
Efficient Sparse Attention needs Adaptive Token Release

Anonymous ACL submission

Abstract

In recent years, Large Language Models001
(LLMs) have demonstrated remarkable capabil-002
ities across a wide array of text-centric tasks.003
However, their ‘large’ scale introduces signifi-004
cant computational and storage challenges, par-005
ticularly in managing the key-value states of006
the transformer, which limits their wider appli-007
cability. Therefore, we propose to adaptively008
release resources from caching and rebuild the009
necessary key-value states. Particularly, we ac-010
complish this by a lighting controller module011
to approximate an ideal top-K sparse attention.012
This module retains the tokens with the highest013
top-K attention weights and simultaneously re-014
builds the discarded tokens, which may become015
essential for future decoding. Comprehensive016
experiments in natural language generation and017
natural language modeling task reveal that our018
method is not only competitive with full atten-019
tion in terms of performance but also achieves020
a significant throughput improvement of up to021
221.8%. The code for replication is available022
on the https://anonymous.4open.science/023
r/ADORE-5384.024

1 Introduction025

After breaking through the cognitive barriers,026

large language models (LLMs) are now widely027

used in many text-rich areas, such as voice028

assistants (Zhang et al., 2023), search en-029

gines (Lindemann, 2023), and recommendation030

systems (Acharya et al., 2023). These successes031

are a testament to the philosophy of scaling up032

parameters to boost performance, i.e., the scaling033

law (Kaplan et al., 2020). However, in situations034

demanding rapid or extensive text modeling, the035

vast size of the model significantly escalates the036

computational and storage requirements for the037

key-value (KV) states of self-attention, which, in038

turn, limits its throughput (Ma et al., 2023; Liu039

et al., 2023a). For example, when using a model040

with 7 billion parameters, caching the KV states041

impact

profoundlyLLMs impact society

LLMs profoundly

profoundlyLLMs impact society in

impactLLMs society

Initial KV cache Update Updated KV cache

Step N : Step N+1 :

Top-K but released: no load KV states of the token Curent tokenTop-K and kept: load

Figure 1: An illustration of the conflict of releasing
Key-Value (KV) states in advance during the inference.
Consider a cache size of 3. At step N, the KV states
associated with the word ‘profoundly’ are released from
the cache. Consequently, in the subsequent step N+1,
the ‘profoundly’ state is absent from the cache, despite
having a higher attention score for ‘in’.

for 1,000 tokens results in a memory requirement 042

that exceeds twice the size of the model parame- 043

ters, consequently increasing time costs in attention 044

calculation and memory swapping. 045

Recent efforts address this issue from two per- 046

spectives: 1) hardware optimization, analogous to 047

‘increasing income’; 2) refining algorithms, sim- 048

ilar to ‘reducing expenditure’. The former ap- 049

proach typically optimizes performance by schedul- 050

ing tasks across multiple GPUs, (Borzunov et al., 051

2022) or by implementing hierarchical unloading 052

using the CPU and disk (Aminabadi et al., 2022; 053

Sheng et al., 2023). These techniques, though 054

efficient, require additional hardware and, if not 055

carefully scheduled, can lead to increased com- 056

munication latency. This, in turn, may potentially 057

degrade the overall user experience (Rasley et al., 058

2020; Yang et al., 2023). The latter strategy en- 059

hances efficiency by limiting the caching size of 060

key-value states, such as sparsely attending to its 061

immediate neighbors (Zaheer et al., 2020; Belt- 062

agy et al., 2020) or compressing prompts (Jiang 063

et al., 2023; Li et al., 2023d). Though efficient, it 064

can often lead to a drop in performance. Besides, 065

some methods instantiate the sparse attention by 066

masking attention after the attention weights have 067

been calculated (Rao et al., 2021; Li et al., 2023c). 068

1

https://anonymous.4open.science/r/ADORE-5384
https://anonymous.4open.science/r/ADORE-5384
https://anonymous.4open.science/r/ADORE-5384

