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Abstract

Large Language Model training with 8-bit float-
ing point (FP8) formats promises significant effi-
ciency improvements, but reduced numerical pre-
cision makes training challenging. It is currently
possible to train in FP8 only if one is willing
to tune various hyperparameters, reduce model
scale, or accept the overhead of computing dy-
namic scale factors.

We demonstrate simple, scalable FP8 training
that requires no dynamic scaling factors or spe-
cial hyperparameters, even at large model sizes.
Our method, unit Scaling (uS), also enables sim-
ple hyperparameter transfer across model widths,
matched numerics across training and inference,
and other desirable properties. unit Scaling is
straightforward to implement, consisting of a set
of minimal interventions based on a first-principles
analysis of common transformer operations.

We validate our method by training models from
1B to 13B parameters, performing all hidden lin-
ear layer computations in FP8. We achieve qual-
ity equal to higher precision baselines while also
training up to 33% faster.

1. Introduction

Because LLM training is computationally expensive, low-
precision training provides large compute savings. Mod-
ern LLMs are typically trained in mixed-precision bfloat16
(BF16), where most computation occurs in BF16, but some
components requiring higher precision (such as accumu-
lators and master weights) use FP32 (Micikevicius et al.,
2018). Thanks to increased hardware support for FP8 for-

mats, mixed precision training using FP8 computation promises

even greater training efficiency (Micikevicius et al., 2022).
However, the reduced range and resolution of FP8 make
LLM training challenging. In this work, we demonstrate a
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simple, scalable FP8 training method with straightforward
hyperparameter transfer on large LLMs, called “unit Scal-
ing” (uS).

Our pnit Scaling method builds on Unit Scaling (Blake et al.,
2023), which aims to maintain unit variance in weights, ac-
tivations, and gradients. To ensure this, it scales neural
network operations with static constants and initializes net-
work parameters to have unit variance. If all tensors used in
training can maintain unit variance, they are representable
with sufficient range and resolution by low-precision for-
mats like FP16 and FP8. However, preserving high-quality
tensor representations in low-precision formats is challeng-
ing for large models.

Besides faster training, several other properties are desir-
able in a low-precision training scheme. Examples include
minimizing extra hyperparameters, avoiding dynamic scale
factor overhead, and allowing optimal hyperparameters from
small models to transfer to large models. As summarized
in Fig. 1, uS is the only method that provides these benefits.
We elaborate on each of these properties below.

Straightforward hyperparameter transfer Tuning hy-
perparameters for large LLMs is expensive. A promising
way to reduce this cost is to tune the hyperparameters for
smaller LLMs and “transfer” them to large ones, either
by using them directly or by applying a model-size-based
formula as explored in p-Parametrization (uP)(Yang et al.,
2021; 2024a;b). However, applying hyperparameter transfer
techniques in practice to low-precision training can be chal-
lenging; frequent divergences due to numerical issues may
require training in higher precisions like FP32 (Yang et al.,
2021). To address this, Blake et al. (2024) introduced u-pP,
which combines Unit Scaling (Blake et al., 2023) and pP
to enable hyperparameter transfer in low precision. Unfor-
tunately, compared to conventional BF16 mixed precision
training (henceforth termed “standard parametrized” (SP)
models), both pP and u-pP have many more hyperparame-
ters to sweep over as shown in Table 3, diminishing realized
compute savings and increasing complexity. Specific im-
plementation intricacies, such as zero-initialized queries in
uP or LR scaling for embeddings by fan-out in u-pP, make
these schemes harder to use in practice than SP. In contrast,
our pnit Scaling (uS) scheme combines uP and Unit Scaling
in a greatly simplified way, making it easier to use and more
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Method Uses Hparam | Number | No Scales Training- | Efficient
FP8 transfer of dynamic | stably to | Inference | distributed
Hparams | scaling large precision | training
factors models match
BF16 mixed precision (SP) No No & Yes Yes No Yes
Maximal Update Parametrization (uP) No Yes 6 Yes Yes No Yes
Unit Scaling / u-yP Partially | Yes (u-pP) 7 Yes Partially Partially Partially

Dynamically Scaled FP8 (SP), e.g. TE Yes No 3 No Partially Yes Yes
pnit Scaling (ours) Yes Yes 3 Yes Yes Yes Yes

Figure 1. Comparison of low-precision training methods. Our proposed method, unit Scaling (uS, bottom row), enables FPS training and
hyperparameter transfer at scale. Unlike existing methods, it does not use dynamic scaling, requires only a small set of hyperparameters,
permits FP8 computation for all hidden layers, and makes the model more easily quantizable for inference.

cost-effective. We demonstrate hyperparameter transfer of
learning rate (1) and weight decay (A) to models of up to
20x larger widths.

No Dynamic Scaling With dynamic scaling, one calcu-
lates per-tensor scaling factors for each weight, activation,
and gradient tensor in training. These scales shift BF16
tensors into the representable ranges of FP8 formats in each
forward and backward pass. Typically, one also decouples
the forward and backward formats, using e4m3 for weights
and activations and e5Sm?2 for gradients (Sun et al., 2019).
NVIDIA’s TransformerEngine is a notable example of an
FP8 training library that uses dynamic scaling (NVIDIA,
2023). Calculating scaling factors dynamically adds train-
ing and inference overhead and complicates large-scale dis-
tributed training and checkpointing.

