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Abstract

Uncertainty estimation is essential for enhanc-001
ing the reliability of Large Language Models002
(LLMs), particularly in high-stakes applica-003
tions. Existing methods often overlook seman-004
tic dependencies, relying on token-level prob-005
ability measures that fail to capture structural006
relationships within the generated text. We007
propose GENUINE: Graph ENhanced mUlti-008
level uncertaINty Estimation for Large Lan-009
guage Models, a structure-aware framework010
that leverages dependency parse trees and hi-011
erarchical graph pooling to refine uncertainty012
quantification. By incorporating supervised013
learning, GENUINE effectively models se-014
mantic and structural relationships, improv-015
ing confidence assessments. Extensive experi-016
ments across NLP tasks show that GENUINE017
achieves up to 29% higher AUROC than se-018
mantic entropy-based approaches and reduces019
calibration errors by over 15%, demonstrating020
the effectiveness of graph-based uncertainty021
modeling. The code is available at https:022
//anonymous.4open.science/r/GUQ-39E7.023

1 Introduction024

Large Language Models (LLMs) have demon-025

strated remarkable capabilities in conversation (Wu026

et al., 2024), logical reasoning (Wang et al., 2023),027

and scientific discovery (Shojaee et al., 2024).028

Models such as GPT-4 (Achiam et al., 2023), Gem-029

ini (Team et al., 2023), and DeepSeek (Liu et al.,030

2024a), trained on vast corpora and aligned to hu-031

man preferences, have significantly expanded the032

potential of AI. However, despite these advance-033

ments, LLMs are prone to well-documented re-034

liability issues, including hallucinations and fac-035

tual inaccuracies (Huang et al., 2025; Liu et al.,036

2024c). These issues pose serious risks, partic-037

ularly in high-stakes applications such as medi-038

cal diagnosis (Panagoulias et al., 2024), financial039

decision-making (de Zarzà et al., 2023), and le-040

gal advisory systems (Cheong et al., 2024), where041

Figure 1: An example highlighting the role of graph
pooling to identify tokens’ significance in uncertainty
estimation. Critical tokens are identified by graph pool-
ing through dependency parsing tree and backpropaga-
tion of ground truth label, which makes the uncertainty
task aware. A represents the adjacency matrix for a
tree structure, where connected tree nodes are assigned
value 1 while others are assigned value 0. g represents
the pooling method, and f represents the information
propagating through the pooling process.

users must rely on the model’s outputs with confi- 042

dence. Therefore, uncertainty quantification(UQ), 043

which assesses the trustworthiness of an LLM re- 044

sponse, is essential for safe and effective human 045

and artificial intelligence interaction. 046

UQ in LLM-generated outputs presents several 047

challenges. First, LLMs often produce long-form 048

textual responses, making attributing uncertainty 049

to specific components difficult. Second, uncertain- 050

ties may affect only a few critical tokens within 051

an otherwise coherent response, undermining the 052

reliability of the entire output. Third, aggregat- 053

ing uncertainty across multiple tokens in lengthy 054

outputs is non-trivial, requiring distinguishing se- 055

mantically pivotal tokens from those not pivotal. 056

Previous studies have explored various ap- 057

proaches to quantify uncertainty in LLM outputs. 058

Some methods rely on self-evaluation through mod- 059

ified prompts (Tian et al., 2023b), though they often 060

inherit the model’s biases. Others use token-level 061

uncertainty measures based on logits, entropy, or 062

probability distributions (Kuhn et al., 2023; Ma- 063
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linin and Gales, 2020, 2021). Recent advance-064

ments, such as semantic entropy, cluster seman-065

tically equivalent generations and measure entropy066

as an uncertainty indicator (Kuhn et al., 2023).067

However, most existing methods treat all tokens068

equally, overlooking findings that certain tokens069

carry more semantic weight in determining out-070

put validity (Liu et al., 2024b; Duan et al., 2024;071

Cheng and Vlachos, 2024). Additionally, some ap-072

proaches (Duan et al., 2024) depend on external073

smaller models to estimate token importance, but074

these models often operate independently of the075

LLM’s internal representations. As a result, they076

may introduce inconsistencies, misinterpret token077

dependencies, or fail to capture the structural re-078

lationships within the generated text, leading to079

inaccurate uncertainty estimates.080

To illustrate this issue, consider the example in081

Fig. 1. A user inquires about legal items to carry082

in the United States, but the model responds with083

a list of illegal items, such as a gun, knife, and084

club. The misunderstanding stems from the token085

"legal," which is central to the query’s meaning. A086

minor modification, replacing the word legal with087

illegal, would render the response appropriate. This088

example underscores two insights: certain tokens089

are disproportionately influential in determining090

output validity. Dependency parse trees effectively091

capture the hierarchical structure of sentence mean-092

ing by identifying core decision points. Building093

on these insights, we propose leveraging depen-094

dency parse trees and graph pooling techniques to095

infer LLM prediction uncertainty in a structured096

and interpretable manner.097

Modeling uncertainty estimation as a graph-098

based problem offers several advantages. Graphs099

inherently capture dependencies between gener-100

ated tokens, reflecting the autoregressive nature101

of LLMs, where each token influences subsequent102

ones. By representing an LLM response as a struc-103

tured graph, we can propagate and aggregate crit-104

ical information across tokens, ensuring that se-105

mantically significant tokens contribute more sub-106

stantially to the overall uncertainty estimate. How-107

ever, this approach introduces several challenges.108

Determining the optimal graph structure that accu-109

rately represents token dependencies remains an110

open question. Selecting appropriate graph pooling111

techniques that summarize uncertainty information112

effectively without losing essential context is dif-113

ficult. Addressing these challenges is essential to114

fully realize the potential of graph-based uncer-115

tainty estimation. 116

Our approach integrates multiple uncertainty fea- 117

tures to enhance robustness. Specifically, we uti- 118

lize probability distributions, entropy-based mea- 119

sures, and LLM embeddings to model uncertainty. 120

We introduce a hierarchical strategy to address the 121

challenge of aggregating uncertainty over long- 122

form text. We construct a dependency parse tree 123

for each sentence to extract structural and seman- 124

tic relationships. We merge sentence-level trees 125

into a document-level graph by connecting their 126

root nodes. We apply graph pooling techniques to 127

model uncertainty across the entire paragraph effi- 128

ciently. GENUINE involves learning pooling func- 129

tions that adaptively fuse different features, captur- 130

ing both local and global dependencies within the 131

text. Experimental results prove that GENUINE 132

outperforms other baselines, highlighting the crit- 133

ical role of structural relationships in uncertainty 134

estimation. Furthermore, we compare the effective- 135

ness of probability-based and embedding-based fea- 136

tures across various datasets and LLMs, offering in- 137

sights into their respective utilities. Given that com- 138

mercial LLMs typically provide only probability- 139

related features, our findings suggest an intriguing 140

direction for future research. Exploring whether 141

open-source LLMs, which offer both probability 142

and embedding features, can facilitate superior UQ 143

compared to their commercial counterparts. 144

The following are our main contributions: 145

• We highlight the role of semantically significant 146

tokens in uncertainty estimation, demonstrating 147

how structural relationships can enhance model un- 148

certainty assessment. 149

• We propose a graph-based framework for LLM 150

UQ, integrating dependency parse trees and graph 151

pooling to capture structural and semantic relation- 152

ships in the generated text. 153

• We develop an adaptive graph pooling mecha- 154

nism that effectively propagates and aggregates 155

uncertainty information by learning to fuse multi- 156

ple uncertainty features. 157

• We conduct extensive experiments on real-world 158

datasets, demonstrating that GENUINE outper- 159

forms existing UQ methods in assessing the trust- 160

worthiness of LLM-generated responses. 161

2 Related Works 162

Uncertainty Quantification in LLMs. Uncer- 163

tainty quantification is well-studied in traditional 164

machine learning (Chen et al., 2019; Zhao et al., 165
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2020), but remains challenging for LLMs due to166