As a consequence, they fail to enhance inference069

speed and reduce memory usage. Among these070

methods, the dynamic top-K attention (Liang et al.,071

2023), achieving sparsity by selecting the highest072

attention contributions, demonstrates performance073

comparable to, or even better than, full attention074

models. Due to its superior efficacy, it has been075

incorporated into numerous foundational architec-076

tures, including BiFormer (Zhu et al., 2023) and077

Informer (Zhou et al., 2021).078

Despite the success of the dynamic top-K atten-079

tion, it is non-trivial to simultaneously achieve high080

efficacy and efficiency. Firstly, to gain efficiency,081

releasing the unnecessary KV states of previous082

tokens in advance may result in inaccuracies of top-083

K attention calculation due to premature and er-084

roneous releasing. This occurs because accurately085

determining the top-K attention requires consid-086

ering all KV states of past tokens. Secondly, as087

illustrated in Figure 1, due to the long-term depen-088

dencies in text, the tokens released earlier could be089

among those needed for top-K attention in future090

decoding. As a consequence, its absence will lead091

to inaccurate sparse attention calculation for the092

later tokens.093

To this end, we introduce ADORE, ADaptive094

tOken RElease, which maintains a constant cache095

size by accurately releasing useless past key-value096

(KV) states and efficiently reconstructing vital past097

KV states that were previously released. ADORE098

introduces a lightning controller module that adap-099

tively releases tokens with the lowest predicted100

attention contribution for the current token from101

the KV cache. This ensures a fixed KV cache over-102

head, even when processing a large number of to-103

kens. In addition, ADORE rebuilds the KV state104

for tokens that are likely to contribute higher at-105

tention scores but have been previously released.106

This rebuild mechanism counters the issue when107

a released token is essential for future decoding.108

Moreover, ADORE can seamlessly integrate into109

LLM inference, showing impressive results with110

only minor fine-tuning and training needed for the111

lightweight controller module. To demonstrate the112

effectiveness of our approach, we conducted exten-113

sive experiments on multiple benchmark datasets.114

The results reveal that ADORE achieves up to a115

221.8% improvement in throughput compared to116

full attention models while preserving almost iden-117

tical text quality.118

2 Methodology 119

This section first establishes the framework for effi- 120

cient sparse attention, followed by initially explor- 121

ing the adaptive token release in Section 2.2. Sub- 122

sequently, we rebuild the KV states of important 123

tokens, approximating the ideal dynamic sparse 124

attention in Section 2.3. Finally, we propose an op- 125

timized matrix slicing algorithm to accelerate the 126

implementation of our method in Section 2.4. An 127

overview of our method is illustrated in Figure 2. 128

2.1 Efficient Sparse Transformer 129

Let Tn = {t1, . . . , ts, ts+1, . . . , tn} be a set of 130

word tokens, where {t1, . . . , ts} represent user in- 131

put tokens, and {ts+1, . . . , tn} are tokens gener- 132

ated by a transformer-based model, such as GPT- 133

Neo (Black et al., 2021) and Llama (Touvron et al., 134

2023). When generating the next token tn+1, the 135

current token tn serves as the query input. The tn’s 136

key-value states are based on the following scaled 137

dot-product attention as 138

an,l = softmax

(
qn,l × (Kn

l)
⊤

√
d

)
× V n

l , (1) 139

where an,l ∈ Rd denotes the hidden state at the lth 140

layer of the transformer. It undergoes a non-linear 141

transformation process to become the key and value 142

states associated with the token t, qn,l denotes the 143

query vector derived from tn at the lth layer. The 144

terms Kn
l ∈ R(n)×d and V n

l ∈ R(n)×d represent 145

the key and value states from the current token set 146

Tn at the same layer. These states are retained in the 147

GPU memory to minimize redundant computations. 148

The generation of the token tn+1 is accomplished 149

through a multi-classification approach, utilizing 150

the hidden state vn,L ∈ Rd from the last layer. 151

For an efficient sparse transformer, we selec- 152

tively cache the most relevant KV states, aiming 153

to reduce computational demands while maintain- 154

ing or even enhancing the model’s performance in 155

generating subsequent tokens as 156

a′
n,l = softmax

qn,l ×
(
Kn

m+1,l

)⊤
√
d

× V n
m+1,l. 157

Here, a′
n,l approximates the an,l using the 158

Kn
m+1,l ∈ R(m+1)×d, V n

(m+1),l ∈ R(m+1)×d, 159

which correspond to selecting m rows from Kn−1
l 160

and V n−1
l and concatenating them with kn,l and 161

2

Top R

Controller Module

b) Adaptive Token Release and Select Rebulit Tokens

c) Autoregressive Decoding

aspects

LLMs impact society various

LLMs society various

Original cacheReleased Tokens profoundly in

profoundly

FFN

FFN

Self-Attention

FFN

Self-Attention

Self-Attention

Rebuilt Tokens

LLMs profoundly impact society in various aspects

Importance

a) Group Decision with Controller Module

Group 1:
Released from cache

Group 2:
Kept in cache

Embedding of Token
kept in the cache

Top m

Embedding of Token
released from the cache

KV states of Token
kept in the cache

Next token

Embedding of
Current Token

Release action

Keep action

Updated cache
Rebuilt
Tokens

Figure 2: The controller module calculates the importance of all input and generated tokens for the current token.
The Key-Value (KV) cache maintains the states of m tokens with the highest importance. For tokens that were
previously released from the cache, those with the top-R highest importance are concurrently modeled alongside
the current token.

vn,l respectively, with the condition that m <<162

n − 1. kn,l, vn,l denote the key and value vector163

derived from tn at the lth layer. This implies that164

only a significantly smaller Kn
m+1,l and V n

m+1,l165

are retained in GPU for rapid inference and save166

memory.167

From a performance standpoint, achieving the168

ideal sparsity involves computing the full attention169

weight wn = qn,l × (Kn
l)