Apply to All Linear Layers Existing work on applying
Unit Scaling at larger scales requires certain “critical mat-
muls” (attention out projection, FFN down projection) to
stay in BF16 (Blake et al., 2024). Assuming a transformer
model with conventional multiheaded attention and an MLP
with an expansion ratio of 4, this means 41.7% of all hidden
linear layer FLOPs are not in FP8. In contrast, uS ensures
that, regardless of scale, all hidden layers use FP8.

Match Inference-Time Quantization For efficient infer-
ence, LLMs are often quantized to FP8 or INTS for faster
computation and reduced memory footprints (Khudia et al.,
2021; Dettmers et al., 2022). Since training typically occurs
in higher bitwidths (e.g., BF16), a mismatch in precisions
at training time and inference time means that some level of
quantization error is unavoidable, degrading model quality.
Training with uS avoids this mismatch—since the LLM has
already been trained in FP8, it is immediately ready for
inference in FP8 for both weights and activations (W8AS).

1.1. Contributions

Our work makes the following contributions:

* Identifying root causes for poor numerics in conven-
tional transformer blocks—for example, explaining
diminishing variance in self-attention outputs with in-
creasing sequence position.

¢ Introducing a simple method for fixing these issues
that enables FP8 training in all hidden linear layers
and with less overhead than existing methods. It also
achieves desirable properties such as improved train-
ing efficiency and matched numerics at training and
inference time.

2. Methods

In this section, we detail the components of our proposed
method, unit Scaling (uS). The modifications to the standard
transformer training scheme that uS requires are summa-
rized in Table 1. We elaborate on novel components such as
our handling of self-attention numerics, residual modifica-
tions, and hyperparameter transfer below.

2.1. Self-attention Numerics

The causal self-attention mechanism at the core of decoder
layers in LLMs is not variance-preserving, making low-
precision training challenging.

Recall that standard self-attention is defined as:
QK"
Vd
Proposition 2.1. Suppose we have x € R* and V € RF>*™,
Define s = softmax(x), a = s”V, and 02 = Varlal.
Assume that each element x; KN (0,1), and that entries
Vi; are independent and distributed with iy £ E[V] =
0,02 £ Var[V] = 1. Then, up to a first-order Taylor

approximation, o2 % Sfor k> 1.

Attention(Q, K, V) = softmax ( ) vV 1

Proof. Recall that by the definition of the softmax function,
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Table 1. Components of the pS training scheme. pS makes the following modifications to standard decoder-only transformer practices.

Modification

Description

Linear layer scaling factors

LM head uses a multiplier of

\/falnﬁ static scaling factor applied in both forward and backward pass. The final

f — instead, in line with pP.

Res-Post-LayerNorm

LayerNorm is the last operation in each residual branch instead of the first.

“Fixed” residual modification

Use a fixed constant 7 to make residuals variance-preserving, according to Eq. 10.

Unit variance initialization

All linear layer weights initialized with variance 1.

FP8 hidden layers

Use FP8E4M3 for weights and activations, FPSESM2 for gradients. Before casting,
clip BF16 values to FP8 dtype max. Keep embedding table and LM head in BF16.

Learning rate (1) scaling

Optimal 7 stays constant for input and output layers, but is scaled by \/le for all

dimodel

hidden layers, when transferring from a base model with width dp,se

Weight decay () scaling

With fully decoupled weight decay, optimal A stays constant for all layers with

increasing width.

s; = softmax(x); = . Denote the vector of ele-

Ek
ments’ numerators e*¢ as n and the vector of denomlnators
Zle e% as d, such that s = 2. Since z; > N'(0,1), n
is log-normally distributed and d is a sum of log-normals.

This implies that':

1/2

pn =% o2 =e(e—1)
a=ke/? 0% =ke(e—1) 2
Covin,d] = 02 =e(e — 1)

We can then use first-order Taylor approximations to esti-
mate the moments of s as the ratio %, as shown in Casella
& Berger (2002), to obtain:

n Hn 1
= =B [*} = =7 3
g d ta k &)
2 2 2 .C d
o3 = Var {E} ~ % Un4‘7d _ ok 0\;[n7 ]
d Hq Hq 754 @
_e—1 e—-1
k2 k3

Note that Eq. 3 holds exactly from the fact that all k entries
in s are positive and must sum to 1. Now, because each
element a; = Zle s;V;;, with independent entries V;;,
and with the fact that yyv = 0 and O’%, = 1, the mean and
variance of a can be determined as:

k
Ha = ZMSNV =0 (5)
i=1
k

2= 0oy TR ol =1~ 5 (©)
=1

The first term dominates for large k and so o2 ~ % O

'See Appendix A.1 for the derivation of Cov[n, d]

In the causal self-attention operation shown in Eq. 1, the

T
attention logits matrix Q\z is causally masked such that the

row of logits for a token at sequence position k has length
k. For a given token, by Prop. 2.1, the output of the self-
attention operation will therefore have variance inversely
related to that token’s sequence position k. This causes
tokens that appear later in the sequence to have much smaller
variance than those that appear earlier, as shown in Fig. 2.

