Efficient Sparse Attention needs Adaptive Token Release

Anonymous ACL submission

Abstract

In recent years, Large Language Models
(LLMs) have demonstrated remarkable capabil-
ities across a wide array of text-centric tasks.
However, their ‘large’ scale introduces signifi-
cant computational and storage challenges, par-
ticularly in managing the key-value states of
the transformer, which limits their wider appli-
cability. Therefore, we propose to adaptively
release resources from caching and rebuild the
necessary key-value states. Particularly, we ac-
complish this by a lighting controller module
to approximate an ideal top- K sparse attention.
This module retains the tokens with the highest
top-K attention weights and simultaneously re-
builds the discarded tokens, which may become
essential for future decoding. Comprehensive
experiments in natural language generation and
natural language modeling task reveal that our
method is not only competitive with full atten-
tion in terms of performance but also achieves
a significant throughput improvement of up to
221.8%. The code for replication is available
on the https://anonymous.4open.science/
r/ADORE-5384.

1 Introduction

After breaking through the cognitive barriers,
large language models (LLMs) are now widely
used in many text-rich areas, such as voice
assistants (Zhang et al., 2023), search en-
gines (Lindemann, 2023), and recommendation
systems (Acharya et al., 2023). These successes
are a testament to the philosophy of scaling up
parameters to boost performance, i.e., the scaling
law (Kaplan et al., 2020). However, in situations
demanding rapid or extensive text modeling, the
vast size of the model significantly escalates the
computational and storage requirements for the
key-value (KV) states of self-attention, which, in
turn, limits its throughput (Ma et al., 2023; Liu
et al., 2023a). For example, when using a model
with 7 billion parameters, caching the KV states

Step N : . StepN+1:

LLMs | [profoundly| | impact society 1 | LLMs | |prnloundly| | impact | | society | Lin
=>
Initial KV cache Update Updated KV cache
+/ Top-K and kept: load 3¢ Top-K but released: no load C) KV states of the token LY Curent token

Figure 1: An illustration of the conflict of releasing
Key-Value (KV) states in advance during the inference.
Consider a cache size of 3. At step N, the KV states
associated with the word ‘profoundly’ are released from
the cache. Consequently, in the subsequent step N+1,
the ‘profoundly’ state is absent from the cache, despite
having a higher attention score for ‘in’.

for 1,000 tokens results in a memory requirement
that exceeds twice the size of the model parame-
ters, consequently increasing time costs in attention
calculation and memory swapping.

Recent efforts address this issue from two per-
spectives: 1) hardware optimization, analogous to
‘increasing income’; 2) refining algorithms, sim-
ilar to ‘reducing expenditure’. The former ap-
proach typically optimizes performance by schedul-
ing tasks across multiple GPUs, (Borzunov et al.,
2022) or by implementing hierarchical unloading
using the CPU and disk (Aminabadi et al., 2022;
Sheng et al., 2023). These techniques, though
efficient, require additional hardware and, if not
carefully scheduled, can lead to increased com-
munication latency. This, in turn, may potentially
degrade the overall user experience (Rasley et al.,
2020; Yang et al., 2023). The latter strategy en-
hances efficiency by limiting the caching size of
key-value states, such as sparsely attending to its
immediate neighbors (Zaheer et al., 2020; Belt-
agy et al., 2020) or compressing prompts (Jiang
et al., 2023; Li et al., 2023d). Though efficient, it
can often lead to a drop in performance. Besides,
some methods instantiate the sparse attention by
masking attention after the attention weights have
been calculated (Rao et al., 2021; Li et al., 2023c¢).

https://anonymous.4open.science/r/ADORE-5384
https://anonymous.4open.science/r/ADORE-5384
https://anonymous.4open.science/r/ADORE-5384

As a consequence, they fail to enhance inference
speed and reduce memory usage. Among these
methods, the dynamic top- K attention (Liang et al.,
2023), achieving sparsity by selecting the highest
attention contributions, demonstrates performance
comparable to, or even better than, full attention
models. Due to its superior efficacy, it has been
incorporated into numerous foundational architec-
tures, including BiFormer (Zhu et al., 2023) and
Informer (Zhou et al., 2021).

Despite the success of the dynamic top-K atten-
tion, it is non-trivial to simultaneously achieve high
efficacy and efficiency. Firstly, to gain efficiency,
releasing the unnecessary KV states of previous
tokens in advance may result in inaccuracies of top-
K attention calculation due to premature and er-
roneous releasing. This occurs because accurately
determining the top-K attention requires consid-
ering all KV states of past tokens. Secondly, as
illustrated in Figure 1, due to the long-term depen-
dencies in text, the tokens released earlier could be
among those needed for top-K attention in future
decoding. As a consequence, its absence will lead
to inaccurate sparse attention calculation for the
later tokens.

To this end, we introduce ADORE, ADaptive
tOken RElease, which maintains a constant cache
size by accurately releasing useless past key-value
(KV) states and efficiently reconstructing vital past
KV states that were previously released. ADORE
introduces a lightning controller module that adap-
tively releases tokens with the lowest predicted
attention contribution for the current token from
the KV cache. This ensures a fixed KV cache over-
head, even when processing a large number of to-
kens. In addition, ADORE rebuilds the KV state
for tokens that are likely to contribute higher at-
tention scores but have been previously released.
This rebuild mechanism counters the issue when
a released token is essential for future decoding.
Moreover, ADORE can seamlessly integrate into
LLM inference, showing impressive results with
only minor fine-tuning and training needed for the
lightweight controller module. To demonstrate the
effectiveness of our approach, we conducted exten-
sive experiments on multiple benchmark datasets.
The results reveal that ADORE achieves up to a
221.8% improvement in throughput compared to
full attention models while preserving almost iden-
tical text quality.

2 Methodology

This section first establishes the framework for effi-
cient sparse attention, followed by initially explor-
ing the adaptive token release in Section 2.2. Sub-
sequently, we rebuild the KV states of important
tokens, approximating the ideal dynamic sparse
attention in Section 2.3. Finally, we propose an op-
timized matrix slicing algorithm to accelerate the
implementation of our method in Section 2.4. An
overview of our method is illustrated in Figure 2.