⊤ ∈ Rn and then select-170

ing the top-m query-key product weights. Then,171

these weights serve as indices for slicing V n
m+1,l.172

While this method is optimal in performance, it173

does not confer any computational or memory sav-174

ings as the process of computing full attention175

weights for all query-key pairs and then selecting176

the top weights is computationally intensive.177

2.2 Adaptive Token Release178

The adaptive token release is to create efficient179

scheduling of the key-value states within the GPU180

memory. The main idea is to use a lighting con-181

troller module as an alternative to computing full182

weight for slicing the full key-value states. To be183

both efficient and effective, we have implemented184

several design strategies:185

• Refine the model with top-K attention. Com-186

pared to the full attention, Top-K could mitigate187

the impact of excluding partial KV states once the188

pertinent top-K KV states are included within the189

m cached KV states, which is consistent with the190

target defined in Equ (2). Therefore, we initially 191

fine-tune the LLMs with top-K attention, which 192

utilizes only the highest top-K attention weights 193

while setting the remainder to 0. Remarkably, this 194

approach yields performance that is on par with 195

full attention models (Liu et al., 2022). To be ef- 196

ficient, the cache size m is slightly larger than K. 197

As m decreases, the complexity of the scheduling 198

process increases correspondingly. 199

• Adopt a uniform scheduling policy for the re- 200

tention or exclusion of KV states across various 201

layers. Constructing a layer-specific scheduling 202

strategy would necessitate additional time to model 203

each layer’s input. Moreover, the initial layer is 204

more pivotal for integrating value states; as we 205

delve deeper into the layers, the hidden states be- 206

come increasingly homogeneous (Wu et al., 2023). 207

Additionally, it is observed that different layers of- 208

ten focus on a similar set of top-K attentions. The 209

effectiveness of the uniform scheduling policy is 210

elaborated in Appendix C. 211

• Update the cached KV states by appending the 212

latest KV state and selectively release an older 213

one. An intuitive idea is to store the KV states in 214

the motherboard’s memory as backup. However, 215

due to bandwidth limitations between the GPU and 216

motherboard, moving KV states in and out proves 217

to be extremely slow, at times even slower than re- 218

calculating the KV states (Aminabadi et al., 2022). 219

3

Consequently, when updating the cached KV states,220

we simply append the most recently computed KV221

states while removing a nonsignificant older one,222

thereby maintaining a constant size for the cache.223

Adhering to these strategies, we develop a con-224

troller module that utilizes the lightweight and time-225

efficient GRU (Dey and Salem, 2017) for schedul-226

ing the cached KV states. Specifically, during the227

generation of token tn+1, we establish the proba-228

bility of whether caching the KV state of a token ti229

as:230

zi = GRU(xi, zi−1)231

σi = Sigmoid(MLP(pi + zi))232

where xi ∈ Rd represents the token embedding233

from the LLMs. The GRU is a single-layer GRU234

(an unidirectional model with its effectiveness ana-235

lyzed in Appendix D) that recurrently transforms236

this token embedding into a context-aware repre-237

sentation zi ∈ Rd′ . The term pi ∈ Rd′ denotes238

the position embedding for the ith token, which239

signifies the importance of token position in the240

scheduling model. During the update of the KV241

states, we discard those with the lowest σi values242

and append the most recent KV states to the cached243

states. To fine-tune its parameters, we construct a244

dataset by collecting word embeddings of each se-245

quence as input. Then we construct corresponding246

labels by assigning a value of 1 to the indices of247

the top-K tokens that most frequently occur within248

the top-K/2 attention scores across all layers, and249

a value of 0 to all others.250

2.3 KV States Rebuild251

Adaptive token releasing facilitates the selective252

preservation of the most pertinent tokens, yet pre-253

viously discarded tokens may become essential for254

future decoding due to the long-term dependen-255

cies in text. To counter this issue, we propose the256

rebuilding of KV states as a complement.257

This method entails retrieving the top-R to-258

kens with the highest σi values from the set of259

released tokens. Let XR ∈ RR×d represent the to-260

ken embedding of selected released tokens. We261

concatenate XR with xn, i.e., the embedding262

of current token tn, forming the input XR+1 ∈263

R(R+1)×d. After (l − 1)-layers processing, we264

can obtain the query states Qn
R+1,l ∈ R(R+1)×d,265

Kn
m+R+1,l ∈ R(m+R+1)×d and V n

m+R+1,l ∈266

R(m+R+1)×d, where Kn
m+R+1,l/V

n
m+R+1,l is for-267

mulated by concating cached key/value state and268

rebuild key/value states for the input tokens. With 269

its argument, the attention is calculated as 270

A′
R+1,l = softmax

(
Qn

R+1,l ×
(
Kn

m+R+1,l

)⊤
√
d

)
×Vn

m+R+1,l, 271

where A′
R+1,l is the hidden state. To get the corre- 272

sponding value for the current generating tokens, 273

we get the a′
n,l by selecting the last row of A′

R+1,l. 274

Through the parallel rebuilding of the released KV 275

states, we maximize the utilization of GPU without 276

incurring excessive time overhead. 277

2.4 Matrix Slicing as Multiplication 278

The scheduling of KV states relies on the use of 279

a matrix-slicing operator. Traditional slicing op- 280

erators like gather and mask-select can lead 281

to significant time overheads (Kim et al., 2022), 282

particularly when batch operations involve vary- 283

ing slicing indices. To circumvent this, we lever- 284

age the GPU’s rapid matrix multiplication capa- 285

bilities. For instance, to remove the jth row 286

from Kn
m,l, we initially prepare a slicing matrix, 287

Sj = I(1:j−1,j+1:m),:, where I ∈ Rm×m is the 288

identity matrix and I(1:j−1,j+1:m),: selects all rows 289

of I except the jth row. The resulting Kn
m−1,l = 290

Sj × Kn
m,l, with Sj being pre-prepared to save 291

time. 292

3 Experiment 293

3.1 Datasets 294

To evaluate the effectiveness of various sparse at- 295

tention mechanisms in LLM, we conduct extensive 296

experiments across three distinct tasks: natural lan- 297

guage generation, stream generation, and long-text 298

modeling. For the first task, we evaluate on Ul- 299

traChat (Ding et al., 2023), EverythingLM1, and 300

Math (Li et al., 2023b). For the second task, we 301

experiment on StreamEval (Xiao et al., 2023) and 302

StreamChat (built upon UltraChat). For the last 303

task, we evaluate models on CNN Dailymail (See 304

et al., 2017) and SAMSum (Gliwa et al., 2019). 305

Specifically, UltraChat is a multi-turn dialogue 306

dataset containing approximately 696,600 training 307

samples and covering diverse topics such as ques- 308

tions about the world and creative writing. Ev- 309

erythingLM is a instructional dataset consisting of 310

1,000 conversations and encompassing a wide array 311

1https://huggingface.co/datasets/
totally-not-an-llm/EverythingLM-data

4

https://huggingface.co/datasets/totally-not-an-llm/EverythingLM-data
https://huggingface.co/datasets/totally-not-an-llm/EverythingLM-data

