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Abstract

Text-based person search (TBPS) enables the001
retrieval of person images from large-scale002
databases using natural language descriptions,003
offering critical value in surveillance appli-004
cations. However, a major challenge lies in005
the labor-intensive process of obtaining high-006
quality textual annotations, which limits scal-007
ability and practical deployment. To address008
this, we introduce two complementary modules:009
Multi-Turn Text Generation (MTG) and010
Multi-Turn Text Interaction (MTI). MTG011
generates rich pseudo-labels through simulated012
dialogues with multimodal large language mod-013
els (MLLMs), producing fine-grained and di-014
verse visual descriptions without manual super-015
vision. MTI refines user queries at inference016
time through dynamic, dialogue-based reason-017
ing, enabling the system to interpret and re-018
solve vague, incomplete, or ambiguous descrip-019
tions—characteristics often seen in real-world020
search scenarios. Together, MTG and MTI021
form a unified and annotation-free framework022
that significantly improves retrieval accuracy,023
robustness, and usability. Extensive evaluations024
demonstrate that our method achieves compet-025
itive or superior results while eliminating the026
need for manual captions, paving the way for027
scalable and practical deployment of TBPS sys-028
tems.029

1 Introduction030

Text-based person search (TBPS) aims to retrieve031

images of a target individual from large-scale032

galleries using natural language descriptions (Li033

et al., 2017a). It lies at the intersection of image-034

text retrieval (Lei et al., 2022; Sun et al., 2021;035

Miech et al., 2021) and image-based person re-036

identification (Re-ID) (He et al., 2021; Luo et al.,037

2019; Wang et al., 2022a), offering a flexible al-038

ternative to visual queries. Text queries are more039

accessible and often provide richer semantic cues040

about identity, enabling applications ranging from041

personal photo organization to public security and 042

surveillance. 043

Since the seminal introduction of CUHK- 044

PEDES (Li et al., 2017a), TBPS has made sub- 045

stantial progress, largely driven by advances in 046

cross-modal representation learning that align vi- 047

sual and textual modalities in a shared embedding 048

space (Radford et al., 2021). However, despite 049

these technical developments, one fundamental bot- 050

tleneck remains: the reliance on high-quality tex- 051

tual annotations. While visual data can be easily 052

acquired from surveillance footage, generating ac- 053

curate and semantically rich descriptions is labor- 054

intensive, expensive, and inherently unscalable. 055

Automated captioning methods provide a partial 056

solution, but often suffer from semantic drift, repet- 057

itive phrasing, and hallucinated content (Kolouju 058

et al., 2025), leading to vague or misleading la- 059

bels (see Figure 1). This limitation motivates a 060

central research question: Can TBPS be achieved 061

effectively without depending on manually crafted 062

descriptions? 063

To address this challenge, we propose CTGI 064

(Chat-Driven Text Generation and Interaction), a 065

unified and annotation-free framework designed 066

to bridge the supervision gap through multimodal 067

dialogue. CTGI comprises two synergistic mod- 068

ules: Multi-Turn Text Generation (MTG) for 069

training supervision and Multi-Turn Text Inter- 070

action (MTI) for inference-time query refinement 071

(see Figure 2). 072

The MTG module simulates multi-turn conver- 073

sations with an MLLM to generate rich pseudo- 074

labels. Starting from a baseline caption, it iter- 075

atively refines the description using a series of 076

attribute-targeted prompts that mimic human di- 077

alogue. This process leads to semantically dense, 078

diverse, and fine-grained annotations that far ex- 079

ceed the quality of single-turn captioning. To ac- 080

commodate these longer descriptions, we extend 081

CLIP’s default 77-token input limit by applying po- 082
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The individual  exudes confidence and elegance with their choice of attire. They are 
wearing a long white coat with purple stripes, which is both practical and stylish. The 
coat's casual style is balanced by the addition of a white hat. The person's upright 
posture and confident demeanor are further enhanced by their pair of black boots. A 
simple and neat hairstyle complements their overall appearance, and they are carrying 
a black bag. 

The woman was wearing a white down jacket, a white hat, black trousers and grey boots. 
She is wearing glasses. She's looking at the camera.

(a) Human-Written Captions

(b) Direct Captioning via Large Language Models

The woman is wearing a long - sleeved, light purple 
hooded down jacket. The jacket features a diamond - 
patterned stitching design on the surface, with white 
lines adorning the edges, giving it a simple and 
stylish look. She has on a white knitted hat, and 
pairs the jacket with black pants and grey short boots. 

(c) Our Multi-Turn Captioning (MTG)

MLLM

human

D0:She is wearing a long - sleeved, light purple 
hooded down jacket. The jacket has a diamond - 
patterned stitching design on the surface and 
white lines on the edges,.

Q1: What kind of hat is the woman wearing?
A1:She has on a white knitted hat.

Q0:What is the woman in the picture wearing on 
her upper body?

Q2: What does she pair with the jacket?

A2:She pairs the jacket with black pants and grey 
short boots.

Keep asking until Round N

Q2: What does she pair with the jacket?
A2:She pairs the jacket with black pants and grey 
short boots.