2.1 Efficient Sparse Transformer

Let T,, = {t1,...,ts,ts+1,--.,tn} be a set of
word tokens, where {¢1, ...t} represent user in-
put tokens, and {ts11,...,t,} are tokens gener-
ated by a transformer-based model, such as GPT-
Neo (Black et al., 2021) and Llama (Touvron et al.,
2023). When generating the next token ¢, 1, the
current token t,, serves as the query input. The ¢,,’s
key-value states are based on the following scaled
dot-product attention as

qn,l X (Kln)—l—
Vd

a,, = softmax () x V", (1)

where a,,; € R? denotes the hidden state at the "
layer of the transformer. It undergoes a non-linear
transformation process to become the key and value
states associated with the token ¢, g,,; denotes the
query vector derived from ¢, at the [*" layer. The
terms K}' € R(™*d and Ve R(™M*4 represent
the key and value states from the current token set
T, at the same layer. These states are retained in the
GPU memory to minimize redundant computations.
The generation of the token ¢, is accomplished
through a multi-classification approach, utilizing
the hidden state v,, 1, € R? from the last layer.

For an efficient sparse transformer, we selec-
tively cache the most relevant KV states, aiming
to reduce computational demands while maintain-
ing or even enhancing the model’s performance in
generating subsequent tokens as

. T
/ qnvl X (Kerl,l)
softmax

nl — \/&

n
a X Vi1

Here, a) , approximates the a,; using the

K’rrrLz—s—l,l e R(m—l—l)xd, ‘/(:H-IM c R(m+1)><d,

which correspond to selecting m rows from K l”_l
and VE"_l and concatenating them with k,,; and

a) Group Decision with Controller Module!

¢) Autoregressive Decoding

/

\

D

Embedding of Token
kept in the cache

~

Next token

/l

Controller Module

LLMs P

|

—C -:_*:-l O O *l O
. | @ @O @ @
Released from cache Top R T0£ m
_ 0® 0 ® 0 0

Self-Attention

released from the cache

|

b) Adaptive Token Release and Select Rebulit 'l‘uncm}

© ®

Released Tokens jprofoundly,

_____ %

Updated cache LLMs

Original cache LLMs impact society vai ‘

—FFN
Group 2:
Kept i h i
eptin cache Self-Attention Embedding of
Current Token
KV states of Token
\ kept in the cache
Q © PN
Ly Self-Attention @
Keep action

society various)

Release action

Ek])

Figure 2: The controller module calculates the importance of all input and generated tokens for the current token.
The Key-Value (KV) cache maintains the states of m tokens with the highest importance. For tokens that were
previously released from the cache, those with the top- R highest importance are concurrently modeled alongside

the current token.

vy, respectively, with the condition that m <<
n — 1. ky 1, v, denote the key and value vector
derived from ¢, at the [*" layer. This implies that
only a significantly smaller K7, and V.,
are retained in GPU for rapid inference and save
memory.

From a performance standpoint, achieving the
ideal sparsity involves computing the full attention
weight wy, = g, % (K l")T € R™ and then select-
ing the top-m query-key product weights. Then,
these weights serve as indices for slicing V.7, ;.
While this method is optimal in performance, it
does not confer any computational or memory sav-
ings as the process of computing full attention
weights for all query-key pairs and then selecting
the top weights is computationally intensive.

2.2 Adaptive Token Release

The adaptive token release is to create efficient
scheduling of the key-value states within the GPU
memory. The main idea is to use a lighting con-
troller module as an alternative to computing full
weight for slicing the full key-value states. To be
both efficient and effective, we have implemented
several design strategies:

Refine the model with top-K attention. Com-
pared to the full attention, Top-K could mitigate
the impact of excluding partial KV states once the
pertinent top-K KV states are included within the
m cached KV states, which is consistent with the

target defined in Equ (2). Therefore, we initially
fine-tune the LLMs with top-K attention, which
utilizes only the highest top-K attention weights
while setting the remainder to 0. Remarkably, this
approach yields performance that is on par with
full attention models (Liu et al., 2022). To be ef-
ficient, the cache size m is slightly larger than K.
As m decreases, the complexity of the scheduling
process increases correspondingly.

Adopt a uniform scheduling policy for the re-
tention or exclusion of KV states across various
layers. Constructing a layer-specific scheduling
strategy would necessitate additional time to model
each layer’s input. Moreover, the initial layer is
more pivotal for integrating value states; as we
delve deeper into the layers, the hidden states be-
come increasingly homogeneous (Wu et al., 2023).
Additionally, it is observed that different layers of-
ten focus on a similar set of top-K attentions. The
effectiveness of the uniform scheduling policy is
elaborated in Appendix C.

Update the cached KYV states by appending the
latest KV state and selectively release an older
one. An intuitive idea is to store the KV states in
the motherboard’s memory as backup. However,
due to bandwidth limitations between the GPU and
motherboard, moving KV states in and out proves
to be extremely slow, at times even slower than re-
calculating the KV states (Aminabadi et al., 2022).

Consequently, when updating the cached KV states,
we simply append the most recently computed KV
states while removing a nonsignificant older one,
thereby maintaining a constant size for the cache.

Adhering to these strategies, we develop a con-
troller module that utilizes the lightweight and time-
efficient GRU (Dey and Salem, 2017) for schedul-
ing the cached KV states. Specifically, during the
generation of token ¢,,11, we establish the proba-
bility of whether caching the KV state of a token ¢;
as:

zi = GRU(zy,zi_1)
Sigmoid (MLP(p; + 2;))

o =

where x; € R? represents the token embedding
from the LLMs. The GRU is a single-layer GRU
(an unidirectional model with its effectiveness ana-
lyzed in Appendix D) that recurrently transforms
this token embedding into a context-aware repre-
sentation z; € R?. The term p; € R? denotes
the position embedding for the i** token, which
signifies the importance of token position in the
scheduling model. During the update of the KV
states, we discard those with the lowest o; values
and append the most recent KV states to the cached
states. To fine-tune its parameters, we construct a
dataset by collecting word embeddings of each se-
quence as input. Then we construct corresponding
labels by assigning a value of 1 to the indices of
the top- K tokens that most frequently occur within
the top-K /2 attention scores across all layers, and
a value of 0 to all others.

