker2d (106) 5.21 4.84˘.10 5.15˘.01 3.47˘.13 3.21˘.32 0.61˘.43 4.95˘.06 0.07˘.01 0.82˘.62

Hypervolume. We compare hypervolume of our methods with all baselines on expert datasets in
Table 1 as well as amateur dataset in Table 2. For the two-objective environments, we evaluate the
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Table 2: Hypervolume performance on High-H-Amateur dataset. PEDA variants still approach
or even exceed the behavioral policy even when a considerable portion of data is suboptimal.
MODT(P) and MORVS(P) still present to be the strongest models and outperform other base-
lines. (B: Behavioral policy)

Environments B MODT(P) MORVS(P) BC(P) CQL(P) MODT MORVS BC CQL

MO-Ant (106) 5.61 5.60˘.03 5.94˘.04 4.35˘.07 5.62˘.23 3.34˘.71 4.91˘.06 2.34˘.09 2.80˘.68
MO-HalfCheetah (106) 5.68 5.64˘.01 5.77˘.00 5.26˘.06 5.64˘.04 5.51˘.01 5.28˘.35 3.14˘.38 4.41˘.08
MO-Hopper (107) 1.97 1.82˘.02 1.80˘.03 1.56˘.01 1.15˘.24 1.54˘.08 1.42˘.04 0.48˘.48 0.00˘.06
MO-Hopper-3obj (1010) 3.09 2.63˘.17 2.98˘.06 2.31˘.16 0.59˘.42 1.72˘.12 1.57˘.08 0.13˘.04 0.10˘.16
MO-Swimmer (1) 2.11 2.83˘.04 2.76˘.02 2.81˘.04 1.69˘.93 0.67˘0.1 2.78˘.01 0.46˘.14 0.74˘.47
MO-Walker2d (104) 4.99 3.17˘.14 4.96˘.02 2.93˘.75 1.78˘.33 2.62˘.81 4.21˘.27 1.19˘.21 0.76˘.81

Table 3: Sparsity (Ó) performance on High-H-Expert dataset. MODT(P) and MORVS(P) have
a lower density. BC(P) also has a competitive sparsity in smaller environments such as Swimmer.

Environments MODT(P) MORVS(P) BC(P) CQL(P)

MO-Ant (ˆ104) 7.06˘1.29 4.55˘.59 32.1˘12.2 0.58˘.10
MO-HalfCheetah (ˆ104) 1.44˘.28 0.74˘.03 1.69˘.70 0.10˘0.00
MO-Hopper (ˆ105) 8.89˘1.84 1.91˘.51 23.7˘20.1 2.84˘2.46
MO-Hopper-3obj (ˆ105) 1.42˘.42 1.11˘.22 0.75˘.15 2.60˘3.14
MO-Swimmer (ˆ1) 12.1˘6.49 5.00˘.42 3.79˘1.03 13.61˘5.31
MO-Walker2d (ˆ104) 5.28˘.99 1.91˘.25 46.9˘23.2 6.23˘10.71

models on 501 equally spaced preference points in the range [0, 1]; on the three-objective environ-
ment MO-Hopper-3obj, models are evaluated on 325 equally spaced points. Each point is evaluated
5 times with random environment re-initialization, and the median value is recorded. Finally, all the
results are based on 3 random seeds and we report the mean performance along with the standard
error. In Table 1 and Table 2, we can see that MODT(P) and MORVS(P) outperform other base-
lines and has a relatively very low standard error. Also, PEDA variants including MODT(P) and
MORVS(P) approaches the behavioral policy upper-bound.

Sparsity. We also evaluate sparsity performance. Since sparsity comparison is only meaningful
between models that are sensitive to preference and have a relatively similar hypervolume perfor-
mance, we only show results for models that concatenate preference. Overall, MORVS(P) has the
lowest sparsity in most environments, while at the same time featuring an outstanding hypervolume.

