
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

OPTIMIZING OPERATIONS ON B-TREES USING PROX-
IMAL POLICY OPTIMIZATION AND HIERARCHICAL
ATTENTION-BASED MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern database management systems often rely on B-trees to achieve indexing in
an efficient manner. If stored on slow permanent storage devices, write and read
operations can become a significant performance factor, as transactional databases
require regular additions and deletions. We propose to use a reinforcement learning
setup to optimize the write performance of deletes and inserts by aggregating them
and optimizing their order of execution. This achieves the goal of minimizing write
times during tree updates. We present a small hierarchical attention-based model to
parse the content of the tree efficiently. The new architecture allows for level-wise
parallel computation and includes caching to improve the inference speed. Our
evaluation verifies the applicability and the potential of the proposed framework.
We show that we can efficiently compute an embedding in a hierarchical dataset and
that the embedding can be used to achieve noticeable performance improvements
in B-tree operation scheduling in comparison to accepting operations in their order
of arrival.

1 INTRODUCTION

B-trees are a well-known data structure in the database research community. They are commonly
used to index data and make it searchable efficiently. Inserting and deleting new data in a B-tree
and then reorganizing the tree is nontrivial. In some practical applications, those trees can become
very large, containing millions of entries. If insert and delete operations occur at high frequency
throughout the tree’s existence, they lead to regular changes to the tree’s structure. Those become
crucial if, throughout the insertion, a node overflows and needs to be split or is underfilled, in which
case they need to be merged. Depending on the tree implementation, noticeable overall performance
improvements could be achieved by collecting received operations and reordering them to minimize
the overall cost of execution. While elegantly designed heuristics might achieve a comparable goal,
those probably require full access to the tree during each optimization step to find an efficient solution.
We propose to learn a representation of the tree that can be efficiently computed during updates and
use this to automatically train an agent to choose the order of execution. This approach aims to be
scalable to large tree sizes and many operations, but will be evaluated on small setups that allow
tractable analysis of the optimal solution.

To further motivate this concept, our system setup is shaped by the following characteristics: 1. The
indexed data and the tree itself are stored in permanent storage with high-latency access in comparison
to the memory of the machine executing the operations. Write operations are especially costly, while
sequential reads are, due to the nature of intelligent prefetching and caching on modern hardware,
the most efficient operation on those storage systems. 2. During an insert/delete, costly rebalancing
operations should be avoided. Thus, the inserts and deletes should occur in a way that minimizes the
need for rebalancing later on.

A B-tree forms a search tree with nodes of variable size. It is characterized by the maximum number
of referenced child nodes within a single node, a number called b throughout this paper. To define
the borders between b nodes, b − 1 keys are required. Every referenced node shall only contain
values between the two keys surrounding the value. To avoid large unfilled nodes, the nodes have a
minimum width, which is set to ⌈0.5b⌉. To stay within these boundaries, inserts and deletes cause

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

10 20

5 8 9 10 12 19

10 18 20

5 8 9 10 12 18 19

Figure 1: The resulting tree when an already full node on a b = 3 tree would require an additional
child at key n = 18. The outermost node is split, and at least three nodes need to be partly rewritten.
This propagates to the parent and could cause additional reorderings if the parent node exceeds its
maximum size after executing this operation.

10 20

5 10

20

5 10

Figure 2: The resulting tree when two neighboring nodes are merged due to both being underfilled, in
this case having less than two keys. Again, the resulting write operation causes at least two nodes to
be rewritten in storage.

reordering of nodes if they are exceeded after insertion or deletion. An illustration of the insert- and
delete process with overflowing and underfull nodes is given in Figure 1 and Figure 2. The illustration
omits any changes outside of the three nodes referenced, while in practice, a split or merge might
occur more than once while traversing the tree towards the position where the element has to be
inserted or removed.

Contribution To circumvent the challenges above, we seek to design a network architecture with
an efficient caching mechanism to minimize the number of reads and writes on the data structure
while parsing and throughout operation. Our contributions can be summarized as follows:

• We propose a framework to efficiently parse large hierarchical datasets, which iterates the
tree for evaluation.

• Our approach incorporates a novel caching mechanism that makes use of that data structure.

• We use that model and the caching mechanism in conjunction with Proximal Policy Opti-
mization to learn a prioritization policy to dynamically manage write and delete operations
on B-trees.

• We provide numerical examples and performance comparisons against chosen heuristics, as
well as the optimal achievable performance.

• We provide an open-source simulation and evaluation toolkit as a public code repository.