2.3 KV States Rebuild

Adaptive token releasing facilitates the selective
preservation of the most pertinent tokens, yet pre-
viously discarded tokens may become essential for
future decoding due to the long-term dependen-
cies in text. To counter this issue, we propose the
rebuilding of KV states as a complement.

This method entails retrieving the top-R to-
kens with the highest o; values from the set of
released tokens. Let X € RE*4 represent the to-
ken embedding of selected released tokens. We
concatenate Xy with x,, i.e., the embedding
of current token ¢,,, forming the input Xpq €
RU+HD*d After (I — 1)-layers processing, we
can obtain the query states QT}L{_H’Z e RE+Dxd

n m+R+1)xd n
Ky € R 4 and Vg, €

+R+1)xd :
R(™)%d where K} pi1/ Vi gy, 1s for-
mulated by concating cached key/value state and

rebuild key/value states for the input tokens. With
its argument, the attention is calculated as

QR+L1X G{&+R+LO

T
n
\/a) X Vm+R+1,17

A/R+1,l = softmax <

where A%, ; is the hidden state. To get the corre-
sponding value for the current generating tokens,
we get the @], ; by selecting the last row of A%, | ;.
Through the parallel rebuilding of the released KV
states, we maximize the utilization of GPU without
incurring excessive time overhead.

2.4 Matrix Slicing as Multiplication

The scheduling of KV states relies on the use of
a matrix-slicing operator. Traditional slicing op-
erators like gather and mask-select can lead
to significant time overheads (Kim et al., 2022),
particularly when batch operations involve vary-
ing slicing indices. To circumvent this, we lever-
age the GPU’s rapid matrix multiplication capa-
bilities. For instance, to remove the j** row
from K ?n,l’ we initially prepare a slicing matrix,
Sj = I(1;j-1,j+1:m),» Where I € R™*™ is the
identity matrix and I(1.;_1 j41.m),. selects all rows
of I except the j** row. The resulting K" |, =
S; x K7, with S; being pre-prepared to save
time.

3 Experiment

3.1 Datasets

To evaluate the effectiveness of various sparse at-
tention mechanisms in LLM, we conduct extensive
experiments across three distinct tasks: natural lan-
guage generation, stream generation, and long-text
modeling. For the first task, we evaluate on Ul-
traChat (Ding et al., 2023), EverythingLMl, and
Math (Li et al., 2023b). For the second task, we
experiment on StreamEval (Xiao et al., 2023) and
StreamChat (built upon UltraChat). For the last
task, we evaluate models on CNN Dailymail (See
et al., 2017) and SAMSum (Gliwa et al., 2019).
Specifically, UltraChat is a multi-turn dialogue
dataset containing approximately 696,600 training
samples and covering diverse topics such as ques-
tions about the world and creative writing. Ev-
erythinglLM is a instructional dataset consisting of
1,000 conversations and encompassing a wide array

"https://huggingface.co/datasets/
totally-not-an-11lm/EverythingLM-data

https://huggingface.co/datasets/totally-not-an-llm/EverythingLM-data
https://huggingface.co/datasets/totally-not-an-llm/EverythingLM-data

Dataset UltraChat EverythingLM Math

Metric BLEU ROUGE BERT-F | BLEU ROUGE BERT-F | BLEU ROUGE BERT-F
Full Attention 35.6 29.2 63.4 35.4 30.8 64.5 38.6 29.9 69.7
Window Attention 26.7 28.0 61.4 223 259 62.3 30.3 24.3 66.3
Strided Attention 28.0 24.8 57.5 20.3 22.1 58.5 33.0 26.7 66.7
StreamingLLM 23.9 26.0 59.6 20.5 25.6 61.4 329 26.8 68.3
ADORE 36.8" 28.8 63.5" 30.4* 27.7* 63.1" 38.8" 28.9* 70.5*

Table 1: Performance comparison of different methods in natural language generation tasks. We use Full Attention

[T3082]

as the upper limit. The best results are marked bold. “x
sparse attention method, with a p-value < 0.01.

of topics and interactions. Math dataset is com-
posed of 50,000 problem-solution pairs obtained
using GPT-4 across 25 math topics. StreamChat
concatenates every 100 samples from UltraChat
and feeds them into the model in a streaming fash-
ion to assess the quality of the generated answers.
StreamEval is a question-answer dataset with
ground truth answers, building upon LongEval (Li
et al., 2023a). Specifically, it comprises 2,000 sam-
ples, each with 1,000 lines of textual data and 100
retrieval questions. CNN Dailymail is a news sum-
marization dataset containing over 300,000 news
articles. SAMSum is a summarization dataset con-
taining about 16,000 messenger-like conversations
with summaries. The details of the datasets are
reported in Appendix A.

Baseline. We compare our method with the fol-
lowing methods: (1) Full Attention encompasses
all past KV states across every layer, character-
ized by a time complexity of O(T?) and linear
growth in cache size. This method utilizes the most
extensive token information, thus establishing an
upper bound for most tasks. (2) Window Atten-
tion (Hassani et al., 2023) focuses on the nearest
tokens for self-attention at each layer, thus ensur-
ing a constant size for the key-value cache. (3)
Strided Attention (Child et al., 2019) attends to
both the nearest and distant tokens by periodically
focusing on one with a fixed interval, thus striking
a balance between effectiveness and efficiency. (4)
StreamingLLLM (Xiao et al., 2023) extends Win-
dow Attention by adding the first four tokens to the
cache, aiming to maintain a normal distribution of
attention scores and stable inference settings.

Experimental Protocols. We employ Llama-2
7B as our backbone for evaluation; it has 32 trans-
former layers and an extended 4,000 context length.
The Llama-2 7B (Touvron et al., 2023) is known for
its excellent performance and includes RoPE (Su
et al., 2024) for simplified length extension. For
our experiments, we employ the top-96 attentions
and set the KV cache size m to 192 with top-8 re-

indicates significant improvement over the top-performing

500 SteamingLLM&Window Attention
—e— ADORE
--=- Full Attention
400 -~ Strided Attention
£300 i\\.\.___.’,’,\‘
on SN
= « .
2 Tl e
£200 N
~oo—a
..
100 R
5 92 38 56 768 960

Generated Length
Figure 3: Performance comparison in terms of through-
put for generating different text lengths.

built tokens. We randomly selected 1,000 samples
from the benchmark dataset for training purposes.
This sample was utilized to develop the sparse top-
K backbone model using QLoRA (Dettmers et al.,
2023), along with the controller module. The extra
data were employed for testing models. To evaluate
the quality of the generated text, we use metrics
including BLEU, ROUGE, BERT-F (Zhang et al.,
2019) and Accuracy. To measure the inference
speed of different methods, we use Throughput,
which is defined as the number of tokens generated
per second.