6.2 ABLATION STUDY

Pareto front approximation. We ablate how well the MODT(P) and MORVS(P) can approxi-
mate the Pareto front through conditioning on different preference points. We show the results in
Figure 4, where we can see that the models can approximate the Pareto front, while having some
dominated points colored in pink mostly in the MO-Hopper and MO-Walker2d environments. The
results are based on average of 3 seeds, and the full plot can be found in Appendix F.

Table 4: Sparsity (Ó) performance on High-H-Amateur dataset. We can see that all models still
have a similar or stronger sparsity performance when trained on amateur datasets. Furthermore,
MORVS(P) still presents the strongest performance. While BC(P) has strong performance in MO-
Hopper-3obj and MO-Swimmer, it also fails to give a dense solution in other environments and has
a higher standard error.

Environments MODT(P) MORVS(P) BC(P) CQL(P)

MO-Ant (ˆ104) 6.56˘.45 4.96˘ 1.1 11.7˘6.45 1.06˘.28
MO-HalfCheetah (ˆ104) 0.81˘.52 0.31˘.01 2.18˘.49 0.45˘.27
MO-Hopper (ˆ105) 1.54˘.69 1.75˘.52 9.57˘8.64 3.30˘5.25
MO-Hopper-3obj (ˆ105) 4.59˘1.51 1.04˘.28 0.79˘.19 2.00˘1.72
MO-Swimmer (ˆ1) 2.74˘1.51 1.53˘.10 1.21˘.07 8.87˘6.24
MO-Walker2d (ˆ104) 30.7˘13.6 2.10˘.02 154˘144 7.33˘5.89
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Figure 4: We show that MODT(P) and MORVS(P) can be good approximator to the Pareto front.
There are relatively more dominated points in MO-Hopper and MO-Walker2d colored in red.

Figure 5: We show that MORVS(P) Model can follow the given target reward that are within the
dataset’s minimum and maximum record. The plots are for all of the two-objective environments.
In addition, MO-Hopper and MO-Walker2d present to be the most challenging environments for
PEDA variants, featuring more dominated solutions than other environments.

The distribution of returns. We ablate how well MODT(P) and MORVS(P) follow their given
target return, based on a normalized and weighted value. We present the results in Figure 5 for
MORVS(P) under High-H-Expert datasets and refer to Appendix G for full settings. Here,
we see that the models follow the oracle line nicely when conditioned on target within the dataset
distribution, and generalize to targets outside of the dataset distribution as well.

7 CONCLUSION

In this paper, we introduced a novel dataset benchmark and algorithms for offline Multi-Objective
Reinforcement Learning. We first proposed D4MORL, a dataset benchmark consisting of offline
datasets generated from behavioral policies of different fidelities (expert/amateur) and rolled out un-
der preference distributions with varying entropies (high/medium/low). Then, we propose PEDA,
a family of offline MORL policy optimization algorithms based on decision transformers and show
that by concatenating and embedding preference together with other inputs, our policies can effec-
tively approximate the Pareto front of the underlying behavioral policy as measured by the hypervol-
ume and sparsity metrics. Our proposed family includes MLP and transformer based variants, viz.
the MORVS(P) and MODT(P), with MORVS(P) performing the best overall. In some scenarios,
the learned policies can also generalize to higher target rewards that exceeds the data distribution.
To our knowledge, the PEDA variants are the first offline MORL policies that supports both the
continuous action control and continuous preference space.

9
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REPRODUCIBILITY STATEMENT

In this paper, we make sure the experiment results are reproducible through training the
models on multiple seeds and evaluating each preference point for multiple times. We re-
port the mean value with standard error in all of our experiment result tables. Furthermore,
we upload our model code along with our submission, and sample data can be found in
this anonymous Google Drive folder: https://drive.google.com/drive/folders/
1FiF5xmCSJ2vL_frLYmeZNc_nUrhRfUXC?usp=sharing. Due to storage limits, we cur-
rently release only a subset of our data that can be used directly for training; we will release our full
datasets in the final version.
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Romain Laroche, Paul Trichelair, and Rémi Tachet des Combes. Safe policy improvement with
baseline bootstrapping, 2017. URL https://arxiv.org/abs/1712.06924.