Throughout the next sections, we show that an agent can be trained based only on interaction
with the system and that its policy outperforms other plausible heuristics that could be applied to
the same problem. At the same time, once trained and under careful optimization to minimize
necessary tree reads, it is quick enough not to diminish the performance improvements it achieves
during read/write operations. Section 2 introduces the domain of B-trees as well as comparable
architectures. Section 3 introduces the model architecture. Section 4 provides initial regression
experiments. Section 5 introduces the way the Markov process is shaped that our toolkit will solve.
Section 6 compares the overall system to different baseline approaches as well as different model
setups. Section 7 concludes.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

An overview of operation optimization on index structures is given in the following Section 2.1.
Our model is highly inspired by recurrent neural networks and transformer architectures. Thus,
Section 2.2 provides an introduction to comparable systems.

2.1 B-TREE AND ITS OPTIMIZATIONS

B-trees are a data structure long known in database and algorithm literature (Sedgewick & Wayne,
2011). They are used to index large, unsorted data structures. A B-tree offers a higher width per node
than binary search trees. This allows the node to directly point to several children, which allows a
tree format with a low height and a node block size that can be optimized for read/write performance
on lower-tier storage devices.

There are several variants that further improve B-trees, namely B* trees and B+ trees. For example,
a B+ tree distinguishes itself from a B-tree through the fact that B+ trees allow efficient sequential
search by storing a pointer to the next sibling within each leaf (Comer, 1979).

A long track of research exists concerning optimization of the storage of a tree within different
storage tiers, like optimizing cache hits when reading large trees from storage, for example, in
Rao & Ross (2000). Others aim at optimizing them for nonvolatile memory instead of relying on
traditional storage devices (Chen & Jin, 2015). None of the previously mentioned studies aims
directly at optimizing the insertion process itself. Closely related are those that do optimize the
internal process of insertion or deletion, as described in Jannink (1995). Optimizations in that regard
could theoretically be used in conjunction with our approach. In this setup, we could think of one
additional optimization: When multiple values need to be inserted or deleted, several operations
can be performed in bulk, and unless a node overflows, the rebalancing is postponed until the batch
operation is evaluated. As this might lead to overflows or empty nodes if executed wrongly, the use
case for our approach still exists if a prediction can be performed fast enough.

B-trees can be accessed in parallel. Native write access to such a tree requires locks and thus, possibly
forces sequential execution if locks collide. To overcome this limitation, lock-free alternatives would
be of interest, as described in Braginsky & Petrank (2012). If bandwidth is limited, prioritization
might still be necessary, which gives space for input order optimization as described here.

Kraska et al. (2018) started a fundamental discussion on the suitability of learned indices compared
to classical index structures, including B-trees. While replacing the whole structure would render any
optimization on it obsolete, we assume that the B-tree will still be in use in diverse environments.
A different key takeaway, which is highly relevant to our work, consists of the proof that low-level
operations like traversing a B-tree can be replaced by a model in some cases. In those cases in which
fully replacing the index structure is not feasible, our architecture can still support the auxiliary
processes around the index when needed.

2.2 TREE NEURAL NETWORKS

Parsing sequential inputs is a well-discussed challenge in machine learning research. Up to the rise of
transformers, architectures like Recurrent Neural Networks (RNNs) have been used for that purpose,
their earliest descriptions are provided in Rumelhart et al. (1986). In our scenario, the input is not a
sequence, but a tree instead. Further architectural developments led to LSTMs, a seemingly superior
architecture for parsing sequences (Hochreiter & Schmidhuber, 1997).

A related, node-oriented architecture is described in Ren et al. (2021). In their research, a tree was
parsed top-down, with the child nodes receiving the parent nodes’ output if the respective node was
chosen by a classifier to be the correct element. Cheng et al. (2018) propose to use a comparable
architecture that parses each node of the tree by using the values of the left sibling as well as the
outermost right child of the current node as input to each iteration step. They target the problem
domain of evaluating sentences that are already preprocessed in a tree structure. The horizontal
relationship hinders caching mechanisms, such as the one described here. Most of those architectures
have been superseded by the transformer, as outlined by Vaswani et al. (2017). The attention layer of
a transformer was reused in the hierarchical encoder described in Section 3.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 REPRESENTATION MODEL SETUP

The network needs access to the data within the tree to perform its evaluation. The architecture
proposed in the next section aims to reduce the effect of this limitation. This is the case for both the
policy and the value network, as both use the complete state of the system as their input. The first
layers of both networks are shared and contain our encoder setup. The network is optimized using
ADAM (Kingma & Ba, 2015), a brief overview of the most important hyperparameters is given in
Table 2 in Appendix E.

3.1 HIERARCHICAL MODEL ARCHITECTURE

A challenge of this and other related problems is induced by its input. Our solution aims to efficiently
embed the whole B-tree at inference time in a live application. It lies in the nature of B-trees that
they can become very large if they are used to index large columns in database management systems.
Flattening the whole tree and passing it to a large network is inefficient, or in many cases, even
intractable due to the increasing number of neurons required in the first layer, as shown in Table 4.