To address this issue, we make use of a basic property of
the variance of linear combinations of independent random
variables. With a(k) denoting the outputs of self-attention
applied over a sequence of length k, the variance of a(k)
(denoted ai( k)) is the variance of a sum of k£ random vari-

ables {X;,..., X\ } with coefficients c € R¥:

i=1

Var => VarlXj|=c"v, (7

%

where v; 2 Var[X;], and the equality holds if all X; are

independent. If Vi: v; = 1, we further have Ui(k) = |lc||a-

Now recall that the softmax operation outputs positive co-
efficients s that sum to 1. This means that if we simply set
coefficients ¢; = ,/s;, we obtain:

o2y = llells = ¢Zc§ - \/Z G-l ®

That is, by taking the square root of attention scores, at-
tention can be made variance-preserving for independent
value tokens. This modification, which we term “Square-
Root Softmax attention”, is shown in Eq. 9. Square-Root
Softmax attention is also easily implemented via modern
attention kernels like Flex-Attention (Dong et al., 2024).

QK™
en

Attention(Q, K, V) = \/ softmax ( )V 9)
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In practice, standard self-attention does have diminishing
o as sequence position increases; however, the observed
variance is consistently higher than predicted by the above
analysis of independent elements. This same effect is ob-
served even when using Square-Root Softmax attention,
causing observed o to increase over sequence position in-
stead (Fig. 2).

Attention Output o vs. Sequence Position (at Initialization)

L P
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Figure 2. Attention output variance changes over sequence
length. For standard attention, o decreases over sequence po-
sition both when simulated with iid value tokens (light red) and
when observed in training (red). Taking the square root of atten-
tion scores keeps o constant when simulated with iid value tokens
(light blue), but during training (blue), causes o to increase with
sequence position. In practice, neither attention variant provides a
consistent scale across outputs.

We provide a mechanistic explanation for this phenomenon:
this increase in attention variance is an unavoidable conse-
quence of the statistics of natural data. If all value tokens
are truly independent, then Square-Root Softmax attention
keeps o, constant. However, due to a high number of re-
peated tokens in real text data, value tokens are often highly
correlated (Fig. 3). Due to this correlation, o, will be higher
than predicted, and in the case of standard self-attention,
diminish more slowly with respect to the token position.

To address this inconsistency in attention output variance,

we use Res-Post-LayerNorm placement, as shown in Fig. 4(a).

This architecture change consists of moving the normaliza-
tion operation from the start of each residual branch to the
end, and was first proposed in Liu et al. (2022) for training
stability. Res-Post-LayerNorm ensures consistent o for all
tokens in the residual stream, regardless of sequence po-
sition, correlation with other tokens, or the distribution of
attention scores. A convergence test on 100-layer models
validating the Res-Post-LayerNorm transformer against the
standard Pre-LayerNorm transformer is shown in Fig. 4(b).
All uS models we train use Res-Post-LayerNorm.
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Figure 3. Value tokens in text are highly correlated. Comparison
of cosine similarity between observed value tokens in a text data
distribution versus value tokens “¢ A/ (0,1). Repeated tokens
in the value matrix, an unavoidable result of token frequency in
real text data, lead to higher-than-random o as sequence position
increases (c.f. Fig. 2).

2.2. Residual Modification Schemes

Every skip connection in a neural network adds another ten-
sor into the residual stream. Summing all these tensors tends
to increase the variance of the residual stream deeper in the
network. To instead make residual connections variance-
preserving, Blake et al. (2023) proposed to replace simple
summation with weighted summation, where the weights
a and b of the skip connection and residual branch satisfy
a® + b? = 1. They proposed two methods for setting these
coefficients: fixed and running-mean, which are shown in
Eq. 10 and Eq. 11 respectively. The former uses a constant
coefficient 7 while the latter uses coefficients which are a
function of the layer index .

fixed(7) : 21 = V1 — T2+ 7T fl2)) (10)
. l 1
running-mean : Ty = H_—lml—l- m (ml) (11)

As shown in Fig. 5, we found that the fixed scheme provides
better convergence than the running-mean scheme. All uS
models we train therefore use the fixed scheme. We set
the coefficient 7 based on the depth using the results in
Appendix A.2.

2.3. Hyperparameter Transfer with unit Scaling

Zero-shot hyperparameter transfer allows hyperparameters
to be tuned on a small proxy network, then directly used
on much larger networks without any further tuning (Yang
et al.,, 2021). The width of the small proxy network is
typically referred to as the “base width”, or dp,s.. Because
it eliminates the need to sweep hyperparameters at a large
scale, such hyperparameter transfer yields massive compute
savings.

Hyperparameter transfer with pnit Scaling follows from
neural network equivalencies set forth in Yang et al. (2021,
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Figure 4. Res-Post-LayerNorm. (a) Pre-LayerNorm transformer
architecture versus Res-Post-LayerNorm architecture. Res-Post-
LayerNorm moves the LayerNorm operation from the start of each
residual branch to the end (Liu et al., 2022). This ensures con-
sistent variance across tokens when added to the residual stream.
In contrast, Pre-LayerNorm networks permit unnormalized repre-
sentations with inconsistent variance to be added to the residual
stream, as shown with self-attention outputs in Fig. 2. (b) Conver-
gence test loss curves with 100-layer models show that uS with
Res-Post-LayerNorm achieves nearly identical convergence versus
SP with Pre-LayerNorm.

Appendix J.2.1), reproduced below for convenience. As
detailed in Blake et al. (2024), Equations 12, 13, and 14
define the hidden layer in a model undergoing training. All
hidden layers are initialized with weights W drawn from a
normal distribution with variance b2, use a learning rate of ¢,
and have an output multiplier a. X and Y denote input and
output activation matrices respectively; ¢ is the training time
step; and ®,(V Ly, ..., VL;) denotes the weight update for
time step ¢ using prior loss gradients.