10

https://drive.google.com/drive/folders/1FiF5xmCSJ2vL_frLYmeZNc_nUrhRfUXC?usp=sharing
https://drive.google.com/drive/folders/1FiF5xmCSJ2vL_frLYmeZNc_nUrhRfUXC?usp=sharing
https://proceedings.mlr.press/v119/abdolmaleki20a.html
https://arxiv.org/abs/1811.03376
https://openreview.net/forum?id=S874XAIpkR-
https://arxiv.org/abs/2103.09568
https://arxiv.org/abs/2103.09568
https://proceedings.mlr.press/v164/huang22a.html
https://arxiv.org/abs/2106.02039
https://arxiv.org/abs/2110.06169
https://arxiv.org/abs/1712.06924


Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2022

Alessandro Lazaric and Mohammad Ghavamzadeh. Bayesian multi-task reinforcement learning. In
ICML-27th International Conference on Machine Learning, pp. 599–606. Omnipress, 2010.

Kuang-Huei Lee, Ofir Nachum, Mengjiao Yang, Lisa Lee, Daniel Freeman, Winnie Xu, Sergio
Guadarrama, Ian Fischer, Eric Jang, Henryk Michalewski, and Igor Mordatch. Multi-game deci-
sion transformers, 2022. URL https://arxiv.org/abs/2205.15241.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tu-
torial, review, and perspectives on open problems, 2020. URL https://arxiv.org/abs/
2005.01643.

JiGuan G. Lin. On min-norm and min-max methods of multi-objective optimization. Math. Pro-
gram., 103(1):1–33, may 2005. ISSN 0025-5610. doi: 10.1007/s10107-003-0462-y. URL
https://doi.org/10.1007/s10107-003-0462-y.

Hossam Mossalam, Yannis M. Assael, Diederik M. Roijers, and Shimon Whiteson. Multi-objective
deep reinforcement learning, 2016a. URL https://arxiv.org/abs/1610.02707.

Hossam Mossalam, Yannis M. Assael, Diederik M. Roijers, and Shimon Whiteson. Multi-objective
deep reinforcement learning, 2016b. URL https://arxiv.org/abs/1610.02707.

Simone Parisi, Matteo Pirotta, and Marcello Restelli. Multi-objective reinforcement learning
through continuous pareto manifold approximation. Journal of Artificial Intelligence Research,
57:187–227, 10 2016. doi: 10.1613/jair.4961.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, Tom
Eccles, Jake Bruce, Ali Razavi, Ashley Edwards, Nicolas Heess, Yutian Chen, Raia Had-
sell, Oriol Vinyals, Mahyar Bordbar, and Nando de Freitas. A generalist agent, 2022. URL
https://arxiv.org/abs/2205.06175.

Diederik M. Roijers, Shimon Whiteson, and Frans A. Oliehoek. Linear support for multi-objective
coordination graphs. In Proceedings of the 2014 International Conference on Autonomous Agents
and Multi-Agent Systems, AAMAS ’14, pp. 1297–1304, Richland, SC, 2014. International Foun-
dation for Autonomous Agents and Multiagent Systems. ISBN 9781450327381.

Harsh Satija, Philip S. Thomas, Joelle Pineau, and Romain Laroche. Multi-objective
spibb: Seldonian offline policy improvement with safety constraints in finite mdps.
In Advances in Neural Information Processing Systems, volume 34, pp. 2004–2017,
2021. URL https://proceedings.neurips.cc/paper/2021/file/
0f65caf0a7d00afd2b87c028e88fe931-Paper.pdf.

Yee Teh, Victor Bapst, Wojciech M Czarnecki, John Quan, James Kirkpatrick, Raia Hadsell, Nicolas
Heess, and Razvan Pascanu. Distral: Robust multitask reinforcement learning. Advances in neural
information processing systems, 30, 2017.