Dataset UltraChat EverythingLM Math
Metric BLEU ROUGE BERT-F BLEU ROUGE BERT-F BLEU ROUGE BERT-F
Full Attention 35.6 29.2 63.4 35.4 30.8 64.5 38.6 29.9 69.7
Window Attention 26.7 28.0 61.4 22.3 25.9 62.3 30.3 24.3 66.3
Strided Attention 28.0 24.8 57.5 20.3 22.1 58.5 33.0 26.7 66.7
StreamingLLM 23.9 26.0 59.6 20.5 25.6 61.4 32.9 26.8 68.3
ADORE 36.8∗ 28.8 63.5∗ 30.4∗ 27.7∗ 63.1∗ 38.8∗ 28.9∗ 70.5∗

Table 1: Performance comparison of different methods in natural language generation tasks. We use Full Attention
as the upper limit. The best results are marked bold. “∗” indicates significant improvement over the top-performing
sparse attention method, with a p-value < 0.01.

of topics and interactions. Math dataset is com-312

posed of 50,000 problem-solution pairs obtained313

using GPT-4 across 25 math topics. StreamChat314

concatenates every 100 samples from UltraChat315

and feeds them into the model in a streaming fash-316

ion to assess the quality of the generated answers.317

StreamEval is a question-answer dataset with318

ground truth answers, building upon LongEval (Li319

et al., 2023a). Specifically, it comprises 2,000 sam-320

ples, each with 1,000 lines of textual data and 100321

retrieval questions. CNN Dailymail is a news sum-322

marization dataset containing over 300,000 news323

articles. SAMSum is a summarization dataset con-324

taining about 16,000 messenger-like conversations325

with summaries. The details of the datasets are326

reported in Appendix A.327

Baseline. We compare our method with the fol-328

lowing methods: (1) Full Attention encompasses329

all past KV states across every layer, character-330

ized by a time complexity of O(T 2) and linear331

growth in cache size. This method utilizes the most332

extensive token information, thus establishing an333

upper bound for most tasks. (2) Window Atten-334

tion (Hassani et al., 2023) focuses on the nearest335

tokens for self-attention at each layer, thus ensur-336

ing a constant size for the key-value cache. (3)337

Strided Attention (Child et al., 2019) attends to338

both the nearest and distant tokens by periodically339

focusing on one with a fixed interval, thus striking340

a balance between effectiveness and efficiency. (4)341

StreamingLLM (Xiao et al., 2023) extends Win-342

dow Attention by adding the first four tokens to the343

cache, aiming to maintain a normal distribution of344

attention scores and stable inference settings.345

Experimental Protocols. We employ Llama-2346

7B as our backbone for evaluation; it has 32 trans-347

former layers and an extended 4,000 context length.348

The Llama-2 7B (Touvron et al., 2023) is known for349

its excellent performance and includes RoPE (Su350

et al., 2024) for simplified length extension. For351

our experiments, we employ the top-96 attentions352

and set the KV cache size m to 192 with top-8 re-353

0 192 384 576 768 960
Generated Length

0

100

200

300

400

500

Th
ro

ug
hp

ut

SteamingLLM&Window Attention
ADORE
Full Attention
Strided Attention

Figure 3: Performance comparison in terms of through-
put for generating different text lengths.

built tokens. We randomly selected 1,000 samples 354

from the benchmark dataset for training purposes. 355

This sample was utilized to develop the sparse top- 356

K backbone model using QLoRA (Dettmers et al., 357

2023), along with the controller module. The extra 358

data were employed for testing models. To evaluate 359

the quality of the generated text, we use metrics 360

including BLEU, ROUGE, BERT-F (Zhang et al., 361

2019) and Accuracy. To measure the inference 362

speed of different methods, we use Throughput, 363

which is defined as the number of tokens generated 364

per second. 365

3.2 Natural Language Generation 366

This subsection evaluates models’ performance in 367

natural language generation. We summarize the 368

quality of generating text on UltraChat, Every- 369

thingLM and Math benchmarks in Table 1 and the 370

throughput against different sequence lengths in 371

Figure 3. From the results reported, we have the 372

following observations: 373

• The proposed ADORE achieves the best per- 374

formance, and consistently outperforms all the 375

baselines on all datasets. In Table 1, our method 376

shows an improvement over full attention in the 377

UltraChat dataset, with increases of 1.2% in BLEU 378

scores and 0.1% in BERT-F scores. On the other 379

hand, Window Attention, Strided Attention, and 380

5

StreamingLLM show reductions of 13.1%, 15.1%,381

and 14.9% in BLEU scores, respectively. A sim-382

ilar trend is also observed in the learning curve383

illustrated in Appendix C.384

• Our proposal performs the best in achieving a385

high efficiency while maintaining a competitive386

performance against full attention. Specifically,387

it is evident that our method demonstrates a con-388

sistent throughput against various generated text389

lengths; whereas full attention suffers from a sig-390

nificant drop on throughput as the generated text391

length increases. Notably, our method outperforms392

full attention by 151.4% and 221.8% when gen-393

erating text lengths of 768 and 960, respectively.394

Though Window Attention and StreamingLLM395

have higher throughput, their performance on natu-396

ral language generation suffers a lot.397

3.3 Stream Generation398

To show the real-world applicability of our pro-399

posal, we emulate the performance of the models400

on infinite streaming dialogue, i.e., StreamChat,401

and question-answering tasks, i.e., StreamEval. For402

StreamChat, we chunk the streaming chat with the403

size of 4096 to evaluate the quality of generation404

against different sequence lengths. The experimen-405

tal results are reported in Table 2. For StreamEval,406

we report the generating accuracy of models’ re-407

sponses after multi-times query in Figure 4.408

0 5 10 15 20 25
Query Times

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

SteamingLLM
ADORE
Window Attention
Full Attention
Strided Attention

Figure 4: Performance comparison on the StreamEval
at various query times.