Wi ~ N(0,b%) (12)

Y =a-XW, (13)

Wt+1 =W, +C'q)t(v’60a"'av£t) (14)

Under Adam-like optimizers, the output of this hidden layer
is invariant to any scale factor # > 0 that changes a, b, c as:
a < ab,

b+ b/, c<c/O (15)

Undeer,a:Lb:#n,andc: 1
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Figure 5. Residual Modification schemes affect pnit Scaled
model convergence. The fixed residual modification (green,
Eq. 10) achieves better training convergence for deep transformers
than the running-mean residual modification (blue, Eq. 11). The
fixed residual coefficient for this model is 7 = 0.1.

set 0 = \/falnﬁ,we obtain:
1 1
4= ——\ b=1, c=———"0 (16

V/fan_in’ v/fan_in

Notice that a = \/f:nim and b = 1 are exactly the output
multiplier and unit initialization that Unit Scaling requires.
Therefore, the learning rate for hidden layers should scale
as \/fjnﬁ for Unit Scaled models. This leads to the uS
hyperparameter transfer scheme in Table 2.

In practice, given a base model with a width dpase, @ new
model with a width dy, and optimal base model learning
rate ny,..» US keeps 7., constant for the embedding table,

all LayerNorm parameters, and the LM head. The learning

vV dase
V dnew ’

rate only changes for hidden layers, with 77, = N

Table 2. uS scaling rules. To transfer hyperparameters across
model widths with pS, initialize layers, scale their outputs, and
modify their learning rates as shown here.

Weight Type
Input Layer Final Layer Hidden Layers
Init. Var. 1 1 1
Output Mult. 1 1/fan_in 1/+/fan_in
Adam-like A 1 1 1/+/fan_in

In addition to enabling hyperparameter transfer, uS also re-
quires sweeping over a much smaller set of hyperparameters
than existing schemes (Table 3).

3. Results

3.1. Successful Hyperparameter Transfer

Setup: To evaluate hyperparameter transfer, we first train
four-layer decoder-only LLLMs with widths of 256 through
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Table 3. Required hyperparameters in transfer schemes. Hy-
perparameters used in practice to train transformer models under
various schemes. While pP and related schemes provide better
hyperparameter transfer than SP, they require sweeping over more
hyperparameters to get reasonable model quality. In contrast, uS
provides hyperparameter transfer and model quality with a much
smaller set of hyperparameters. This makes the implementation
simple and makes hyperparameter sweeps less expensive.

Scheme  # Hparams Hparams
uS (ours) 3 N, T
Sp 3 1, A, Ginit
uP 6 Oérez: 3;:11] r:lz)zout
u-puP 7 7, A, Qffn-act; Qattn-softmax s

Qres; Olres-attn-ratio y Xloss-softmax

8192 using Standard Parametrization (SP) and pnit Scaling
(uS). We begin with these these small models since doing
so allows us to collect ground truth optimal hyperparame-
ters. All models use multi-headed attention (Vaswani et al.,
2017) and were trained for 10,000 training steps with a
global batch size of 64 and sequence length of 1024 (i.e.,
655M total tokens). SP models use Pre-LayerNorm place-
ment and are trained in both BF16 and FP8 (using Trans-
formerEngine). pS models were trained in both BF16 and
FP8 and use Res-Post-LayerNorm placement (Fig. 4). uS
used base models of width 256. For all models described
in this and subsequent sections, we used the Lion optimizer
(Chen et al., 2023) with fully decoupled weight decay and a
cosine learning rate schedule decaying to 10% of the maxi-
mum learning rate. For details on why Lion is an Adam-like
optimizer for hyperparameter transfer, please refer to Ap-
pendix A.3. All models were trained on Nvidia HI00 GPUs
using the Databricks MosaicML LLMFoundry (MosaicML,
2022a), Composer (MosaicML, 2021), and Streaming (Mo-
saicML, 2022b) libraries.

Hyperparameters: We evaluate hyperparameter transfer
over learning rate (1) and weight decay (\). While uP Yang
et al. (2021) does not give a theoretical basis for A transfer
over width, we evaluate its transfer empirically because of
its practical importance. We use fully decoupled weight
decay, motivated by findings from Wortsman et al. (2024),
Lingle (2024), and Wang & Aitchison (2024). To elucidate
how A scales with model width, we jointly sweep over both
1 and A with powers of 2. Based on the relationship between
the residual coefficient 7 and depth in Appendix A.2, the
residual coefficient 7 is 0.4 for these four layer models.

As shown in Fig. 6, uS models have stable optimal learning
rate (™) and weight decay (A\*) from width 256 up to width
8192. Mirroring previous findings, n* for SP models de-

creases as the inverse of the width. A\* transfer across widths
is relatively stable for both model types, with uS showing
the most consistency.

Optimal Learning Rate and Weight Decay for SP, uS

Model Width
256 512 ——1024 ——2048 ——4096 ——8192

SP, n" (fixed A) SP,A™ (fixed n)
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Figure 6. With pS, optimal learning rate (n*) and weight de-
cay (\") are stable across widths. Optimal 7 (left column) and
A (right column) are shown across a range of model widths for
models trained with SP (top row) and uS (bottom row). For each
curve, the other hyperparameter is fixed at its optimal value. The
base model width is 256. uS models have stable optimal 7 and A,
even when width increases 32x to 8192. As expected, n* for SP
models decreases with width. \* is relatively stable as the width
increases across both model types.