their open-ended outputs, where multiple valid167

responses can exist. This flexibility complicates168

uncertainty estimation, requiring methods beyond169

standard predictive confidence. Current approaches170

fall into two categories. Self-assessment prompts171

LLMs to estimate their own uncertainty (Kadavath172

et al., 2022; Lin et al., 2022; Tian et al., 2023a),173

but often reflect model biases and inconsistencies.174

External methods assess uncertainty via output con-175

sistency (Manakul et al., 2023) or entropy mea-176

sures (Malinin and Gales, 2020), though these typi-177

cally assume uniform token importance, overlook-178

ing the fact that certain tokens contribute more to179

the overall reliability of a response. Recent work180

addresses this limitation by incorporating semantic181

awareness. Semantic entropy (SE) (Kuhn et al.,182

2023) reduces redundancy by grouping semanti-183

cally equivalent outputs. Others re-weight token184

contributions(Duan et al., 2024) or leverage hid-185

den activations as uncertainty signals (Liu et al.,186

2024b). Building on this, we integrate dependency187

parse trees to identify key tokens shaping response188

meaning, while hidden activations provide seman-189

tic context. This combination enables a structured190

and context-aware approach to uncertainty estima-191

tion in LLMs.192

Graph Pooling Approaches. Graph pooling con-193

denses input graphs while preserving key struc-194

tural and semantic information. It generally falls195

into flat pooling, which applies simple aggrega-196

tion functions like mean or sum (Xu et al., 2019;197

Duvenaud et al., 2015), and hierarchical pooling,198

which progressively coarsens the graph to capture199

multi-level relationships (Ying et al., 2018). No-200

table hierarchical methods include DiffPool (Ying201

et al., 2018), which learns adaptive pooling as-202

signments, and StructPool (Yuan and Ji, 2020),203

which incorporates high-order structural depen-204

dencies. Other strategies include memory-based205

pooling (Khasahmadi et al., 2020), spectral filter-206

ing (Defferrard et al., 2016), and expressive pool-207

ing architectures (Bianchi and Lachi, 2023). Un-208

supervised pooling techniques, like mutual infor-209

mation maximization (Liu et al., 2022), further210

enable structure-preserving and label-free compres-211

sion. This work proposes a hierarchical pooling212

approach leveraging dependency tree structures to213

improve uncertainty estimation. By representing214

LLM outputs as dependency graphs, GENUINE215

captures both semantic and structural relationships,216

prioritizing key tokens for a more accurate and217

interpretable uncertainty assessment. 218

3 Background 219

This section defines the problem, provides the nec- 220

essary background, and features helpful for uncer- 221

tainty estimation in LLMs, laying the foundation 222

for our proposed approach. 223

3.1 Problem Setup 224

Uncertainty quantification in LLMs involves as- 225

sessing confidence in LLM-generated responses 226

based on input prompts. Given a prompt x = 227

{x1, x2, ..., xk}, an LLM generates an output se- 228

quence y = {y1, y2, ..., yn}, where each token yj 229

is sampled from a probability distribution condi- 230

tioned on the prompt and prior tokens: 231

yj ∼ pθ(·|x, y1, y2, ..., yj−1), (1) 232

where pθ represents the model’s learned parame- 233

ters. This next-token probability reflects how likely 234

the model is to generate a particular token given the 235

preceding context. Following (Liu et al., 2024b), 236

when there is a downstream task, such as ques- 237

tion answering or machine translation, a scoring 238

function is introduced to evaluate the quality of 239

the generated output. For such kinds of evaluation 240

functions, factual truth or humans usually decide 241

the true response. Thus the uncertainty estimation 242

task can be framed as a function g(x,y) that pre- 243

dicts the expected correctness of a response: 244

g(x,y) ≈ E [s(y,ytrue)|x,y] . (2) 245

Here, s(y,ytrue) denotes an evaluation metric com- 246

paring the generated response y with a ground- 247

truth reference ytrue. The expectation is taken con- 248

sidering the semantic flexibility of natural language. 249

The uncertainty arises from the input prompt x and 250

the LLM itself rather than from a single absolute 251

reference answer. 252

3.2 Dependency Parse Trees in NLP 253

Dependency parse trees provide a structured rep- 254

resentation of syntactic relationships, defining hi- 255

erarchical dependencies such as subjects, objects, 256

and modifiers within a sentence. These structures 257

have been widely applied in various NLP tasks, 258

including relation extraction (RE) (Fundel et al., 259

2006; Björne et al., 2009), named entity recogni- 260

tion (NER) (Jie et al., 2017), and semantic role 261

labeling (SRL) (Marcheggiani and Titov, 2017). 262

They also enhance summarization by prioritizing 263
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salient information while filtering redundant con-264

tent (Li et al., 2014; Xu and Durrett, 2019). This265

work uses dependency parse trees to model struc-266

tural relationships in LLM-generated text. These267

trees serve two key purposes: (1) They provide a268

hierarchical organization of tokens, helping distin-269

guish pivotal words that shape response meaning,270

(2) They offer a consistent structure across differ-271

ent sentence formations, making them adaptable272

for modeling uncertainty in diverse LLM outputs.273

3.3 Features for Uncertainty Estimation274

Uncertainty estimation in LLMs relies on ex-275

tracting meaningful features from the generated276

text. Prior studies (Xiao et al., 2022; Kadavath277

et al., 2022; Lin et al., 2022; Tian et al., 2023a;278

Kuhn et al., 2023; Liu et al., 2024b) have demon-279

strated the effectiveness of token-level probability280

metrics. We categorize these features based on281

their sources (Liu et al., 2024b):282

White-box features: These features are derived283

from hidden-layer activations, capturing the inter-284

nal representation of tokens and providing insights285

into model confidence. These features are available286

only in open-source LLMs.287

Grey-box features: These include token probabili-288

ties and transformations such as entropy, offering289

uncertainty signals applicable to both open-source290

and commercial LLMs. The entropy of a discrete291

distribution p over the vocabulary V is defined as292

H(p) = −
∑

v∈V p(v) log (p(v)). Given a prompt-293

response pair (x,y) = (x1, ..., xk, y1, ..., yn), the294

entropy features for the j-th output token are given295

by H(qθ(yj |x, y1, ..., yj−1)), where qθ denotes the296

LLM. The detailed mathematical definition of the297

features is provided in Appendix A.2.298

4 Approach299

This section details our approach, including graph300

formulation, hierarchical learning, and joint opti-301

mization, enabling a more structured and context-302

aware uncertainty estimation for LLMs.303

4.1 Graph Formulation304

We transform dependency parse trees into graphs305

to structure LLM-generated text for uncertainty es-306

timation. We first obtain the dependency tree using307

the Stanford NLTK parser, where each word serves308

as a node, and directed edges represent dependency309

relations. As shown in Fig. 2, the root word, such as310

"prefer," has dependent words like "I" and "flight,"311

forming a tree-like structure.312

Figure 2: Dependency parse tree example. Each tree
node is one token from the output. If two tokens have a
relation, they are connected. Each tree node has addi-
tional features, such as probability, entropy, and embed-
dings(only for open-box LLMs).