3.2 Natural Language Generation

This subsection evaluates models’ performance in
natural language generation. We summarize the
quality of generating text on UltraChat, Every-
thinglL.M and Math benchmarks in Table 1 and the
throughput against different sequence lengths in
Figure 3. From the results reported, we have the
following observations:

The proposed ADORE achieves the best per-
formance, and consistently outperforms all the
baselines on all datasets. In Table 1, our method
shows an improvement over full attention in the
UltraChat dataset, with increases of 1.2% in BLEU
scores and 0.1% in BERT-F scores. On the other
hand, Window Attention, Strided Attention, and

StreaminglLLM show reductions of 13.1%, 15.1%,
and 14.9% in BLEU scores, respectively. A sim-
ilar trend is also observed in the learning curve
illustrated in Appendix C.

* Our proposal performs the best in achieving a
high efficiency while maintaining a competitive
performance against full attention. Specifically,
it is evident that our method demonstrates a con-
sistent throughput against various generated text
lengths; whereas full attention suffers from a sig-
nificant drop on throughput as the generated text
length increases. Notably, our method outperforms
full attention by 151.4% and 221.8% when gen-
erating text lengths of 768 and 960, respectively.
Though Window Attention and StreamingL.LM
have higher throughput, their performance on natu-
ral language generation suffers a lot.

3.3 Stream Generation

To show the real-world applicability of our pro-
posal, we emulate the performance of the models
on infinite streaming dialogue, i.e., StreamChat,
and question-answering tasks, i.e., StreamEval. For
StreamChat, we chunk the streaming chat with the
size of 4096 to evaluate the quality of generation
against different sequence lengths. The experimen-
tal results are reported in Table 2. For StreamEval,
we report the generating accuracy of models’ re-
sponses after multi-times query in Figure 4.

1.0

0.8
> N
\
0.6 !
< 1
i~} 1
= 1
8 '.
S 1
<04 |
SteamingLLM '=
—— ADORE !
0.2 Window Attention .'n
=== Full Attention |
-~ Strided Attention
0.0 0 5 10 15 20 25

Query Times
Figure 4: Performance comparison on the StreamEval
at various query times.

From the Table 2 and Figure 4, we have fol-
lowing observations: (1) In the table, our method
demonstrates a consistent performance across dif-
ferent sequence lengths, which justifies its effi-
cacy in streaming dialogue, especially in length ex-
trapolation and capturing high-importance tokens.
While full attention exhibits the best performance

on the first subset (length in range (0,4096]), its
performance rapidly declines as the streaming se-
quence length surpasses the pre-training window
size, and eventually becomes almost 0. (2) In the
figure, our method consistently maintains high ac-
curacy, even when the number of queries exceeds
20, which expresses the superiority of our pro-
posed method. On the other hand, full attention
and strided attention display competitive perfor-
mance at limited query times. However, they suffer
a significant drop in performance due to Out-of-
Memory (OOM) issues, which arise as the accu-
mulation of excessive Key-Value (KV) states in-
creases with the number of queries. This obser-
vation justifies the necessity of sparse attention.
However, Window Attention and Streamingl.LM
demonstrate lower accuracy compared to our ap-
proach, primarily due to their fixed heuristic poli-
cies.

3.4 Long Text Modeling

We explore the performance of different methods in
modeling super-long texts on CNN Dailymail and
SAMSum. We report perplexity (ppl.) as the metric
to compare the performance of different methods
across different sequence length subsets. Similar to
Section 3.3, the length in each subset is in the range
of (i — 1) x 1024,4 x 1024] for (i = 1,2,...).

StreamingLLM
—— ADORE

Full Attention
Strided Attention

Window Attention

CNN DM SAMSum

log PPL

)

0

2000 4000

Input Length

6000 2000 4000

Input Length

6000

Figure 5: Perplexity evaluation on CNN DM and SAM-
sum across different lengths.

Figure 5 illustrates the logarithm of perplex-
ity for different methods across various model-
ing intervals. It is evident that our method and
StreaminglLLM consistently maintain the lowest
perplexity; they are effective in preserving the
original attention distribution with sparse atten-
tion. Therefore, they both demonstrate superior
performance on extrapolating length. Although full
attention exhibits the best performance in the short-
est input length subset (][0, 4096)), its performance

Sequence Length (0, 4096] (4096, 4096 x2] (4096x2, 4096 x 3] (4096 %<3, 4096 x4]
Metrics BLEU ROUGE BERT-F|BLEU ROUGE BERT-F|BLEU ROUGE BERT-F|BLEU ROUGE BERT-F
Full Attention 42.8 438 70.9 3.6 4.9 33.1 2.1 24 30.1 2.0 24 30.0
Strided Attention | 27.7 30.5 60.9 2.1 3.0 29.7 2.0 22 30.0 2.0 2.1 29.6
Window Attention| 24.7 28.5 60.6 | 14.2 19.6 54.3 16.1 18.1 50.1 199 204 52.1
StreamingLLM 14.6 36.1 64.8 148 290 632 | 18.6 284 624 | 217 275 63.5
Ours 389 383 664 | 365 39.2 67.7 | 355 377 67.1 | 36.7 39.5 69.1

Table 2: Performance comparison on StreamChat across different streaming lengths. The best results are shown in

bold.

quickly becomes worse when the input length sur-
passes the size of the pretraining window.

3.5 Ablation Study
3.5.1 Influence of Attention Sparisity

0.80

0 200 400 600 800 1000
Steps

Figure 6: Comparison of fine-tuning loss against differ-
ent values of K.

We explore ADORE’s performance against dif-
ferent K in adaptive token release. In particular,
we configure K in the range of {48, 96, 128, 192}
for fine-tuning the model and top-m as {48 x 2,
96 x 2, 128 x 2, 192 x 2} for a fixed cache size.
The inference performance and the corresponding
training loss are presented in Table 3 and Figure 6,
respectively.

