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Abstract

Text-based person search (TBPS) enables the
retrieval of person images from large-scale
databases using natural language descriptions,
offering critical value in surveillance appli-
cations. However, a major challenge lies in
the labor-intensive process of obtaining high-
quality textual annotations, which limits scal-
ability and practical deployment. To address
this, we introduce two complementary modules:
Multi-Turn Text Generation (MTG) and
Multi-Turn Text Interaction (MTI). MTG
generates rich pseudo-labels through simulated
dialogues with multimodal large language mod-
els (MLLMs), producing fine-grained and di-
verse visual descriptions without manual super-
vision. MTI refines user queries at inference
time through dynamic, dialogue-based reason-
ing, enabling the system to interpret and re-
solve vague, incomplete, or ambiguous descrip-
tions—characteristics often seen in real-world
search scenarios. Together, MTG and MTI
form a unified and annotation-free framework
that significantly improves retrieval accuracy,
robustness, and usability. Extensive evaluations
demonstrate that our method achieves compet-
itive or superior results while eliminating the
need for manual captions, paving the way for
scalable and practical deployment of TBPS sys-
tems.

1 Introduction

Text-based person search (TBPS) aims to retrieve
images of a target individual from large-scale
galleries using natural language descriptions (Li
et al., 2017a). It lies at the intersection of image-
text retrieval (Lei et al., 2022; Sun et al., 2021;
Miech et al., 2021) and image-based person re-
identification (Re-ID) (He et al., 2021; Luo et al.,
2019; Wang et al., 2022a), offering a flexible al-
ternative to visual queries. Text queries are more
accessible and often provide richer semantic cues
about identity, enabling applications ranging from

personal photo organization to public security and
surveillance.

Since the seminal introduction of CUHK-
PEDES (Li et al., 2017a), TBPS has made sub-
stantial progress, largely driven by advances in
cross-modal representation learning that align vi-
sual and textual modalities in a shared embedding
space (Radford et al., 2021). However, despite
these technical developments, one fundamental bot-
tleneck remains: the reliance on high-quality tex-
tual annotations. While visual data can be easily
acquired from surveillance footage, generating ac-
curate and semantically rich descriptions is labor-
intensive, expensive, and inherently unscalable.

Automated captioning methods provide a partial
solution, but often suffer from semantic drift, repet-
itive phrasing, and hallucinated content (Kolouju
et al., 2025), leading to vague or misleading la-
bels (see Figure 1). This limitation motivates a
central research question: Can TBPS be achieved
effectively without depending on manually crafted
descriptions?

To address this challenge, we propose CTGI
(Chat-Driven Text Generation and Interaction), a
unified and annotation-free framework designed
to bridge the supervision gap through multimodal
dialogue. CTGI comprises two synergistic mod-
ules: Multi-Turn Text Generation (MTG) for
training supervision and Multi-Turn Text Inter-
action (MTI) for inference-time query refinement
(see Figure 2).

The MTG module simulates multi-turn conver-
sations with an MLLM to generate rich pseudo-
labels. Starting from a baseline caption, it iter-
atively refines the description using a series of
attribute-targeted prompts that mimic human di-
alogue. This process leads to semantically dense,
diverse, and fine-grained annotations that far ex-
ceed the quality of single-turn captioning. To ac-
commodate these longer descriptions, we extend
CLIP’s default 77-token input limit by applying po-



The woman was wearing a white down jacket, a white hat, black trousers and grey boots.
She is wearing glasses. She's looking at the camera.

(a) Human-Written Captions

The individual exudes confidence and elegance with their choice of attire. They are
; wearing a long white coat with purple stripes, which is both practical and stylish. The
ol coat's casual style is balanced by the addition of a white hat. The person's upright
:> MLLM :> posture and confident demeanor are further enhanced by their pair of black boots. A
- simple and neat hairstyle complements their overall appearance, and they are carrying
a black bag.
(b) Direct Captioning via Large Language Models

rat is the woman in the picture wex

-]
YW Reconstructor Iy
hooded down jacket. The jacket has a diamond - ao
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. white lines on the edges,.

The woman is wearing a long - sleeved, light purple ~ Ji
hooded down jacket. The jacket features a diamond - h
patterned stitching design on the surface, with white |
lines adorning the edges, giving it a simple and |
stylish look. She has on a white knitted hat, and 1
pairs the jacket with black pants and grey short boots. 1]

0, What Kind of hat is the woman wearing?

i A;:She has on a white knitted hat.

i Qu: What docs she pair with the jacket?

i Ay:She pairs the jacket with black pants and grey
_short boots. R

7°Q,: What does she pair with the jacket? :
""A,She pairs the jacket with black pants and grey
i...short boots.

Keep asking until Round N

Figure 1: Comparison of person description strategies. (a) Human-written captions are concise but often lack
compositional depth and attribute coverage. (b) Direct captioning with large language models (LLMs) generates
descriptions in a single forward pass, but often suffers from hallucinations or omissions—particularly in capturing
fine-grained visual details such as clothing, accessories, or scene context. (c) Our proposed multi-turn strategy
simulates an interactive dialogue with the MLLM, progressively enriching descriptions through targeted Q&A,

yielding more expressive, accurate, and human-aligned captions.

sitional embedding stretching—retaining the first
20 learned positions and interpolating the remain-
ing embeddings to support up to 248 tokens without
retraining the model.