To extend this formulation beyond individual 313

sentences, we construct a paragraph-level graph by 314

linking the root nodes of multiple sentence-level 315

dependency trees. Prior work (Duan et al., 2024) 316

estimates uncertainty at the sentence level using 317

a separate model to compute similarity, but such 318

approaches may overlook deeper semantic rela- 319

tionships between sentences. Instead, GENUINE 320

learns inter-sentence relations directly, ensuring a 321

more cohesive uncertainty estimation. Connecting 322

root nodes across sentences enables cross-sentence 323

token interactions, allowing uncertainty informa- 324

tion to propagate effectively across the entire out- 325

put. This formulation ensures that pivotal words 326

influence the overall confidence estimation. The 327

resulting global dependency graph provides a struc- 328

tured representation of LLM output, enhancing the 329

ability of the proposed approach to assess uncer- 330

tainty in LLM-generated text. 331

4.2 Hierarchical Learning 332

Transforming dependency parse trees into 333

graphs enables us to frame uncertainty estimation 334

as a graph aggregation problem, where each LLM- 335

generated output is represented as a graph with 336

nodes corresponding to words and edges capturing 337

dependency relations. Each node has token-level 338

features, such as next-token probability, entropy, 339

and hidden state embeddings. We propose a hierar- 340

chical graph pooling approach inspired by semantic 341

parsing trees (Song and King, 2022) to aggregate 342

this information efficiently. 343

In a dependency graph (Fig. 2), words appear 344

at different levels based on their distance from the 345

root token, which often signifies their semantic 346

importance. Higher-level words generally play a 347

more critical role in defining the sentence’s mean- 348

ing and, consequently, have a greater impact on 349

uncertainty. To capture this, we introduce graph 350

pooling, which groups tokens at different hierar- 351

chical levels, mitigating the effect of noisy words 352

while assigning appropriate contributions to each 353
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token’s uncertainty estimate.354

Formally, given a dependency graph G = (V, E),355

where V represents words and E defines their syn-356

tactic relations, we define an adjacency matrix357

A ∈ Rn×n and a feature matrix X ∈ Rn×d. In-358

spired by hierarchical graph pooling methods (Ying359

et al., 2018), we define the node clustering process360

using a learned soft assignment matrix:361

S l = Softmax(f(Al,X l, θs)), (3)362

where Al and X l represent the adjacency and fea-363

ture matrices at pooling layer l, and f in a GNN364

with learnable parameters θs.365

Before pooling, information propagates across366

the graph to model connectivity between clusters:367

Z l = f(Al,X l, θz), (4)368

where θz are the parameters of the GNN responsi-369

ble for feature transformation. Using the learned370

assignment matrix S l, the graph is iteratively coars-371

ened to generate a more compact representation:372

X l+1 = S lZ l ∈ Rnl+1×d,

Al+1 = S lAlS lT ∈ Rnl+1×nl+1 .
(5)373

Here, X l and Al are iteratively refined represen-374

tations at each pooling level, ensuring that seman-375

tically important tokens retain greater influence.376

By hierarchically aggregating token-level uncer-377

tainty, GENUINE enhances interpretability and378

robustness, providing a structured estimation of379

confidence in LLM-generated responses.380

4.3 Joint Optimization381

Uncertainty estimation in LLMs relies on multi-382

ple features, as discussed in Section 3.3, including383

hidden states (white-box features) and probability-384

based signals (grey-box features), each contributing385

differently. Prior work (Liu et al., 2024b) shows386

that hidden states encode valuable uncertainty in-387

formation, partly due to the misalignment between388

pretraining objectives and uncertainty estimation.389

Moreover, hidden states capture semantic relation-390

ships among tokens, making them especially im-391

portant for confidence evaluation.392

We propose a joint optimization framework to393

effectively integrate multiple uncertainty features.394

As illustrated in Fig. 3, GENUINE includes a se-395

mantic pooling module that leverages hidden state396

embeddings and a structural pooling module that397

utilizes probability and entropy features. Both mod-398

ules operate on a shared dependency parse tree,399

providing a unified structural backbone. Their out- 400

puts are combined via a fusion module that learns 401

a joint graph pooling matrix, balancing semantic 402

and structural signals to refine uncertainty estima- 403

tion. Instead of merging features at the node level, 404

we fuse them at the assignment matrix level to 405

better balance structural and semantic information. 406

This design is motivated by three factors. First, di- 407

rect feature fusion would bias toward embeddings 408

due to their higher dimensionality. Second, em- 409

beddings encode semantic context but lack precise 410

generation uncertainty, while probability and en- 411

tropy features provide more accurate confidence 412

signals. Third, the assignment matrix inherently 413

reflects token importance and relational structure, 414

making it a more effective fusion point for hetero- 415

geneous features. 416

To achieve this, we introduce an end-to-end 417

learnable fusion module, where the fused assign- 418

ment matrix is computed as: 419

S l
∗ = Softmax(g(S l

grey,S l
white, θs∗)), (6) 420

where S l
grey and S l

white are the assignment matrices 421

at pooling layer l from the structural and semantic 422

modules, respectively, and θs∗ denotes the learn- 423

able parameters of the fusion function g. 424

Following this, a GNN propagates information 425

across the graph, refining node representations: 426

Z l
∗ = f(Al

∗,X l
∗, θz∗), (7) 427

where f is a GNN with learnable parameters θz∗. 428

These updated assignment and node embedding 429

matrices are used to refine the graph iteratively: 430

X l+1
∗ = S l

∗Z l
∗,

Al+1
∗ = S l

∗Al
∗S lT

∗ .
(8) 431

Here, X∗ encodes probability and entropy features, 432

while embeddings enhance the model’s semantic 433

understanding. The independent assignment matri- 434

ces S l
grey and S l

white are jointly optimized to capture 435

both structural and contextual uncertainty, improv- 436

ing the robustness of LLM confidence evaluation. 437

Recall that when using open-box LLMs, which 438

allow users access to grey-box features and white- 439

box features, our fusion process can be directly 440

applied. While using black-box LLMs, which only 441

allow access to grey-box features, the fusion pro- 442

cess can not proceed without white-box features. 443

However, this will not hinder the application of 444

GENUINE as the graph structures and the joint 445
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Figure 3: The Overview of GENUINE, composed of three modules: (1) pooling based on grey-box features, (2)
pooling based on white-box features, and (3) a learnable fusion process integrating both modules. Both the grey-box
pooling process and white-box pooling process share the same graph structure, but differ in features, which leads to
different fusion matrices. The structure fusion process helps better integrate various fusion matrices.

