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Abstract

Generative Al leaderboards are central to evaluating model capabilities, but remain
vulnerable to manipulation. Among key adversarial objectives is rank manipulation,
where an attacker must first deanonymize the models behind displayed outputs—a
threat previously demonstrated and explored for large language models (LLMs).
We show that this problem can be even more severe for text-to-image leaderboards,
where deanonymization is markedly easier. Using over 150,000 generated im-
ages from 280 prompts and 19 diverse models spanning multiple organizations,
architectures, and sizes, we demonstrate that simple real-time classification in
CLIP embedding space identifies the generating model with high accuracy, even
without prompt control or historical data. We further introduce a prompt-level
separability metric and identify prompts that enable near-perfect deanonymization.
Our results indicate that rank manipulation in text-to-image leaderboards is easier
than previously recognized, underscoring the need for stronger defenses.

1 Introduction

Generative Al leaderboards have become essential to the rapid progress and adoption of generative
models, serving as public benchmarks that track and compare model capabilities. They provide
standardized evaluations that guide research directions and inform deployment choices [1]], including
dynamic query routing [2 3]. Broadly, leaderboards fall into two categories. Benchmark-based
leaderboards rank models using predefined datasets and quantitative metrics, while voting-based
leaderboards rely on user comparisons of model outputs to determine rankings.

Recent studies demonstrate how generative-model leaderboards are susceptible to various vulnera-
bilities such as rank manipulation [4, 5] —strategically biasing votes to promote or demote specific
models. A critical step in rank-manipulation attacks against leaderboards is model deanonymization—
identifying which models generated the content shown to voters. Prior works on LLM leaderboards
assume that users can submit arbitrary prompts, or require access to historical prompt-—response
pairs to train deanonymization classifiers. Realistically, however, leaderboards may restrict this
freedom by providing the prompts themselves, making such attacks significantly harder. We show
that deanonymization can be easier in text-to-image (T2I) leaderboards than text-based ones, even
with no control over prompts, and without training any classifier. We show that simple real-time
embedding-space classification can accurately identify the underlying models.

We hypothesize that in T2I generation, the diversity of outputs from a given model across multiple
generations of the same prompt is relatively low (Figure [I)). Moreover, these outputs often differ
systematically from those of other models in terms of style, content, or other features not explicitly
described in the prompt. Such differences naturally arise from variations in training data, architecture,
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Prompt: “An impressionistic painting of a bustling city street in the rain, vibrant umbrellas
dotting the crowd.”
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Figure 1: Model-specific generation patterns for a fixed prompt. Each row shows five images from
one model with different seeds, showing low intra-model diversity and strong inter-model differences.

and model size. This phenomenon causes generations from different models to form distinguishable
clusters in the embedding space for most prompts, which adversaries can exploit for deanonymization.

To test this hypothesis, we analyze 280 prompts collected from a prominent T2I leaderboard and a
diverse set of 19 T2I models spanning multiple organizations, architectures, and model sizes (both
open source and commercial), producing over 150,000 images in total. We find that a straightforward
real-time classification in the embedding space leads to high deanonymization accuracy. We further
define a metric to quantify distinguishability between model generations per prompt, allowing us to
identify prompts that yield complete separability in the embedding space. We find that such perfectly
distinguishable prompts exist and could be exploited if users were allowed to submit their own
prompts. Deanonymization can also help amplify other attacks: once the generating T2I model is
identified, an adversary can choose an appropriate surrogate and apply targeted prompt-optimization
or iterative reproduction attacks to better replicate the original image [6]. Together, these findings
highlight the unique security threat posed by T2I models, particularly in voting-based leaderboards.

2 Related Work

2.1 Leaderboard Attacks

Leaderboards for generative Al are generally either benchmark-based [[7, 8] or voting-based [9]
(e.g., Chatbot Arena [10]). Both types are vulnerable to manipulation attacks. Huang et al. [4]
demonstrate that malicious participants can deanonymize models in Chatbot Arena and artificially
promote their own models through poisoned votes. Zhao et al. [11] show how inserting as little
as 10% adversarial/low-quality votes can shift a model’s rank by up to five places. Min et al. [3]
analyze Elo-style rating systems, showing they can be gamed via “omnipresent rigging," where a
few hundred strategically placed votes can boost a model’s rank substantially, even without targeting
the victim directly. Suri et al. [12] examine leaderboards across several modalities and show that
benchmark-based leaderboards can also be subverted by submitting models trained directly on test
sets. Existing works mainly target LLMs or rely on backdoor-style deanonymization that may not
generalize to T2I leaderboards.