The MTI module operates during inference to
refine under-specified user queries through MLLM-
driven dialogue. It begins by identifying a candi-
date anchor image and then generates targeted ques-
tions to extract missing or ambiguous attributes.
The responses are aggregated into a refined query
that is better aligned with the target image. MTI
also incorporates filtering mechanisms to avoid re-
dundancy and maintain efficiency. As a plug-and-
play module, MTI can be easily deployed with
various pretrained vision-language retrieval models
with minimal adaptation cost.

Our key contributions are as follows:

* We propose CTGI, a novel chat-driven frame-
work for TBPS that eliminates the need for man-
ual annotations by unifying pseudo-caption gen-
eration and interactive query refinement.

* We develop MTG, a multi-turn captioning mod-
ule that generates rich, attribute-aware pseudo-
labels through iterative dialogue, and supports

long-text encoding via positional embedding ex-
tension.

e We introduce MTI, a dynamic inference module
that refines natural language queries via MLLM-
guided interaction, enhancing alignment between
user input and visual content for more accurate
retrieval.

2 Related Work

Text-Based Person Search (TBPS) has pro-
gressed significantly since the release of CUHK-
PEDES (Li et al., 2017a). Early efforts focused on
embedding visual and textual data into a shared
space, evolving from global alignment (Zheng
et al., 2020; Farooq et al., 2020) to fine-grained
matching (Chen et al., 2018, 2022; Suo et al., 2022),
often enhanced by pose cues (Jing et al., 2020),
part-level features (Wang et al., 2020), or semantic
knowledge (Loper and Bird, 2002). In parallel, rep-
resentation learning approaches aimed to extract
modality-invariant features by addressing back-
ground clutter (Zhu et al., 2021a), color sensitiv-
ity (Wu et al., 2021), and multi-scale fusion (Shao
et al., 2022). Recently, large-scale pretrained mod-
els like CLIP (Radford et al., 2021) have enabled
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The male in the image is wearing a black hoodie, paired
with black pants and brown shoes. He is carrying a black
backpack over both shoulders. His black hair is neatly
styled, and he is wearing glasses. He is riding a yellow
bicycle , holding the handlebars with both hands ......

Train [ l
Text-Image Retrieval Model

Test,

Query,: The man with the dark hair is wearing a black
top.He wears the dark green pants and the black sneakers.

Figure 2: Overview of the proposed CTGI framework for text-based person search. The framework consists
of two stages: (1) Training-time generation: MTG simulates multi-turn dialogue to iteratively enrich captions,
while a reconstructor synthesizes pseudo-labels using structured prompts; and (2) Inference-time retrieval: MTI
refines user queries through MLLM-driven Q&A, enhancing alignment between the query and candidate images for

improved re-ranking.

strong generalization for cross-modal retrieval with
minimal tuning (Jiang and Ye, 2023b; Han et al.,
2021; Wei et al., 2023), with IRRA (Jiang and Ye,
2023b) improving alignment via multimodal inter-
action.

Despite these advances, most TBPS methods
still depend on costly human-annotated text, lim-
iting scalability. Weakly supervised (Zhao et al.,
2021) and synthetic labeling (Yang et al., 2023; Tan
et al., 2024) offer partial relief but struggle with
vague or conversational queries.

To overcome this, we propose a new TBPS
paradigm—Chat-Driven Text Generation and In-
teraction (CTGI)—which eliminates manual an-
notations and enhances retrieval through multi-turn
dialogue with Multimodal Large Language Mod-
els (MLLMs). Unlike earlier interactive retrieval
systems (Guo et al., 2018; Lee et al., 2024) that
require task-specific data or retraining, CTGI sup-
ports open-ended, behavior-centric queries and dy-
namically refines both pseudo-labels and user input.
By leveraging MLLMs as plug-and-play agents,
CTGI achieves robust, scalable, and annotation-
free TBPS—bridging the gap between lab settings
and real-world deployments.

3 Methodology

In this section, we briefly outline a Chat-Driven
Text Generation and Interaction (CTGI) model for
person retrieval. The CTGI model framework con-
sists of two main modules: (1) The Multi-Turn
Text Generation (MTG) module, which uses a
multimodal large language model to generate de-
tailed textual descriptions for given person images
through an interactive Q&A dialogue; and (2) The
Multi-Turn Text Interaction (MTI) module, which
is used in an inference-time pipeline that refines the
textual query by leveraging visual context from re-
trieved images and then performs re-ranking. The
overall framework is illustrated in Figure 2.