optimization will remain effective in estimating the446

uncertainty. We provide both the results with only447

grey-box features and both grey-box and white-box448

features in the experiments in Fig. 4 to prove.449

5 Experiments450

This section evaluates GENUINE across mul-451

tiple dimensions: (1) effectiveness in assessing452

uncertainty(Section 5.2), (2) an ablation study453

to analyze the role of two modules(Section 5.3),454

(3) a scalability test to assess computational ef-455

ficiency(Section 5.4), (4) the impact of depen-456

dency parse trees on uncertainty estimation (Ap-457

pendix B.2), (5) a parameter analysis to determine458

the sensitivity of GENUINE to hyperparameter459

tuning(Appendix B.4), (6) the impact of LLM pa-460

rameters on GENUINE’s uncertainty estimation461

performance(Appendix B.5), and (7) the impact462

of training dataset size and noisy labels on GEN-463

UINE’s performance(Section 5.5 and Appendix464

B.6). Due to space constraints, the results on dimen-465

sions 4, 5, 6, and 7 are presented in Appendix B.466

5.1 Experimental Setup467

We evaluate GENUINE using different LLM468

architectures, multiple datasets spanning various469

NLP tasks, and state-of-the-art baselines.470

LLMs. We consider open-source LLMs, includ-471

ing Llama2-7B, Llama2-13B, Llama3-8B (Touvron472

et al., 2023), as well as Gemma-7B and Gemma2-473

9B (Gemma Team et al., 2024). The respective474

tokenizers provided by Hugging Face are used, and475

model parameters remain unchanged.476

Datasets. We evaluate uncertainty estimation on 477

three NLP tasks: question answering(CoQA(Reddy 478

et al., 2019), TriviaQA (Joshi et al., 2017), and Fi- 479

nance QA dataset (Taori et al., 2023)), machine 480

translation(WMT 2014 dataset (Bojar et al., 2014)), 481

and summarization(CNN dataset (Hermann et al., 482

2015)). The details of the datasets is introduced 483

in Appendix A.1. Each dataset is split into train- 484

ing (60%), validation (10%), and test (30%) sets, 485

with five runs performed to mitigate the effects of 486

randomness in parameter optimization. Few-shot 487

prompting is adopted, with templates detailed in 488

Appendix A.3. 489

Baselines. We include five categories of state-of- 490

the-art baselines to compare GENUINE against 491

with: (1) A4C (Tian et al., 2023b), which directly 492

queries the LLM for its self-assessed uncertainty, 493

(2) Entropy and probability-based methods, includ- 494

ing Avg Probability (Prob) and Avg Entropy (Ent), 495

as defined in Table 3 in the Appendix A.2, (3) 496

Semantic-aware methods, such as Semantic En- 497

tropy (SE) (Kuhn et al., 2023) and SAR (Duan 498

et al., 2024), (4) Bayesian based methods, includ- 499

ing BayesPE(Tonolini et al., 2024), and (5) A super- 500

vised uncertainty estimation approach (Sup) (Liu 501

et al., 2024b). Details of the prompt templates are 502

provided in the Appendix A.3. 503

Evaluation Metrics. Following (Liu et al., 2024b; 504

Kuhn et al., 2023), we evaluate GENUINE ’s abil- 505

ity to distinguish correct from incorrect responses 506

using uncertainty scores. Our primary metric is AU- 507

ROC, which measures how well the model ranks 508

correct responses above incorrect ones. We also 509
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Figure 4: Comparison of AUROC on five datasets, four LLMs, and seven baselines. Error bars denote variance
over five runs. GENUINE and its transformations outperform other baselines for all five datasets and four LLMs.
Especially for datasets with relatively longer output from LLMs, such as WMT, Finance, and CNN datasets

assess calibration using Expected Calibration Er-510

ror(ECE)(Naeini et al., 2015), and report Brier511

score(Hernández-Orallo et al., 2011) and negative512

log-likelihood(NLL)(Hastie et al., 2001) to eval-513

uate the alignment between predicted uncertainty514

and true confidence. AUROC are shown in the515

main paper, others are reported in Appendix B.1.516

5.2 Performance of Uncertainty Estimation517

We evaluate GENUINE using the AUROC met-518

ric against state-of-the-art baselines. As shown519

in Fig. 4, GENUINE consistently outperforms520

prior methods, particularly on long-form genera-521

tion tasks (WMT, Finance, CNN). Its dependency-522

based structural modeling improves uncertainty523

estimation by reducing error propagation across524

extended sequences. GENUINE also achieves bet-525

ter calibration, as evidenced by lower ECE, NLL,526

and Brier scores (Appendix B.1), minimizing un-527

certainty misalignment in downstream tasks. The528

results further highlight that response length signif-529

icantly impacts uncertainty estimation. As detailed530

in Table 5, GENUINE offers modest AUROC531

gains on shorter outputs (e.g., TriviaQA, CoQA),532

but shows substantial improvements on longer re-533

sponses (e.g., WMT, Finance, CNN). Traditional534

token-wise methods accumulate errors over ex-535

tended text, whereas GENUINE ’s structured ap-536

proach better handles long-form content, critical537

for tasks like dialogue and summarization.538

Feature selection also plays a crucial role in un-539

certainty estimation. While combining multiple540

features generally improves performance, hidden-541

layer embeddings alone (GENUINE-white) per-542

form best on Finance and CNN datasets, where543

longer sequences amplify token-level error in 544

entropy-based methods. To support both black-box 545

and open-box LLMs, we introduce two variants: 546

GENUINE-grey (using only grey-box features) 547

and GENUINE-white (white-box features). The 548

results demonstrate that in most cases, GENUINE- 549

grey still has the superiority of performance, which 550

shows the applicability of GENUINE in black-box 551

LLMs. These findings also highlight the advantage 552

of open-source LLMs with access to internal repre- 553

sentations for robust uncertainty modeling. 554

5.3 Ablation Study 555

GENUINE introduces a graph structure and fu- 556

sion mechanism to balance structural and seman- 557

tic information. We conduct ablation studies on 558

the TriviaQA dataset using Llama3-8B, Llama2- 559

7B, Gemma2-9B, and Gemma-7B to assess the 560

contribution of each component. Due to space 561

constraints, we report results for Llama3-8B and 562

Gemma2-9B, with full results in Appendix B.3. We 563

denote variants as GENUINE w/o fusion & graph 564

(without both modules) and GENUINE w/o fusion 565

(with graph, but no fusion). As shown in Table 1, 566

the graph structure and the fusion process improve 567

AUROC on all the LLMs we use in our experi- 568

ments. These findings highlight the graph structure 569

and the fusion strategy’s effectiveness in integrat- 570

ing structural and semantic signals, enabling better 571

uncertainty propagation. We observe that the im- 572

provement in Gemma2-9B model is not significant. 573

The smaller gains for Gemma2-9B may be due to 574

its already strong baseline performance (AUROC > 575

0.95), leaving limited room for improvement. 576
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Table 1: Ablation study on TriviaQA. GENUINE w/o
fusion & graph (without both modules) and GENUINE
w/o fusion (with graph, but no fusion) (↑ means the
higher the better)

Methods Llama3-8B Gemma2-9B
AUROC ↑ AUROC ↑

GENUINE w/o
fusion & graph 0.789±0.031 0.956±0.002

GENUINE w/o fusion 0.809±0.096 0.963±0.015
GENUINE 0.894±0.032 0.969±0.009

(a) Scalability test on the
number of nodes per graph.

(b) Scalability test on graph
density.

Figure 5: Scalability test on the node number and edge
density

5.4 Scalability577

We evaluate the scalability of GENUINE by ex-578

amining its computational efficiency with increas-579

ing node count and graph density. As shown in580

Fig. 5a, training time scales near-linearly with the581

number of nodes, demonstrating that GENUINE582

remains computationally feasible even for larger583

graphs. This suggests that the model can efficiently584

process uncertainty in large-scale LLM outputs585

without excessive overhead. In Fig. 5b, compu-586

tational cost decreases as graph density increases,587

indicating that denser graphs facilitate more effi-588

cient uncertainty aggregation. Sparse graphs (e.g.,589

10% density) require 1.5 times more processing590

time than fully connected graphs (100% density),591

emphasizing the trade-off between structure com-592

plexity and efficiency. These findings confirm593

that GENUINE scales effectively with increasing594

graph complexity, making it well-suited for high-595

dimensional NLP tasks such as document sum-596

marization, multi-turn dialogue, and knowledge-597

intensive reasoning. Its ability to maintain effi-598

ciency while capturing semantic and structural re-599

lationships ensures its adaptability to real-world600

LLM evaluation scenarios.601

5.5 Robustness602

In real-world scenarios, uncertainty estimation603

models often face limited training data and noisy604

labels, which can affect performance. To evaluate605

the robustness of GENUINE under such condi-606

tions, we conduct experiments using the Llama3-607

8B model on the TriviaQA dataset. Table 8 in the608

Appendix B.6 shows how varying training set sizes 609

impact performance. Please refer to the Appendix 610

for more details. While Table 2 examines the effect 611

of label noise. For the latter, we randomly corrupt a 612

portion of training labels (as specified by the noise 613

ratio) and assess performance on the clean test set. 614

Specifically, Table 2 shows that label noise nega- 615

tively affects model performance. But GENUINE 616

remains robust when up to 0.1% of the training 617

labels are corrupted. However, AUROC declines 618

sharply when the noise ratio increases, and so do 619

the calibration metrics. These experiments demon- 620

strate GENUINE ’s resilience to data scarcity and 621

label noise, highlighting its applicability in real- 622

world settings.