From the Table 2 and Figure 4, we have fol-409

lowing observations: (1) In the table, our method410

demonstrates a consistent performance across dif-411

ferent sequence lengths, which justifies its effi-412

cacy in streaming dialogue, especially in length ex-413

trapolation and capturing high-importance tokens.414

While full attention exhibits the best performance415

on the first subset (length in range (0, 4096]), its 416

performance rapidly declines as the streaming se- 417

quence length surpasses the pre-training window 418

size, and eventually becomes almost 0. (2) In the 419

figure, our method consistently maintains high ac- 420

curacy, even when the number of queries exceeds 421

20, which expresses the superiority of our pro- 422

posed method. On the other hand, full attention 423

and strided attention display competitive perfor- 424

mance at limited query times. However, they suffer 425

a significant drop in performance due to Out-of- 426

Memory (OOM) issues, which arise as the accu- 427

mulation of excessive Key-Value (KV) states in- 428

creases with the number of queries. This obser- 429

vation justifies the necessity of sparse attention. 430

However, Window Attention and StreamingLLM 431

demonstrate lower accuracy compared to our ap- 432

proach, primarily due to their fixed heuristic poli- 433

cies. 434

3.4 Long Text Modeling 435

We explore the performance of different methods in 436

modeling super-long texts on CNN Dailymail and 437

SAMSum. We report perplexity (ppl.) as the metric 438

to compare the performance of different methods 439

across different sequence length subsets. Similar to 440

Section 3.3, the length in each subset is in the range 441

of ((i− 1)× 1024, i× 1024] for (i = 1, 2, . . .). 442

2000 4000 6000
Input Length

0

1

2

3

4

lo
g

PP
L

CNN DM

2000 4000 6000
Input Length

2

4

6

lo
g

PP
L

SAMSum

StreamingLLM
ADORE

Full Attention
Strided Attention

Window Attention

Figure 5: Perplexity evaluation on CNN DM and SAM-
sum across different lengths.

Figure 5 illustrates the logarithm of perplex- 443

ity for different methods across various model- 444

ing intervals. It is evident that our method and 445

StreamingLLM consistently maintain the lowest 446

perplexity; they are effective in preserving the 447

original attention distribution with sparse atten- 448

tion. Therefore, they both demonstrate superior 449

performance on extrapolating length. Although full 450

attention exhibits the best performance in the short- 451

est input length subset ([0, 4096]), its performance 452

6

Sequence Length (0, 4096] (4096, 4096×2] (4096×2, 4096×3] (4096×3, 4096×4]
Metrics BLEU ROUGE BERT-F BLEU ROUGE BERT-F BLEU ROUGE BERT-F BLEU ROUGE BERT-F
Full Attention 42.8 43.8 70.9 3.6 4.9 33.1 2.1 2.4 30.1 2.0 2.4 30.0
Strided Attention 27.7 30.5 60.9 2.1 3.0 29.7 2.0 2.2 30.0 2.0 2.1 29.6
Window Attention 24.7 28.5 60.6 14.2 19.6 54.3 16.1 18.1 50.1 19.9 20.4 52.1
StreamingLLM 14.6 36.1 64.8 14.8 29.0 63.2 18.6 28.4 62.4 21.7 27.5 63.5
Ours 38.9 38.3 66.4 36.5 39.2 67.7 35.5 37.7 67.1 36.7 39.5 69.1

Table 2: Performance comparison on StreamChat across different streaming lengths. The best results are shown in
bold.

quickly becomes worse when the input length sur-453

passes the size of the pretraining window.454

3.5 Ablation Study455

3.5.1 Influence of Attention Sparisity456

0 200 400 600 800 1000
Steps

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

Lo
ss

K=48
K=96
K=128
K=192

Figure 6: Comparison of fine-tuning loss against differ-
ent values of K.

We explore ADORE’s performance against dif-457

ferent K in adaptive token release. In particular,458

we configure K in the range of {48, 96, 128, 192}459

for fine-tuning the model and top-m as {48 × 2,460

96 × 2, 128 × 2, 192 × 2} for a fixed cache size.461

The inference performance and the corresponding462

training loss are presented in Table 3 and Figure 6,463

respectively.464

Figure 6 shows that when K values are set to 96,465

128, and 192, the differences in training loss are466

minimal. This indicates that retaining tokens with467

the highest top-K attention weights is sufficient,468

and further increasing K does not yield substantial469

improvements in model performance. From Ta-470

ble 3, it can be observed that there is no significant471

improvement in the quality of the generated text472

when m increases from 96× 2 to 192× 2, which,473

however, is accompanied by a notable decrease474

in throughput. Therefore, it is essential to select475

an appropriate set of K and m, which balances476

throughput and the quality of generated text.477

3.5.2 Influence of KV States Rebuild478

We evaluate the impact of different R in KV states479

rebuild. Specifically, we select R in the range of480

m Throughput BLEU ROUGE BERT-F
48 × 2 270.5 35.5 27.8 62.8
96 × 2 259.6 36.8 28.8 63.5

128 × 2 202.6 37.0 29.2 63.7
192 × 2 167.7 37.3 29.4 64.3

Table 3: Inference performance comparison of maintain-
ing different cache sizes m by adaptive token release.
The best results are marked bold.