Reconstructor

Figure 1: Comparison of person description strategies. (a) Human-written captions are concise but often lack
compositional depth and attribute coverage. (b) Direct captioning with large language models (LLMs) generates
descriptions in a single forward pass, but often suffers from hallucinations or omissions—particularly in capturing
fine-grained visual details such as clothing, accessories, or scene context. (c) Our proposed multi-turn strategy
simulates an interactive dialogue with the MLLM, progressively enriching descriptions through targeted Q&A,
yielding more expressive, accurate, and human-aligned captions.

sitional embedding stretching—retaining the first083

20 learned positions and interpolating the remain-084

ing embeddings to support up to 248 tokens without085

retraining the model.086

The MTI module operates during inference to087

refine under-specified user queries through MLLM-088

driven dialogue. It begins by identifying a candi-089

date anchor image and then generates targeted ques-090

tions to extract missing or ambiguous attributes.091

The responses are aggregated into a refined query092

that is better aligned with the target image. MTI093

also incorporates filtering mechanisms to avoid re-094

dundancy and maintain efficiency. As a plug-and-095

play module, MTI can be easily deployed with096

various pretrained vision-language retrieval models097

with minimal adaptation cost.098

Our key contributions are as follows:099

• We propose CTGI, a novel chat-driven frame-100

work for TBPS that eliminates the need for man-101

ual annotations by unifying pseudo-caption gen-102

eration and interactive query refinement.103

• We develop MTG, a multi-turn captioning mod-104

ule that generates rich, attribute-aware pseudo-105

labels through iterative dialogue, and supports106

long-text encoding via positional embedding ex- 107

tension. 108

• We introduce MTI, a dynamic inference module 109

that refines natural language queries via MLLM- 110

guided interaction, enhancing alignment between 111

user input and visual content for more accurate 112

retrieval. 113

2 Related Work 114

Text-Based Person Search (TBPS) has pro- 115

gressed significantly since the release of CUHK- 116

PEDES (Li et al., 2017a). Early efforts focused on 117

embedding visual and textual data into a shared 118

space, evolving from global alignment (Zheng 119

et al., 2020; Farooq et al., 2020) to fine-grained 120

matching (Chen et al., 2018, 2022; Suo et al., 2022), 121

often enhanced by pose cues (Jing et al., 2020), 122

part-level features (Wang et al., 2020), or semantic 123

knowledge (Loper and Bird, 2002). In parallel, rep- 124

resentation learning approaches aimed to extract 125

modality-invariant features by addressing back- 126

ground clutter (Zhu et al., 2021a), color sensitiv- 127

ity (Wu et al., 2021), and multi-scale fusion (Shao 128

et al., 2022). Recently, large-scale pretrained mod- 129

els like CLIP (Radford et al., 2021) have enabled 130
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Query0: The man with the dark hair is wearing a black 
top.He wears the dark green pants and the black sneakers.

D0:No

Q1:What kind of hairstyle does the man have?

A1:The man has short black hair.

Q0:Can this accurately describe <Query0> the 
image?

Q2:What is the man's posture ?

A2:The man is walking across the street.

Keep asking until Round K

Keep asking until D0:Yes D0:Yes

Q0:Can this accurately describe 
<Query0> the image?

Query 1 :  A  man 
with short black 
hair, dressed in a 
dark jacket and  
dark green pants, 
and wearing black 
sneakers.  He is 
w a l k i n g  o n  a 
street, possibly in 
an  urban  a rea . 
The presence of 
several bicycles in 
the background .

Reconstructor

Text-Image Retrieval Model

Out0

Out1

Test1

Retrieval

The male in the image is wearing a black hoodie, paired 
with black pants and brown shoes. He is carrying a black 
backpack over both shoulders. His black hair is neatly 
styled, and he is wearing glasses. He is riding a yellow 
bicycle , holding the handlebars with both hands ......

Reconstructor

Train

Generation

D0:The person  is wearing a black hoodie, They are 
also wearing a backpack. They are riding a bicycle 
with black tires. 

Q1: Is the person riding the bicycle a man 
or women?

A1:The person riding the bicycle is a man.

Q0:Write a coherent paragraph describing 
the person's appearance in the image.

Q2: What type of shoes is the person wearing 
while riding the bicycle?

A2:The person is wearing brown shoes while 
riding the bicycle.

Keep asking until Round K

Test0

Figure 2: Overview of the proposed CTGI framework for text-based person search. The framework consists
of two stages: (1) Training-time generation: MTG simulates multi-turn dialogue to iteratively enrich captions,
while a reconstructor synthesizes pseudo-labels using structured prompts; and (2) Inference-time retrieval: MTI
refines user queries through MLLM-driven Q&A, enhancing alignment between the query and candidate images for
improved re-ranking.