We choose to tackle this challenge by embedding the B-tree recursively, to keep the number of
trainable parameters constant while increasing tree size. A full visual description of our hierarchical
architecture is displayed in Figure 3. The following steps compute the embedding:

• We embed the leaf values using a linear projection layer to reshape them to the same
dimension as the encoder, so it can be used to parse all nodes.

• For the internal nodes, we concatenate all child embeddings and the node keys before
feeding them into a feedforward layer.

• To improve performance, we add a positional embedding based on the depth of the node
currently being parsed. The positional encoding is a unique learnable parameter for every
layer of the tree.

• The aggregated child embeddings are then passed to a transformer encoder, which computes
the embedding of the node currently under assessment. The attention layer follows the
classical layout described by Vaswani et al. (2017):

f(Q,K, V) = softmax

(
QKT

√
dk

)
V. (1)

The transformer consists of one layer of self-attention, followed by two linear layers as part
of the feedforward network, though other setups were validated as well. The dimension of a
node embedding in our system is usually 64. A setup replacing the attention layer with a
linear layer was also tested, and the results are depicted in Figure 5.

Our hierarchical encoder allows us to process nodes within one tree layer in parallel, as each node is
only dependent on its child embeddings and its own keys. The final root embedding is then passed to
the value and policy network of the agent, which consists of two linear layers followed by a non-linear
activation function. The resulting values are then either compressed to a single value estimation in
the case of the value network or a vector of the same size as the theoretically available action space,
and then normalized to form a valid distribution over actions. Each action that is masked out receives
a probability of zero at this point.

3.2 CACHING

The proposed structure allows for further optimization. Many operations change only small or even
single elements of the tree. The embeddings of all unchanged subtrees below or parallel to the
changed node stay the same and thus do not need to be recomputed during operation. If an element is
changed, the embeddings of all of its children can be reused, as well as all other nodes except those
on the path of this element to the root.

The invalidation bit of every node is saved in an extra array, which resembles the node structure
of the tree and is small enough to stay in the main memory. It can thus be accessed quickly. If a
node is changed throughout the execution of the operation, it is invalidated and its embedding will be

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 3: A visualization of our hierarchical embedding setup. A node’s embeddings can be calculated
using only its keys and its b children. The resulting values are either propagated upward or passed to
the value and policy network once the root of the tree is reached. The output of each node is cached
and made available to parents from the cache if it is available and unchanged.

recomputed through the next cycle of the forward pass. As displayed in Figure 7, all nodes along its
path to the root need to be invalidated as well. The root node will always be invalidated, so the final
embedding has to be computed at all times.

The embeddings themselves should be significantly smaller than the actual node size for the effect of
caching to be maximized. Even if the embeddings are of comparable size, the fact that a noticeable
number of embedded nodes do not need to be recomputed is still advantageous. Embeddings of the
upmost layers of the tree should be kept in memory at all times, as those nodes cover the majority of
the nodes within a tree, and a usual update invalidates only one node at the top. If read from storage,
the caching effects decrease, but can still be positive if reading a relevant segment of the tree can be
avoided.

During training, accessing all embeddings for backpropagation is still necessary in our current
implementation. It is highly desirable to use an already optimized policy during deployment and
pre-train the agent asynchronously on the dataset. Then, the impact of caching can be put to full effect,
as no backward passes need to be performed. Further, the embedding of the tree can be computed
after the changes are applied asynchronously, while the agent receives new operations to order.

4 REGRESSION EXPERIMENTS

To evaluate the general capabilities of the architecture, we performed several experiments on B-trees
of growing sizes on a simpler regression task instead of the more complicated reinforcement learning
(RL) setup. The regression target was to predict the cost of executing a specified operation on a given
tree, i.e., the reward function of the process described in Section 5.

We pre-generated a set of 1,000,000 diverse trees to allow faster loading. Each tree was set up with
four values per node to ensure that split and merge operations appear reliably and create a more
diverse reward signal. The final regression setup included 124 values in the leaves of the tree, resulting
in a B-tree with 31 to 62 nodes and a depth of 4. Figure 4 displays the performance of our setup (HE
w/ Att.) in comparison to a model where we flatten the tree and parse it with a linear layer instead
(Flattened w/ MLP). Our architecture successfully predicts the cost associated with inserts and deletes
up to this tree size, with larger sizes requiring further evaluation, as the model configuration needs
to be changed to fit the complexity and data density of extremely large setups, while not overfitting.
The dataset was split into 80% training and 20% evaluation data, and the evaluation data had a mean
of 0.25. The low mean is caused by the fact that most B-tree operations do not lead to reordering.
The highest observed target value in the data is 3. Further evaluation of our results can be found in
Appendix B.