Algorithm 1 Centroid-based Deanonymization of T2I Models

Input: Prompt p from leaderboard, candidate models C = {My, ..., M, }, number of samples k,
leaderboard-provided image I*, image encoder ¢(-) (e.g., CLIP)
Output: Predicted generating model M
1 e* + o(I*) > Embed leaderboard-provided image [*
2: for each M; € C do
3 Generate k images {I; 1, ..., I; } with prompt p
4 Compute embeddings E; = {¢(1;1),..., (L)}
5:  Compute centroid ¢; = ¢ Z?:l E; ;
6: end for
7: Compute distances d; = ||e* — ¢;||2 for all M; € C
8 M « argminas, ec d;
9: return M

2.2 Model Attribution

Work on model attribution seeks to infer the exact model given some form of access, typically through
an API for querying. Prior work explored model attribution for GANSs [13]] or focused on generative
text modeling [[14]. Recent approaches focusing on T2I models either utilize adversarial examples for
model attribution, requiring multiple API calls [[15]], or require tens of thousands of examples to train
detection models, resulting in high false positive rates for unconstrained prompts [[16].

3 T2I Deanonymization

3.1 Threat Model

The adversary’s objective is to deanonymize T2I models in order to manipulate their rankings on a
voting-based leaderboard: by inferring which model a given anonymized generation corresponds to,
the adversary can decide which model(s) to upvote or downvote. We assume that the adversary has
no control over the input prompts and aims to manipulate the ranking of any model, not merely to
identify its own. For completeness, we also consider a stronger adversary that can control the input
prompts (Section4.3) and find that under such conditions, deanonymization is even easier.

3.2 Methodology

Generative models often produce characteristic outputs for the same input based on differences
in training data, architecture, or even model size. These characteristics can be utilized as subtle
“signatures” in the generated content. For T2I models, we hypothesize that the diversity of outputs
from a given model across multiple generations of the same prompt is relatively low, while these
outputs differ systematically from those of other models in style, content, or other features not
explicitly described in the prompt. As these differences are largely semantic rather than pixel-level,
we represent images in an embedding space that captures high-level features. Specifically, we employ
CLIP [17] embeddings, which are well suited for semantic comparisons and can effectively highlight
these model-specific generation patterns.

Our deanonymization algorithm, described in Algorithm|I] proceeds as follows. For each prompt p
from the leaderboard, we send it to every T2I model M; in a candidate set C and generate k images per
model. We embed both the leaderboard-provided image and all generated images into the CLIP space.
We then compute the centroid ¢; of its £ embeddings. We compute distances from the embedding
of the provided image to each centroid ¢; and sort models by these distances. The model with the
smallest distance is predicted to be the source of the leaderboard image.

3.3 Distinguishability Metric

To better understand the separability of different models’ generations in the embedding space, we
introduce a metric that quantifies the distinguishability of prompts. This metric helps identify prompts
that yield highly separable clusters and thus enable stronger deanonymization.



Model-level Separability. For each prompt p; and each model M, we collect the k embeddings of

the images generated by M on p;, denoted {e(lj) (k)} For every embedding e( ]) we find its

nearest neighbor in the joint embeddmg set of all models for the same prompt. If the nearest neighbor
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also originates from 1M, we mark ¢, ; as correctly clustered. Let
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where I[-] is the indicator function and NN(-) denotes the nearest neighbor. If frac(i, j) > 7 for a
chosen threshold 7 € (0, 1), we call the cluster corresponding to (i, M) separable.

Prompt-level Distinguishability. The distinguishability score of prompt p; is then defined as

D(i) = ° Z I[frac(i, 5) > 7],
‘|Mec

i.e., the fraction of models that form separable clusters under p;.

A high value of D(7) indicates that generations for prompt p; form well-separated clusters in the
embedding space, making it easier to deanonymize models based on that prompt. This metric thus
provides a principled way to rank prompts by their power to reveal model identities.