3.2. FP8 Training at Scale

The previous section demonstrated hyperparameter transfer
for small, shallow models. However, the real test of utility
is scaling up to multi-billion-parameter models. This sec-
tion demonstrates that uS allows us to train in FP8 while
transferring hyperparameters for realistic model sizes. We
also validate that our method is compatible with efficient
distributed training.

Setup: We train 1B, 3B, 7B, and 13B parameter LLMs on
approximately compute-optimal token budgets (~20x token
to parameter ratio) using SP and pS, and in both BF16 and
FPS§, resulting in 4 individual models for each model size.
The training configurations are detailed in Table 4. Based
on the previous sections’ hyperparameter transfer results
(Fig. 6), we sweep n and A on small models with a base
width of dpse = 256, then transfer optimal hyperparameters
to large models with width dy, as shown below.

*

 SP: all layers: 0, = M Z:ew, Aew = 0.5

*
base
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Table 4. Large model training configurations. Model training configurations for 1B, 3B, 7B, and 13B models. Only uS models use the
residual coefficient 7, which is dictated by model depth using results in Appendix A.2.

Model | Param. | Tokens | TPR | Steps | Batch Sz. | Seq. Len. | Width | Depth | # Heads | 7
1B 1.6B 31.5B | 194 | 7.5k 1024 4096 2048 24 16 0.3
3B 3.0B 62.9B | 20.8 15k 1024 4096 2560 32 20 0.3
7B 7.3B 140.0B | 19.3 | 16.7k 2048 4096 4096 32 32 0.3
13B 13.6B | 260.1B | 19.1 31k 2048 4096 5120 40 40 0.2
—— SP-FP8 SP-BF16 ~—— uS-FP8 _ —— uS-BF16
4.0 4.0 itiv — 40 " 7b " som 11/_,_\_
" L ‘-;\\,\,wwf—/‘ " 2.20
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Figure 7. uS models successfully train in FP8 at scale. Comparison of training loss curves for standard parametrized (SP) and pnit
scaled (uS) models in both FP8 and BF16, across 1B, 3B, 7B, and 13B parameter models. uS models successfully train in FP8 and
converge to similar train loss values as their BF16 and SP counterparts. SP FP8 models are trained with TransformerEngine (TE). In our
experiments at the 13B scale, SP models trained in FP8 with TE experienced frequent loss spikes and did not properly converge. We
achieve state-of-the-art FP8 training efficiency via uS, with further details in Appendix 3.3.

A% dbase
Vew’

* I
new — “‘base

)\*

new

* uS: hidden layers: 7., = T, = Apase

other layers: 0., = Npes

Evaluation: We use the Databricks Model Gauntlet to
evaluate the quality of all models on specific tasks (Dohmann,
2023; Barton, 2024). These results are shown in Table 5.

We also compare model convergence via the final training
cross-entropy loss averaged over the last 41.9M tokens (cor-
responding to 10 steps for 1b and 3b models and 5 steps
for 7b and 13b models). Training loss curves are shown in
Fig. 7.

As shown in Fig. 7, uS models train stably with FP8 even as
the model size increases. We successfully transfer hyperpa-
rameters from a narrow base model with a width of 256 to
models with widths up to 5120, demonstrating 20x width
transfer (~400x fewer FLOPs per run) in realistic, practical
LLM training scenarios. This validates zero-shot hyper-
parameter transfer using uS. Evaluation results in Table 5
show that uS models achieve equal or better quality than
SP models. These models demonstrate that uS successfully
combines FP8 training with zero-shot hyperparameter trans-
fer. To emphasize, all hidden layers use FP8 computation,
and there are no dynamic scaling factors.

We also note that at the 13B scale, we attempted to rem-
edy the divergence of the SP FP8 model by using multiple

different values of A, but this did not mitigate the frequent
loss spikes and eventual divergence. puS models, by contrast,
train stably.

3.3. FP8 Training Efficiency

To achieve state-of-the-art FP8 distributed training efficiency
with pnit Scaling, we make use of operator fusion and static
scaling. As shown in Fig. 8, FPS training with uS is 25-33%
faster than in BF16, and 1-6% faster than FP8 training with
TransformerEngine (TE) (NVIDIA, 2023). All models were
benchmarked on 64 NVIDIA H100 GPUs, and characteris-
tics such as batch size and distributed training configuration
were held constant. While TransformerEngine has fused
modules such as LayerNorm-Linear or LayerNorm-MLP,
we did not use those modules in order to make an equal
comparison between uS and TE.

By relying on dynamic scaling, FP8 training with libraries
like TE imposes addtional overhead that is eliminated in
uS. Calculating the absolute max of both the weight and
activation tensors (or storing and reading past absolute max
values in a delayed scaling approach) are operations that
can be completely discarded in uS. Weights, activations, and
gradients can be directly cast to FP§ formats, with a constant
o= ﬁ scaling factor used in the hidden linear layers’
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Table 5. Large model evaluation results. We evaluate SP and uS models in FP8 and BF16 on a variety of tasks, with best results per
eval and model size in bold. Final train loss (avg. over last ~40M tokens) is also shown. uS models have equal or better quality than SP
models, and maintain this quality even when training in FP8 as model size increases. Note that 13B SP FP8 models failed to properly

converge, denoted by an asterisk.