strong generalization for cross-modal retrieval with131

minimal tuning (Jiang and Ye, 2023b; Han et al.,132

2021; Wei et al., 2023), with IRRA (Jiang and Ye,133

2023b) improving alignment via multimodal inter-134

action.135

Despite these advances, most TBPS methods136

still depend on costly human-annotated text, lim-137

iting scalability. Weakly supervised (Zhao et al.,138

2021) and synthetic labeling (Yang et al., 2023; Tan139

et al., 2024) offer partial relief but struggle with140

vague or conversational queries.141

To overcome this, we propose a new TBPS142

paradigm—Chat-Driven Text Generation and In-143

teraction (CTGI)—which eliminates manual an-144

notations and enhances retrieval through multi-turn145

dialogue with Multimodal Large Language Mod-146

els (MLLMs). Unlike earlier interactive retrieval147

systems (Guo et al., 2018; Lee et al., 2024) that148

require task-specific data or retraining, CTGI sup-149

ports open-ended, behavior-centric queries and dy-150

namically refines both pseudo-labels and user input.151

By leveraging MLLMs as plug-and-play agents,152

CTGI achieves robust, scalable, and annotation-153

free TBPS—bridging the gap between lab settings154

and real-world deployments.155

3 Methodology 156

In this section, we briefly outline a Chat-Driven 157

Text Generation and Interaction (CTGI) model for 158

person retrieval. The CTGI model framework con- 159

sists of two main modules: (1) The Multi-Turn 160

Text Generation (MTG) module, which uses a 161

multimodal large language model to generate de- 162

tailed textual descriptions for given person images 163

through an interactive Q&A dialogue; and (2) The 164

Multi-Turn Text Interaction (MTI) module, which 165

is used in an inference-time pipeline that refines the 166

textual query by leveraging visual context from re- 167

trieved images and then performs re-ranking. The 168

overall framework is illustrated in Figure 2. 169

3.1 Multi-Turn Text Generation 170

The Multi-Turn Text Generation module generates 171

a comprehensive pseudo-label for each person im- 172

age I by iteratively querying a multimodal large 173

language model for fine-grained details. This pro- 174

cess is initiated with an initial captioning prompt 175

designed to elicit a general description. Given an 176

image I , we can use the MLLM with a prompt Pinit, 177

e.g., “Describe the person in the image,” yielding 178
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an initial static caption Ts:179

Ts = MLLM
(
I, Pinit

)
, (1)180

However, Ts provides only a simple, basic tex-181

tual description and often overlooks distinctive at-182

tributes. To capture more distinctive attributes of a183

person, the QA-guided refinement rounds method184

provides a more detailed textual description im-185

provement strategy. Specifically, in each round i,186

the model generates an answer ai that aligns with187

the image content based on a specific question qi,188

e.g.,189

qi: Is the person riding the bicycle?190

ai: Yes, the person is riding the bicycle.191

After N rounds of QA operations, we obtain all192

preceding QA results {(qi, ai)}Ni=1 concatenated193

together to obtain the enriched caption Te:194

Te = MLLM
(
[a1, a2, ..., aN ]

)
, (2)195

Compared to Ts, Te provides more fine-grained196

attributes for the given person image, e.g., col-197

ors, clothing details, and physical features, which198

greatly enhance the textual description.199

It is important to note that due to the presence of200

similar questions in the question list, this may lead201

to repetitive answers. To remove the redundant de-202

scriptions, we use the MLLM again and reconstruct203

Te by incorporating Ts:204

Te = MLLM
(
Te | Ts, p

)
, (3)205

where p denotes the input prompt to the MLLM,206

e.g., “Rephrase the description using all the above207

information." Compared to Te in Eq. (2), Te in Eq.208

(3) provides a more concise and effective textual209

description, rather than increasing the quantity of210

image-related details. Meanwhile, compared to211

Ts in Eq. (1), Te contains more details extracted212

during the MLLM Q&A process, and better aligns213

with human attention to core image information.214

3.2 More Text Positional Embeddings215

CLIP’s original 77-token limit, imposed by its216

fixed-length absolute positional embeddings, re-217

stricts its ability to process long and detailed218

text—a critical limitation for tasks such as Text-219

Based Person Search (TBPS). To address this, we220

adopt a knowledge-preserving positional embed-221

ding stretching technique that extends the model’s222

input capacity while maintaining compatibility 223

with pretrained weights. 224

Following Long-CLIP (Zhang et al., 2024)and 225

FineLIP(Asokan et al., 2025), we preserve the first 226

20 learned positional embeddings, which are em- 227

pirically the most well-trained, and interpolate the 228

remaining positions (21–77) to reach a new input 229

length of 248 tokens by applying a 4× stretching 230

factor. 231

Let PE(pos) denote the original positional em- 232

bedding at position pos ∈ [1, 77]. We construct the 233

stretched embedding PE∗(pos) for the extended 234

range pos ∈ [1, 248] as: 235

PE
∗
(pos) =


PE(pos), for pos ≤ 20

(1 − α) · PE
(⌊

pos
λ2

⌋)
+α · PE

(⌈
pos
λ2

⌉)
, for 21 ≤ pos ≤ 77

(4) 236

Here, λ = 248−20
77−20 ≈ 4 is the interpolation factor, 237

and α is the fractional part of pos−20
λ . This ensures 238

smooth interpolation while preserving pretrained 239

embeddings for the initial positions. 240

Inspired by LiT (Zhai et al., 2022), this approach 241

avoids reinitialization or retraining, and allows 242

CLIP to encode longer, semantically rich descrip- 243

tions generated by the MTG module. Empirical re- 244

sults in Table 4 confirm that this strategy enhances 245

retrieval performance without sacrificing alignment 246

learned during pretraining. 247

3.3 Multi-Turn Text Interaction (MTI) 248

MTI operates during inference to resolve under- 249

specified or vague user queries through multi-turn 250

interaction. 251

Step 1: Anchor Identification. Given a user 252

query q, the system retrieves top-K candidates 253

{v̂1, ..., v̂K} using similarity score Sq,v. For each 254

v̂k, the MLLM is prompted to judge alignment with 255

q. The first affirmative response identifies the an- 256

chor v̄. If no match is found within K attempts, no 257

refinement is applied. 258

Step 2: Interactive Refinement. With anchor 259

v̄, MTI generates a diagnostic question set {ci} 260

focused on missing attributes. Responses are ob- 261

tained via visual Q&A: 262

rv̄ = MLLM(Tvqa({ci}, v̄)) (5) 263

The final query q̂ is synthesized using a template 264

prompt to merge rv̄ and q: 265

q̂ = MLLM(Taggr(rv̄, q)) (6) 266
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Step 3: Re-ranking. The final similarity is com-267

