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Abstract

Tumour cells require resources to survive and proliferate. In order to be provided with a
supportive micro-environment rich with resources to sustain optimal growth, tumour cells
tend to reside in close proximity to a network of blood vessels. Quantification of blood
microvessel density can be a useful measure to investigate the importance of resource lim-
itation in tumours for prognostication and assigning treatment and mode of drug delivery.
Currently, immunohistochemistry (IHC) with specific antibodies and the subsequent detec-
tion of its binding in the tumour tissue are used to identify microvessels. The automated
quantification of blood microvessels in Hematoxylin and Eosin (H&E) stained images is
not widely studied because microvessels are very complex and heterogeneous. In addi-
tion, their manual identification is tedious, time-consuming and subjective. We investigate
whether the vasculature in H&E can be robustly identified in whole slide sections that
would ultimately avoid the need for IHC and manual annotations. We propose an artificial
intelligence model based on Generative Adversarial Networks (GAN) that, from an input
H&E image, can generate a synthetic ERG stained image, highlighting vessel structures.
We also trained a spatially constrained Convolutional Neural Network (CNN) to identify
single cells on ERG stained whole slide images, and found good concordance between de-
tected cells in synthetic and real ERG. This pipeline was evaluated on 2002 image patches
of size 2000×2000 pixels, sampled from 9 whole slide images. We achieved the mean R2 of
0.70±0.14 in our testing set. This pipeline can pave the way to study proximity of tumours
cells to blood vessels. This approach has the potential to reduce the use of IHC and tissues
and enable large quantitative studies.

Keywords: Blood microvessel density, Generative Adversarial Network (GAN), Image
synthesis

1. Introduction

The tumour micro-environment (TME) is the tissue structure surrounding a tumour that
includes blood vessels, immune cells, fibroblasts, signaling molecules and the extracellular
matrix. Tumour cells are spatially and temporally heterogeneous and interact with each
other and with the micro-environment. The combination of genetic diversity of neoplastic
cells and the tumour micro-environment shape tumour development and progression (Nawaz
et al., 2019). TME can be quantified through the concepts of ecology, characterised by haz-
ards and resources available to the neoplastic cells. Example sources of hazards for neoplas-
tic cells include immune cells, toxins, and anti-cancer therapies. While resources, include
oxygen, glucose, micro-nutrients, space, survival and growth signals (Reynolds et al., 2020).
Different combinations of hazards and resources can produce different fitness landscapes,
and thus will have a critical impact on the future evolution and behaviour of cancer cell
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populations and outcome for patients. For example, high abundance of CD+20 B-cells
and CD+8 T-cell within the tumour promotes better prognosis in ovarian cancer (Nielsen
et al., 2012). Currently little is know about the interactions between cell metabolism and
the availability of key resources. There are various methods to measure factors that affect
resources that may be prognostically relevant. For example, the proportion of a tumour
that is hypoxic, blood vessel density, and co-localisation of tumour cells with fibroblast. Of
these, we are interested in the blood (micro)-blood vessel density (BMVD).

From clinical point of view, a link between angiogenesis and tumour invasion or metasta-
sis, may suggest that preventing new vessels from forming could be a way to inhibit further
tumour growth. The presence of necrosis and hypoxia in many tumours, attests to the
importance of resource limitation in preventing tumour growth (Lugano et al., 2020). Ev-
idence indicates that tumour angiogenesis identified by elevated BMVD is associated with
poor disease free survival in stage II colon cancer, endometrial cancer and testicular germ
cell tumours (Sjoerd et al., 2019; Wang et al., 2018a; Gilbert et al., 2016).

Despite some promising leads, the field will only develop if these biomarkers can be
validated in large clinical trials across different tumour types. BMVD is typically identified
using immunohistochemistry (IHC) (Haber et al., 2015) and scored manually or by digital
morphometric analysis of IHC whole tumour sections. Erythroblast Transformation specific
related gene (ERG) is a highly specific endothelial IHC cell marker (Haber et al., 2015).
Performing a large scale study with IHC and manual scoring is likely to be very challenging.
This is because the production of IHC sections for a large scale trial is likely to be expensive
and time consuming. In addition, the involvement of multiple pathologists is likely to be
necessary to resolve issues of inter-observer variability, which is difficult to achieve in a field
with global staffing shortages. Therefore, it is beneficial to develop automated approaches
that can quantify BMVD in histopathology images for clinical association analysis in large
scales.

To train supervised models capable of automatic quantification of BMVD in Hema-
toxylin & Eosin (H&E) images, there is a crucial need for large amount of example images.
Manual annotation of example images is very laborious, and the variability of size and
shape of the vessels may make producing a good training dataset difficult. We propose a
Generative Adversarial Network (GAN) mapping H&E to IHC, allowing us to synthesise
or predict ERG stain. Subsequently, we investigate whether the use of a synthesised IHC
can help identify the vasculature and BMVD quantification to reduce the need for IHC and
manual annotations and only use H&E for large scale studies.