1b 3b 7b 13b
SP ™ SP uS SP uS SP ™
BF16 FP8 BF16 FP8 BF16 FP8 BF16 FP8 BF16 FP8 BF16 FP8 BF16  FP8* | BFl6 FP8
Final Train Loss 2590 2588 | 2.580 2590 | 2399 2400 | 2381 2390 | 2228 2231 | 2216 2226 | 2.112 2211 | 2.108 2.119
ARC Easy (3-shot) 52.1% 52.4% | 53.4% 533% | 60.7% 60.8% | 61.9% 60.8% | 672% 65.6% | 67.1% 68.0% | 72.3% 35.7% | 71.8% 69.7%
Jeopardy (3-shot) 41% 43% | 45% 3.5% | 134% 11.3% | 16.8% 16.6% | 27.3% 27.4% | 32.7% 30.6% | 402% 02% |43.1% 41.7%
SQuAD (3-shot) 32.6% 33.2% | 309% 313% | 42.3% 45.3% | 47.9% 47.8% | 53.9% 50.0% |571% 55.1% | 52.9% 1.5% | 62.8% 61.6%
HellaSwag (0-shot) 472% 475% | 483% 47.4% | 57.1% 57.7% | 59.6% 59.5% | 66.8% 66.5% | 69.2% 682% | 73.9% 29.7% | 74.6% 74.3%
BIG-bench Wikidata QA (3-shot) | 47.3% 48.6% | 49.3% 50.2% | 53.0% 55.0% | 56.2% 57.5% | 60.4% 60.0% | 60.0% 59.9% | 66.9% 4.0% | 66.1% 62.9%
‘WinoGrande (5-shot) 55.0% 52.6% | 51.1% 52.0% | 58.8% 54.9% | 59.5% 58.6% | 62.8% 64.1% | 65.7% 65.3% | 70.3% 57.8% | 71.1% 70.5%
OpenBookQA (10-shot) 32.8% 324% | 320% 32.4% | 37.8% 38.2% | 38.8% 362% | 42.4% 42.0% | 44.0% 41.8% | 452% 26.6% | 45.8% 46.6%
PIQA (0-shot) 70.7% 71.1% | 11.5% 712% | 714.5% 752% | 74.3% 74.3% | 771.2% 71.0% | 76.7% 76.5% | 78.7% 54.5% | 80.1% 79.4%
TriviaQA (3-shot) 97% 10.5% | 108% 9.7% | 17.8% 17.7% | 20.4% 18.7% | 30.2% 29.1% | 32.5% 33.8% | 424% 0.5% | 44.3% 44.8%
Winograd (3-shot) 64.5% 69.6% | 67.0% 689% | 713.3% T4.0% | 75.8% 76.6% | 78.8% 80.6% | 80.6% 80.6% | 83.9% 62.6% | 86.1% 82.8%
LAMBADA (0-shot) 44.8% 44.5% | 43.6% 413% | 52.8% 54.2% | 55.9% 57.4% | 60.3% 60.7% | 63.0% 64.6% | 65.7% 34.8% | 61.6% 64.3%
CoQA (0-shot) 193% 21.3% | 20.8% 20.0% | 26.2% 25.4% | 27.9% 28.6% | 28.2% 32.0% | 33.3% 35.0% | 39.8% 13.2% | 44.4% 44.6%
ARC Challenge (3-shot) 254% 26.0% |27.8% 25.0% | 303% 30.1% | 31.8% 30.9% | 36.1% 35.7% | 38.3% 39.0% | 42.0% 27.6% | 42.2% 41.5%
COPA (0-shot) 65.0% 68.0% | 64.0% 70.0% | 69.0% 68.0% | 68.0% 7T1.0% | 76.0% 76.0% | 78.0% 80.0% | 83.0% 62.0% | 84.0% 78.0%
BIG-bench Operators (3-shot) 124% 12.9% | 13.8% 14.3% | 195% 17.1% | 17.1% 18.6% | 21.4% 20.0% | 20.0% 23.3% | 31.4% 24.3% | 37.6% 37.1%
GSMSK (0-shot) 24%  2.6% 24%  24% | 3.7% 1.7% 23%  2.0% 39% 50% | 40% 3.9% 87% 0.0% | 93% 10.9%
FP8 Training Speedup over BF16 4. Conclusion

B TransformerEngine (TE) B pnit Scaling (uS), ours

1.32 133

Speedup over BF16

3B
Model Size

7B

Figure 8. Training in FP8 with pS achieves state-of-the-art ef-
ficiency. FP8 training with unit Scaling provides 25-33% higher
throughput than BF16 training and 1-6% higher throughput than
FPS training with TransformerEngine (TE), over 1B, 3B, 7B, and
13B model sizes. Models are configured as specified in Table 4 and
benchmarked on 64 NVIDIA H100 GPUs. Static scaling, operator
fusion, and simplifications to Unit Scaling make this efficiency
possible.

GEMM calls, where a GEMM is defined as:

C + aAB + 3C (17)
NVIDIA’s H100 GPUs support FP8 GEMMs through the
cublas Lt M atmul() operation (NVIDIA Corporation, 2024).