Figure 6 shows that when K values are set to 96,
128, and 192, the differences in training loss are
minimal. This indicates that retaining tokens with
the highest top-K attention weights is sufficient,
and further increasing K does not yield substantial
improvements in model performance. From Ta-
ble 3, it can be observed that there is no significant
improvement in the quality of the generated text
when m increases from 96 x 2 to 192 x 2, which,
however, is accompanied by a notable decrease
in throughput. Therefore, it is essential to select
an appropriate set of K and m, which balances
throughput and the quality of generated text.

3.5.2 Influence of KV States Rebuild

We evaluate the impact of different 2 in KV states
rebuild. Specifically, we select R in the range of

m [Throughput [BLEU ROUGE BERT-F

48 x 2 270.5 355 27.8 62.8
96 x 2 259.6 36.8 28.8 63.5
128 x 2 202.6 37.0 29.2 63.7
192 x 2 167.7 37.3 294 64.3

Table 3: Inference performance comparison of maintain-
ing different cache sizes m by adaptive token release.
The best results are marked bold.

Numbers | Throughput [BLEU ROUGE BERT-F

R=0 278.2 343 26.8 62.3
R=8 259.6 36.8 28.8 63.5
R=16 202.6 37.5 28.9 63.9
R=32 150.8 38.0 29.9 64.3

Table 4: Inference performance comparison of different
numbers of rebuilt tokens during inference. The best
results are marked bold.

{0, 8, 16, 32} and summarize the inference perfor-
mance in Table 4. The results demonstrate that
as the R in rebuilt tokens increases, the model’s
performance first improves. However, the improve-
ment comes at the cost of a reduction in throughput.
When the number of rebuilt tokens is further in-
creased from 16 to 32, we can observe an improve-
ment of 1.5% in BLEU, 1.0% in ROUGH, and 0.4%
in BERT-F. However, this minor improvement is
accompanied by a 34.4% decrease in throughput.
This indicates that selecting the appropriate num-
ber of rebuilding tokens is crucial for maintaining a
trade-off between performance and quality during
the inference process.

3.5.3 Effectiveness of Controller Module

Since we use the controller module for advancedly
predicting top-K attention weights, next we in-
vestigate how it affects overall performance. In
particular, we adjust the module with the follow-
ing variants: (1) w/o GRU: directly using the MLP
for predicting the keeping/dropping probability of
tokens; (2) ADORE j_g4: set hidden size of the
controller to 64; (3) ADORE y—_79g: set hidden
size of the controller to 128; We first report accu-
racy and F1 scores on the dataset that fine-tunes the
controller module, as detailed in Section 2.2. Then,
we report BLEU, ROUGE, and BERT-F scores on

the Ultrachat benchmark, which further illustrate
how the performance of the controller module in-
fluences the performance of LLMs.

We summarize the results in Table 5. Our obser-
vations are as follows: (1) The GRU is crucial for
the controller module to serve as an effective alter-
native to full attention; (2) an improved controller
module results in enhanced performance during
the inference process, as it offers a more accurate
approximation of sparse attention.

Controller Inference
Variants Acc. F1 |BLEU ROUGE BERT-F
w/o GRU 83.4 78.8| 36.2 26.4 61.7

ADORE 4/—125 | 87.9 82.3| 37.5 28.9 63.9
ADORE 464 [81.5 74.0| 335 28.5 62.4

Table 5: Performance comparison of different variants
controller module and inference. The best results are
marked bold.

4 Related Work

In this section, we introduce the related work, in-
cluding sparse attention, efficient LLMs and length
extrapolation.

4.1 Sparse Attention

Several works have attempted to integrate sparse
attention into transformer-based models. This inte-
gration reduces the computational complexity from
quadratic to approximately linear in the sequence
length, making it possible to process longer se-
quences. Some studies adopt fixed-pattern sparse
strategies (Zaheer et al., 2020; Beltagy et al., 2020),
while others focus on sparsification based on the
distribution and features of self-attention (Rao
et al., 2021; Xiao et al., 2023; Liu et al., 2023b).
However, the methods often fail to result in a prac-
tical improvement in the inference speed of lan-
guage models (Ren et al., 2023). This is because
the reduction in the number of tokens does not
yield significant benefits on CUDA (Bolya et al.,
2022). To address this issue, in the LLM inference
process, we propose applying dynamic sparse at-
tention to the storage of the key-value (KV) cache,
thereby fundamentally enhancing the throughput
of the LLM.

4.2 Efficient Inference for LLMs

The efficiency improvement of LLM inference is
becoming increasingly attention-grabbing (Huang
and Chang, 2023). Recent research has primar-
ily focused on two aspects: systems and algo-

rithms, aiming to enhance LLM inference effi-
ciency. In recent years, numerous systems ded-
icated to LLM inference have emerged, such as
FasterTransformer, Hugging Face Accelerate (Gug-
ger et al., 2022), FlexGen (Sheng et al., 2023),
and vLLM (Kwon et al., 2023). These systems
often emphasize optimization from hardware ac-
celerators and CUDA kernels. On the other hand,
algorithms like Early-Exit (Sun et al., 2021; Rotem
et al., 2023) Flashattention-2 (Dao, 2023) and Con-
tinuous Batch (Yu et al., 2022) attempt to optimize
LLM inference performance by reducing computa-
tional costs. In this paper, our proposed method is
orthogonal to all mainstream LLM inference sys-
tems and most algorithmic optimizations, and our
method can be used in parallel with these methods.

4.3 Length Extrapolation for LLM Inference

Length extrapolation aims to enable language mod-
els to maintain satisfactory performance when ap-
plied to super-long sequences as well. Current
mainstream research primarily focuses on find-
ing improved representations for positional en-
coding. Rotary Position Embeddings (RoPE) (Su
et al., 2024) attempt to transform absolute positions
into relative position encodings for length expan-
sion. Furthermore, ALiBi (Press et al., 2021) intro-
duces relative positional information by imposing
a penalty bias proportional to the distance in rela-
tive proximity on the attention matrix. However,
current pproaches still struggle to model extremely
long texts effectively. Simultaneously, when deal-
ing with long texts, a major limiting factor often
lies in GPU memory overflow issues. In this pa-
per, our approach extends the inference length of
LLM by setting a fixed attention window size by
adaptively releasing tokens, which is designed to
maximize the length of inference without compro-
mising performance significantly.