3.1 Multi-Turn Text Generation

The Multi-Turn Text Generation module generates
a comprehensive pseudo-label for each person im-
age I by iteratively querying a multimodal large
language model for fine-grained details. This pro-
cess is initiated with an initial captioning prompt
designed to elicit a general description. Given an
image I, we can use the MLLM with a prompt Py,
e.g., “Describe the person in the image,” yielding



an initial static caption T:
Ty = MLLM (I, Puit), )

However, T provides only a simple, basic tex-
tual description and often overlooks distinctive at-
tributes. To capture more distinctive attributes of a
person, the QA-guided refinement rounds method
provides a more detailed textual description im-
provement strategy. Specifically, in each round 7,
the model generates an answer a; that aligns with
the image content based on a specific question g;,

e.g.,

q;: Is the person riding the bicycle?
a;: Yes, the person is riding the bicycle.

After N rounds of QA operations, we obtain all
preceding QA results {(g;, ai)}ﬁil concatenated
together to obtain the enriched caption 7T+:

T. = MLLM ([a1, az, ...,an]), (2)

Compared to T, T, provides more fine-grained
attributes for the given person image, e.g., col-
ors, clothing details, and physical features, which
greatly enhance the textual description.

It is important to note that due to the presence of
similar questions in the question list, this may lead
to repetitive answers. To remove the redundant de-
scriptions, we use the MLLM again and reconstruct
T, by incorporating 7’:

T, = MLLM(T, | Ts,p), 3)

where p denotes the input prompt to the MLLM,
e.g., “Rephrase the description using all the above
information.” Compared to T¢ in Eq. (2), T, in Eq.
(3) provides a more concise and effective textual
description, rather than increasing the quantity of
image-related details. Meanwhile, compared to
Ts in Eq. (1), T¢ contains more details extracted
during the MLLM Q&A process, and better aligns
with human attention to core image information.

3.2 More Text Positional Embeddings

CLIP’s original 77-token limit, imposed by its
fixed-length absolute positional embeddings, re-
stricts its ability to process long and detailed
text—a critical limitation for tasks such as Text-
Based Person Search (TBPS). To address this, we
adopt a knowledge-preserving positional embed-
ding stretching technique that extends the model’s

input capacity while maintaining compatibility
with pretrained weights.

Following Long-CLIP (Zhang et al., 2024)and
FineLLIP(Asokan et al., 2025), we preserve the first
20 learned positional embeddings, which are em-
pirically the most well-trained, and interpolate the
remaining positions (21-77) to reach a new input
length of 248 tokens by applying a 4 x stretching
factor.

Let PE(pos) denote the original positional em-
bedding at position pos € [1, 77]. We construct the
stretched embedding P E*(pos) for the extended
range pos € [1,248] as:

PE(pos), for pos < 20
PE*(pos) ={ (1 —a)-PE ( i";J) “
+a.PE([P;; ) for 21 < pos < 77

Here, A = 2;‘78_*2200 ~ 4 is the interpolation factor,
and « is the fractional part of M. This ensures
smooth interpolation while preserving pretrained
embeddings for the initial positions.

Inspired by LiT (Zhai et al., 2022), this approach
avoids reinitialization or retraining, and allows
CLIP to encode longer, semantically rich descrip-
tions generated by the MTG module. Empirical re-
sults in Table 4 confirm that this strategy enhances
retrieval performance without sacrificing alignment
learned during pretraining.

3.3 Multi-Turn Text Interaction (MTI)

MTT operates during inference to resolve under-
specified or vague user queries through multi-turn
interaction.

Step 1: Anchor Identification. Given a user
query ¢, the system retrieves top-K candidates
{01, ..., 0k } using similarity score .S, ,,. For each
Uk, the MLLM is prompted to judge alignment with
q. The first affirmative response identifies the an-
chor v. If no match is found within K attempts, no
refinement is applied.

Step 2: Interactive Refinement. With anchor
v, MTI generates a diagnostic question set {¢;}
focused on missing attributes. Responses are ob-
tained via visual Q&A:

rs = MLLM(Tyqa({c:}, 7)) )

The final query ¢ is synthesized using a template
prompt to merge r; and q:

(j = MLLM(Taggr(rﬁa Q)) (6)



Step 3: Re-ranking. The final similarity is com-
puted as:

Sgv = ASqw + (1 = X)S40 (7)

with S'qﬂ—, = 1 to promote anchor matching.
Early stopping is triggered when 9; surpasses
threshold & = 0.85.

3.4 Reconstructor

The Reconstructor plays a pivotal role in trans-
forming fragmented outputs from multi-turn Q&A
into coherent and high-quality descriptions. It is
deployed in both training and inference pipelines
to enhance the effectiveness of CTGI without re-
quiring any manual annotations or dataset-specific
tuning.

To ensure the quality of generated descriptions
during training, MTG maintains a dynamic ques-
tion pool and discards Q&A pairs that exhibit low
semantic relevance or redundant information. This
filtering helps avoid overlong or repetitive captions.

For synthesis, the Reconstructor leverages the
GPT-40 API to convert structured Q&A logs
into fluent and semantically rich pseudo-captions.
These refined captions serve as supervision signals
for training downstream retrieval models.

In the inference stage, the Reconstructor also
contributes to query refinement within MTI. A set
of curated diagnostic templates (e.g., “Is the person
wearing a backpack?”) is used to identify typical
ambiguities. These templates help elicit missing at-
tributes without introducing generic or noisy ques-
tions. The responses are then aggregated into a
revised query that is semantically aligned with the
visual anchor.