5 PROCESS MODEL AND RL SETUP

The following section introduces the general setup of the Markov Decision Process (MDP) that the
agent is facing. As an explicit tractable algorithm to determine the value function and the optimal

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 4: Comparison of the evaluation loss throughout the training runs with our hierarchical
attention setup (HE w/ Att.), against a linear feature extractor that parses the flattened B-tree (Flattened
w/ MLP). Always predicting the mean of the evaluation dataset would lead to an MSE of 0.37.

policy is not known, we search for an optimal policy through reinforcement learning. We will follow
the three main components of an MDP: The state st ∈ S, the action at ∈ A, and the reward rt.

During training, the process is initialized by starting with a randomly generated valid B-tree filled
with data and a set of items to append or delete from that tree. The agent then faces the task of
determining an order of insertion by selecting an item to either append or delete from that list. After
each selection, the operation is carried out without further interaction with the agent in between.

The decision is performed by an agent whose policy is optimized using Proximal Policy Optimization
(PPO) (Schulman et al., 2017). PPO relies on the policy gradient theorem, expanded by clipping the
policy gradients according to the loss L:

L(ϕ) = Et[min(rt(ϕ)At, clip(rt(ϕ), 1− ϵ, 1 + ϵ)At)]. (2)

The agent observes the system and relies solely on observations to optimize its policy. This allows
for various distributed loads on the B-tree without readjusting the heuristic used to optimize the order
of insertions. The agent relies on two internal models to implement this: The value and the policy
network. In our use case, the value network should represent the minimal discounted cost of all open
insertions and deletions for the given tree.

State Formatting The state needs to incorporate two pieces of information: The current state of
the B-tree, as well as the list of items to insert and delete. The precise state description includes the
following: The whole tree under assessment, parsed through our hierarchical network, and the list of
elements to insert and delete in an array of fixed length.

Action Representation and Transition The action choice consists of selecting which of the
above-mentioned inserts and deletes has to be executed next. The current list of operations to be
executed is provided as part of the state description, as mentioned earlier. The action space is designed
analogously to the list of operations, with one action corresponding to one element in the input vector.

Action masking (Huang & Ontañón, 2022) is used to dynamically modify the action space to remove
all actions that resemble empty spots in the input. In our evaluation setup, this results in fewer actions
becoming available throughout the execution of the process.

Reward Shaping The reward is based on the execution costs of each operation performed:

rt = −p · (nleafsplit + nleafmerge)− q · (nsplit − nmerge). (3)

The cost of any operation is determined by the number of nodes split nsplit and nleafsplit, as well as
merges nmerge, nleafmerge required to successfully execute that operation. The minimum value of a
state thus becomes the minimal discounted number of splits and merges required to insert and delete
all values given for that specific state. We weighted leaf operations higher than other node operations.
Determining the value function of a batch of operations is difficult, leading to an MDP-based model,
solved with RL, as the most promising alternative.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

To allow a potentially endless running process, the discount value γ is set to a value smaller than
one. In setups where no further operations are added to the agent’s input, a value of one would be
theoretically feasible. This setup incentivizes the agent to perform lower-cost operations early in the
process. If the value were set to γ > 1, the agent would be incentivized to execute costly operations
as early as possible. A non-discounting setup would void this effect. Future optimization that uses
this effect would be possible.

6 EVALUATION

We measure the success of the approach by comparing our heuristic to the baseline in terms of the
highest achieved reward. The actual overall execution time of read and write operations could be
estimated by further measurements. This does not fully represent caching effects when the tree is
stored in permanent storage, but it serves as an indicator of real-world performance. The goal of
the evaluation is to display that our agent outperforms plausible, quickly computable heuristics and
is noticeably faster than exhaustive search, leading to optimal execution order. We show that using
a tool like this can significantly reduce the number of operations executed throughout a process.
Furthermore, several setups are compared, while several baselines are discussed. As an assistant for
future applications, the training performance observed throughout the experiment provides insights
into the requirements of the system during training.

6.1 BASELINES

We compare our system to one fundamental baseline, which marks the lower bound for any heuristic.
It is formed by a random order of operation for a given set of inserts and deletes. This resembles
executing them in order if received in random order on a real-world system. Furthermore, we
evaluated three non-optimal heuristics. The first one, named alternating in the following text, chooses
the largest available items in an alternating fashion. Thus, the largest element from the list of available
inserts is chosen, and then the largest element is deleted. This is repeated until the list of available
deletes and inserts is empty. The second evaluated heuristic, called insert first, first executes all
inserts, followed by all deletes in descending order. The third heuristic, called delete first, executes
all deletes in ascending order, followed by all inserts. The average reward of random execution and
all heuristics in our evaluation setup is displayed in Table 1.