2. Related Work

A review of the literature indicates that there are, to our knowledge, only two works on
automatically measuring the BMVD in H&E images, both based on the segmentation of
microvessels. Yi et al. (2018) developed an automated microvessel segmentation algorithms
for H&E stained images using fully convolutional neural networks. The feasibility of the
proposed algorithm was demonstrated through experimental training using 20 H&E stained
Whole Slide Images (WSIs) from patients with lung adenocarcinoma. Their segmentation
model achieved the mean pixel accuracy of 0.83 on 35 image tiles (extracted from 5 WSIs).
Then, they applied this model to identify the micro vessels in the pathology images of 88
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Figure 1: Variation of vessel appearance. Green boundaries represent lumen and blue
boundaries represent wall of vessels. Some vessels only have lumen, some only
walls and some have both of them. endothelial cells form the interface between
the lumen and the vessel wall and wille exist where there is a microvessel.

lung adenocarcinoma patients. They showed that the identified microvessel features (the
abundance of BMVD and being surrounded by tumour cells) were significantly associated
with the patient clinical outcomes.

The correlation between lymphovascular invasion, tumour angiogenesis and patient sur-
vival was also studied by Fraz et al. (2018). They proposed a framework for microvessel
segmentation of H&E stained histology images using a segmentation model with depth-wise
separable convolutions, followed by spatial pyramid pooling at multiple scales. In addition,
an uncertainty prediction mechanism was designed to account for the uncertainty of the
model prediction. This pipeline was evaluated on 13 WSIs of oral squamous cell carcinoma
tissues. Quantitative performance measures of microvessel segmentation using the proposed
model was 0.939 in terms of dice score and 96.94% segmentation accuracy, on images of size
514×514 pixels.

These models were generally confined to small visual fields for input and thus were only
capable of segmentation on regions of this size. Therefore, if a microvessel region is larger
than the defined visual field, it may not be segmented correctly. Blood vessel phenotype is
markedly heterogeneous within a single tumour with regards to their structure, morphology,
size and distribution in cross sectional images. This appearance variety leads to a significant
class imbalance problem in the training dataset. Some example images illustrating the
degree of variation in the appearance of vessels are shown in Fig.1. Each type of vessel
has a lumen, wall and endotheliums that line the interior surface of vessels and form the
interface between the lumen and the rest of the vessel wall. In the mentioned studies, they
focused on segmenting just the lumen of the vessel, however the presence of lumens only
does not characterise all types of microvessels in the tissue section. Relying only on H&E
samples, limits the study to the texture of the vessels containing visible red blood cells or
visible lumens. The other point to mention is that in these studies, the evaluations were
performed on the small visual fields rather than whole slide images.

A better way to look for microvessels across the whole slide sections could be through
synthesising IHC from H&E.
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3. Material

20 cases of rhabdomyosarcoma (RMS) were selected, which represent the subtypes of RMS
that include both Fusion Positive (PAX3/7-FOXO1) and Fusion Negative cases. Sections
were cut and stained with H&E, using standard procedures. The H&E sections were scanned
using Hamamatsu NanoZoomer S210. All slides were scanned at 40× magnification with
pixel resolution of 0.2204 microns × 0.2204 microns. Following the scanning, the H&E was
heated with acid alcohol to remove the H&E staining and allow for the next procedure.
The sections were re-stained with the ERG antibody using standard IHC. The slides were
re-scanned. Re-staining, instead of serial sections, results in H&E and IHC WSI pairs that
contain the exact same tissue.

Although the image pairs were acquired from the same glass slides, minor alignment
errors and tissue deformations were still present due to the re-staining procedure. To ad-
dress the alignment issue and generate precisely aligned tiles, each H&E-ERG whole slide
pair was initially co-registered using a manual point-based registration approach. A linear
mapping method based on Affine transformation was calculated for each pair to compensate
likely shearing, scaling, rotation and translation, while preserving collinearity and ratios of
distances in H&E and ERG-stained whole slide images. Following registration, the images
are divided into tiles of 2000×2000 pixels which, due to the previous alignment step, are
highly concordant between H&E and ERG and provided us with a clear ground truth for
endothelial cells.

4. Methodology

We introduce a pipeline that is adapted to high resolution images (2000×2000 pixels at
20× magnification) so that a large and informative field of view can be investigated in the
training phase. This visual field can contain varied vessel appearances. We use a synthesis
model to generate and predict ERG stains from H&E images resulting in positive endothelial
cells rather than segmenting vessels.