To maximize training speed and mirror TransformerEngine
NVIDIA (2023), we fuse clipping to the FP8 range, casting
to FP8, and transposing into a single Triton Tillet et al.
(2019) kernel. A transpose is necessary because H100s only
support one layout (“TN”) with FPS, but the forward and
backward passes use different layouts (thanks to using W
vs WT),

This work presents pnit Scaling (uS), an LLM training
method enabling both statically-scaled FP8 computation
and zero-shot hyperparameter transfer at scale. unit Scal-
ing consists of a set of principled model and optimization
modifications, including Res-Post-LayerNorm, variance-
preserving skip connections, unit-variance initialization, and
straightforward scaling of optimization hyperparameters
with model width. Compared to alternatives, unit Scaling
is simpler, faster, more stable across model scales, and has
fewer hyperparameters. We demonstrate successful FP8
training with hyperparameter transfer at scale with high-
quality unit Scaled LLMs at 1B, 3B, 7B, and 13B sizes.

Impact Statement

This paper introduces pnit Scaling (uS), a method designed
to enhance the efficiency of Large Language Model (LLM)
training through scalable FP8 computation and straightfor-
ward hyperparameter transfer. The advancements provided
by uS could reduce both the computational and environ-
mental costs associated with training large-scale models,
potentially democratizing access to high-performance ma-
chine learning by lowering resource requirements. While
this work’s primary goal is advancing training efficiency, we
acknowledge that, as with all machine learning technologies,
continued attention to ethical considerations and societal
implications remains important.
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A. Appendix

A.1. Covariance of softmax numerator and denominator

In the proof for Prop. 2.1, we state that Cov[n,d] = o2. Here we derive this result. Just as in Sec. 2.1, define s as

the output of the softmax function applied to a vector of k independent elements x. The softmax function is defined as

s; = softmax(x); = > = Lcmj . As shown previously, we denote the vector of elements containing numerators of elements
j=1

of s as n and denominators of elements of s as d, such that s = g. By the definition of covariance:

Cov[n,d] = E[(n; — pn)(d;i — pa)] (18)
By the definition of softmax, d; = Ele n;, and by linearity of expectation, puq = kpy,. Using this, we obtain:
Cov[n,d] = E[(n; — pm)(n1 + N2+ ...+ n; + ... + 0 — kg (19)
Expanding this expression:

Cov[n,d] = E[(n; — pn)((n1 — pin) + (n2 = pim) + - 4 (03 = pim) + .. + (nk — pin))] (20)

By linearity of expectation:

Cov[n, d] = E[(n; — pn)*] + > El(ni — n)(nj — pin)] 21
J#i

Because elements of the softmax input x are independent, and n; = €%, elements of n are also independent. Therefore
E[(n; — tn)(nj — pn)] = 0 for j # i. Then by the definition of variance as Var[n] = E[(n; — 1n)?], we obtain:

Cov[n,d] = Var[n] (22)

A.2. Modifying Residual Connections with 7

To make skip connections variance-preserving, we use the fixed residual modification scheme, as shown in Eq. 10, with
coefficients based on the hyperparameter 7 (Blake et al., 2023). To understand the relationship of the optimal residual
coefficient 7* with network depth, we swept over various values of 7 for models of different widths (256, 512, 1024, 2048)
and depths (20, 40, 60, 80, 100). In order to assess potential confounding effects between 7* and n* and \*, we tuned
those two hyperparameters as well. We trained each model for 10.5B tokens with a global batch size of 256 and sequence
length of 4096. We define the optimal subset of models as those which had a final cross-entropy loss within 0.25% of the
optimum (with loss averaged over the last 10 steps, i.e. 10.5M tokens). As shown in Fig. 9, 7* (for the optimal subset of
models) decreases as network depth increases. Since the contribution of each residual branch exponentially decays with
depth, a lower 7 ensures a lower rate of decay, likely useful as networks get deeper. This relationship between 7* and depth
is consistent even as model width increases. In our experiments, 7 can be coarsely swept. We use the results shown in Fig. 9,
to directly choose 7* for all uS model training.

A.3. Lion Optimizer and Hyperparameter Transfer

Here, we show why Lion Chen et al. (2023) is an ”Adam-like” optimizer, so the uP rules for hyperparameter transfer with
Adam (Kingma & Ba, 2017) are applicable to Lion as well. Because Adam and Lion are both adaptive optimizers that
normalize gradients coordinatewise before updating parameters, the nonlinear tensor product matrix results obtained in
Yang et al. (2021, Appendix J.1.3) apply to both optimizers. One can see that Lion differs from Adam only in that it has a
different second moment estimate. Under both optimizers, with gradient g;, a parameter 6 is updated as:

Bimy + (1 — B1)g:
NE

For Lion, this follows by expressing sign(c;) as ¢;/c?. Then, the second moment estimate s; for Adam (Eq. 24) and Lion
(Eq. 25) are below.

9t+1 =0, — n (23)
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Optimal Residual Coefficient (T*) vs. Network Depth
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Figure 9. Optimal residual coefficient 7" decreases with depth. The 3 hyperparameters of 7, 7, and A are swept for models of varying
widths (256, 512, 1024, 2048) and depths (20, 40, 60, 80, 100). The mean and standard error of 7 is shown for the optimal subset of
models from each hyperparameter sweep, where a model is included in the optimal subset if it had final cross-entropy loss within 0.25%
of the sweep optimum. 7*, which controls the decay rate of residual branch contributions in the residual stream, decreases as network
depth increases.

sp4M = Bovy + (1 — B2)gi + € (24)

SPN = ¢} = Bim] +2B1(1 — Br)muge + (1 — B1)’g7 (25)

This justifies why Lion is an Adam-like optimizer for the purposes of hyperparameter transfer. We use Lion for its reduced
memory footprint in all our experiments.