6.2 EVALUATION SETUP

The experiment setup is chosen so that the resulting problems can still be analyzed by a human
operator. This setup allows a case-by-case evaluation of our policy in comparison to the heuristics.
To achieve this goal, we choose the node size and count to be relatively small. In practice, larger node
sizes would be used to maximize write and read performance. Small node sizes also increase the
probability of reordering and thus decrease the sparsity of the feedback signal. The sparse operations
on larger trees can become much more costly in comparison, as more data needs to be reorganized.

For our evaluation, we also compare the performance of a flattened observation space with a linear
feature extractor (Flattened w/ MLP) and an attention-based encoder (Flattened w/ Att.) with our
two hierarchical feature extractor variants: Multi-head attention layer after the child combination
(HE w/ Att.) and linear layer after child combination (HE w/ MLP). Despite the undesirable scaling
properties of flattened feature extractors, we still wanted to compare architectures on small trees. The
goal was to determine if our hierarchical architecture could compete on trees where all values can be
directly parsed into the feature extractor. With these goals in mind, the parameters of the environment
for all following evaluations, if not further specified, are described in Table 3 in the Appendix.

Each run lasted for 108 episodes. Each episode was executed starting with a randomly generated valid
tree with 24 values, as well as six randomly generated inserts and six randomly generated deletes.
The average reward throughout the training process is displayed in Figure 5. As displayed, our
attention-based setup outperforms all other architectures. The average reward of the random policy
is -4.76, while the final learning state of the hierarchical feature extractor achieves -2.17, leading to
an average improvement of 55% in comparison to randomly selecting elements. We measured the
inference time for different setups to ensure the practical applicability of the model, see Appendix H.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 5: Comparison of the average reward throughout the training runs with our hierarchical
attention setup (HE w/ Att.), a hierarchical feature extractor using a feedforward network (HE w/
MLP), and a linear feature extractor that parses the flattened B-tree (Flattened w/ MLP). The fourth
setup consists of a model with one attention layer, which receives the flattened tree as input (Flattened
w/ Att.). The average rewards of all the heuristics described are shown as horizontal lines.

Figure 6: The quantile position of the agent’s policy compared to the overall space of possible
permutations computed by exhaustive search over 1 000 randomly generated trees. All possible
execution orders were aggregated and their reward measured. The best-performing setup achieves a
position in the 90% quantile in over 700 of the 1 000 experiments. The steps in the graph are caused
by the stepwise reward function of the environment, in which many permutations of operations end
up with the same number of overall operations and thus reward. By only improving those by a single
reorder a noticeable number of alternative execution orders is outperformed.

A more detailed qualitative analysis was performed to illustrate the space of reachable policies
and their average rewards. Figure 6 displays the distribution of quantiles achieved by the agent’s
chosen solution. The quantiles were computed by estimating the cost of 1,000 permutations of
the operations. This process was repeated for 1,000 initial trees. It shows that the system finds a
well-performing policy in most of the cases, an illustration of one of those scenarios is given in Figure
9, see Appendix E. A few tree setups still lead to poor resulting performance, as is the case in the
example discussed in Figure 10. The hierarchical attention-based setup outperforms all other setups
we evaluated for this specific use case. Flattening and using the tree as input yields comparable
results, though consistently lower. As discussed earlier, flattening large trees is not viable and only
works in an artificially small setup, while the best-performing solutions are, in theory, not limited.

Additionally, we validated the ability of the agent to generalize to unknown tree sizes. While
increasing the number of values in our tree to 124, the policy trained on trees with size 24, still
outperforms the random and the alternating baseline. After increasing the number of values to 1024,
we could not detect a relevant performance improvement over the alternating baseline. The decrease
in relative performance might be due to the positional embedding, which encounters unknown tree
depths during inference time. Interestingly, this can still be compensated for when only one additional
tree level is added while increasing the tree size from 24 to 124. If this trend holds for larger trees,
production systems would only need to be fine-tuned after at least a B-fold increase in values.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

6.3 STORAGE SPACE

We assume that in an applied system, each node requires the full storage space available for the node,
independent of the actual number of values in the node. Yao (1978) have shown that if a tree is filled
randomly, in theory, 31% of the keys and pointers stay unused. This leads to the question of whether
our approach, by minimizing splits, subsequently also increases the storage efficiency. We can show
that by using our method, the average storage demand can be temporarily improved by up to 1.06
nodes, or 11%, at the point of maximum difference. This makes this optimization interesting even
in those scenarios in which the write/read performance is negligible for the user. While the agent
deconstructs this advantage throughout each process, he achieves a noticeably lower result at the end
of each 12-step episode. A precise description of the experiment and figures displaying the agent’s
behavior are provided in Appendix G.