Table 2: The impact of noisy labels on GENUINE
performance. GENUINE remains robust with 0.1%
of labels being noisy.(↑ means the higher the better, ↓
means the lower the better)

noise ratio AUROC↑ ECE↓
0 0.894±0.032 0.246±0.007

0.001 0.894±0.017 0.244±0.010
0.003 0.863±0.033 0.243±0.009
0.005 0.855±0.024 0.243±0.013
0.01 0.821±0.014 0.240±0.014
0.02 0.705±0.037 0.235±0.015
0.03 0.746±0.095 0.232±0.019
0.04 0.672±0.140 0.234±0.022

noise ratio NLL↓ Brier↓
0 0.362±0.005 0.094±0.002

0.001 0.364±0.005 0.095±0.002
0.003 0.366±0.002 0.096±0.001
0.005 0.370±0.008 0.098±0.004
0.01 0.377±0.009 0.101±0.004
0.02 0.390±0.019 0.107±0.009
0.03 0.407±0.026 0.114±0.012
0.04 0.414±0.031 0.117±0.014

623

6 Conclusion 624

This paper introduces dependency-based seman- 625

tic structures for uncertainty estimation in LLMs. 626

Our findings prove that incorporating structural in- 627

formation enhances uncertainty modeling, leading 628

to more accurate and calibrated estimates. GEN- 629

UINE outperforms existing uncertainty estimation 630

methods (AUROC), particularly in long-form text 631

generation, while also improving calibration met- 632

rics (ECE, NLL, Brier). Our results show that 633

semantic graphs derived from dependency parse 634

trees enhance uncertainty modeling, making them 635

valuable for evaluating LLMs’ outputs and guid- 636

ing future improvements in adaptive uncertainty 637

estimation in dynamic, real-world settings. 638
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7 Ethical Consideration639

GENUINE enhances the credibility and reliabil-640

ity of LLMs by improving uncertainty estimation,641

helping to mitigate the risks of misinformation.642

By refining confidence assessment, GENUINE643

reduces misinformation and promotes more trust-644

worthy AI-generated content.645

However, several ethical limitations must be con-646

sidered. Uncertainty estimation does not prevent647

misinformation but provides a measure of confi-648

dence, which still requires human interpretation.649

Over-reliance on uncertainty scores could lead to650

misjudgments, either overestimating or underesti-651

mating the reliability of LLM outputs. Additionally,652

GENUINE’s effectiveness depends on dependency653

parsing and feature selection, which may introduce654

biases if trained on imbalanced datasets. Further-655

more, while GENUINE improves model calibra-656

tion, uncertainty quantification remains imperfect,657

and its reliability may vary across domains, partic-658

ularly in high-stakes applications such as health-659

care, finance, and law. Addressing these challenges660

requires ongoing evaluation, transparency, and re-661

sponsible deployment to ensure ethical and fair AI662

use.663

8 Limitations664

GENUINE introduces a graph-based approach for665

confidence evaluation in LLMs, but certain limi-666

tations remain. GENUINE relies on token logits667

and embeddings, which, though widely available668

in open-source and commercial LLMs, may limit669

its applicability in black-box scenarios where such670

information is restricted. Additionally, its perfor-671

mance is influenced by generation length and la-672

beled data availability, making it sensitive to dataset673

variability. Finally, this study focuses on NLP tasks674

and datasets, leaving open the exploration of its675

effectiveness in multimodal and cross-domain ap-676

plications.677
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Appendix967

A Implementation Details968

This section provides an overview of the implemen-969

tation details of GENUINE.970

A.1 Details of Datasets971

Here in this section, we provide more details on972

the datasets.973

Question Answering. We use the CoQA (Reddy974

et al., 2019) and TriviaQA (Joshi et al., 2017)975

datasets to assess LLMs’ ability to generate re-976

sponses based on contextual understanding and977

pre-trained knowledge. Additionally, we include978

the Finance QA dataset (Taori et al., 2023), which979

evaluates domain-specific knowledge in financial980

contexts. Rouge-1 (Lin and Och, 2004) is used981

as the scoring function, labeling a response yi as982

correct if s(yi,yi,true) ≥ 0.3.983

Machine Translation. We evaluate translation qual-984

ity using the WMT 2014 dataset (Bojar et al., 2014),985

with BLEU score (Papineni et al., 2002) as the986

metric. A response yi is considered correct if987

s(yi,yi,true) ≥ 0.3.988

Summarization. The CNN (Hermann et al., 2015)989

dataset is used for summarization task, where gen-990

erated outputs are labeled as correct if they achieve991

a Rouge-L score of at least 0.35, following (Quach992

et al., 2024).993

A.2 Details of Features994

This section provides the mathematical defini-995

tions of the features used in our uncertainty estima-996

tion framework. A detailed breakdown is presented997

in Table 3.

Table 3: Features used for the supervised task of uncer-
tainty estimation for LLMs.

Name Definition
Ent H(pθ(·|x, y1, . . . , yj−1))

Max Ent maxj∈{1,...,n} H(pθ(·|x, y1, . . . , yj−1))

Min Ent minj∈{1,...,n} H(pθ(·|x, y1, . . . , yj−1))

Avg Ent 1
n

∑n
j=1H(pθ(·|x, y1, . . . , yj−1))

Std Ent

√∑n
j=1(H(pθ(·|x,y1,...,yj−1))−Avg Ent)2

n−1

Prob pθ(yj |x, y1, . . . , yj−1)
Max Prob maxj∈{1,...,n} pθ(yj |x, y1, . . . , yj−1)

Min Prob minj∈{1,...,n} pθ(yj |x, y1, . . . , yj−1)

Avg Prob 1
n

∑n
j=1 pθ(yj |x, y1, . . . , yj−1)

Std Prob

√∑n
j=1(pθ(yj |x,y1,...,yj−1)−Avg Prob)2

n−1

998

A.3 Prompt Template 999

We adopt a few-shot prompting strategy, fol- 1000

lowing the approach of (Liu et al., 2024b). Each 1001

prompt comprises four components: introduction, 1002

examples, question, and answer. The examples are 1003

user-defined question-answer pairs structured iden- 1004

tically to the target task, ensuring consistency in 1005

format. The model receives the formatted template 1006

along with the reference question and is prompted 1007

to generate an appropriate response. This struc- 1008

tured approach helps standardize uncertainty esti- 1009

mation across different tasks. 1010

1011
TriviaQA
Answer the question as following examples.
Examples: Q: What star sign is Michael
Caine? A: Pisces. Q: Which George
invented the Kodak roll-film camera? A:
Eastman. Q: ... A: ...
Q: In which decade was Arnold
Schwarzenegger born? A: 1950s

1012

1013
CoQA
Reading the passage and answer given
questions accordingly. Passage: The
Vatican Apostolic Library, more commonly
called the Vatican Library or simply the
Vat, is the library of the Holy See,
located in Vatican City. ... Examples:
Q: When was the Vat formally opened? A:
It was formally established in 1475. Q:
... A: ...
Q: what was started in 2014? A: a project.

1014

1015
WMT
What is the English translation of the
following sentence? Q: Spectaculaire
saut en ẅingsuitäu-dessus de Bogota. A:
Spectacular Wingsuit Jump Over Bogota. Q:
... A: ...
Q: Une boîte noire dans votre voiture ?
A: A black box in your car?

1016

1017
Finance
Answer the question as following examples.
Examples: Q: For a car, what scams can be
plotted with 0% financing vs rebate? A:
he car deal makes money 3 ways. If you
pay in one lump payment. ... Q: ... A:
...
Q: Where should I be investing my money?
A: Pay off your debt. As you witnessed,
no "investment" % is guaranteed. ...