5 Conclusion

We propose an efficient sparse attention for the in-
ference process of LLMs. This is achieved by adap-
tively releasing the KV state of the tokens with the
lowest attention contribution in the cache while si-
multaneously rebuilding the state of tokens with the
highest contribution during the step-by-step decod-
ing of each token. Experimental results show that
our approach significantly enhances the throughput
of model inference without substantially compro-
mising the quality of the generated text.

6 Limitations

In this paper, the primary limitation lies in the fine-
tuning process required to align with our designed
inference optimization method. Specifically, dur-
ing fine-tuning, we still face an O(n?) time com-
plexity for self-attention, resulting in no speed im-
provement when learning dynamic sparse attention.
Furthermore, our method is not immediately appli-
cable during inference; it requires additional com-
putational overhead for fine-tuning and training the
controller to attain enhanced performance during
inference.

References

Arkadeep Acharya, Brijraj Singh, and Naoyuki Onoe.
2023. Llm based generation of item-description for
recommendation system. In Proceedings of the 17th
ACM Conference on Recommender Systems, pages
1204-1207.

Reza Yazdani Aminabadi, Samyam Rajbhandari, Am-
mar Ahmad Awan, Cheng Li, Du Li, Elton Zheng,
Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff
Rasley, et al. 2022. Deepspeed-inference: enabling
efficient inference of transformer models at unprece-
dented scale. In SC22: International Conference for
High Performance Computing, Networking, Storage
and Analysis, pages 1-15. IEEE.

1z Beltagy, Matthew E Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150.

Sid Black, Leo Gao, Phil Wang, Connor Leahy,
and Stella Biderman. 2021. GPT-Neo: Large
Scale Autoregressive Language Modeling with Mesh-
Tensorflow. If you use this software, please cite it
using these metadata.

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao
Zhang, Christoph Feichtenhofer, and Judy Hoffman.
2022. Token merging: Your vit but faster. arXiv
preprint arXiv:2210.09461.

Alexander Borzunov, Dmitry Baranchuk, Tim Dettmers,
Max Ryabinin, Younes Belkada, Artem Chu-
machenko, Pavel Samygin, and Colin Raffel. 2022.
Petals: Collaborative inference and fine-tuning of
large models. arXiv preprint arXiv:2209.01188.

Rewon Child, Scott Gray,
Ilya Sutskever. 2019. Generating long se-
quences with sparse transformers. URL
https://openai.com/blog/sparse-transformers.

Alec Radford, and

Tri Dao. 2023. Flashattention-2: Faster attention with
better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314.

Rahul Dey and Fathi M Salem. 2017. Gate-variants
of gated recurrent unit (gru) neural networks. In
2017 IEEE 60th international midwest symposium on
circuits and systems (MWSCAS), pages 1597-1600.
IEEE.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi
Zheng, Shengding Hu, Zhiyuan Liu, Maosong Sun,
and Bowen Zhou. 2023. Enhancing chat language
models by scaling high-quality instructional conver-
sations. arXiv preprint arXiv:2305.14233.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Alek-
sander Wawer. 2019. SAMSum corpus: A human-
annotated dialogue dataset for abstractive summa-
rization. In Proceedings of the 2nd Workshop on
New Frontiers in Summarization, pages 70-79, Hong
Kong, China. Association for Computational Linguis-
tics.

Sylvain Gugger, Lysandre Debut, Thomas Wolf, Philipp
Schmid, Zachary Mueller, Sourab Mangrulkar, Marc
Sun, and Benjamin Bossan. 2022. Accelerate: Train-
ing and inference at scale made simple, efficient and
adaptable. https://github.com/huggingface/
accelerate.

Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and
Humphrey Shi. 2023. Neighborhood attention trans-
former. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
6185-6194.

Jie Huang and Kevin Chen-Chuan Chang. 2023. To-
wards reasoning in large language models: A survey.
In Findings of the Association for Computational
Linguistics: ACL 2023, pages 1049-1065, Toronto,
Canada. Association for Computational Linguistics.

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing
Yang, and Lili Qiu. 2023. LLMLingua: Compressing
prompts for accelerated inference of large language
models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, pages 13358-13376, Singapore. Association for
Computational Linguistics.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Seongsoo Kim, Hayden Wimmer, and Jongyeop Kim.
2022. Analysis of deep learning libraries: Keras, py-
torch, and mxnet. In 2022 IEEE/ACIS 20th Interna-
tional Conference on Software Engineering Research,
Management and Applications (SERA), pages 54-62.
IEEE.

https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/D19-5409
https://github.com/huggingface/accelerate
https://github.com/huggingface/accelerate
https://github.com/huggingface/accelerate
https://doi.org/10.18653/v1/2023.findings-acl.67
https://doi.org/10.18653/v1/2023.findings-acl.67
https://doi.org/10.18653/v1/2023.findings-acl.67
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Dacheng Li, Rulin Shao, Anze Xie, Ying Sheng, Lian-
min Zheng, Joseph Gonzalez, lon Stoica, Xuezhe Ma,
and Hao Zhang. 2023a. How long can context length
of open-source llms truly promise? In NeurIPS 2023
Workshop on Instruction Tuning and Instruction Fol-
lowing.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani
Itani, Dmitrii Khizbullin, and Bernard Ghanem.
2023b. Camel: Communicative agents for" mind"
exploration of large scale language model society.
arXiv preprint arXiv:2303.17760.

Haoxin Li, Phillip Keung, Daniel Cheng, Jungo Kasai,
and Noah A. Smith. 2023c. NarrowBERT: Accelerat-
ing masked language model pretraining and inference.
In Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 1723—1730, Toronto, Canada.
Association for Computational Linguistics.

Yucheng Li, Bo Dong, Frank Guerin, and Chenghua Lin.
2023d. Compressing context to enhance inference
efficiency of large language models. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 6342—-6353,
Singapore. Association for Computational Linguis-
tics.

Xiaobo Liang, Juntao Li, Lijun Wu, Zigiang Cao, and
Min Zhang. 2023. Dynamic and efficient inference
for text generation via BERT family. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2883-2897, Toronto, Canada. Association for
Computational Linguistics.