Numbers Throughput BLEU ROUGE BERT-F
R=0 278.2 34.3 26.8 62.3
R=8 259.6 36.8 28.8 63.5
R=16 202.6 37.5 28.9 63.9
R=32 150.8 38.0 29.9 64.3

Table 4: Inference performance comparison of different
numbers of rebuilt tokens during inference. The best
results are marked bold.

{0, 8, 16, 32} and summarize the inference perfor- 481

mance in Table 4. The results demonstrate that 482

as the R in rebuilt tokens increases, the model’s 483

performance first improves. However, the improve- 484

ment comes at the cost of a reduction in throughput. 485

When the number of rebuilt tokens is further in- 486

creased from 16 to 32, we can observe an improve- 487

ment of 1.5% in BLEU, 1.0% in ROUGH, and 0.4% 488

in BERT-F. However, this minor improvement is 489

accompanied by a 34.4% decrease in throughput. 490

This indicates that selecting the appropriate num- 491

ber of rebuilding tokens is crucial for maintaining a 492

trade-off between performance and quality during 493

the inference process. 494

3.5.3 Effectiveness of Controller Module 495

Since we use the controller module for advancedly 496

predicting top-K attention weights, next we in- 497

vestigate how it affects overall performance. In 498

particular, we adjust the module with the follow- 499

ing variants: (1) w/o GRU: directly using the MLP 500

for predicting the keeping/dropping probability of 501

tokens; (2) ADORE d′=64: set hidden size of the 502

controller to 64; (3) ADORE d′=128: set hidden 503

size of the controller to 128; We first report accu- 504

racy and F1 scores on the dataset that fine-tunes the 505

controller module, as detailed in Section 2.2. Then, 506

we report BLEU, ROUGE, and BERT-F scores on 507

7

the Ultrachat benchmark, which further illustrate508

how the performance of the controller module in-509

fluences the performance of LLMs.510

We summarize the results in Table 5. Our obser-511

vations are as follows: (1) The GRU is crucial for512

the controller module to serve as an effective alter-513

native to full attention; (2) an improved controller514

module results in enhanced performance during515

the inference process, as it offers a more accurate516

approximation of sparse attention.517

Controller Inference
Variants Acc. F1 BLEU ROUGE BERT-F
w/o GRU 83.4 78.8 36.2 26.4 61.7
ADORE d′=128 87.9 82.3 37.5 28.9 63.9
ADORE d′=64 81.5 74.0 33.5 28.5 62.4

Table 5: Performance comparison of different variants
controller module and inference. The best results are
marked bold.