1018
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1019
Finance
What are the highlights in this paragraph?
Examples: Q: LONDON, England (Reuters) –
Harry Potter star Daniel Radcliffe gains
access to a reported £20 million ($41.1
million) fortune ... A: Harry Potter star
Daniel Radcliffe gets £20M fortune as he
turns 18 Monday . ... Q: ... A: ...
Q: Editor’s note: In our Behind the Scenes
series, CNN correspondents share ... A:
Mentally ill inmates in Miami are housed
on the "forgotten floor" ...

1020

B Additional Experiments1021

In this section, we first assess model calibration per-1022

formance through ECE, NLL, and Brier score met-1023

rics, shown in Fig. 6, Fig. 7, and Fig. 8, respectively,1024

comparing GENUINE’s reliability against base-1025

lines. Then, we present additional experimental re-1026

sults evaluating GENUINE across four key dimen-1027

sions: (1) the impact of dependency parse trees on1028

uncertainty estimation (Section B.2), (2) a param-1029

eter analysis to determine the sensitivity of GEN-1030

UINE to hyperparameter tuning (Section B.4), (3)1031

the impact of LLM parameters on GENUINE’s1032

uncertainty estimation performance (Section B.5),1033

and (4) the impact of training dataset size and noisy1034

labels on GENUINE’s uncertainty estimation per-1035

formance(Section B.6). All experiments are con-1036

ducted on a Linux server with 64 AMD EPYC 73131037

CPUs and an Nvidia Tesla A100 SXM4 GPU with1038

80 GB of memory.1039

B.1 Calibration Performance of GENUINE1040

Calibration ensures that model confidence aligns1041

with actual correctness, making uncertainty esti-1042

mation more reliable and interpretable. We assess1043

GENUINE and baseline methods using Expected1044

Calibration Error (ECE), Negative Log-Likelihood1045

(NLL), and Brier score, as shown in Fig. 6, Fig. 7,1046

and Fig. 8.1047

The ECE results (Fig. 6) reveal that while GEN-1048

UINE outperforms baselines in WMT, Finance,1049

and CNN datasets, it does not consistently achieve1050

the lowest calibration error in TriviaQA and CoQA.1051

This suggests that token-level methods such as1052

SAR and entropy-based approaches remain compet-1053

itive in capturing uncertainty effectively for shorter1054

responses. A simple guess that GENUINE under-1055

performs in ECE on TriviaQA is due to the data1056

distribution of the TriviaQA dataset, as shown in1057

Table 6. The rouge score for the TriviaQA dataset 1058

is not smooth enough, which can bring bias when 1059

using the ECE metric. The ECE metric measures 1060

the performance based on each bin(group). The 1061

number of samples in each bin can be imbalanced 1062

due to the distribution of the Rouge score. Thus, 1063

we introduce two other calibration metrics, NLL 1064

and Brier score, which focus on measuring the cal- 1065

ibration gap at the individual level. However, in 1066

longer text generation tasks, where error accumula- 1067

tion can distort confidence estimates, GENUINE 1068

demonstrates superior calibration by leveraging de- 1069

pendency structures to refine uncertainty aggrega- 1070

tion. The NLL results (Fig. 7) further reinforce 1071

these trends. GENUINE consistently achieves 1072

lower NLL across all datasets, indicating that it as- 1073

signs more accurate probability distributions to cor- 1074

rect and incorrect responses compared to baselines. 1075

The advantage is particularly pronounced in WMT, 1076

Finance, and CNN datasets, where long-form re- 1077

sponses make token-level uncertainty estimation 1078

less effective. Baselines like A4C and SE, which 1079

rely on self-evaluation or direct entropy measures, 1080

exhibit significantly higher NLL, suggesting that 1081

they struggle to generalize confidence estimates 1082

across diverse text lengths and response structures. 1083

The Brier score results (Fig. 8) show that GEN- 1084

UINE achieves competitive performance across all 1085

datasets, with particularly strong improvements in 1086

WMT, Finance, and CNN datasets, aligning with 1087

its NLL performance. The gap between GEN- 1088

UINE and its grey-box and white-box variants 1089

indicates that hidden layer representations signif- 1090

icantly improve calibration, especially for longer 1091

outputs. However, the higher ECE in TriviaQA 1092

and CoQA suggests that while structural modeling 1093

improves overall uncertainty estimation, it may not 1094

always provide the best confidence calibration for 1095

shorter text generations, where simpler token-wise 1096

approaches remain effective. 1097

These results highlight that GENUINE excels in 1098

modeling uncertainty for long-form text but is less 1099

dominant in short-response tasks, where entropy- 1100

based methods can still provide competitive cali- 1101

bration. The findings reinforce the need for task- 1102

specific uncertainty estimation strategies, where 1103

dependency-aware modeling is particularly benefi- 1104

cial for applications involving complex text struc- 1105

tures and extended reasoning. 1106
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Figure 6: Comparison of ECE on five datasets, four LLMs, and seven baselines. Error bars denote variance over five
runs.

Figure 7: Comparison of NLL on five datasets, four LLMs, and seven baselines. Error bars denote variance over
five runs.

Figure 8: Comparison of Brier scores on five datasets, four LLMs, and seven baselines. Error bars denote variance
over five runs.
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Figure 9: Experimental results on five datasets and seven baseline models on Llama2-13B model. Error bars denote
variance over five runs.

Table 4: Comparison of different graph structures for uncertainty estimation on TriviaQA. NTG refers to the
next-token graph utilizing both white-box and grey-box features, while DPT represents the dependency parse tree
graph with the same feature set. NTG w/ grey and DPT w/ grey denote the respective graphs using only grey-box
features, whereas NTG w/ white and DPT w/ white correspond to configurations using only white-box features.(↑
means the higher the better, ↓ means the lower the better)

Graphs Llama3-8B Gemma2-9B
AUROC ↑ ECE ↓ NLL ↓ Brier ↓ AUROC ↑ ECE ↓ NLL ↓ Brier ↓

NTG 0.885±0.048 0.264±0.040 0.437±0.133 0.130±0.062 0.846±0.088 0.312±0.082 0.442±0.122 0.131±0.056
DPT 0.894±0.032 0.246±0.007 0.362±0.005 0.094±0.002 0.905±0.041 0.248±0.009 0.356±0.004 0.092±0.002

NTG w/ grey 0.897±0.039 0.245±0.007 0.363±0.007 0.095±0.003 0.914±0.041 0.251±0.006 0.354±0.006 0.091±0.003
DPT w/ grey 0.903±0.025 0.244±0.008 0.360±0.003 0.094±0.002 0.922±0.021 0.245±0.005 0.352±0.006 0.090±0.003

NTG w/ white 0.795±0.049 0.249±0.010 0.364±0.007 0.095±0.003 0.960±0.019 0.261±0.009 0.357±0.006 0.092±0.003
DPT w/ white 0.809±0.044 0.246±0.009 0.362±0.007 0.094±0.003 0.970±0.010 0.261±0.006 0.353±0.003 0.090±0.001

Figure 10: Parameter analysis test on number of pooling
layers and remaining nodes ratio for each pooling layer

Table 5: Graph Statistics. Here # Node denotes the
average node number and Density denotes the average
edge density.