This unified design ensures that CTGI can sup-
port both training-time pseudo-label generation and
test-time query refinement effectively—without
reliance on human-written descriptions or task-
specific engineering.

4 Experiments

We evaluate our framework by re-annotating three
public datasets with enriched textual descriptions
that offer greater semantic depth and diversity. We
compare retrieval models trained on these pseudo-
labels against those trained on original annotations.
To test generalizability, we integrate our method
into standard TBPS pipelines and assess its impact.
Finally, we perform ablation studies and visual

analyses to better understand the method’s effec-
tiveness.

4.1 Datasets and Performance Measurements

We evaluate our approach using three Text-based
Person Retrieval datasets: CUHK-PEDES (Li et al.,
2017b), ICFG-PEDES (Ding et al., 2021b), and
RSTPReid (Zhu et al., 2021b). Our training solely
utilizes image data, devoid of any dependency on
manually annotated text data. During the testing
phase, captions from the dataset are leveraged for
re- trieval.

Evaluation Metrics. Following standard prac-
tice, we evaluate using Rank-k (k=1,5,10), mean
Average Precision (mAP). Higher values indicate
better retrieval performance.

4.2 Implementation Details

We evaluate CTGI using two strong TBPS base-
lines: IRRA (Jiang and Ye, 2023a) and RDE (Qin
et al., 2024), both built on CLIP-ViT/B-16 (Rad-
ford et al., 2021). For multimodal reasoning, we
adopt Qwen2-VL-7B (Wang et al., 2024) as the
core MLLM, while the Reconstructor leverages
the OpenAl GPT-40 API (OpenAl, 2023) for
pseudo-caption synthesis.

All models follow the original training setups of
IRRA and RDE. Input images are resized to 384 x
128, and standard augmentations (flip, crop, erase)
are applied. To support longer text, we extend
CLIP’s 77-token limit to 248 tokens by preserving
the first 20 positional embeddings and interpolating
the rest 4x, following (Zhai et al., 2022). The
learning rate is set to 1 x 1075 (with 5 warmup
epochs from 1 x 107°%), and 5 x 10~ for randomly
initialized layers. Cosine decay is used throughout
60 training epochs.

During training, the MTG module runs 6 Q&A
rounds per image to generate dense pseudo-labels.
For inference, MTI examines the top K = 20
retrieval candidates, and early exits if the top-1
similarity exceeds £ = 0.85 and is confirmed by
the MLLM. Final retrieval scores are fused via
weighted re-ranking. All experiments are con-
ducted on 2x NVIDIA RTX 4090 GPUs with
generation temperature fixed at 0.01 for stability.

4.3 Comparison with the State-of-the-Art

We evaluate the effectiveness of our proposed
CTGI framework on three widely used benchmark
datasets for text-based person search, comparing
against both unsupervised and fully supervised



Table 1: Performance on CUHK-PEDES . *: trained with LLaVA-1.5 captions. The best and second-best results are

in bold and underline, respectively.

Methods Ref. Image Enc. Text Enc. ‘ R-1 R-S R-10 mAP
Fully Supervised
TIMAM (Sarafianos et al., 2019) ICCV’19 RN101 BERT 54.51 77.56 79.27 -
ViTAA (Wang et al., 2020) ECCV’20 RN50 LSTM 5492 75.18 8290 51.60
NAFS (Gao et al., 2021) arXiv’21 RN50 BERT 59.36 79.13 86.00 54.07
DSSL (Zhu et al., 2021a) ACMMM’21 RN50 BERT 59.98 80.41 87.56 -
SSAN (Ding et al., 2021a) arXiv’21 RN50 LSTM 61.37 80.15 86.73 -
Lapscore (Wu et al., 2021) ICCV’21 RN50 BERT 63.40 - 87.80 -
ISANet (Yan et al., 2022b) arXiv’'22 RN50 LSTM 63.92 82.15 87.69 -
SAF (Li et al., 2022) ICASSP’22 ViT-Base BERT 64.13 82.62 88.40 -
DCEL (Qin et al., 2022) ACMMM’22  CLIP-ViT  CLIP-Xformer | 71.36 88.11 92.48 64.25
IVT (Shu et al., 2022) ECCVW’22 ViT-Base BERT 65.59 83.11 89.21 -
CFine (Yan et al., 2022a) TIP’23 CLIP-ViT BERT 69.57 8593 91.15 -
IRRA (Jiang and Ye, 2023c) CVPR’23 CLIP-ViT  CLIP-Xformer | 73.38 89.93 93.71 66.13
BiLLMa (Fujii and Tarashima, 2023) | ICCV’23 CLIP-ViT  CLIP-Xformer | 74.03 89.59 93.62 66.57
PBSL (Shen et al., 2023) ACMMM’23 RN50 BERT 65.32 83.81 89.26 -
BEAT (Ma et al., 2023) ACMMM’23 RN101 BERT 65.61 83.45 89.54 -
LCR?S (Yan et al., 2023) ACMMM’23 RN50 TextCNN 67.36 84.19 89.62 59.24
DCEL (Li et al., 2023) ACMMM’23  CLIP-ViT  CLIP-Xformer | 75.02 90.89 94.52 -
UniPT (Shao et al., 2023) ICCV’23 CLIP-ViT  CLIP-Xformer | 68.50 84.67 - -
TBPS (Cao et al., 2024) AAAT24 CLIP-ViT  CLIP-Xformer | 73.54 88.19 9235 65.38
RDE (Qin et al., 2024) CVPR’24 CLIP-ViT  CLIP-Xformer | 75.94 90.14 94.12 67.56
CFAM (Zuo et al., 2024) CVPR’24 CLIP-ViT  CLIP-Xformer | 75.60 90.53 - 67.27
MLLM+IRRA (Wentao Tan, 2024) | CVPR’24 CLIP-ViT  CLIP-Xformer | 76.82 91.16 - 69.55
MGRL (Lv et al., 2024) ICASSP’24 CLIP-ViT  CLIP-Xformer | 73.91 90.68 - 67.28
OCDL (Li et al., 2025a) ICASSP’25 CLIP-ViT  CLIP-Xformer | 75.10 89.43 - 68.18
Unsupervised
IRRA* (Li et al., 2025b) CVPR’23 CLIP-ViT  CLIP-Xformer | 32.94 54.37 64.67 30.87
BLIP* (Li et al., 2025b) ICML22 BLIP-ViT  BLIP-Xformer | 51.41 71.41 7876 44.73
GTR (Bai et al., 2023) MM’23 BLIP-ViT  BLIP-Xformer | 47.53 68.23 7591 42091
MUMA (Li et al., 2025b) AAAT25 BLIP-ViT  BLIP-Xformer | 59.52 77.79 - 52.75
Our+IRRA - CLIP-ViT  CLIP-Xformer | 63.53 80.25 87.84 52.37
Our+RDE - CLIP-ViT  CLIP-Xformer | 67.82 85.45 90.63 55.14