A.4. Activation Outliers

We analyze activation distributions taken over 32,768 tokens at every 10 layers for all FP8 models trained according to
Table 4, with results shown in Fig. 12. These figures show the distribution of activation values for attention and FFN block
inputs and outputs in the final 1B, 3B, 7B, and 13B FP8 models. While SP models consistently have outliers in the attention
block and FFN block inputs at all model scales, uS models do not have these outliers in block inputs. This may make uS
models more easily quantizable. It is important to note, however, that in SP models, the Pre-LayerNorm placement means
that activations from the residual stream are first normalized before subsequent operations.

While we do not identify the exact mechanism by which these outliers arise in the residual stream in SP models, we show
their absence in uS models here, with activation distributions that may be more conducive to quantization. An activation
distribution with fewer outliers requires fewer bits to represent it.

A.5. Activation Function Choice

The choice of activation function can have a signficant impact on activation underflow when training in FP8. For example,
recent work by (Anonymous, 2024) identifies outlier amplification from SwiGLU as a challenge for FP§ LLM training.
Nearly all state-of-the-art LLMs today use either SiLU or GELU as their activation function, but when training in FP8, this
may lead to underflow in activations during training. This is because these functions asymptotically approach zero as inputs
xr — —oo. We define the FP8 underflow fraction, or the fraction of elements flushed to O from a BF16 to FP8 cast, as a
metric to evaluate various activation functions. As shown in Fig. 10, this can cause many activations to underflow.

To better understand how activation function choice influences FP8 underflow when training with pnit scaling, we train
small 4 layer models with GELU, SiLU, and ReLU. Our findings, detailed in Fig. 11 that during unit scaled model training,
the choice of activation function drastically impacts the FP8 underflow rate for activation outputs. GELU greatly degrades
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FP8 Underflow for select activation functions
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Figure 10. Different activation functions cause different amounts of FP8 underflow. When casting A/(0,1) or Unif(—128,128)
values from BF16 to FP8 (e4m3), GELU, SiLU, and ReL.U (green) erroneously round to zero (underflow) with different probabilties.
GELU and SiLU experience significant FP8 underflow because they slowly approach 0 for increasingly negative inputs. SiLU approaches
0 more slowly than GELU and so underflows for a wider range of inputs. ReLU simply maps all negative values to 0, regardless of the
numerical format.

FP8 Underflow in Activation Function Outputs
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Figure 11. Activation function choice impacts FP8 underflow and low-precision convergence error. FP8 underflow of activation
function outputs for each block in a 4 layer transformer model during training is shown for GELU, SiL.U, and ReLU. Low precision
convergence error, defined as the percent difference in final cross entropy loss between an FP8 model and its BF16 counterpart, is shown
in the rightmost chart. GELU and SiLU cause significant underflow over the course of training, and models trained with these activation
functions have twice as much low precision convergence error as with ReLU. ReLU greatly reduces this FP8 underflow by multiple orders
of magnitude.

the representation of FFN down projection inputs, reaching up to 30% underflow during training. SiLU causes similar
degradation, but at a lower rate, reaching up to 7% during training. In contrast, ReLU does not suffer from this problem, with
a maximum of 0.04% FP8 underflow during training. As a result, FP8 unit scaled models trained with ReLU have smaller
low-precision convergence error (defined as the percent difference between the final cross entropy loss an FP8 model and its
BF16 counterpart). Based on these observations and results, ReLU minimizes FP8 underflow and low-precision convergence
error. ReLU also has the added benefit of sparsifying activations, a property which enables significant inference-time
optimizations (Mirzadeh et al., 2024). However, using GELU results in models with lower final training loss. For this reason,
we use GELU when training all uS models. Additional investigations into activation functions more suitable for FP8 training
can help mitigate underflow while also providing improved convergence.

13



unit Scaling: Simple and Scalable FP8 LLM Training

(a) 1B SP FP8 model activation distributions.
Distribution of Activation Values, 1B SP-FP8
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(b) 1B uS FP8 model activation distributions.
Distribution of Activation Values, 1B uS-FP8
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(c) 3B SP FP8 model activation distributions.
Distribution of Activation Values, 3B SP-FP8
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(d) 3B uS FP8 model activation distributions.
Distribution of Activation Values, 3B uS-FP8
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(e) 7B SP FP8 model activation distributions.
Distribution of Activation Values, 7B SP-FP8
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(f) 7B uS FP8 model activation distributions.
Distribution of Activation Values, 7B uS-FP8
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(g) 13B SP FP8 model activation distributions.
Distribution of Activation Values, 13B SP-FP8
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(h) 13B pS FP8 model activation distributions.
Distribution of Activation Values, 13B uS-FP8
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Figure 12. Activation distributions of uS and SP models. Activation distributions for attention and FFN block inputs and outputs are
shown for 1B, 3B, 7B, and 13B FP8 models at every 10th layer. pS models lack the notable right tail of activation outliers in block inputs

that SP models suffer from. This may make them easier to quantize.
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