Oldrich Vasicek. A test for normality based on sample entropy. Journal of the Royal Sta-
tistical Society: Series B (Methodological), 38(1):54–59, 1976. doi: https://doi.org/10.1111/
j.2517-6161.1976.tb01566.x. URL https://rss.onlinelibrary.wiley.com/doi/
abs/10.1111/j.2517-6161.1976.tb01566.x.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
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A ENVIRONMENT DESCRIPTION

All environments are the same as in Xu et al., 2020, except for when resetting the environment, each
parameter are uniformly sampled from the rx´10´3, x`10´3s with x being the default value. The
only exception is that MO-Hopper and MO-Hopper-3objalways reset height the same way as 1.25,
since this parameter directly relates to the reward function. All environments have a max episode
length of 500 steps per trajectory, but the agent may also die before reaching the maximum length.

A.1 MO-ANT

The two objectives in MO-Ant are achieved distance in x and y axes respectively, denoted as r “

rrvxt , rvyt s⊺.

Consider the position of the agent is represented as pxt, ytq at time t and takes the action at. The
agent has a fixed survival reward rs “ 1.0, dt “ 0.05, and an action cost of ra “ 1

2

ř

k a
2
k. The

rewards are calculated as:

rvxt “ pxt ´ xt´1q { dt ` rs ´ ra

rvyt “ pyt ´ yt´1q { dt ` rs ´ ra
(1)

A.2 MO-HALFCHEETAH

The two objectives in MO-HalfCheetah are running speed, and energy saving, denoted as r “

rrvt , r
e
t s⊺.

Consider the position of the agent is represented as pxt, ytq at time t and takes the action at. The
agent has a fixed survival reward rs “ 1.0, fixed dt “ 0.05, and an action cost of ra “

ř

k a
2
k. The

rewards are calculated as:

rvt “ mint4.0, pxt ´ xt´1q { dtu ` rs

ret “ 4.0 ´ ra ` rs
(2)

A.3 MO-HOPPER

The two objectives in MO-Hopper are running and jumping, denoted as r “ rrr, rjs⊺.

Consider the position of the agent is represented as pxt, htq at time t and takes the action at. The
agent has a fixed survival reward rs “ 1.0, a fixed initial height as hinit “ 1.25, a fixed dt “ 0.01,
and an action cost of ra “ 2 ˆ 10´4

ř

k a
2
k. The rewards are calculated as:

rrt “ 1.5 ˆ pxt ´ xt´1q { dt ` rs ´ ra

rjt “ 12 ˆ pht ´ hinitq { dt ` rs ´ ra
(3)

A.4 MO-HOPPER-3OBJ

The physical dynamics are the same in MO-Hopper and MO-Hopper-3obj, while this environment
has 3 objectives: running, jumping, and energy saving. The rewards are denoted as r “ rrr, rj , res⊺.

Consider the position of the agent is represented as pxt, htq at time t and takes the action at. The
agent has a fixed survival reward rs “ 1.0, a fixed initial height as hinit “ 1.25, a fixed dt “ 0.01,
and an action cost of ra “

ř

k a
2
k. The rewards are calculated as:

rrt “ 1.5 ˆ pxt ´ xt´1q { dt ` rs

rjt “ 12 ˆ pht ´ hinitq { dt ` rs

ret “ 4.0 ´ ra ` rs
(4)

13



Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2022

A.5 MO-SWIMMER

The two objectives inMO-Swimmer are speed and energy saving, denoted as r “ rrv, res⊺.

Consider the position of the agent is represented as pxt, ytq at time t and takes the action at. The
agent has a fixed dt “ 0.05, and an action cost of ra “

ř

k a
2
k. The rewards are calculated as:

rvt “ pxt ´ xt´1q { dt

ret “ 0.3 ´ 0.15 ˆ ra
(5)

A.6 MO-WALKER2D

The objectives in MO-Walker2d are speed and energy saving, denoted as r “ rrv, res⊺.