state-of-the-art methods. Our framework is instan-
tiated with two variants, Our+IRRA and Our+RDE,
which employ different retrieval backbones while
sharing the same underlying CTGI components.

CUHK-PEDES: As reported in Table 1, under
the unsupervised setting, our Our+RDE achieves
a Rank-1 of 67.82% and mAP of 55.14%, sub-
stantially outperforming the strongest unsuper-
vised baseline MUMA, which obtains 59.52% and
52.75% respectively. Notably, Our+IRRA also sur-
passes MUMA by a clear margin, demonstrating
the strong efficacy of CTGI in generating informa-
tive pseudo-labels and improving retrieval without
manual annotations. Compared with fully super-
vised methods, our results approach competitive
levels, surpassing several mid-tier supervised mod-

els and narrowing the gap to the top performers.

ICFG-PEDES: Table 2 shows that our frame-
work maintains state-of-the-art performance in the
unsupervised category with a Rank-1 of 56.16%
and mAP of 32.40% for Our+RDE, exceeding the
best supervised methods in some metrics. This
highlights CTGI’s robustness and generalization
ability across datasets with different granularity and
annotation styles. The improvements over other un-
supervised baselines such as BLIP and GTR further
confirm the superiority of our approach.

RSTPReid: As shown in Table 3, on the RST-
PReid dataset, Our+RDE achieves a Rank-1 of
66.35% and mAP of 51.51%, outperforming the
second-best unsupervised method MUMA by ap-
proximately 12% in Rank-1 and over 11% in mAP.



Table 2: Performance on ICFG-PEDES. *: trained with
LLaVA-1.5 captions.The best and second-best results
are in bold and underline, respectively.

Table 3: Performance on RSTPReid. *: trained with
LLaVA-1.5 captions.The best and second-best results
are in bold and underline, respectively.