puted as:268

Ŝq,v = λSq,v + (1− λ)Sq̂,v (7)269

with Ŝq,v̄ = 1 to promote anchor matching.270

Early stopping is triggered when v̂1 surpasses271

threshold ξ = 0.85.272

3.4 Reconstructor273

The Reconstructor plays a pivotal role in trans-274

forming fragmented outputs from multi-turn Q&A275

into coherent and high-quality descriptions. It is276

deployed in both training and inference pipelines277

to enhance the effectiveness of CTGI without re-278

quiring any manual annotations or dataset-specific279

tuning.280

To ensure the quality of generated descriptions281

during training, MTG maintains a dynamic ques-282

tion pool and discards Q&A pairs that exhibit low283

semantic relevance or redundant information. This284

filtering helps avoid overlong or repetitive captions.285

For synthesis, the Reconstructor leverages the286

GPT-4o API to convert structured Q&A logs287

into fluent and semantically rich pseudo-captions.288

These refined captions serve as supervision signals289

for training downstream retrieval models.290

In the inference stage, the Reconstructor also291

contributes to query refinement within MTI. A set292

of curated diagnostic templates (e.g., “Is the person293

wearing a backpack?”) is used to identify typical294

ambiguities. These templates help elicit missing at-295

tributes without introducing generic or noisy ques-296

tions. The responses are then aggregated into a297

revised query that is semantically aligned with the298

visual anchor.299

This unified design ensures that CTGI can sup-300

port both training-time pseudo-label generation and301

test-time query refinement effectively—without302

reliance on human-written descriptions or task-303

specific engineering.304

4 Experiments305

We evaluate our framework by re-annotating three306

public datasets with enriched textual descriptions307

that offer greater semantic depth and diversity. We308

compare retrieval models trained on these pseudo-309

labels against those trained on original annotations.310

To test generalizability, we integrate our method311

into standard TBPS pipelines and assess its impact.312

Finally, we perform ablation studies and visual313

analyses to better understand the method’s effec- 314

tiveness. 315

4.1 Datasets and Performance Measurements 316

We evaluate our approach using three Text-based 317

Person Retrieval datasets: CUHK-PEDES (Li et al., 318

2017b), ICFG-PEDES (Ding et al., 2021b), and 319

RSTPReid (Zhu et al., 2021b). Our training solely 320

utilizes image data, devoid of any dependency on 321

manually annotated text data. During the testing 322

phase, captions from the dataset are leveraged for 323

re- trieval. 324

Evaluation Metrics. Following standard prac- 325

tice, we evaluate using Rank-k (k=1,5,10), mean 326

Average Precision (mAP). Higher values indicate 327

better retrieval performance. 328

4.2 Implementation Details 329

We evaluate CTGI using two strong TBPS base- 330

lines: IRRA (Jiang and Ye, 2023a) and RDE (Qin 331

et al., 2024), both built on CLIP-ViT/B-16 (Rad- 332

ford et al., 2021). For multimodal reasoning, we 333

adopt Qwen2-VL-7B (Wang et al., 2024) as the 334

core MLLM, while the Reconstructor leverages 335

the OpenAI GPT-4o API (OpenAI, 2023) for 336

pseudo-caption synthesis. 337

All models follow the original training setups of 338

IRRA and RDE. Input images are resized to 384× 339

128, and standard augmentations (flip, crop, erase) 340

are applied. To support longer text, we extend 341

CLIP’s 77-token limit to 248 tokens by preserving 342

the first 20 positional embeddings and interpolating 343

the rest 4×, following (Zhai et al., 2022). The 344

learning rate is set to 1 × 10−5 (with 5 warmup 345

epochs from 1×10−6), and 5×10−5 for randomly 346

initialized layers. Cosine decay is used throughout 347

60 training epochs. 348

During training, the MTG module runs 6 Q&A 349

rounds per image to generate dense pseudo-labels. 350

For inference, MTI examines the top K = 20 351

retrieval candidates, and early exits if the top-1 352

similarity exceeds ξ = 0.85 and is confirmed by 353

the MLLM. Final retrieval scores are fused via 354

weighted re-ranking. All experiments are con- 355

ducted on 2× NVIDIA RTX 4090 GPUs with 356

generation temperature fixed at 0.01 for stability. 357

4.3 Comparison with the State-of-the-Art 358

We evaluate the effectiveness of our proposed 359

CTGI framework on three widely used benchmark 360

datasets for text-based person search, comparing 361

against both unsupervised and fully supervised 362
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Table 1: Performance on CUHK-PEDES . *: trained with LLaVA-1.5 captions. The best and second-best results are
in bold and underline, respectively.