Consider the position of the agent is represented as pxt, ytq at time t and takes the action at. The
agent has a fixed survival reward rs “ 1.0, a fixed dt “ 0.008, and an action cost of ra “

ř

k a
2
k.

The rewards are calculated as:

rvt “ pxt ´ xt´1q { dt ` rs

ret “ 4.0 ´ ra ` rs
(6)

To uniformly sample the High-H data from the entire preference space, the problem is equivalent
to sampling from a n-dimensional simplex, where n is the number of objectives. The resulting
sampling is:

ωhigh „ ||fexpp ¨ , λ “ 1q||1 (7)

We take the 1-norm following the exponential distribution to make sure each preference add up to
1. When Ω˚ ‰ Ω, we perform rejection sampling to restrict the range.

To sample the Med-H and Low-H data, we first sample α from a non-negative uniform distribution,
then sample the corresponding Dirichlet preference. Here, we sample a different alpha to make sure
the center of the Dirichlet changes and thus allows more variation.

ωmed „ fDirichletpαq ; where α „ Unifp0, 106q

ωlow „ fDirichletpαq ; where α „ Unifp1{3 ˆ 106, 2{3 ˆ 106q
(8)

For sampling from behavioral policy consists of a group of single-objective policies πβ “

tπ1, . . . , πBu with B being the total number of candidate policies, we recommend first find the
expected unweighted raw rewards Gπ1 , . . . ,GπB . Then, find the estimated ω̂π1 , . . . , ω̂πB by let-
ting ω̂πb

i “
G

πb
i

řn
j“1 G

πb
j

, which represents the estimated preference on ith objective of bth candidate

policy. For a sampled preference ω „ Ω˚, use the policy that provides the smallest euclidean dis-
tance dpω, ω̂πbq. Empirically, this means picking the candidate policy that has the expected reward
ratio closest to ω.

B DATASET DETAILS

To uniformly sample the High-H data from the entire preference space, the problem is equivalent
to sampling from a n-dimensional simplex, where n is the number of objectives. The resulting
sampling is:

ωhigh „ ||fexpp ¨ , λ “ 1q||1 (9)

We take the 1-norm following the exponential distribution to make sure each preference add up to
1. When Ω˚ ‰ Ω, we perform rejection sampling to restrict the range.
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Table 5: A comprehensive view of the dataset. All datasets have a 500 maximum step per trajectorie,
and 50K trajectories are collection under each setting. We also how the average step per trajectory
for expert and amateur respectively, where we see amateur’s step are always shorter or same as
expert, making the return to be lower.

max step
per traj

expert avg.
step per traj

amateur avg.
step per traj

trajectories
per dataset

MO-Ant 500 500 500 50K
MO-HalfCheetah 500 499.91 482.11 50K
MO-Hopper 500 499.94 387.72 50K
MO-Hopper-3obj 500 499.99 442.87 50K
MO-Swimmer 500 500 500 50K
MO-Walker2d 500 500 466.18 50K

To sample the Med-H and Low-H data, we first sample α from a non-negative uniform distribution,
then sample the corresponding Dirichlet preference. Here, we sample a different alpha to make sure
the center of the Dirichlet changes and thus allows more variation.

ωmed „ fDirichletpαq ; where α „ Unifp0, 106q

ωlow „ fDirichletpαq ; where α „ Unifp1{3 ˆ 106, 2{3 ˆ 106q
(10)

For sampling from behavioral policy consists of a group of single-objective policies πβ “

tπ1, . . . , πBu with B being the total number of candidate policies, we recommend first find the
expected unweighted raw rewards Gπ1 , . . . ,GπB . Then, find the estimated ω̂π1 , . . . , ω̂πB by let-
ting ω̂πb

i “
G

πb
i

řn
j“1 G

πb
j

, which represents the estimated preference on ith objective of bth candidate

policy. For a sampled preference ω „ Ω˚, use the policy that provides the smallest euclidean dis-
tance dpω, ω̂πbq. Empirically, this means picking the candidate policy that has the expected reward
ratio closest to ω.