4 Experiments

4.1 Settings

Models and Dataset. We evaluate our method on a diverse set of 19 T2I models drawn from
a broad spectrum of companies and organizations, including OpenAl, Midjourney, Stability Al,
HiDream.ai, Black Forest Labs, Playground Al, Alibaba, and Alpha-VLLM. This collection spans
multiple architectures within individual companies and includes multiple model sizes within the same
architecture, providing diversity in both design and scale. We evaluate using a set of 280 prompts
collected from the Art1ﬁ01alAnaly51£] T2I leaderboard. A complete list of the models is provided in
Table[Il

Hyperparameters and Evaluation Metric. We generate images at a resolution of 1024 x 1024
pixels, unless a model does not support it. CLIP embeddings are computed after resizing all
images to 224 x 224 pixels (the standard CLIP input size) without cropping, so differences in
generation resolution have negligible effect on the final embeddings. For each prompt and model,
we generate multiple images using different random seeds to capture intra-model variation. The
number of inference steps for each model follows the default or recommended settings reported on
the Artificial Analysis leaderboard website. To evaluate deanonymization performance, we compute
and report top-k accuracies (for k € [1, 5]), which measure the probability that the correct model
appears within the corresponding number of top predictions.

4.2 Results

Deanonymization Performance. Our centroid-based approach effectively predicts the model
responsible for a given leaderboard image, achieving roughly 87% rop-1 accuracy, far exceeding
the random-guess baseline of ~ 5.26%. Figure [2 shows this advantage extends beyond the first
prediction: fop-3 accuracy reaches about 95%, meaning the correct model typically ranks among the
very top candidates.

Effect of k. Figure[2| also illustrates the influence of &, the number of generations per (prompt,
model) pair used to compute centroids. Even a single generation (k = 1) achieves top-1 accuracy of
approximately 57%. Increasing k substantially improves performance by providing more represen-
tative points in the embedding space, creating tighter and more robust model-specific clusters. We
observe diminishing returns beyond 10-15 generations per prompt, where deanonymization accuracy
saturates to near-perfect values.

https://artificialanalysis.ai/text-to-image/arena
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Figure 2: Deanonymization accuracy versus number of generations k per (prompt, model) pair.
Curves show mean Top-1-Top-5 accuracy over five runs with one-standard-deviation error bars. The
dashed line indicates the random-guess baseline of 1/19.

Effect of Architecture and Model Size. To examine whether model architecture or size—including
different architectures within the same company—impacts deanonymization, we include multiple
architectures and model scales in our evaluation. For instance, from Stability Al we evaluate both
stable_diffusion_2.1 and stable_diffusion_3, and from the Flux family we include both
flux_1_dev and flux_1_schnell. We also compare different sizes within the same architecture,
such as stable_diffusion_3_5_large versus stable_diffusion_3_5_medium. Even in these
closely related cases, our method consistently achieves high distinguishability: the misclassification
rate between the two stable_diffusion_3.5 size variants is only about 3%, and between the two
Flux variants is roughly 3.8%. The method works well even for distinguishing between models

released by the same company or between different-size variants of the same architecture.

Distinguishability Score. From Section [3.3] the distinguishability score of a prompt is the fraction
of models whose generations form separable clusters in the embedding space. Figure f] shows
the distribution of this score across all 280 prompts. To illustrate the extremes, Figure [3] presents
embedding visualizations for two representative prompts: one with a score of 1.0, where generations
from every model are perfectly separable, and another with a score of 0.21, where most model clusters
overlap substantially. Higher distinguishability scores lead to higher deanonymization accuracy,
confirming this metric as a strong predictor of attack success (Figure [3).

4.3 Prompt-Controlled Attack

Sorting the evaluation prompts by their distinguishability score reveals a small subset with a perfect
score of 1.0 (e.g., the left panel of Figure[3), indicating that generations from all models form perfectly
separable clusters. This observation implies that an adversary with the ability to craft their own
prompts can achieve complete distinguishability. To evaluate this scenario, we randomly selected five
prompts from our dataset with a distinguishability score of 1.0. For each prompt we repeatedly (100
times) selected a random model, generated an image, and applied our centroid-based classification
method to deanonymize it. This simple experiment achieves close to 99% top-1 accuracy, confirming
that an adversary with the ability to submit prompts to the leaderboard could reliably and confidently
deanonymize the participating models.
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Figure 3: CLIP-embedding visualizations for two representative prompts with contrasting distin-
guishability scores. Left: a high-distinguishability prompt (score = 1.0), where generations from
every model form clearly separated clusters. Right: a low-distinguishability prompt (score = 0.21),
where generations from different models overlap substantially, making deanonymization harder.

4.4 One-vs-Rest Classification

Another practical scenario involves determining whether a given image was generated by a specific
target model, rather than identifying the exact model among all candidates. This reduces to a
one-vs-rest classification problem in the CLIP embedding space.