Datasets Llama3-8B Llama2-7B
# Node Density # Node Density

TriviaQA 3.86 0.56 3.77 0.58
CoQA 5.60 0.47 5.59 0.50
WMT 24.01 0.11 21.75 0.13

Finance 46.46 0.05 21.70 0.15
CNN 61.21 0.04 87.98 0.11

Datasets Gemma2-9B Gemma-7B
# Node Density # Node Density

TriviaQA 3.83 0.56 3.84 0.56
CoQA 5.28 0.47 5.19 0.48
WMT 23.65 0.12 27.14 0.10

Finance 43.61 0.05 42.92 0.06
CNN 175.33 0.01 162.96 0.01

B.2 Graph Structure and Uncertainty 1107

Estimation 1108

Understanding the impact of graph structure on 1109

uncertainty estimation is essential for refining con- 1110

fidence assessment in LLM-generated responses. 1111

This section evaluates the effectiveness of depen- 1112

dency parse trees and analyzes graph structure vari- 1113

ations across datasets and LLMs, using results from 1114
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Table 6: Distribution of ROUGE score in TriviaQA. The
Bin ID indicates the bin index, the Bin Start indicates
the start ROUGE score of the selected bin index, and the
Bin End indicates the end ROUGE score of the selected
bin index. The Density indicates the ratio of samples in
this bin index over the total number of samples.

Bin ID Bin Start Bin End Density
0 0.125 0.213 0.034
1 0.213 0.300 0.383
2 0.300 0.388 0.634
3 0.388 0.475 0.446
4 0.475 0.563 1.131
5 0.563 0.650 0.091
6 0.650 0.738 0.291
7 0.738 0.825 0.520
8 0.825 0.913 0.320
9 0.913 1.000 7.577

Table 4 and Table 5.1115

Dependency Parse Trees vs. Next-Token Graphs.1116

To assess the impact of different graph structures,1117

we compare the dependency parse tree (DPT)1118

against the next-token graph (NTG), where edges1119

only connect adjacent words in a sentence. The1120

results in Table 4 clearly demonstrate that DPT-1121

based graphs consistently outperform NTG-based1122

graphs across all evaluation metrics, reinforcing1123

the importance of semantic structure in uncertainty1124

estimation.1125

For Llama3-8B, DPT achieves an AUROC of1126

0.894, improving over NTG (0.885), while also1127

achieving lower ECE (0.246 vs. 0.264), NLL1128

(0.362 vs. 0.437), and Brier score (0.094 vs. 0.130).1129

Similar trends hold for Gemma2-9B, where DPT1130

significantly outperforms NTG with an AUROC1131

improvement of nearly 6% (0.905 vs. 0.846) and1132

lower calibration errors. These results confirm1133

that structural relationships encoded in dependency1134

graphs improve uncertainty estimation, providing1135

richer contextual information than simple word ad-1136

jacency models.1137

When comparing grey-box vs. white-box fea-1138

tures, we observe that DPT consistently performs1139

better than NTG in both settings. For instance,1140

DPT w/ grey achieves an AUROC of 0.903 for1141

Llama3-8B, outperforming NTG w/ grey (0.897)1142

while maintaining better calibration across ECE,1143

NLL, and Brier scores. The trend holds for white-1144

box features, where DPT w/ white achieves 0.8091145

AUROC vs. 0.795 for NTG w/ white, showing1146

that dependency parsing enhances uncertainty mod-1147

eling even when using only hidden-layer embed-1148

dings.1149

These findings suggest that semantic-aware un-1150

certainty estimation is essential, especially for1151

longer text sequences where sequential token de- 1152

pendencies alone fail to capture structural nuances. 1153

By modeling hierarchical relations, DPT-based un- 1154

certainty estimation improves both reliability and 1155

calibration, making it particularly useful for struc- 1156

tured prediction tasks. 1157

Graph Variations Across Datasets and LLMs. 1158

Beyond structural differences, graph complexity 1159

varies significantly across datasets and LLM archi- 1160

tectures, as shown in Table 5. We observe several 1161

key trends. 1162

First, dataset complexity impacts graph structure. 1163

TriviaQA produces the shortest outputs, leading to 1164

small graphs with an average of 3.8 nodes, while 1165

CNN generates significantly longer responses, re- 1166

sulting in much larger graphs (61.2 nodes for 1167

Llama3-8B, 175.3 for Gemma2-9B). This confirms 1168

that longer text generations create more intricate de- 1169

pendency structures, further reinforcing why graph- 1170

based uncertainty estimation is particularly benefi- 1171

cial for longer responses. 1172

Second, LLM architectures influence graph 1173

statistics. While Llama models tend to produce 1174

slightly longer responses than Gemma models in 1175

shorter datasets like TriviaQA and CoQA, this 1176

trend reverses in long-form datasets such as CNN, 1177

where Gemma models generate significantly longer 1178

outputs than Llama models (e.g., 175.3 nodes vs. 1179

61.2 nodes in CNN for Gemma2-9B and Llama3- 1180

8B, respectively). This suggests that some LLM 1181

families prioritize brevity while others favor more 1182

detailed responses, impacting uncertainty estima- 1183

tion requirements. 1184

Lastly, graph density plays a role in structural 1185

complexity. Datasets with shorter outputs (Triv- 1186

iaQA, CoQA) tend to have higher edge density, 1187

while longer outputs (CNN, Finance) exhibit lower 1188

density, indicating that dependency structures be- 1189

come more sparse as response length increases. 1190

This suggests that uncertainty estimation models 1191

should be designed to handle both dense, local de- 1192

pendencies and sparse, long-range relationships 1193

effectively. 1194

Impact on Uncertainty Estimation Performance: 1195

The trends in graph statistics correlate directly with 1196

AUROC improvements in Fig. 4, showing that 1197

graph-based uncertainty estimation is particularly 1198

beneficial for longer text. The WMT dataset, for 1199

example, shows substantial AUROC gains when us- 1200

ing graph structures, emphasizing that graph-based 1201

methods provide the most value in tasks requiring 1202

extended reasoning and structured generation. 1203
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Table 7: Ablation study of fusion process on TriviaQA(↑
means the higher the better)