4 Related Work518

In this section, we introduce the related work, in-519

cluding sparse attention, efficient LLMs and length520

extrapolation.521

4.1 Sparse Attention522

Several works have attempted to integrate sparse523

attention into transformer-based models. This inte-524

gration reduces the computational complexity from525

quadratic to approximately linear in the sequence526

length, making it possible to process longer se-527

quences. Some studies adopt fixed-pattern sparse528

strategies (Zaheer et al., 2020; Beltagy et al., 2020),529

while others focus on sparsification based on the530

distribution and features of self-attention (Rao531

et al., 2021; Xiao et al., 2023; Liu et al., 2023b).532

However, the methods often fail to result in a prac-533

tical improvement in the inference speed of lan-534

guage models (Ren et al., 2023). This is because535

the reduction in the number of tokens does not536

yield significant benefits on CUDA (Bolya et al.,537

2022). To address this issue, in the LLM inference538

process, we propose applying dynamic sparse at-539

tention to the storage of the key-value (KV) cache,540

thereby fundamentally enhancing the throughput541

of the LLM.542

4.2 Efficient Inference for LLMs543

The efficiency improvement of LLM inference is544

becoming increasingly attention-grabbing (Huang545

and Chang, 2023). Recent research has primar-546

ily focused on two aspects: systems and algo-547

rithms, aiming to enhance LLM inference effi- 548

ciency. In recent years, numerous systems ded- 549

icated to LLM inference have emerged, such as 550

FasterTransformer, Hugging Face Accelerate (Gug- 551

ger et al., 2022), FlexGen (Sheng et al., 2023), 552

and vLLM (Kwon et al., 2023). These systems 553

often emphasize optimization from hardware ac- 554

celerators and CUDA kernels. On the other hand, 555

algorithms like Early-Exit (Sun et al., 2021; Rotem 556

et al., 2023) Flashattention-2 (Dao, 2023) and Con- 557

tinuous Batch (Yu et al., 2022) attempt to optimize 558

LLM inference performance by reducing computa- 559

tional costs. In this paper, our proposed method is 560

orthogonal to all mainstream LLM inference sys- 561

tems and most algorithmic optimizations, and our 562

method can be used in parallel with these methods. 563

4.3 Length Extrapolation for LLM Inference 564

Length extrapolation aims to enable language mod- 565

els to maintain satisfactory performance when ap- 566

plied to super-long sequences as well. Current 567

mainstream research primarily focuses on find- 568

ing improved representations for positional en- 569

coding. Rotary Position Embeddings (RoPE) (Su 570

et al., 2024) attempt to transform absolute positions 571

into relative position encodings for length expan- 572

sion. Furthermore, ALiBi (Press et al., 2021) intro- 573

duces relative positional information by imposing 574

a penalty bias proportional to the distance in rela- 575

tive proximity on the attention matrix. However, 576

current pproaches still struggle to model extremely 577

long texts effectively. Simultaneously, when deal- 578

ing with long texts, a major limiting factor often 579

lies in GPU memory overflow issues. In this pa- 580

per, our approach extends the inference length of 581

LLM by setting a fixed attention window size by 582

adaptively releasing tokens, which is designed to 583

maximize the length of inference without compro- 584

mising performance significantly. 585

5 Conclusion 586

We propose an efficient sparse attention for the in- 587

ference process of LLMs. This is achieved by adap- 588

tively releasing the KV state of the tokens with the 589

lowest attention contribution in the cache while si- 590

multaneously rebuilding the state of tokens with the 591

highest contribution during the step-by-step decod- 592

ing of each token. Experimental results show that 593

our approach significantly enhances the throughput 594

of model inference without substantially compro- 595

mising the quality of the generated text. 596

8

6 Limitations597

In this paper, the primary limitation lies in the fine-598

tuning process required to align with our designed599

inference optimization method. Specifically, dur-600

ing fine-tuning, we still face an O(n2) time com-601

plexity for self-attention, resulting in no speed im-602

provement when learning dynamic sparse attention.603

Furthermore, our method is not immediately appli-604

cable during inference; it requires additional com-605

putational overhead for fine-tuning and training the606

controller to attain enhanced performance during607

inference.608

References609

Arkadeep Acharya, Brijraj Singh, and Naoyuki Onoe.610
2023. Llm based generation of item-description for611
recommendation system. In Proceedings of the 17th612
ACM Conference on Recommender Systems, pages613
1204–1207.614

Reza Yazdani Aminabadi, Samyam Rajbhandari, Am-615
mar Ahmad Awan, Cheng Li, Du Li, Elton Zheng,616
Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff617
Rasley, et al. 2022. Deepspeed-inference: enabling618
efficient inference of transformer models at unprece-619
dented scale. In SC22: International Conference for620
High Performance Computing, Networking, Storage621
and Analysis, pages 1–15. IEEE.622

Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020.623
Longformer: The long-document transformer. arXiv624
preprint arXiv:2004.05150.625

Sid Black, Leo Gao, Phil Wang, Connor Leahy,626
and Stella Biderman. 2021. GPT-Neo: Large627
Scale Autoregressive Language Modeling with Mesh-628
Tensorflow. If you use this software, please cite it629
using these metadata.630

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao631
Zhang, Christoph Feichtenhofer, and Judy Hoffman.632
2022. Token merging: Your vit but faster. arXiv633
preprint arXiv:2210.09461.634

Alexander Borzunov, Dmitry Baranchuk, Tim Dettmers,635
Max Ryabinin, Younes Belkada, Artem Chu-636
machenko, Pavel Samygin, and Colin Raffel. 2022.637
Petals: Collaborative inference and fine-tuning of638
large models. arXiv preprint arXiv:2209.01188.639

Rewon Child, Scott Gray, Alec Radford, and640
Ilya Sutskever. 2019. Generating long se-641
quences with sparse transformers. URL642
https://openai.com/blog/sparse-transformers.643

Tri Dao. 2023. Flashattention-2: Faster attention with644
better parallelism and work partitioning. arXiv645
preprint arXiv:2307.08691.646

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and 647
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning 648
of quantized llms. arXiv preprint arXiv:2305.14314. 649

Rahul Dey and Fathi M Salem. 2017. Gate-variants 650
of gated recurrent unit (gru) neural networks. In 651
2017 IEEE 60th international midwest symposium on 652
circuits and systems (MWSCAS), pages 1597–1600. 653
IEEE. 654

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi 655
Zheng, Shengding Hu, Zhiyuan Liu, Maosong Sun, 656
and Bowen Zhou. 2023. Enhancing chat language 657
models by scaling high-quality instructional conver- 658
sations. arXiv preprint arXiv:2305.14233. 659

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Alek- 660
sander Wawer. 2019. SAMSum corpus: A human- 661
annotated dialogue dataset for abstractive summa- 662
rization. In Proceedings of the 2nd Workshop on 663
New Frontiers in Summarization, pages 70–79, Hong 664
Kong, China. Association for Computational Linguis- 665
tics. 666

Sylvain Gugger, Lysandre Debut, Thomas Wolf, Philipp 667
Schmid, Zachary Mueller, Sourab Mangrulkar, Marc 668
Sun, and Benjamin Bossan. 2022. Accelerate: Train- 669
ing and inference at scale made simple, efficient and 670
adaptable. https://github.com/huggingface/ 671
accelerate. 672

Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and 673
Humphrey Shi. 2023. Neighborhood attention trans- 674
former. In Proceedings of the IEEE/CVF Conference 675
on Computer Vision and Pattern Recognition, pages 676
6185–6194. 677

Jie Huang and Kevin Chen-Chuan Chang. 2023. To- 678
wards reasoning in large language models: A survey. 679
In Findings of the Association for Computational 680
Linguistics: ACL 2023, pages 1049–1065, Toronto, 681
Canada. Association for Computational Linguistics. 682