6.4 ALGORITHM DISCOVERY AND NO TREE SOLUTION

This project has its foundations in a research project with the goal of searching for fast-performing
algorithms for algorithmic problems. Because of this, we performed a qualitative analysis of the
outputs of the system for patterns that could, in turn, be developed into a static algorithm that does
not require network inference. A brief overview of a set of examples is provided in Figure 13, see
Appendix I. It displays that no human observable execution pattern can be discovered when only the
chosen actions are considered. To find an algorithm that does not need the tree to function and might
thus be observable in the policy, we retrained the agent without any access to the actual tree itself. In
this setup, the agent, using only a small feedforward network, observes only the operations to execute
and should deduce in which order those operations should be executed to maximize performance.

Figure 12 displays the results. The resulting policy, at least when provided with a sorted input array,
achieved surprisingly good performance, -3.1 in the average case. This outperforms any heuristic
that we previously evaluated. Accessing the tree does not impede the computation time of the agent,
so the extra time spent on computation for the large model might be well invested on slow storage
devices when applied to large trees. A qualitative analysis, illustrated in Figure 13, cf. Appendix I, of
this agent’s policy, again did not reveal any human-readable patterns. Future research could aim at
distilling those policies into quickly executable algorithms.

7 CONCLUSION

We discovered a model setup that can successfully learn well-performing policies in the provided
environment. It is capable of outperforming the execution cost of random execution, as well as any
rule-based approach we came up with. We have shown that even without knowledge of the tree, the
agent learns a policy that performs well without any necessity to parse the input tree.

To achieve optimal results, our agent must effectively parse the input tree. Our hierarchical encoder
structure accomplishes this by parsing from the leaves up to the root. We demonstrated that this novel
hierarchical approach outperforms all tested alternatives while remaining agnostic to the tree depth
and node structure. Additionally, our evaluations highlight its potential for storage optimization,
requiring fewer node splits and merges. Furthermore, we showcase the architecture’s potential,
including a high caching rate during normal operations and an efficient embedding size.

For future work, testing with upscaled B-trees on an even larger dataset can further illustrate the
practical applicability of our methodology. All our setups relied on a dense reward signal, which
would become sparse if the node size was increased noticeably. This is expected to occur because
larger nodes reach their upper and lower limits less regularly. Evaluating the impact of this effect
would provide further insight into its performance on very large datasets.

As our model is agnostic to the problem it is applied to, exploring other applications in which the
input data can be reshaped would display future application possibilities. This would apply to all use
cases in which the data can be augmented by ordering it in a semantic hierarchy.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Anastasia Braginsky and Erez Petrank. A lock-free b+tree. In Guy E. Blelloch and Maurice Herlihy
(eds.), 24th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’12, Pittsburgh,
PA, USA, June 25-27, 2012, pp. 58–67. ACM, 2012. doi: 10.1145/2312005.2312016. URL
https://doi.org/10.1145/2312005.2312016.

Shimin Chen and Qin Jin. Persistent b+-trees in non-volatile main memory. Proc. VLDB Endow., 8(7):
786–797, 2015. doi: 10.14778/2752939.2752947. URL http://www.vldb.org/pvldb/
vol8/p786-chen.pdf.

Zhou Cheng, Chun Yuan, Jiancheng Li, and Haiqin Yang. Treenet: Learning sentence representations
with unconstrained tree structure. In Jérôme Lang (ed.), Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm,
Sweden, pp. 4005–4011. ijcai.org, 2018. doi: 10.24963/IJCAI.2018/557. URL https://doi.
org/10.24963/ijcai.2018/557.

Douglas Comer. The ubiquitous b-tree. ACM Comput. Surv., 11(2):121–137, 1979. doi: 10.1145/
356770.356776. URL https://doi.org/10.1145/356770.356776.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):1735–
1780, 1997. doi: 10.1162/NECO.1997.9.8.1735. URL https://doi.org/10.1162/neco.
1997.9.8.1735.

Shengyi Huang and Santiago Ontañón. A closer look at invalid action masking in policy gradient
algorithms. In Roman Barták, Fazel Keshtkar, and Michael Franklin (eds.), Proceedings of the
Thirty-Fifth International Florida Artificial Intelligence Research Society Conference, FLAIRS
2022, Hutchinson Island, Jensen Beach, Florida, USA, May 15-18, 2022, 2022. doi: 10.32473/
FLAIRS.V35I.130584. URL https://doi.org/10.32473/flairs.v35i.130584.

Jan Jannink. Implementing deletion in b+-trees. SIGMOD Rec., 24(1):33–38, 1995. doi: 10.1145/
202660.202666. URL https://doi.org/10.1145/202660.202666.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. The case for learned index
structures. In Gautam Das, Christopher M. Jermaine, and Philip A. Bernstein (eds.), Proceedings of
the 2018 International Conference on Management of Data, SIGMOD Conference 2018, Houston,
TX, USA, June 10-15, 2018, pp. 489–504. ACM, 2018. doi: 10.1145/3183713.3196909. URL
https://doi.org/10.1145/3183713.3196909.