Methods Ref. Image Enc. Text Enc. R-1 R-5 R-10 mAP

Fully Supervised

TIMAM (Sarafianos et al., 2019) ICCV’19 RN101 BERT 54.51 77.56 79.27 -
ViTAA (Wang et al., 2020) ECCV’20 RN50 LSTM 54.92 75.18 82.90 51.60
NAFS (Gao et al., 2021) arXiv’21 RN50 BERT 59.36 79.13 86.00 54.07
DSSL (Zhu et al., 2021a) ACMMM’21 RN50 BERT 59.98 80.41 87.56 -
SSAN (Ding et al., 2021a) arXiv’21 RN50 LSTM 61.37 80.15 86.73 -
Lapscore (Wu et al., 2021) ICCV’21 RN50 BERT 63.40 - 87.80 -
ISANet (Yan et al., 2022b) arXiv’22 RN50 LSTM 63.92 82.15 87.69 -
SAF (Li et al., 2022) ICASSP’22 ViT-Base BERT 64.13 82.62 88.40 -
DCEL (Qin et al., 2022) ACMMM’22 CLIP-ViT CLIP-Xformer 71.36 88.11 92.48 64.25
IVT (Shu et al., 2022) ECCVW’22 ViT-Base BERT 65.59 83.11 89.21 -
CFine (Yan et al., 2022a) TIP’23 CLIP-ViT BERT 69.57 85.93 91.15 -
IRRA (Jiang and Ye, 2023c) CVPR’23 CLIP-ViT CLIP-Xformer 73.38 89.93 93.71 66.13
BiLMa (Fujii and Tarashima, 2023) ICCV’23 CLIP-ViT CLIP-Xformer 74.03 89.59 93.62 66.57
PBSL (Shen et al., 2023) ACMMM’23 RN50 BERT 65.32 83.81 89.26 -
BEAT (Ma et al., 2023) ACMMM’23 RN101 BERT 65.61 83.45 89.54 -
LCR2S (Yan et al., 2023) ACMMM’23 RN50 TextCNN 67.36 84.19 89.62 59.24
DCEL (Li et al., 2023) ACMMM’23 CLIP-ViT CLIP-Xformer 75.02 90.89 94.52 -
UniPT (Shao et al., 2023) ICCV’23 CLIP-ViT CLIP-Xformer 68.50 84.67 - -
TBPS (Cao et al., 2024) AAAI’24 CLIP-ViT CLIP-Xformer 73.54 88.19 92.35 65.38
RDE (Qin et al., 2024) CVPR’24 CLIP-ViT CLIP-Xformer 75.94 90.14 94.12 67.56
CFAM (Zuo et al., 2024) CVPR’24 CLIP-ViT CLIP-Xformer 75.60 90.53 - 67.27
MLLM+IRRA (Wentao Tan, 2024) CVPR’24 CLIP-ViT CLIP-Xformer 76.82 91.16 - 69.55
MGRL (Lv et al., 2024) ICASSP’24 CLIP-ViT CLIP-Xformer 73.91 90.68 - 67.28
OCDL (Li et al., 2025a) ICASSP’25 CLIP-ViT CLIP-Xformer 75.10 89.43 - 68.18

Unsupervised

IRRA* (Li et al., 2025b) CVPR’23 CLIP-ViT CLIP-Xformer 32.94 54.37 64.67 30.87
BLIP* (Li et al., 2025b) ICML’22 BLIP-ViT BLIP-Xformer 51.41 71.41 78.76 44.73
GTR (Bai et al., 2023) MM’23 BLIP-ViT BLIP-Xformer 47.53 68.23 75.91 42.91
MUMA (Li et al., 2025b) AAAI’25 BLIP-ViT BLIP-Xformer 59.52 77.79 - 52.75
Our+IRRA - CLIP-ViT CLIP-Xformer 63.53 80.25 87.84 52.37
Our+RDE - CLIP-ViT CLIP-Xformer 67.82 85.45 90.63 55.14

state-of-the-art methods. Our framework is instan-363

tiated with two variants, Our+IRRA and Our+RDE,364

which employ different retrieval backbones while365

sharing the same underlying CTGI components.366

CUHK-PEDES: As reported in Table 1, under367

the unsupervised setting, our Our+RDE achieves368

a Rank-1 of 67.82% and mAP of 55.14%, sub-369

stantially outperforming the strongest unsuper-370

vised baseline MUMA, which obtains 59.52% and371

52.75% respectively. Notably, Our+IRRA also sur-372

passes MUMA by a clear margin, demonstrating373

the strong efficacy of CTGI in generating informa-374

tive pseudo-labels and improving retrieval without375

manual annotations. Compared with fully super-376

vised methods, our results approach competitive377

levels, surpassing several mid-tier supervised mod-378

els and narrowing the gap to the top performers. 379

ICFG-PEDES: Table 2 shows that our frame- 380

work maintains state-of-the-art performance in the 381

unsupervised category with a Rank-1 of 56.16% 382

and mAP of 32.40% for Our+RDE, exceeding the 383

best supervised methods in some metrics. This 384

highlights CTGI’s robustness and generalization 385

ability across datasets with different granularity and 386

annotation styles. The improvements over other un- 387

supervised baselines such as BLIP and GTR further 388

confirm the superiority of our approach. 389

RSTPReid: As shown in Table 3, on the RST- 390

PReid dataset, Our+RDE achieves a Rank-1 of 391

66.35% and mAP of 51.51%, outperforming the 392

second-best unsupervised method MUMA by ap- 393

proximately 12% in Rank-1 and over 11% in mAP. 394
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Table 2: Performance on ICFG-PEDES. *: trained with
LLaVA-1.5 captions.The best and second-best results
are in bold and underline, respectively.