Method | Re1 R@5 R@10 mAP Methods | R1 R5 R-10 mAP
Fully Supervised Fully Supervised
Dual Path (Zheng et al., 2020) 38.99 5944 68.41 - DSSL (Zhu et al., 2021a) 39.05 6260 7395 @ -
CMPM/C (Zhang and Lu, 2018) | 43.51 6544 7426 - SSAN (Ding et al., 2021a) 4350 67.80 7715 -
ViTAA (Wang et al., 2020) 50.98 68.79 75.78 _ LBUL (Wang et 'dl,, 2022b) 45.55 68.20 77.85 -
SSAN (Ding et al., 2021a) 5423 7263 7953 - IVT (Shu et al., 2022) 4670 7000 78.80 -
IVT (Shu et al., 2022) 5604 7360 8022 i CFine (Yan et al., 2022a) 50.55 7250 81.60 -
ISANet (Yan et al., 2022b) 5773 7542 8172 - IRRA (Jiang and Ye, 2023c) 6020 8130 8820 A7.17
. BiLMA (Fujii and Tarashima, 2023) | 61.20 81.50 88.80 48.51
CFine (Yan et al., 2022a) 60.83 76.55 82.42 - PBSL (Shen et al., 2023) 4780 7140 79.90 )
IRRA (Jiang and Ye, 202 3.4 25 85.82 : o : : :
BiLMf(éujgiidax?d Tea{raghiii)i 2023) 23 sg 28 12 25 34 22 gg BEAT (Ma et al., 2023) 48107310 8130 -
b : : : : LCR2S (Yan et al., 2023) 5495 76.65 8470 40.92
PBSL (Shen et al., 2023) 57.84 7546 82.15 - DCEL (Li et al., 2023) 6135 8395 9045 .
BEAT (Ma et al., 2023) 5825 7592 8196 - TBPS (Cao et al., 2024) 6195 8355 8875 4826
LCR?S (Yan et al., 2023) 5793 76.08 82.40 38.21 CFAM (Zuo et al., 2024) 62.45 83.55 _ 49.50
DCEL (Lietal., 2023) 64.88 81.34  86.72 - OCDL (Li et al., 2025a) 61.60 82.35 - 4977
UniPT (Shao et al., 2023) 60.09 76.19 - - Unsupervised
TBPS (Cao et al., 2024) 65.05 8034 8547 39.83
CFAM (Zuo et al., 2024) 6538 81.17 - 39.42 IRRA* (Li et al., 2025b) 3760 60.65 7230 27.42 -
MGRL (Lv et al., 2024) 67.28 63.87 - 82.34 BLIP* (Li et al., 2025b) 4445 6770 7725 3373 -
OCDL (Li et al., 2025a) 64.53 80.23 _ 40.76 GTR (Bai et al., 2023) 45.60 7035 79.95 33.30
- MUMA (Li et al., 2025b) 5435 76.05 83.65 40.50
Unsupeersed Our+IRRA 6420 83.55 90.30 49.66
IRRA* (Li et al., 2025b) 2123 3737 46.04 1147 Our+RDE 6635 8550 9124 51.51
BLIP* (Li et al., 2025b) 31,58 5203 61.73 1320
GTR (Bai et al., 2023) 2825 4521 5351 1382
MUMA (Li et al., 2025b) 38.11 56.01 63.96 19.02
Ours + IRRA 48.76 6738 74.66 27.42 sion through enriched textual descriptions.
Ours + RDE 56.16 73.18 79.42 3240

Moreover, our method exceeds the performance of
several fully supervised models, including CFine,
illustrating the strong competitiveness and scala-
bility of CTGI without reliance on any manual
annotations.

Across all datasets, our CTGI framework demon-
strates a consistent and significant improvement
over existing unsupervised methods, closing the
gap towards fully supervised performance. These
results validate the effectiveness of leveraging mul-
timodal large language models for pseudo-label
generation and interactive query refinement, en-
abling robust and scalable text-based person search
in practical scenarios.

4.4 Ablation Study

We conduct ablation experiments on the RSTPReid
dataset to systematically analyze the individual
and combined effects of Multi-Turn Text Gen-
eration (MTG) and Multi-Turn Text Interaction
(MTI). When employed separately, MTG enhances
retrieval by generating detailed and semantically
rich pseudo-labels, resulting in notable improve-
ments in Rank-1 accuracy and mAP over the base-
line. For instance, with the IRRA backbone, MTG
alone achieves a Rank-1 of 52.30%, indicating its
strong ability to provide effective training supervi-

Similarly, MTI, which refines user queries at
inference time via multi-turn dialogue, indepen-
dently boosts performance by improving the se-
mantic alignment between queries and visual fea-
tures. This is reflected by an increased Rank-1 ac-
curacy of 55.50% with IRRA, highlighting MTI’s
effectiveness in mitigating ambiguity in free-form
textual queries.

Importantly, the integration of MTG and MTI
yields complementary benefits, producing the high-
est gains across all metrics. Combined, they
achieve Rank-1 accuracies of 64.20% and 66.35%
with IRRA and RDE backbones respectively, along-
side corresponding mAP improvements. These
results confirm that the synergy between richer
pseudo-label generation and dynamic query refine-
ment substantially advances cross-modal retrieval
performance and robustness.

Table 4: Ablation study on the RSTPReid dataset. MTG:
Multi-Turn Text Generation, MTI: Multi-Turn Text In-
teraction, PES: Positional Embedding Stretching.

Method ‘ MTG MTI ‘ Rank-1  Rank-5 Rank-10 mAP
Our+IRRA v 52.30 74.65 84.05 40.03
Our+IRRA v 55.50 71.50 86.55 44.87
Our+IRRA v ' 64.20 83.55 90.30 48.03
Our+IRRA (w/o PES) v ' 63.00 82.65 88.80 47.60
Our+RDE v 60.55 79.85 86.30 44.98
Our+RDE v 62.55 82.85 89.00 46.43
Our+RDE v ' 66.35 85.50 91.25 49.66
Our+RDE (w/o PES) v 65.75 84.05 90.60 49.60




{ The female walker covering hair with red scarf
wears a red coat, a white blouse inside, dark
pants and a pair of boots.

Multi-Turn Text Interaction

#"The female exudes confidence and style, ™
dressed in a red coat with a hood. The thick
fabric of the coat ensures warmth and comfort,
while the black boots they wear complement
the coat's color. They complete their outfit with
black glasses and a ponytail, the color of which
is a warm brown. Their hands are crossed in

~, front of them. ¢

i The woman is zipping up her cloth.She has dark
hair in a pony tail and is wearing a grey coat
with fur collar, cream-colored pants,and a long

:, boots.She is holding a big blue backpack.