For each evaluation prompt, we randomly select a model as the adversary’s target. We then generate
an image using the given prompt and target model and compute the distances between the image’s
embedding and (i) the centroid of the target model’s cluster and (ii) the centroids of all other model
clusters. If the image embedding is closer to the target model’s centroid than to any other centroid,
we classify it as generated by the target model; otherwise, we classify it as not. This simple approach
achieves approximately 99% accuracy.

We repeat this experiment by fixing the target model rather than selecting it randomly for each
prompt. Specifically, for each of the 19 models we treat that model as the adversary’s target and
evaluate on all 280 prompts, creating 19 fixed-target experiments. Even for the model with the lowest
performance, the prediction is correct in nearly 96% of the cases, while two models—HiDream and
SDXL Turbo—reach perfect 100% accuracy over all 280 samples (Table Appendix . We also
report AUC scores and TPRs at low FPRs for this setting; for example, HiDream and SDXL Turbo
both achieve TPRs of 1.0 at FPR= 2%. An adversary targeting a specific model can abstain from
voting when uncertain, effectively controlling their false positive rate. The TPR at a given FPR shows
how many correct upvotes the adversary achieves while limiting false upvotes to other models; details
of how we compute these AUC and TPR values are provided in Appendix [B.1]

We also explore a more restrictive setup where the adversary has no access to other models (Appendix
[B-2), finding that some models still achieve high distinguishability through outlier detection alone.

5 Conclusion

In this work, we analyze text-to-image models and demonstrate how adversaries can successfully infer
models based on generations in leaderboard arenas, despite lack of any control over the generation
prompt. This reveals a fundamental tension: the distinctive visual signatures that give models their
competitive edge in quality and style are precisely what enable deanonymization attacks. While
recent work [12]] suggests rotating prompts to prevent reuse, our results show this offers limited
protection since models remain highly distinguishable even on unseen prompts. More robust defenses
might require analyzing voting patterns for anomalies or limiting the number of generations shown
per prompt. With growing concerns around the fairness and credibility in voting-based arenas for
LLM:s [[18], understanding the extent of such deanonymization strategies is critical to actively design
more secure leaderboards.
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A Setup Details

Table 1: Full list of text-to-image models used in our experiments, along with their provider, image
resolution, and the number of inference steps. Where inference-step counts are available on the
Artificial Analysis methodology page, we adopt those values directly. For models not mentioned there,
we use the default values documented on their respective Hugging Face model pages. For OpenAl
and Midjourney models we did not explicitly set the number of inference steps and used their internal
default generation settings. Finally, the model Playground v1 does not expose an inference-steps
parameter at all.

Model Company / Provider Resolution (WxH) Inference Steps
DALL-E 3 HD [19] OpenAl 1024x1024 -
FLUX.1-dev [20] Black Forest Labs 1024x1024 28
Stable Diffusion v1.5 [21] Stability Al 512%x512 50
Stable Diffusion 3.5 Large Turbo  Stability Al 1024x1024 4
Stable Diffusion 3.5 Large Stability Al 1024x1024 35
Stable Diffusion 3 Medium [22] Stability Al 1024x1024 30
FLUX.1-schnell [20] Black Forest Labs 1024%x1024 4
Stable Diffusion 2.1 [21]] Stability Al 1024x1024 50
GPT-Image-1 OpenAl 1024x1024 -
Midjourney v6 [23] Midjourney 1024x1024 -
Stable Diffusion 3.5 Medium Stability Al 1024x1024 40
Stable Diffusion XL [24]] Stability Al 1024x1024 30
SDXL Turbo [24] Stability Al 1024x1024 4
Lumina 2 [25] Alpha-VLLM 1024x1024 50
HiDream [26]] HiDream.ai 1024x1024 50
Playground v2.5 [27] Playground Al 1024x1024 50
Playground v1 Playground Al 1024x1024 -
Qwen-Image [28] Alibaba 1024x1024 50
FLUX.1-Krea-dev [20] Black Forest Labs 1024%x1024 28

B Additional Results

B.1 Details of AUC and TPR Computation

For each target model we use as the decision score the margin TargetSim — BestOtherSim,
where TargetSim is the cosine similarity between the test image embedding and the centroid of the
target model’s cluster, and BestOtherSim is the highest such similarity across all non-target models.
ROC curves are then computed from this score, and we report ROC-AUC as well as TPR at low FPR
operating points (e.g., 2% and 5%).