C EXPERT & AMATEUR DATASETS

In Expert collection, we sample trajectories using the fully-trained behavioral policy πβ . In this
paper, we use PGMORL by Xu et al., 2020 as πβ

aexpert
t`1 “ πβpa|s “ st,ω “ ωtq (11)

In the Amateur collection, the policies has a 35% chance being stochastic on top of the expert
collection. Actions has a chance being stochastic, during which it is scaled from the expert action,
as following:

aamateur
t`1 “

"

aexpert
t`1 35%

aexpert
t`1 ˆ Unifp0.35, 1.65q 65%

(12)

In the MO-Swimmer environment only, we let actions has a 35% chance to be a uniform random
sample from the entire action space rather than being the same as expert to increase variance and
achieve a performance similar to amateur. The resulting strategy for MO-Swimmer is:

aamateur
t`1 “

"

UnifpAq 35%
aexpert
t`1 ˆ Unifp0.35, 1.65q 65%

(13)

D TRANING DETAILS

Common hyper-parameters have the same values across all models, except for the learning rate
scheduler and warmup steps. In MODT family, inputs are embedded by a 1-layer MLP into Hidden
Size, and n layer represents the number of transformer blocks; in BC family, n layer represents the
number of MLP layers to embedding each input; in MORVS and MORVS(P) family, the default
embedding strategy are used, please check Emmons et al., 2022. Here, we consider MORVS and
MORVS(P) both have context length of 1 because they only use the current state to predict the next
action, whereas MODT and BC use the past 20.
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D.1 PARAMETERS

Hyperparameter MODT MORvS BC

Context Length - K 20 1 20
Batch Size 64

Hidden Size 512
Learning Rate 1e-4
Weight Decay 1e-3

Dropout 0.1
n layer 3

Optimizer AdamW
Loss Function MSE
LR Scheduler lambda None lambda
Warmup Steps 10000 N/A 4000

Activation ReLU

D.2 TRAINING STEPS

Dataset Name MODT Steps RvS/BC Steps

MO-Ant 20K 200K
MO-HalfCheetah 80K 200K

MO-Hopper 400K 200K
MO-Hopper-3obj 400K 200K

MO-Swimmer 260K 200K
MO-Walker2d 360K 200K

The exception is that we train MO-Swimmer and MO-Hopper-3obj under Low-H-Amateur for
40K and 120K steps respectively using MODT.

D.3 ATTEMPTED MODT AND MODT(P) ARCHITECTURES

Here are all the MODT architectures we tried in our experiments. We followed Case 4 in all of the
experiment results as we find that it makes the model follows closely to the given preference.

1. Consider ω as an independent token of the causal transformer.

2. Train a separate embedding for ω, concatenate the embeddings to get fϕspsq
À

fϕω pωq,
fϕapaq

À

fϕω pωq, and fϕg pgq
À

fϕω pωq then pass into the transformer.

3. Add another MLP layer on top of the Case 2 after concatenation, then pass output into the
transformer.

4. Concatenate ω to other tokens before any layers. This means we have s˚ “ s
À

ω,
a˚ “ a

À

ω, and g˚ “ g
À

ω.

E OTHER EVALUATION METRICS

Among a variety of metrics for MORL, we use Hypervolume and Sparsity (SP) to benchmark models
in this paper for several reasons. First, metrics such as the ϵ-metric require prior knowledge of the
true Pareto Fronts, which are not available for our MuJoCo Environments. Second, due to limited
resources, we only assume linear reward function and cannot collect real-time user feedback, thus
utility-based metrics such as expected utility metric (EUM) are not applicable. Finally, it is easier to
benchmark both our offline agents and behavioral policy on these metrics, allowing for informative
comparisons.
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Figure 6: Full Pareto Visulization for all PEDA variants and baselines on High-H datasets. We
notice that MO-Hopper and MO-Walker2d to be the harder environments, having significant of
dominated points for even the preference conditioned models. On other environment, however, the
PEDA variants produce good results for preference conditioned models, while other baselines fail at
a higher chances.