Nora Freya Lindemann. 2023. Sealed knowledges: A
critical approach to the usage of llms as search en-
gines. In Proceedings of the 2023 AAAI/ACM Con-
ference on Al Ethics, and Society, pages 985-986.

Songhua Liu, Jingwen Ye, Sucheng Ren, and Xinchao
Wang. 2022. Dynast: Dynamic sparse transformer
for exemplar-guided image generation. In Euro-
pean Conference on Computer Vision, pages 72-90.
Springer.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao
Wang, Victor Xie, Zhaozhuo Xu, Anastasios Kyril-
lidis, and Anshumali Shrivastava. 2023a. Scis-
sorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time.
arXiv preprint arXiv:2305.17118.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang,

10

Yuandong Tian, Christopher Re, et al. 2023b. Deja
vu: Contextual sparsity for efficient llms at infer-
ence time. In International Conference on Machine
Learning, pages 22137-22176. PMLR.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.
Llm-pruner: On the structural pruning of large lan-
guage models. arXiv preprint arXiv:2305.11627.

Ofir Press, Noah A Smith, and Mike Lewis. 2021.
Train short, test long: Attention with linear biases
enables input length extrapolation. arXiv preprint
arXiv:2108.12409.

Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu,
Jie Zhou, and Cho-Jui Hsieh. 2021. Dynamicvit: Ef-
ficient vision transformers with dynamic token sparsi-
fication. Advances in neural information processing
systems, 34:13937-13949.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and
Yuxiong He. 2020. Deepspeed: System optimiza-
tions enable training deep learning models with over
100 billion parameters. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 3505-3506.

Siyu Ren, Qi Jia, and Kenny Zhu. 2023. Context com-
pression for auto-regressive transformers with sen-
tinel tokens. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, pages 12860-12867, Singapore. Association for
Computational Linguistics.

Daniel Rotem, Michael Hassid, Jonathan Mamou, and
Roy Schwartz. 2023. Finding the SWEET spot: Anal-
ysis and improvement of adaptive inference in low
resource settings. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 14836—
14851, Toronto, Canada. Association for Computa-
tional Linguistics.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073—
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuo-
han Li, Max Ryabinin, Beidi Chen, Percy Liang,
Christopher Ré, Ion Stoica, and Ce Zhang. 2023.
Flexgen: High-throughput generative inference of
large language models with a single gpu. In Infer-
national Conference on Machine Learning, pages
31094-31116. PMLR.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,
Wen Bo, and Yunfeng Liu. 2024. Roformer: En-
hanced transformer with rotary position embedding.
Neurocomputing, 568:127063.

https://doi.org/10.18653/v1/2023.acl-short.146
https://doi.org/10.18653/v1/2023.acl-short.146
https://doi.org/10.18653/v1/2023.acl-short.146
https://doi.org/10.18653/v1/2023.emnlp-main.391
https://doi.org/10.18653/v1/2023.emnlp-main.391
https://doi.org/10.18653/v1/2023.emnlp-main.391
https://doi.org/10.18653/v1/2023.acl-long.162
https://doi.org/10.18653/v1/2023.acl-long.162
https://doi.org/10.18653/v1/2023.acl-long.162
https://doi.org/10.18653/v1/2023.emnlp-main.794
https://doi.org/10.18653/v1/2023.emnlp-main.794
https://doi.org/10.18653/v1/2023.emnlp-main.794
https://doi.org/10.18653/v1/2023.emnlp-main.794
https://doi.org/10.18653/v1/2023.emnlp-main.794
https://doi.org/10.18653/v1/2023.acl-long.829
https://doi.org/10.18653/v1/2023.acl-long.829
https://doi.org/10.18653/v1/2023.acl-long.829
https://doi.org/10.18653/v1/2023.acl-long.829
https://doi.org/10.18653/v1/2023.acl-long.829
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099

Tianxiang Sun, Yunhua Zhou, Xiangyang Liu, Xinyu
Zhang, Hao Jiang, Zhao Cao, Xuanjing Huang, and
Xipeng Qiu. 2021. Early exiting with ensemble inter-
nal classifiers. arXiv preprint arXiv:2105.13792.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Xinjian Wu, Fanhu Zeng, Xiudong Wang, Yunhe Wang,
and Xinghao Chen. 2023. Ppt: Token pruning
and pooling for efficient vision transformers. arXiv
preprint arXiv:2310.01812.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2023. Efficient streaming
language models with attention sinks. arXiv preprint
arXiv:2309.17453.

Seongjun Yang, Gibbeum Lee, Jaewoong Cho, Dim-
itris Papailiopoulos, and Kangwook Lee. 2023. Pre-
dictive pipelined decoding: A compute-latency
trade-off for exact llm decoding. arXiv preprint
arXiv:2307.05908.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soo-
jeong Kim, and Byung-Gon Chun. 2022. Orca: A
distributed serving system for {Transformer-Based}
generative models. In 16th USENIX Symposium
on Operating Systems Design and Implementation

(OSDI 22), pages 521-538.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, et al. 2020. Big bird: Transformers for
longer sequences. Advances in neural information
processing systems, 33:17283-17297.

Dong Zhang, Shimin Li, Xin Zhang, Jun Zhan,
Pengyu Wang, Yagian Zhou, and Xipeng Qiu. 2023.
Speechgpt: Empowering large language models with
intrinsic cross-modal conversational abilities. arXiv
preprint arXiv:2305.11000.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai
Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
2021. Informer: Beyond efficient transformer for
long sequence time-series forecasting. In Proceed-
ings of the AAAI conference on artificial intelligence,
volume 35, pages 11106-11115.

Lei Zhu, Xinjiang Wang, Zhanghan Ke, Wayne Zhang,
and Rynson WH Lau. 2023. Biformer: Vision trans-
former with bi-level routing attention. In Proceed-
ings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 10323-10333.

11

A Dataset Statistics

In Table 6, we present the statistical information
of the datasets used in our experiments, including
dataset partitioning and sequence length statistics.

Dataset partitioning Sequence Length

Dataset

Train Valid Test Average Median 90 percentile

UltraChat
EverythingLM

696600 77400 77400 1476
972 108 108 1743
Math 45000 5000 5000 510
StreamEval 2825 353 352 1686
CNN Daily Mail 287113 13368 11490 1132
SAMSum 14700 818 819 3227

1411
1765
459

1679
1060
3212

2265

Table 6: Performance comparison on StreamChat across
different length subsets. The best results are shown in
bold.