Jun Rao and Kenneth A. Ross. Making b+-trees cache conscious in main memory. In Weidong
Chen, Jeffrey F. Naughton, and Philip A. Bernstein (eds.), Proceedings of the 2000 ACM SIGMOD
International Conference on Management of Data, May 16-18, 2000, Dallas, Texas, USA, pp.
475–486. ACM, 2000. doi: 10.1145/342009.335449. URL https://doi.org/10.1145/
342009.335449.

Xinming Ren, Huaxi Gu, and Wenting Wei. Tree-rnn: Tree structural recurrent neural network for
network traffic classification. Expert Syst. Appl., 167:114363, 2021. doi: 10.1016/J.ESWA.2020.
114363. URL https://doi.org/10.1016/j.eswa.2020.114363.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal representations by
error propagation, parallel distributed processing, explorations in the microstructure of cognition,
ed. de rumelhart and j. mcclelland. vol. 1. 1986. Biometrika, 71(599-607):6, 1986.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/
1707.06347.

Robert Sedgewick and Kevin Wayne. Algorithms, 4th Edition. Addison-Wesley, 2011. ISBN
978-0-321-57351-3.

10

https://doi.org/10.1145/2312005.2312016
http://www.vldb.org/pvldb/vol8/p786-chen.pdf
http://www.vldb.org/pvldb/vol8/p786-chen.pdf
https://doi.org/10.24963/ijcai.2018/557
https://doi.org/10.24963/ijcai.2018/557
https://doi.org/10.1145/356770.356776
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.32473/flairs.v35i.130584
https://doi.org/10.1145/202660.202666
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/342009.335449
https://doi.org/10.1145/342009.335449
https://doi.org/10.1016/j.eswa.2020.114363
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Andrew Chi-Chih Yao. On random 2-3 trees. Acta Informatica, 9:159–170, 1978. doi: 10.1007/
BF00289075. URL https://doi.org/10.1007/BF00289075.

11

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1007/BF00289075

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A CACHING

Caching allows reusing the embeddings of large elements of the embedding tree. Figure 7 illustrates
this potential by displaying the valid and invalid nodes on a small tree and the invalidation path.

Root

A (4 Ch.) B (4 Ch.) C

C1 C2 C3 C4

D (4 Ch.)

Figure 7: An illustration of the caching mechanism: A change in C3 invalidates all nodes along its
path to the root. All gray nodes are read from the cache and do not need to be recomputed. A, B, and
D contain four children each. This saves parsing 18 nodes, while only six embeddings need to be
loaded from cache or recomputed.

B ROUNDED REGRESSION ANALYSIS

Since we initially wanted to predict the number of splits and merges associated with a given tree
and operation, we can also evaluate our model prediction, rounded to the nearest integer, against the
actual values. Figure 8 shows that despite our model being optimized with an MSE loss, we still
perform very well on this categorical task and achieve an F1 macro and micro score of 0.57 and 0.91,
respectively. If we were to clamp the model output to 3, similar to a normal categorical setup, the F1
macro score would improve to 0.72.

Figure 8: The confusion matrix of our rounded regression experiment highlights satisfactory perfor-
mance, despite the model predicting a higher cost than 3.5 in some instances.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

C POLICY AND REWARD DISTRIBUTION

The following two graphs illustrate the space of possible orderings for one fixed tree.

Figure 9: The summed-up received the reward of our best-performing model, red, as well as the
flattened input alternative. In comparison, we plot the resulting reward for 1 000 permutations of
the 12 executed actions. In this case (seed: 98476), the agent performed exceptionally well when
compared to the distribution of possible rewards. A detailed analysis of the input showed no reliable
indicator of why this was caused. This quantile position was the foundation of Figure 6. A comparison
of this setup and the following one is provided in the caption of Figure 10.

Figure 10: The summed-up received the reward of our best-performing model, red, as well as the
flattened input alternative. In comparison, we plot the resulting reward for 1 000 permutations of
the 12 executed actions. In this case (seed: 50010), the agent performed exceptionally poorly when
compared to the distribution of possible rewards. It seems that the tree structure is at fault, even
though there are only marginal differences compared to the tree that formed the initial state in the
episode in Figure 9. In this case, the insertion of one value caused two splits and the addition of a full
layer to the tree. A costly operation, which could have been avoided but was not properly predicted
by the agent. This shows that even small inaccuracies can cause costly operations.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

D BASELINE REWARDS

Table 1 displays the average reward of all evaluated heuristics.