F PARETO SET VISUALIZATIONS

We present the Pareto Set visualizations for all of our models trained under each High-H dataset in
Figure 6. All subplots are based on 1 seed, in which we evaluate the model using 501 equally spaced
preference points in 2 objective environment and 351 equally spaced preference in the 3 objective
environment from the full preference space. Since the environments are stochastically initialized, we
evaluate 5 times at each preference point and take the median value. We here allow a small tolerance
on coloring the dominated points.

If a preference point is within the achievable preference Ω˚ but the solution is dominated, we color
it in red. Since our models condition on continuous preference points and environments are ini-
tializaed stochastically, we give a small tolerance (3%-8%) for points to be colored in blue. The
hypervolume and sparsity metric, on the other hand, can based on strictly undominated solutions
without tolerance.
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Table 6: We ablate the study of how well PEDA variants perform under a different preference
distribution and how well it generalizes to unseen preferences for MO-HalfCheetah environment.
We can see that PEDA can perform well when trained under partially-clustered Med-H dataset but
performance drops when it is trained under entirely clustered Low-H dataset. (B: Behavioral Policy)

Dataset (ˆ106) B MODT(P) MORVS(P) BC(P) MODT MORVS BC

Med-H-Amateur 5.69 5.61˘.01 5.77˘.00 1.63˘.26 3.84˘.44 4.61˘.03 3.63˘.12
Low-H-Amateur 4.21 4.74˘.02 4.83˘.02 4.67˘.07 2.54˘.05 4.04˘.18 4.09˘.09
High-H-Amateur 5.68 5.64˘.01 5.77˘.00 5.36˘.06 5.51˘.01 5.28˘.35 3.14˘.38

Table 7: We ablate the importance of using multi-dimensional rtg instead of a one-dimensional
rtg by taking the weighted sum of objectives on the MO-HalfCheetah environment. We see using
multi-objective rtg provides a lower variance for MORVS(P) or performance improvement in other
models. (B: Behavioral Policy)

Setting Dataset (ˆ106) B MODT(P) MORVS(P) MODT MORVS

1-dim rtg High-H-Expert 5.79 5.54˘.09 5.78˘.03 4.34˘.13 3.06˘.42
mo rtg High-H-Expert 5.79 5.69˘.01 5.77˘.00 5.59˘.05 4.56˘.56

G MEDIUM & LOW ENTROPY DATASET TRAINING

We train on the Medium-Entropy and Low-Entropy datasets for the MO-HalfCheetah environment.
Overall, models have a similar performance under Med-H and High-H datasets, but suffers when
only trained on Low-H. We present the results in Table 6, in which we illustrate that the Low-H
dataset has a worse expert and amateur performance due to reduced variability on preference. How-
ever, MODT(P) and MORVS(P) are still able to get close or exceed in hypervolume on all datasets,
which showcase the effectiveness of PEDA as an efficient MORL policy. Results are based on aver-
age of 3 seeds with the standard error given.

H TRAINING WITH 1-DIM RTG

We attempted to train MODT and RvS with 1-dim return-to-go rather than a separate rtg for each
objective. According to results on MO-HalfCheetah and the High-H datasets in 7, using multi-
dimensional rtg enhances the performance of MODT(P), and are about the same for MORVS(P)
when preference are concatenated to states. However, it reduces standard error significantly in both
MODT(P) and MORVS(P). In the naive models when preference are not concatenated to states,
using a multi-dimensional rtg helps to achieve a much more competitive hypervolume. We thus
believe multi-dimensional rtg conveys important preference information when the model doesn’t
directly take preference as an input. Results are based on average of 3 seeds with the standard error
given.
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