Multi-Turn Text Interaction

__-"""[he woman, dressed warmly in a light tan™,
winter jacket with a fur-lined hood. She carries
a large sky-blue backpack slung over her
shoulders. Her long dark hair is neatly tied
back. She is absorbed in her phone, eyes
directed downward toward the screen. Her
attire includes beige pants tucked into high,

“. sleek black leather boots. d

Figure 3: Top-10 retrieval results on the RSTPReid dataset. The first column is the ground-truth image. The first row
shows retrieval results using IRRA; the second row shows results after applying IRRA with MTI. Refined queries
generated by multi-turn interaction are shown alongside each example. Green borders indicate correct matches.

4.5 Visualization of Retrieval Results

To evaluate the effectiveness of MTI, we conducted
controlled experiments with a fixed operation cycle.
Figure 3 visualizes the top-10 retrieval results be-
fore and after applying MTI. Notably, the retrieval
model is trained solely on pseudo-captions gen-
erated by the MTG module, without any manual
annotations. Due to the incomplete alignment be-
tween initial queries and ground-truth test captions,
retrieval without MTTI often yields suboptimal re-
sults. In contrast, MTI dynamically refines the
query through interactive optimization, enabling
more accurate and robust ranking performance.

5 Conclusion

In this work, we introduced CTGI (Chat-Driven
Text Generation and Interaction), a unified and
annotation-free framework for Text-Based Person
Search (TBPS) that removes the dependency on
manually crafted textual descriptions. CTGI inte-
grates two synergistic modules: Multi-Turn Text
Generation (MTG) for training supervision and
Multi-Turn Text Interaction (MTI) for inference-
time refinement. Together, they leverage the expres-
sive capabilities of Multimodal Large Language
Models (MLLMs) to generate rich pseudo-labels
and iteratively enhance user queries via natural lan-
guage dialogue. Extensive experiments across mul-
tiple TBPS benchmarks show that CTGI achieves

competitive or superior performance compared to
fully supervised methods, while seamlessly adapt-
ing to existing retrieval pipelines. Ablation studies
and qualitative visualizations further underscore
the value of multi-turn interaction and MLLM-
guided refinement in improving cross-modal align-
ment and retrieval robustness.

Limitations

While CTGI demonstrates strong performance
without manual annotations, several challenges re-
main. First, pseudo-labels generated by MTG may
contain semantic noise or redundancy. Although
robust retrieval backbones like RDE are designed
for noisy environments and thus benefit more from
such supervision, other models without inherent
noise-filtering may be more vulnerable to degraded
performance. Second, MTI introduces additional
inference overhead due to multi-turn interactions
with MLLMs. Even with early stopping and anchor
validation, this can limit deployment in latency-
sensitive applications. Third, both MTG and MTI
rely on the generalization ability of the underlying
MLLM (e.g., Qwen2-VL-7B), which may yield
suboptimal results in unfamiliar domains or when
handling fine-grained attributes. Future work could
address these issues through uncertainty-aware la-
bel filtering, more efficient MLLMs, and domain-
adaptive interaction strategies.
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A Datasets

CUHK-PEDES (Li et al., 2017c¢) is the first and
most widely used dataset for text-to-image person
search, containing 40,206 images and 80,412 tex-
tual descriptions for 13,003 unique identities. Fol-
lowing the official data split, the dataset is divided
into a training set with 11,003 identities compris-
ing 34,054 images and 68,108 textual descriptions;
a validation set containing 1,000 identities with
3,078 images and 6,158 descriptions; and a test set
also featuring 1,000 identities with 3,074 images
and 6,156 descriptions. The average length of each
textual description is 23 words, providing detailed
visual cues for the retrieval task.

ICFG-PEDES (Ding et al., 2021b) comprises
54,522 images corresponding to 4,102 identities,
with each image paired with a single textual de-
scription averaging 37 words. The training set in-
cludes 34,674 image-text pairs for 3,102 identities,
while the test set consists of 19,848 image-text pairs
representing the remaining 1,000 identities. This
dataset is particularly notable for its one-to-one
pairing of images and descriptions, emphasizing
concise textual representations for each identity.

RSTPReid (Zhu et al., 2021b) contains 20,505
images from 4,101 identities captured by 15 dif-
ferent cameras. Each identity is represented by 5
images taken from various viewpoints, and each
image is annotated with 2 textual descriptions, each
containing at least 23 words. Following the stan-
dard data split, the training set consists of 3,701
identities, while the validation and test sets each
contain 200 identities. The diverse camera angles
and specific textual annotations make RSTPReid
a valuable resource for evaluating robust retrieval
methods.

B Evaluation Metrics.

To assess performance, we use the Rank-k metrics
(k=1,5,10), which measure the probability of re-
trieving a correct match within the top-k results
when queried with a textual description. In addi-
tion, we employ mean Average Precision (mAP)
and mean Inverse Negative Penalty (mINP) (Ye
et al., 2022), providing a more comprehensive eval-
uation. Higher values for Rank-k, mAP, and mINP
indicate superior retrieval performance.