Method R@1 R@5 R@10 mAP

Fully Supervised

Dual Path (Zheng et al., 2020) 38.99 59.44 68.41 -
CMPM/C (Zhang and Lu, 2018) 43.51 65.44 74.26 -
ViTAA (Wang et al., 2020) 50.98 68.79 75.78 -
SSAN (Ding et al., 2021a) 54.23 72.63 79.53 -
IVT (Shu et al., 2022) 56.04 73.60 80.22 -
ISANet (Yan et al., 2022b) 57.73 75.42 81.72 -
CFine (Yan et al., 2022a) 60.83 76.55 82.42 -
IRRA (Jiang and Ye, 2023c) 63.46 80.25 85.82 38.06
BiLMa (Fujii and Tarashima, 2023) 63.83 80.15 85.74 38.26
PBSL (Shen et al., 2023) 57.84 75.46 82.15 -
BEAT (Ma et al., 2023) 58.25 75.92 81.96 -
LCR2S (Yan et al., 2023) 57.93 76.08 82.40 38.21
DCEL (Li et al., 2023) 64.88 81.34 86.72 -
UniPT (Shao et al., 2023) 60.09 76.19 - -
TBPS (Cao et al., 2024) 65.05 80.34 85.47 39.83
CFAM (Zuo et al., 2024) 65.38 81.17 - 39.42
MGRL (Lv et al., 2024) 67.28 63.87 - 82.34
OCDL (Li et al., 2025a) 64.53 80.23 - 40.76

Unsupervised

IRRA* (Li et al., 2025b) 21.23 37.37 46.04 11.47
BLIP* (Li et al., 2025b) 31.58 52.03 61.73 13.20
GTR (Bai et al., 2023) 28.25 45.21 53.51 13.82
MUMA (Li et al., 2025b) 38.11 56.01 63.96 19.02
Ours + IRRA 48.76 67.38 74.66 27.42
Ours + RDE 56.16 73.18 79.42 32.40

Moreover, our method exceeds the performance of395

several fully supervised models, including CFine,396

illustrating the strong competitiveness and scala-397

bility of CTGI without reliance on any manual398

annotations.399

Across all datasets, our CTGI framework demon-400

strates a consistent and significant improvement401

over existing unsupervised methods, closing the402

gap towards fully supervised performance. These403

results validate the effectiveness of leveraging mul-404

timodal large language models for pseudo-label405

generation and interactive query refinement, en-406

abling robust and scalable text-based person search407

in practical scenarios.408

4.4 Ablation Study409

We conduct ablation experiments on the RSTPReid410

dataset to systematically analyze the individual411

and combined effects of Multi-Turn Text Gen-412

eration (MTG) and Multi-Turn Text Interaction413

(MTI). When employed separately, MTG enhances414

retrieval by generating detailed and semantically415

rich pseudo-labels, resulting in notable improve-416

ments in Rank-1 accuracy and mAP over the base-417

line. For instance, with the IRRA backbone, MTG418

alone achieves a Rank-1 of 52.30%, indicating its419

strong ability to provide effective training supervi-420

Table 3: Performance on RSTPReid. *: trained with
LLaVA-1.5 captions.The best and second-best results
are in bold and underline, respectively.

Methods R-1 R-5 R-10 mAP

Fully Supervised

DSSL (Zhu et al., 2021a) 39.05 62.60 73.95 -
SSAN (Ding et al., 2021a) 43.50 67.80 77.15 -
LBUL (Wang et al., 2022b) 45.55 68.20 77.85 -
IVT (Shu et al., 2022) 46.70 70.00 78.80 -
CFine (Yan et al., 2022a) 50.55 72.50 81.60 -
IRRA (Jiang and Ye, 2023c) 60.20 81.30 88.20 47.17
BiLMA (Fujii and Tarashima, 2023) 61.20 81.50 88.80 48.51
PBSL (Shen et al., 2023) 47.80 71.40 79.90 -
BEAT (Ma et al., 2023) 48.10 73.10 81.30 -
LCR2S (Yan et al., 2023) 54.95 76.65 84.70 40.92
DCEL (Li et al., 2023) 61.35 83.95 90.45 -
TBPS (Cao et al., 2024) 61.95 83.55 88.75 48.26
CFAM (Zuo et al., 2024) 62.45 83.55 - 49.50
OCDL (Li et al., 2025a) 61.60 82.35 - 49.77

Unsupervised

IRRA* (Li et al., 2025b) 37.60 60.65 72.30 27.42 -
BLIP* (Li et al., 2025b) 44.45 67.70 77.25 33.73 -
GTR (Bai et al., 2023) 45.60 70.35 79.95 33.30
MUMA (Li et al., 2025b) 54.35 76.05 83.65 40.50
Our+IRRA 64.20 83.55 90.30 49.66
Our+RDE 66.35 85.50 91.24 51.51

sion through enriched textual descriptions. 421

Similarly, MTI, which refines user queries at 422

inference time via multi-turn dialogue, indepen- 423

dently boosts performance by improving the se- 424

mantic alignment between queries and visual fea- 425

tures. This is reflected by an increased Rank-1 ac- 426

curacy of 55.50% with IRRA, highlighting MTI’s 427

effectiveness in mitigating ambiguity in free-form 428

textual queries. 429

Importantly, the integration of MTG and MTI 430

yields complementary benefits, producing the high- 431

est gains across all metrics. Combined, they 432

achieve Rank-1 accuracies of 64.20% and 66.35% 433

with IRRA and RDE backbones respectively, along- 434

side corresponding mAP improvements. These 435

results confirm that the synergy between richer 436

pseudo-label generation and dynamic query refine- 437

ment substantially advances cross-modal retrieval 438

performance and robustness. 439

Table 4: Ablation study on the RSTPReid dataset. MTG:
Multi-Turn Text Generation, MTI: Multi-Turn Text In-
teraction, PES: Positional Embedding Stretching.