For this work, we created two models. First, a generative adversarial model named
“ERG synthesis model”, which was adapted for larger visual fields was trained to generate
synthesised IHC with ERG stain. Subsequently, in order to identify and quantify the
location and abundance of endothelial cells (marked positive in the synthesised image),
we trained another model to localise the centre of nuclei for all individual cells and then
classify each cell type to identify ERG positive cells that correspond to endothelial cells and
vasculature.

4.1 ERG Synthesis Model

This model (inspired by Wang et al. (2018b)) is a conditional generative adversarial model
that has been adapted to learn a coarse to fine mapping of H&E to ERG-stained images
in a multi-scale architecture. It is composed of two generative sub-networks and a multi-
scale discriminator. The internal generative network operates at a lower magnification
(1x) while the outer generative network outputs an image with a higher magnification
(10x). This process is similar to zooming in or out to have a global or detailed view of the
image by pathologists. This multi-resolution pipeline is used to effectively aggregate global
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Figure 2: The proposed pipeline: (Aa) 20 cases of Rhabdomyosarcoma were re-stained with
H&E and IHC with ERG stain, (Ab) registration was performed on down-scaled
whole slide images and then visually checked to prepare precise pairs of H&E
and IHC, (Ba) ERG synthesis model that was trained using the prepared paired
images, (Bb) an example 2000×2000 H&E image tile along with the synthesised
ERG stain and actual ERG stain to compare visually, (Bc) pre-trained tissue seg-
mentation model on H&E images, (Bd) single-cell identification model to localise
and classify the centre of nuclei within the whole tissue and (e) output example
of the single cell identification model on the synthesised ERG and actual ERG.

(particularly for larger vessels) and local information (particularly for small microvessels)
from the images and render H&E stain to ERG stain, preserving the tissue architecture.
The overall objective of the generators is to synthesise realistic ERG-stained images from
H&E stained images, while the discriminator (used in the training phase) aims to distinguish
real ERG-stained images from the synthesised ERG-stained images.

In the ERG Synthesis Model, the generator is composed of two sub-networks: global
generator (G1) and local enhancer (G2). The global generator operates at a resolution of
512×512 pixels, and the local enhancer outputs an image with 1024×1024 pixel resolution.
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So, the input of the model is an H&E image that will firstly be given to G1. This global
generator consists of 3 components: a convolutional front-end, 8 sets of residual blocks and
a transposed convolutional back-end. Thus, the input H&E image is passed through the 3
components sequentially to output an ERG-stained image. Likewise, the G2 network con-
sists of 3 components: a convolutional front-end, a set of residual blocks, and a transposed
convolutional back-end. The resolution of the input image to G2 is 1024×1024. Different
from G1, the input to the residual block is the element-wise sum of the output feature
map of convolutional front-end from G2, and the last feature map of the back-end of G1
in order to effectively integrate the global information from G1 to G2. The output of G2
will be the expected synthesised ERG stain. In the training phase, this output was sent
to the discriminator to be compared with the real ERG stain and guide the generator to
generate finer details. The discriminator is composed of three identical networks where
each one operates at different image scales, creating an image pyramid of three scales. The
network that operates at the lowest scale has the largest receptive field in order to guide
the generator to generate globally consistent images.

The training dataset is prepared as a set of pairs of corresponding images (HEi, ERGi),
where HEi is an H&E image and ERGi is the corresponding ERG-stained image. 20
scanned slide pairs were split into the training (11 cases) and testing (9 cases) sets. After
whole slide registration and tissue segmentation steps, we acquired 3,464 pairs from 11 whole
slide images to train the model for 200 epochs. The testing set was used as a hold-out set
for the evaluation step. Notably, this model uses larger visual image views compared to the
previous segmentation-based methods, where the training occurs to result in disconnected
segmented regions.

4.2 Single Cell Detection and Classification Model

This model consists of three main parts:

• A pre-trained tissue segmentation model on H&E images (AbdulJabbar et al., 2020)
(inspired by Micro-Net27 Raza et al. (2019)) is used to exclude the regions of the slide
that are unlikely to contain cells, such as background, noise and artefact, reducing
processing time on later steps. Each whole slide image was reduced to 1.25× res-
olution and segmented for tissue regions using multi-resolution input/output image
features. Each image was analysed at multiple resolutions by concatenating context
information from intermediate deep layers and using bypass connections to maintain
features related to the tissue boundary.

• A single-cell detection model is used to localise the centre of nuclei for all individual
cells within the whole tissue. A Spatially Constrained Convolutional Neural Network
(SCCNN) (Sirinukunwattana et al., 2016) was trained to predict the probability of
a pixel being the centre of a nucleus. Using this network, we trained the single cell
detection model for our IHC samples (on a combination of real and synthesised ERG-
stained cells). The main objective of this step was to detect all nuclei in a whole slide
image by locating nuclei centre positions, regardless of their class labels.