B.2 Detection Without Access to Other Models

In our most restrictive setting, the adversary seeks to determine whether a given image was generated
by its target model but has access only to that model’s own generations for the same prompt. To
classify the given sample, for the corresponding prompt we use 30 generations from the target
model to build a centroid and compute a similarity threshold based on the 80" percentile of in-
cluster distances. Concretely, let c denote the L2-normalized centroid of these embeddings, and
let s; = (x;, c) represent cosine similarities of the target model’s own generations. We define the
similarity threshold as SimThresh = 1 — quantile; g(1 — s;). Given a test image with embedding
z, we compute TargetSim = (z, ¢) and use the margin TargetSim — SimThresh as a continuous
decision score. A sample is classified as generated by the target if this margin is non-negative. ROC
curves are derived from these scores, and we report ROC—AUC and TPR at low FPR operating points
(e.g., 2% and 5%). Table [3|summarizes the results. Although performance decreases due to the lack
of information about other models, some models—most notably SDXL. Turbo—still reach 99% top-1
accuracy, highlighting the strength of their model-specific signatures.
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Table 2: Performance of the one-vs-rest deanonymization attack when each model is used as the
fixed adversarial target across all 280 evaluation prompts. The table reports per-model fop-1 accuracy,
ROC-AUC, and TPR at two operating points (FPR= 2% and FPR= 5%).

Model Accuracy ROC-AUC TPR@2% TPR@5%
HiDream 1.000 1.000 1.000 1.000
SDXL Turbo 1.000 1.000 1.000 1.000
DALL-E 3 HD 0.996 0.998 1.000 1.000
Playground v2.5 0.993 0.998 0.917 1.000
FLUX.1-Krea-dev 0.993 0.999 1.000 1.000
Stable Diffusion 3.5 Medium 0.989 0.995 0.929 0.929
GPT-Image-1 0.989 0.992 0.938 0.938
Stable Diffusion 3.5 Large 0.986 0.998 1.000 1.000
Stable Diffusion 3.5 Large Turbo 0.986 0.998 0.929 1.000
Stable Diffusion 3 Medium (diffusers) 0.986 0.995 0.929 0.929
FLUX.1-schnell 0.982 0.990 0.846 0.923
Qwen-Image 0.979 0.955 0.733 0.733
Stable Diffusion XL 0.979 0.991 0.857 1.000
Lumina 2 0.979 0.994 0.857 1.000
Stable Diffusion 2.1 0.975 0.983 0.813 0.938
Playground vl 0.975 0.978 0.944 0.944
Midjourney v6 0.971 0.980 0.889 0.889
Stable Diffusion v1.5 0.971 0.982 0.947 0.947
FLUX.1-dev 0.964 0.983 0.714 0.929

Table 3: Results of the one-vs-rest attack when the adversary has access only to its target model’s
generations. We report per-model top-1 accuracy, ROC-AUC, and TPR at two operating points
(FPR= 2% and FPR= 5%).

Model Accuracy ROC-AUC TPR@2% TPR@5%
SDXL Turbo 0.993 0.996 1.000 1.000
GPT-Image-1 0.982 0.979 0.813 0.875
HiDream 0.975 0.970 0.471 0.882
Playground v2.5 0.953 0.921 0.083 0.583
DALL-E 3 HD 0.939 0.945 0.250 0.563
Stable Diffusion 3.5 Large Turbo 0.932 0.905 0.071 0.357
Stable Diffusion 3.5 Large 0.921 0.945 0.077 0.538
FLUX.1-Krea-dev 0.918 0.897 0.067 0.333
Stable Diffusion 3 Medium (diffusers) 0.897 0.921 0.071 0.214
Stable Diffusion 3.5 Medium 0.893 0.886 0.071 0.071
FLUX.1-dev 0.879 0.825 0.286 0.357
FLUX.1-schnell 0.850 0.874 0.077 0.154
Lumina 2 0.850 0.835 0.071 0.071
Midjourney v6 0.839 0.845 0.111 0.222
Stable Diffusion XL 0.829 0.785 0.000 0.143
Playground v1 0.821 0.828 0.111 0.111
Stable Diffusion 2.1 0.789 0.807 0.063 0.063
Stable Diffusion v1.5 0.747 0.798 0.053 0.053
Qwen-Image 0.600 0.733 0.067 0.133
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