Method MTG MTI Rank-1 Rank-5 Rank-10 mAP

Our+IRRA ✓ 52.30 74.65 84.05 40.03
Our+IRRA ✓ 55.50 77.50 86.55 44.87
Our+IRRA ✓ ✓ 64.20 83.55 90.30 48.03
Our+IRRA (w/o PES) ✓ ✓ 63.00 82.65 88.80 47.60

Our+RDE ✓ 60.55 79.85 86.30 44.98
Our+RDE ✓ 62.55 82.85 89.00 46.43
Our+RDE ✓ ✓ 66.35 85.50 91.25 49.66
Our+RDE (w/o PES) ✓ ✓ 65.75 84.05 90.60 49.60
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Figure 3: Top-10 retrieval results on the RSTPReid dataset. The first column is the ground-truth image. The first row
shows retrieval results using IRRA; the second row shows results after applying IRRA with MTI. Refined queries
generated by multi-turn interaction are shown alongside each example. Green borders indicate correct matches.

4.5 Visualization of Retrieval Results440

To evaluate the effectiveness of MTI, we conducted441

controlled experiments with a fixed operation cycle.442

Figure 3 visualizes the top-10 retrieval results be-443

fore and after applying MTI. Notably, the retrieval444

model is trained solely on pseudo-captions gen-445

erated by the MTG module, without any manual446

annotations. Due to the incomplete alignment be-447

tween initial queries and ground-truth test captions,448

retrieval without MTI often yields suboptimal re-449

sults. In contrast, MTI dynamically refines the450

query through interactive optimization, enabling451

more accurate and robust ranking performance.452

5 Conclusion453

In this work, we introduced CTGI (Chat-Driven454

Text Generation and Interaction), a unified and455

annotation-free framework for Text-Based Person456

Search (TBPS) that removes the dependency on457

manually crafted textual descriptions. CTGI inte-458

grates two synergistic modules: Multi-Turn Text459

Generation (MTG) for training supervision and460

Multi-Turn Text Interaction (MTI) for inference-461

time refinement. Together, they leverage the expres-462

sive capabilities of Multimodal Large Language463

Models (MLLMs) to generate rich pseudo-labels464

and iteratively enhance user queries via natural lan-465

guage dialogue. Extensive experiments across mul-466

tiple TBPS benchmarks show that CTGI achieves467

competitive or superior performance compared to 468

fully supervised methods, while seamlessly adapt- 469

ing to existing retrieval pipelines. Ablation studies 470

and qualitative visualizations further underscore 471

the value of multi-turn interaction and MLLM- 472

guided refinement in improving cross-modal align- 473

ment and retrieval robustness. 474

Limitations 475

While CTGI demonstrates strong performance 476

without manual annotations, several challenges re- 477

main. First, pseudo-labels generated by MTG may 478

contain semantic noise or redundancy. Although 479

robust retrieval backbones like RDE are designed 480

for noisy environments and thus benefit more from 481

such supervision, other models without inherent 482

noise-filtering may be more vulnerable to degraded 483

performance. Second, MTI introduces additional 484

inference overhead due to multi-turn interactions 485

with MLLMs. Even with early stopping and anchor 486

validation, this can limit deployment in latency- 487

sensitive applications. Third, both MTG and MTI 488

rely on the generalization ability of the underlying 489

MLLM (e.g., Qwen2-VL-7B), which may yield 490

suboptimal results in unfamiliar domains or when 491

handling fine-grained attributes. Future work could 492

address these issues through uncertainty-aware la- 493

bel filtering, more efficient MLLMs, and domain- 494

adaptive interaction strategies. 495
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A Datasets791