C Implementation Details

To evaluate the effectiveness of the proposed CTGI
framework, we integrate it into two widely adopted

12

TBPS baselines: IRRA (Jiang and Ye, 2023a) and
RDE (Qin et al., 2024). Unless otherwise specified,
we apply the same configurations and experimental
protocols to both backbones to ensure fair compar-
ison.

Backbone Architecture. Both IRRA and RDE
utilize CLIP-ViT/B-16 (Radford et al., 2021) as
the image encoder and the CLIP text transformer
as the text encoder. IRRA introduces an additional
multimodal interaction encoder composed of trans-
former layers with a hidden size of 512 and 8 atten-
tion heads. Input images are resized to 384x128,
and standard data augmentation is employed dur-
ing training, including random horizontal flipping,
cropping with padding, and random erasing.

Training Configuration. For both models, we
adopt the Adam optimizer with an initial learn-
ing rate of 1 x 107> and a cosine decay schedule
across 60 epochs. A 5-epoch linear warm-up from
1 x 1079 is used. For randomly initialized compo-
nents (e.g., IRRA’s interaction encoder), a higher
learning rate of 5 x 1077 is set. The temperature
parameter 7 in the SDM loss is fixed at 0.02.

Extended Positional Embeddings. CLIP’s de-
fault 77-token limit is insufficient for processing
MTG-generated long text. Following (Zhang et al.,
2024; Zhai et al., 2022), we expand the input length
to 248 tokens by retaining the first 20 learned em-
beddings and interpolating positions 21-77 by a
factor of 4. This extension enables richer caption
representations while preserving pretrained align-
ment.

Multimodal Language Models. The Qwen2-
VL-7B-Instruct (Wang et al., 2024) serves as the
MLLM backbone for both MTG and MTI mod-
ules, handling visual question answering and query
refinement without any fine-tuning. The OpenAl
GPT-40 API (OpenAl, 2023) is used within the
Reconstructor to synthesize concise, high-quality
captions from raw multi-turn QA transcripts.

Hyperparameters and Inference. During train-
ing, the MTG module performs 6 rounds of visual
question-answering per image to iteratively enrich
the pseudo-caption. At inference time, the MTI
module conducts anchor identification by evaluat-
ing the top-K candidates (with K = 20) retrieved
based on the initial query. Each candidate is vali-
dated via multimodal question prompts using the
MLLM. If the top-ranked image surpasses a pre-
defined similarity threshold of & = 0.85, the re-
finement loop may terminate early. Otherwise, the
system continues checking up to 20 images and



may identify multiple valid anchors (i.e., those re-
ceiving a “Yes” verdict), which are then used to
jointly guide query refinement via response aggre-
gation. The generation temperature is fixed at 0.01
to ensure output stability and reproducibility.
Hardware. All experiments are conducted on
a machine equipped with two NVIDIA GeForce
RTX 4090 24GB GPUs, providing sufficient ca-
pacity for large-scale training and inference under
long-text and multi-turn interaction settings. We
use mixed-precision (FP16) training to accelerate
computation and reduce memory usage.

D Prompt Examples

To ensure reproducibility and offer insight into the
design of our multi-turn interaction strategy, we
provide representative prompts used in both Multi-
Turn Text Generation (MTG) and Multi-Turn
Text Interaction (MTI) modules.

D.1 Prompts for Multi-Turn Text Generation
MTG)

MTG simulates a multi-round Q&A dialogue with
the MLLM to progressively enrich the visual de-
scription of a person image.

Initial Caption Prompt:

“Describe the person in the image as
clearly and concisely as possible.”

Refinement Questions (sampled from a prede-
fined pool):

* “What color is the person’s upper body cloth-
ing?”

* “What type of pants is the person wearing?”
* “Is the person carrying any objects?”

* “[s the person wearing any accessories (e.g.,
hat, bag, glasses)?”

* “What is the background or scene context of
the image?”

* “Is the person performing any action?”
Reconstruction Prompt:

“Rewrite the description using all the an-
swers above, avoiding repetition while
keeping it detailed and fluent.”

D.2 Prompts for Multi-Turn Text Interaction
MTID)

During inference, MTI uses the MLLM to identify
an anchor image and refine the initial user query
through attribute-focused dialogue.

Anchor Verification Prompt:

“Does this image match the description:
‘A man in a red hoodie with black pants’?
Answer yes or no.”

Clarification Question Generation Prompt:

“Based on this image and the original
query, suggest follow-up questions that
could improve the retrieval.”

Visual Question Answering Prompt:

“Please answer the following question
based on the image: ‘What is the per-
son holding?” Answer concisely.”

Query Aggregation Prompt:

“Refine the original query using the fol-
lowing additional details: ‘The person is
wearing sunglasses and holding a white
bag.” Output a clear and discriminative
new query.”

These curated prompts guide the multi-turn rea-
soning process and enable CTGI to produce se-
mantically rich training data and robust test-time
refinements. Additional prompt sets and template
variations are provided in our released code reposi-
tory.
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