B Implementation Details

In this section, we illustrate the details of our im-
plementatio, primarily encompassing training data
collection, fine-tuning with QLoRA, details of the
controller module, inference settings, and hardware
settings.

Training data collection As detailed in Sec-
tion 2.2, it is imperative to gather word embed-
dings and token indices that contribute to the top-
K attention for the current word for training our
controller module. Furthermore, during the fine-
tuning phase of our model, attention masks are
generated utilizing the collected indices to align
with the inference process. Specifically, during the
fine-tuning process of the full attention (baseline)
on the training set, we collect the word embed-
dings and the most frequently top-K indices of
each sample. Given that full attention encompasses
the entire sequence, it consistently yields the low-
est loss during fine-tuning, thereby ensuring that
the attention distribution modeled is reliable and
informative for capturing the top-K indices.

Fine-tuning with QLoRA (i) Hyper-parameters:
For all methods, we utilize the Adam optimizer
with a learning rate of 3e-5, decayed by a rate
of 0.98 every 40 steps. Regarding the parame-
ters for Q-LORA, we uniformly set the rank pa-
rameter r = 16 and the learning rate scaling fac-
tor lora_alpha = 32. (ii) Alignment fine-tuning
with ADORE: By collecting the top-K indices,
we create attention masks for full attention, which
block the attention from current token to the low-
contribution tokens. This implementation achieves

12

dynamic sparse attention during fine-tuning, result-
ing in a model aligned with our inference optimiza-
tion approach.

Details of the controller module (a) Controller
network structure: (i) Input layer: A GRU layer
with an input size of 4096 and a hidden size of 128;
(i1) Position layer: A fully connected layer with
an input size of 1, projected to 128; (iii) Interac-
tion layer: A fully connected layer with a hidden
size of 128 and a Tanh activation function; (iv)
Output layer: Each output, mapped to [0,1] for
cross-entropy loss over the sequence length, is ob-
tained through a fully connected layer followed
by a sigmoid function. (b) Training Details: We
employ the Adam optimizer with a learning rate
of 0.005, accompanied by a decay rate of 0.98 ev-
ery 2000 steps. We split the collected dataset into
a training set and a validation set with an 8:2 ra-
tio, and save the model parameters achieving the
highest F1 score on the validation set.

Hardware settings We utilized four GeForce
RTX 3090 GPUs, with a total runtime exceeding
20 hours.

1.0

§0.8 ;\30.8
g,o.e go.o
fg 04 Tg 04
202 202

4 8 12
Layers

16
Layers

(a) Proportion of overlap-
ping tokens between the uni-

form token set and top-K /2
tokens sets at each layer.

(b) Proportion of cumula-
tive softmax scores from the
uniform token set at each
layer.

Figure 7: The effectiveness of the uniform token set at
each layer.

C Analysis of Dynamic Sparse Attention

In this section, we first demonstrate the effective-
ness of applying a uniform scheduling policy across
different layers. Then we showcase the superior
performance of dynamic sparse attention in compar-
ison to other methods and delve into the underlying
reasons behind its effectiveness.

According to the setup in Section 2.2, we select
the top-K /2 tokens sets for each layer and consider
the top-K tokens that appear most frequently in
these sets as the uniform token sets. In Figure 7(a),
we observe that the uniform token set covers the
majority of the top-K/2 token sets at each layer.

Self-attention distribution at HeadO@Layer1

Self-attention distribution at Head7@Layer16

Self-attention distribution at Head14@Layer32

0.06 0.4 0.125
) 2 £0.100
§ 0.04 § 0.3 é
é ’ g é 0.075
L= £ 0.2 &
3 3 0,050
20.02 2 2
E ol E
: 0.025
00075 1000 2000 0.0% 1000 2000 0.00075 1000 2000
Samples Samples Samples

Figure 8: The Softmax scores in the self-attention from a 32-layer Transformer on CNN-DM dataset.

— Ours ----- Strided Attention Window Attention StreamingLLM =~ ----- Full Attention
20 UltraChat 20 ‘. EverythingLM .00 s Math

18] 1.75
L6 1.50

5 14 1.25 VN

¢ v
1.2 1.00
1.0 0.75
0.8 0.50

0 250 500 750 1000 0.6 0 250 500 750 1000
Steps Steps

Figure 9: Comparison of loss during fine-tuning across different methods.

Additionally, in Figure 7(b), we illustrate the cumu-
lative softmax attention scores from the uniform
token set for the current token across different lay-
ers, demonstrating that the uniform token set can
effectively replace the contributions of the top-K/2
token sets at each layer.

Figure 9 illustrates the comparison of loss with
QLoRA fine-tuning for various methods on Ultra-
Chat, EverythinglLM, and Math. It is evident that
the loss by focusing on the tokens with the top-K
highest attention (dynamic sparse attention) main-
tains consistency with the full attention approach
and results in a notable reduction in loss compared
to other methods.

The superior performance of dynamic sparse at-
tention can be attributed to the observation that only
a small portion of tokens significantly contributes
to the attention mechanism during the modeling
process for the current token. The Softmax scores
in the self-attention curve on the cnn-daily dataset
is presented in Figure 8. It can be observed that the
blue curve in Figure 8 form a long-tail distribution.
This observation provides a reasonable explanation
for effective dynamic sparse attention and further
demonstrates its good performance in the task.

13

D Comparison of unidirectional and
bidirectional GRU performance

In this section, we compare the performance of
unidirectional and bidirectional GRU in terms of
top-K prediction accuracy and computation time
for 1,000 tokens to illustrate why we choose unidi-
rectional GRU as the primary architecture for the
controller module.

Table 7 demonstrates the accuracy and precision
on the collected data validation set. We can ob-
serve that bidirectional GRU does not significantly
improve performance compared to unidirectional
GRU. Instead, bidirectional GRU is more compu-
tationally expensive in terms of runtime because
it requires forward and backward computations at
each time step.

Model Acc. F1 Time
unidirectional GRU 87.9 82.3 120.5
bidirectional GRU 88.4 83.8 177.3

Table 7: Performance comparison of unidirectional and
bidirectional GRU