CUHK-PEDES (Li et al., 2017c) is the first and792

most widely used dataset for text-to-image person793

search, containing 40,206 images and 80,412 tex-794

tual descriptions for 13,003 unique identities. Fol-795

lowing the official data split, the dataset is divided796

into a training set with 11,003 identities compris-797

ing 34,054 images and 68,108 textual descriptions;798

a validation set containing 1,000 identities with799

3,078 images and 6,158 descriptions; and a test set800

also featuring 1,000 identities with 3,074 images801

and 6,156 descriptions. The average length of each802

textual description is 23 words, providing detailed803

visual cues for the retrieval task.804

ICFG-PEDES (Ding et al., 2021b) comprises805

54,522 images corresponding to 4,102 identities,806

with each image paired with a single textual de-807

scription averaging 37 words. The training set in-808

cludes 34,674 image-text pairs for 3,102 identities,809

while the test set consists of 19,848 image-text pairs810

representing the remaining 1,000 identities. This811

dataset is particularly notable for its one-to-one812

pairing of images and descriptions, emphasizing813

concise textual representations for each identity.814

RSTPReid (Zhu et al., 2021b) contains 20,505815

images from 4,101 identities captured by 15 dif-816

ferent cameras. Each identity is represented by 5817

images taken from various viewpoints, and each818

image is annotated with 2 textual descriptions, each819

containing at least 23 words. Following the stan-820

dard data split, the training set consists of 3,701821

identities, while the validation and test sets each822

contain 200 identities. The diverse camera angles823

and specific textual annotations make RSTPReid824

a valuable resource for evaluating robust retrieval825

methods.826

B Evaluation Metrics.827

To assess performance, we use the Rank-k metrics828

(k=1,5,10), which measure the probability of re-829

trieving a correct match within the top-k results830

when queried with a textual description. In addi-831

tion, we employ mean Average Precision (mAP)832

and mean Inverse Negative Penalty (mINP) (Ye833

et al., 2022), providing a more comprehensive eval-834

uation. Higher values for Rank-k, mAP, and mINP835

indicate superior retrieval performance.836

C Implementation Details837

To evaluate the effectiveness of the proposed CTGI838

framework, we integrate it into two widely adopted839

TBPS baselines: IRRA (Jiang and Ye, 2023a) and 840

RDE (Qin et al., 2024). Unless otherwise specified, 841

we apply the same configurations and experimental 842

protocols to both backbones to ensure fair compar- 843

ison. 844

Backbone Architecture. Both IRRA and RDE 845

utilize CLIP-ViT/B-16 (Radford et al., 2021) as 846

the image encoder and the CLIP text transformer 847

as the text encoder. IRRA introduces an additional 848

multimodal interaction encoder composed of trans- 849

former layers with a hidden size of 512 and 8 atten- 850

tion heads. Input images are resized to 384×128, 851

and standard data augmentation is employed dur- 852

ing training, including random horizontal flipping, 853

cropping with padding, and random erasing. 854

Training Configuration. For both models, we 855

adopt the Adam optimizer with an initial learn- 856

ing rate of 1× 10−5 and a cosine decay schedule 857

across 60 epochs. A 5-epoch linear warm-up from 858

1× 10−6 is used. For randomly initialized compo- 859

nents (e.g., IRRA’s interaction encoder), a higher 860

learning rate of 5 × 10−5 is set. The temperature 861

parameter τ in the SDM loss is fixed at 0.02. 862

Extended Positional Embeddings. CLIP’s de- 863

fault 77-token limit is insufficient for processing 864

MTG-generated long text. Following (Zhang et al., 865

2024; Zhai et al., 2022), we expand the input length 866

to 248 tokens by retaining the first 20 learned em- 867

beddings and interpolating positions 21–77 by a 868

factor of 4. This extension enables richer caption 869

representations while preserving pretrained align- 870

ment. 871

Multimodal Language Models. The Qwen2- 872

VL-7B-Instruct (Wang et al., 2024) serves as the 873

MLLM backbone for both MTG and MTI mod- 874

ules, handling visual question answering and query 875

refinement without any fine-tuning. The OpenAI 876

GPT-4o API (OpenAI, 2023) is used within the 877

Reconstructor to synthesize concise, high-quality 878

captions from raw multi-turn QA transcripts. 879

Hyperparameters and Inference. During train- 880

ing, the MTG module performs 6 rounds of visual 881

question-answering per image to iteratively enrich 882

the pseudo-caption. At inference time, the MTI 883

module conducts anchor identification by evaluat- 884

ing the top-K candidates (with K = 20) retrieved 885

based on the initial query. Each candidate is vali- 886

dated via multimodal question prompts using the 887

MLLM. If the top-ranked image surpasses a pre- 888

defined similarity threshold of ξ = 0.85, the re- 889

finement loop may terminate early. Otherwise, the 890

system continues checking up to 20 images and 891
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may identify multiple valid anchors (i.e., those re-892

ceiving a “Yes” verdict), which are then used to893

jointly guide query refinement via response aggre-894

gation. The generation temperature is fixed at 0.01895

to ensure output stability and reproducibility.896

Hardware. All experiments are conducted on897

a machine equipped with two NVIDIA GeForce898

RTX 4090 24GB GPUs, providing sufficient ca-899

pacity for large-scale training and inference under900

long-text and multi-turn interaction settings. We901

use mixed-precision (FP16) training to accelerate902

computation and reduce memory usage.903

D Prompt Examples904

To ensure reproducibility and offer insight into the905

design of our multi-turn interaction strategy, we906

provide representative prompts used in both Multi-907

Turn Text Generation (MTG) and Multi-Turn908

Text Interaction (MTI) modules.909

D.1 Prompts for Multi-Turn Text Generation910

(MTG)911

MTG simulates a multi-round Q&A dialogue with912

the MLLM to progressively enrich the visual de-913

scription of a person image.914

Initial Caption Prompt:915

“Describe the person in the image as916

clearly and concisely as possible.”917

Refinement Questions (sampled from a prede-918

fined pool):919

•“What color is the person’s upper body cloth-920

ing?”921

•“What type of pants is the person wearing?”922

•“Is the person carrying any objects?”923

•“Is the person wearing any accessories (e.g.,924

hat, bag, glasses)?”925

•“What is the background or scene context of926

the image?”927

•“Is the person performing any action?”928

Reconstruction Prompt:929

“Rewrite the description using all the an-930

swers above, avoiding repetition while931

keeping it detailed and fluent.”932

D.2 Prompts for Multi-Turn Text Interaction 933

(MTI) 934

During inference, MTI uses the MLLM to identify 935

an anchor image and refine the initial user query 936

through attribute-focused dialogue. 937

Anchor Verification Prompt: 938

“Does this image match the description: 939

‘A man in a red hoodie with black pants’? 940

Answer yes or no.” 941

Clarification Question Generation Prompt: 942

“Based on this image and the original 943

query, suggest follow-up questions that 944

could improve the retrieval.” 945

Visual Question Answering Prompt: 946

“Please answer the following question 947

based on the image: ‘What is the per- 948

son holding?’ Answer concisely.” 949

Query Aggregation Prompt: 950

“Refine the original query using the fol- 951

lowing additional details: ‘The person is 952

wearing sunglasses and holding a white 953

bag.’ Output a clear and discriminative 954

new query.” 955

These curated prompts guide the multi-turn rea- 956

soning process and enable CTGI to produce se- 957

mantically rich training data and robust test-time 958

refinements. Additional prompt sets and template 959

variations are provided in our released code reposi- 960

tory. 961
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