• A cell classification model is used to classify each cell type that was detected in the
previous step. In this part, we used the Softmax SCNN for the nucleus classification.
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This classifier uses neighbouring ensemble prediction combined with the standard
softmax for the classification. The main objective of this part was to classify previously
detected nuclei into positive (resembling nuclear DAB staining) or negative.

For both detection and classification networks, the SCCNN network consisted of input
layer (with 31×31 pixels), convolutional layers, non-overlapping spatial max-pooling and
fully-connected layers along with parameter estimation and spatially constrained layers.
These SCCNN models were trained in a supervised manner based on single-cell annotations.

For the cell detection model, 509,839 single cell annotations were collected from 20 whole
section images (10 WSIs from the real ERG cohort and 10 WSIs from the synthesised ERG
cohort). Training data collection for the classification model followed a similar process to
that of the detection model. 21,337 annotations were collected from positive and negative
cells from 20 WSIs. We used the proportion of 70%, 10% and 20% for creating training,
validation and testing sets, respectively based on the WSIs.

5. Results

ERG stain synthesis from H&E stain images is a one-to-one mapping problem and an ideal
model should generate, from the H&E image, an image that appears positively stained
wherever ERG positive cells are present. To validate the performance of the proposed
pipeline, we assessed the performance of the (i) cell identification model and (ii) the whole
pipeline. The performance of the cell detection and classification model was evaluated on 9
H&E WSIs with matched real ERG and synthesised ERG. We used the same testing cases in
the assessment of ERG synthesis and cell identification models. No further post-processing
was performed for the synthesised outcome. The SCCNN model’s performance on 2,133
cells achieved the F1-Score of 0.9906±0.0087, Sensitivity of 0.9863±0.0175, Specificity of
0.9910±0.0207 and Accuracy of 0.9834±0.0147. The quantitative evaluation of the whole
pipeline for the testing cohort is shown in Fig. 3. The performance of the whole pipeline
was evaluated using two metrics:

• Morisita Horn Index (MHI) (Maley et al., 2015) to quantify abundance and co-
localisation of synthesised ERG and actual ERG stained cells. Each 2000×2000 image
tile was divided into 200×200 spatial regions, for each aligned real-synthetic image
pair, the MHI between them was calculated. The average MHI was reported for each
tile across the whole image slides from the testing set. Our results in Fig 3.A. shows
that the proposed pipeline was able to learn and identify endothelial cells with average
MHI of >80%, considering the variability that exists in their morphology and distri-
bution. The higher the value of MHI, the higher the overlapping between synthesised
and real ERG stained cells.

• R2 to show the correlation between the numbers of cells detected in the real ERG
image and the equivalent region generated from H&E. We computed the abundance
of ERG positive cells within 2000×2000 spatial regions for synthesised and real ERG
and plotted the count of each tile for each case in sub-plots. Given the minimum R2

of 0.46 and the maximum of 0.88, the achieved R2 values were high.

The existing variability in our quantitative results is due to the existing stain variability
in the H&E images. When an H&E section suffers from low stain quality, the generated
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ERG synthesis can go pale, resulting in false negative and false positive staining. Likewise,
over-staining leads to uncertain and sometimes messy prediction of ERG stain. These issues
could be solved by training on a larger and more variable training dataset.

Figure 3: Quantitative results for 9 cases in the testing cohort. (A) MHI and (B) Abundance
of detected positive ERG stained cells along with the calculated R2. Each point
represents the calculated value within 2000×2000 image tiles. Therefore, the
number of points for each case represents the number of tiles that contained
tissue after tissue segmentation.

6. Conclusion and Future Work

Tumour cells require vasculature to provide oxygen, nutrients, and a means of waste dis-
posal in order to grow. They select the physiological processes of angiogenesis to recruit
endothelial cells and a blood supply. H&E and IHC are techniques used throughout pathol-
ogy to identify BMVD. Manual delineation of microvessels for bio-marker analysis in IHC
or H&E images is tedious, time consuming, not reproducible and subjective. We proposed
and tested a pipeline that can predict individual cell ERG-stain from H&E stained images.
The utility of this pipeline could be in clinical trials to investigate: (i) the effect of re-
source limitation in tumours by co-localisation of hypoxia markers with vessels (Bernauer
et al., 2021) or co-localisation of immune cells with vessels; (ii) morphological changes of
vessels and tumour angiogenesis influenced by treatments like radiotherapy over time and
anti-angiogenetics; (iii) response to anticancer drugs and also (iv) their association with
prognostic markers and disease free survival. Moving forward, we will use other cancer
cohorts to investigate the applicability and generalisability of this model and potentials for
future improvements. We will use cases from samples of soft tissue sarcoma, glioblastoma,
breast and ovarian cancer to extend the applicability of this pipeline.
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