Methods Llama3-8B Llama2-7B
AUROC ↑ AUROC ↑

GENUINE w/o
fusion & graph 0.789±0.031 0.835±0.005

GENUINE w/o fusion 0.809±0.096 0.843±0.011
GENUINE 0.894±0.032 0.860±0.027

Methods Gemma2-9B Gemma-7B
AUROC ↑ AUROC ↑

GENUINE w/o
fusion & graph 0.956±0.002 0.853±0.033

GENUINE w/o fusion 0.963±0.015 0.900±0.037
GENUINE 0.969±0.009 0.917±0.047

Overall, these findings confirm that dependency1204

parsing enhances uncertainty estimation by provid-1205

ing hierarchical token relationships, making it par-1206

ticularly valuable for long-form generation, struc-1207

tured prediction, and document-level tasks. The1208

graph structure directly influences uncertainty esti-1209

mation effectiveness, reinforcing the need for adap-1210

tive modeling strategies based on dataset and model1211

characteristics.1212

B.3 Ablation Study1213

To further prove the effectiveness of the graph1214

structure and the fused assignment matrix, we offer1215

more ablation experiments on the TriviaQA dataset1216

using Llama2-7B and Gemma-7B. As shown in Ta-1217

ble 7, the fusion process (Fig. 3) improves AUROC1218

by 2.02% for Llama2-7B and 1.89% for Gemma-1219

7B, the graph structure process improves AUROC1220

by 1.0% for Llama2-7B and 5.5% for Gemma-7B.1221

These results demonstrate that the graph structure1222

and the fusion strategy effectively integrate struc-1223

tural and semantic uncertainty signals, enabling1224

more robust uncertainty propagation across tokens.1225

In contrast, methods w/o a graph structure and fu-1226

sion strategy fail to capture meaningful relation-1227

ships between uncertainty features, leading to sub-1228

optimal performance. The consistent improvement1229

across models highlights the importance of struc-1230

tured features and the fusion process in uncertainty1231

estimation. By jointly optimizing structural and1232

semantic representations, GENUINE enhances1233

both robustness and interpretability, making it well-1234

suited for uncertainty-aware applications.1235

B.4 Parameter Sensitivity1236

Understanding the impact of hyperparameters1237

on GENUINE’s performance is essential for op-1238

timizing uncertainty estimation while ensuring ef-1239

ficiency. We evaluate two key parameters: the1240

number of pooling layers (ranging from 1 to 4) and1241

the remaining node ratio at each pooling step. The1242

results, shown in Fig. 10, reveal important trends 1243

that highlight GENUINE’s robustness and adapt- 1244

ability. 1245

The results indicate that AUROC remains high 1246

with fewer pooling layers, suggesting that a deep 1247

hierarchy is not necessary for effective uncertainty 1248

estimation. As the number of pooling layers in- 1249

creases, performance fluctuates, indicating that ex- 1250

cessive pooling may lead to loss of critical struc- 1251

tural information, reducing the model’s ability to 1252

capture meaningful uncertainty signals. This trend 1253

suggests that GENUINE achieves optimal results 1254

with a moderate number of pooling layers, avoiding 1255

unnecessary complexity while maintaining strong 1256

predictive performance. 1257

Additionally, the remaining node ratio plays a 1258

crucial role in uncertainty estimation. The model 1259

may struggle with redundant information when too 1260

many nodes are retained, leading to slightly lower 1261

AUROC. However, when the number of retained 1262

nodes is optimized, performance improves, rein- 1263

forcing the idea that removing less informative 1264

nodes enhances uncertainty representation. Inter- 1265

estingly, when the remaining ratio is lower, but the 1266

number of pooling layers is set appropriately, AU- 1267

ROC reaches peak performance, highlighting the 1268

benefits of structured feature reduction in refining 1269

uncertainty quantification. 1270

Overall, these findings demonstrate that GEN- 1271

UINE is robust to hyperparameter choices, requir- 1272

ing minimal tuning to achieve strong performance. 1273

The ability to maintain high AUROC across a range 1274

of configurations suggests that GENUINE can be 1275

easily applied to various tasks and LLMs without 1276

extensive parameter optimization, making it highly 1277

adaptable for real-world deployment. 1278

B.5 Impact of LLM Parameters 1279

Understanding how LLM architecture and scale 1280

affect uncertainty estimation is crucial for assessing 1281

the generalizability of GENUINE. We compare 1282

the performance of Llama2-13B (Fig. 9) against 1283

Llama3-8B and Llama2-7B, analyzing its effec- 1284

tiveness across AUROC, calibration metrics (ECE, 1285

NLL, and Brier scores), and overall robustness. 1286

Uncertainty Estimation Across LLM Variants. 1287

Llama2-13B achieves strong AUROC performance 1288

across all datasets, often matching or surpassing 1289

Llama3-8B and Llama2-7B. The improvements are 1290

particularly evident in WMT, Finance, and CNN 1291

datasets, where Llama2-13B consistently outper- 1292

forms its smaller counterparts. This suggests that 1293
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larger models benefit from enhanced representa-1294

tion learning, leading to more stable and accurate1295

uncertainty estimation in complex, long-form text1296

generation tasks. However, in TriviaQA and CoQA,1297

the AUROC gains are marginal, indicating that the1298

advantages of increased model size are less pro-1299

nounced for shorter responses.1300

Calibration Trends: ECE, NLL, and Brier Score1301

Analysis. One notable observation is that GEN-1302

UINE outperforms baselines in ECE for TriviaQA1303

and CoQA on Llama2-13B, whereas this trend is1304

not observed in Llama3-8B and Llama2-7B. This1305

suggests that larger models may allow GENUINE1306

to better align confidence scores with correctness1307

probabilities in short-response tasks, where previ-1308

ous versions struggled to outperform entropy-based1309

baselines. The ECE results (Fig. 6) further con-1310

firm that in WMT, Finance, and CNN, Llama2-13B1311

achieves lower calibration errors, highlighting its1312

ability to generate better-aligned confidence esti-1313

mates for longer outputs.1314

The NLL and Brier score results (Fig. 7 and1315

Fig. 8) reinforce these findings. Llama2-13B con-1316

sistently achieves lower NLL and Brier scores1317

across datasets, particularly in WMT, Finance,1318

and CNN, where uncertainty estimation benefits1319

from structured confidence propagation. This sug-1320

gests that larger models improve AUROC and pro-1321

vide better-calibrated uncertainty estimates, mak-1322

ing them well-suited for tasks requiring complex1323

reasoning and structured text.1324

The results indicate that larger models signifi-1325

cantly enhance both uncertainty estimation and con-1326

fidence calibration, particularly in short-response1327

tasks like TriviaQA and CoQA, where GENUINE1328

surpasses entropy-based baselines in ECE for the1329

first time. This suggests that model size can in-1330

fluence calibration effectiveness differently across1331

datasets, with larger architectures improving both1332

long-form uncertainty quantification and short-text1333

confidence alignment. Future research should ex-1334

plore adaptive calibration strategies tailored to dif-1335

ferent response lengths, ensuring that LLMs remain1336

reliable across diverse NLP applications.1337

Overall, these findings reinforce that GENUINE1338

scales effectively across different LLM architec-1339

tures, maintaining robust uncertainty estimation1340

and calibration performance while highlighting ar-1341

eas where model size influences uncertainty quan-1342

tification.1343

Table 8: The impact of training dataset size on GEN-
UINE performance. More training data results in higher
AUROC, but no significant decrease of AUROC when
using at least 20% of the training data. Training dataset
size does not have much influence on the calibration
metrics(↑ means the higher the better, ↓ means the lower
the better)

training size AUROC↑ ECE↓
0.1 0.813±0.059 0.239±0.009
0.2 0.873±0.020 0.244±0.007
0.3 0.883±0.012 0.241±0.011
0.4 0.854±0.056 0.241±0.007
0.5 0.874±0.015 0.243±0.010
0.6 0.894±0.032 0.246±0.007

training size NLL↓ Brier↓
0.1 0.361±0.006 0.094±0.003
0.2 0.363±0.006 0.095±0.003
0.3 0.363±0.001 0.095±0.000
0.4 0.360±0.005 0.094±0.002
0.5 0.362±0.004 0.094±0.002
0.6 0.362±0.005 0.094±0.002

B.6 Robustness Test on Training Dataset Size 1344

and Noisy Labels 1345

In real-world scenarios, uncertainty estimation 1346

models often face limited training data and noisy 1347

labels, which can affect performance. To evaluate 1348

the robustness of GENUINE under such condi- 1349

tions, we conduct experiments using the Llama3- 1350

8B model on the TriviaQA dataset. Table 8 shows 1351

how varying training set sizes impact performance, 1352

while Table 2 examines the effect of label noise. 1353

For the latter, we randomly corrupt a portion of 1354

training labels (as specified by the noise ratio) and 1355

assess performance on the clean test set. These 1356

experiments demonstrate GENUINE ’s resilience 1357

to data scarcity and label noise, highlighting its 1358

applicability in real-world settings. 1359

The results shown in Table 8 indicate that the 1360

number of training samples does influence GEN- 1361

UINE’s performance, especially when using only 1362

10% of the training data, the AUROC drops 9.1% 1363

compared to the model using 60% training data. 1364

However, when the training samples take between 1365

20% and 50% of the whole samples, the perfor- 1366

mances remain relatively stable. Another observa- 1367

tion is that the training dataset size does not have 1368

much influence on the ECE, NLL, and Brier score. 1369

From the results in Table 2, we find that the 1370

noisy labels have a negative influence on the mod- 1371

els’ performance in general. However, GENUINE 1372

remains robust when 0.1% of the training samples 1373

are polluted. As the noise ratio increases, the AU- 1374

ROC drops significantly, as well as the ECE, NLL, 1375

and Brier score. We can conclude that, unlike train- 1376

ing dataset size, which has little impact on the cali- 1377
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bration metrics, the noise ratio influences not only1378

the AUROC but also the calibration results.1379
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