Heuristic Avg. Reward (over 10 000 episodes)
Alternating -4.28
Inserts First -6.44
Deletes First -8.70

Random -4.76

Table 1: The average reward of all four described heuristics. Interestingly, deleting the elements first
causes more reconstructions due to underfilled nodes than randomly inserting. The same goes for
executing all inserts first. Random performs worse than alternating.

E HYPERPARAMETERS

The following table includes the hyperparameters used to conduct the experiments.

MDP
Gamma 0.999

Optimizer
Step-Size 0.1

Architecture
Embedding Size 64

Num. Feedforward Layers 2
Num. Attention Heads 4

Activation Function ReLu
Batch Size 512

Table 2: Excerpt of parameter choices for the learning setup as well as the optimizer.

Table 3 presents our tree parameter choices for the experiments.

Parameter Value
Node-Size b 4

Elements in Tree 24
Number of Insert Ops at s0 6
Number of Delete Ops at s0 6

Table 3: Environment variables for the experiments.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

F TRAINABLE PARAMETERS

Our model scales with larger tree sizes without having to increase its parameter size, which is a
fundamental improvement over other architectures.

Values in Tree Architecture Number of Parameters

24 HE w/ Att. 47,302
Flattened 54,272

124 HE w/ Att. 47,302
Flattened 246,272

1,024 HE w/ Att. 47,302
Flattened 6,006,272

Table 4: Number of parameters required for the two compared architectures across increasing tree
sizes.

G STORAGE SPACE EXPERIMENT

The experiment setup consisted of a randomly generated tree, which subsequently was filled with six
additional elements, while six elements were eventually removed. The resulting tree was then reused
to add another six elements while deleting another six. This process was repeated ten times. The
whole experiment was repeated ten times to reduce the influence of randomness on the measured
results. We compare the average number of nodes required in this setup with the results achieved by
the random heuristic. To ensure equality, the process was initialized with an equal starting tree and
the same inputs. Figure 11 illustrates the results. It displays the number of nodes used by the agent to
store the data available a step t, a lower number means the same data is stored in fewer nodes and
thus the relative usage is better.

Figure 11: The average number of nodes in the graph for the experiment described in Section 6.3.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

H INFERENCE TIME AND HARDWARE

For this system to be practically applicable, it is necessary that the inference is reasonably fast.
Table 5 compares the time in milliseconds required for one forward pass on the hardware used to
perform the experiments. It shows that a single forward pass, without caching, can be performed in a
few milliseconds. In this scenario, all data read is already in main memory. Thus, it is assumed that
the embeddings are readily available. In this system, a forward pass is fast enough to be worth the
computation time when 55%. All of our experiments were conducted using either a single Nvidia
A40 GPU or consumer-grade hardware. The RL training runs lasted the longest, at 6–8 hours per run,
depending on the model configuration, while the regression experiments lasted less than 2 hours.

Values per Tree Runtime (ms)
24 1.89

124 2.42
1,024 7.21

Table 5: The average execution time for a forward pass in all attention-based setups. It grows in
logarithmic time.

I OBSERVED POLICIES WITH HIDDEN TREES

The agent is able to learn well-performing policies even if it does not have access to the tree itself.
Figure 12 illustrates the learning process.

Figure 12: The learning curve of two agents that only receive the available operations and input,
without ever observing the tree. While unsorted inputs lead to a result on par with randomly executing
actions, sorted inputs lead to a policy that still outperforms any evaluated heuristic noticeably while
only requiring a very small model and no tree reads at all.

The following figure displays the execution order chosen by the agent, which only observes the
actions in 40 episodes with 12 steps each. It shows that there is no obvious policy that we could
reproduce with a rule-based approach. It reliably outperforms each of the heuristics designed and
evaluated by us.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 13: Each column shows the actions for one episode. The color represents whether it is an
insert (blue) or a delete (red), so the position of the value in the action space, not in the space of
possible values, with which each action can be associated. The hue shows the size of the value relative
to the others, also encoded in the position in the sorted action. The agent tends to perform inserts and
deletes in an alternating fashion, but also stacks multiple operations of the same type from time to
time. The inserted values do not always resemble the deleted values, and values in close proximity do
not always follow each other. Both patterns can be observed, though. For example, in seed number
29, 15 gets inserted, then 16 and 14 get deleted, then 10 gets inserted.

17

	Introduction
	Related Work
	B-Tree and its Optimizations
	Tree Neural Networks

	Representation Model Setup
	Hierarchical Model Architecture
	Caching

	Regression Experiments
	Process Model and RL Setup
	Evaluation
	Baselines
	Evaluation Setup
	Storage Space
	Algorithm Discovery and No Tree Solution

	Conclusion
	Caching
	Rounded Regression Analysis
	Policy and Reward Distribution
	Baseline Rewards
	Hyperparameters
	Trainable Parameters
	Storage Space Experiment
	Inference Time and Hardware
	Observed Policies with Hidden Trees