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing 683
Yang, and Lili Qiu. 2023. LLMLingua: Compressing 684
prompts for accelerated inference of large language 685
models. In Proceedings of the 2023 Conference on 686
Empirical Methods in Natural Language Process- 687
ing, pages 13358–13376, Singapore. Association for 688
Computational Linguistics. 689

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B 690
Brown, Benjamin Chess, Rewon Child, Scott Gray, 691
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020. 692
Scaling laws for neural language models. arXiv 693
preprint arXiv:2001.08361. 694

Seongsoo Kim, Hayden Wimmer, and Jongyeop Kim. 695
2022. Analysis of deep learning libraries: Keras, py- 696
torch, and mxnet. In 2022 IEEE/ACIS 20th Interna- 697
tional Conference on Software Engineering Research, 698
Management and Applications (SERA), pages 54–62. 699
IEEE. 700

9

https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/D19-5409
https://github.com/huggingface/accelerate
https://github.com/huggingface/accelerate
https://github.com/huggingface/accelerate
https://doi.org/10.18653/v1/2023.findings-acl.67
https://doi.org/10.18653/v1/2023.findings-acl.67
https://doi.org/10.18653/v1/2023.findings-acl.67
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying701
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.702
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-703
cient memory management for large language model704
serving with pagedattention. In Proceedings of the705
ACM SIGOPS 29th Symposium on Operating Systems706
Principles.707

Dacheng Li, Rulin Shao, Anze Xie, Ying Sheng, Lian-708
min Zheng, Joseph Gonzalez, Ion Stoica, Xuezhe Ma,709
and Hao Zhang. 2023a. How long can context length710
of open-source llms truly promise? In NeurIPS 2023711
Workshop on Instruction Tuning and Instruction Fol-712
lowing.713

Guohao Li, Hasan Abed Al Kader Hammoud, Hani714
Itani, Dmitrii Khizbullin, and Bernard Ghanem.715
2023b. Camel: Communicative agents for" mind"716
exploration of large scale language model society.717
arXiv preprint arXiv:2303.17760.718

Haoxin Li, Phillip Keung, Daniel Cheng, Jungo Kasai,719
and Noah A. Smith. 2023c. NarrowBERT: Accelerat-720
ing masked language model pretraining and inference.721
In Proceedings of the 61st Annual Meeting of the As-722
sociation for Computational Linguistics (Volume 2:723
Short Papers), pages 1723–1730, Toronto, Canada.724
Association for Computational Linguistics.725

Yucheng Li, Bo Dong, Frank Guerin, and Chenghua Lin.726
2023d. Compressing context to enhance inference727
efficiency of large language models. In Proceed-728
ings of the 2023 Conference on Empirical Methods729
in Natural Language Processing, pages 6342–6353,730
Singapore. Association for Computational Linguis-731
tics.732

Xiaobo Liang, Juntao Li, Lijun Wu, Ziqiang Cao, and733
Min Zhang. 2023. Dynamic and efficient inference734
for text generation via BERT family. In Proceedings735
of the 61st Annual Meeting of the Association for736
Computational Linguistics (Volume 1: Long Papers),737
pages 2883–2897, Toronto, Canada. Association for738
Computational Linguistics.739

Nora Freya Lindemann. 2023. Sealed knowledges: A740
critical approach to the usage of llms as search en-741
gines. In Proceedings of the 2023 AAAI/ACM Con-742
ference on AI, Ethics, and Society, pages 985–986.743

Songhua Liu, Jingwen Ye, Sucheng Ren, and Xinchao744
Wang. 2022. Dynast: Dynamic sparse transformer745
for exemplar-guided image generation. In Euro-746
pean Conference on Computer Vision, pages 72–90.747
Springer.748

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao749
Wang, Victor Xie, Zhaozhuo Xu, Anastasios Kyril-750
lidis, and Anshumali Shrivastava. 2023a. Scis-751
sorhands: Exploiting the persistence of importance752
hypothesis for llm kv cache compression at test time.753
arXiv preprint arXiv:2305.17118.754

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang755
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang,756

Yuandong Tian, Christopher Re, et al. 2023b. Deja 757
vu: Contextual sparsity for efficient llms at infer- 758
ence time. In International Conference on Machine 759
Learning, pages 22137–22176. PMLR. 760

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023. 761
Llm-pruner: On the structural pruning of large lan- 762
guage models. arXiv preprint arXiv:2305.11627. 763

Ofir Press, Noah A Smith, and Mike Lewis. 2021. 764
Train short, test long: Attention with linear biases 765
enables input length extrapolation. arXiv preprint 766
arXiv:2108.12409. 767

Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, 768
Jie Zhou, and Cho-Jui Hsieh. 2021. Dynamicvit: Ef- 769
ficient vision transformers with dynamic token sparsi- 770
fication. Advances in neural information processing 771
systems, 34:13937–13949. 772

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and 773
Yuxiong He. 2020. Deepspeed: System optimiza- 774
tions enable training deep learning models with over 775
100 billion parameters. In Proceedings of the 26th 776
ACM SIGKDD International Conference on Knowl- 777
edge Discovery & Data Mining, pages 3505–3506. 778

Siyu Ren, Qi Jia, and Kenny Zhu. 2023. Context com- 779
pression for auto-regressive transformers with sen- 780
tinel tokens. In Proceedings of the 2023 Conference 781
on Empirical Methods in Natural Language Process- 782
ing, pages 12860–12867, Singapore. Association for 783
Computational Linguistics. 784

Daniel Rotem, Michael Hassid, Jonathan Mamou, and 785
Roy Schwartz. 2023. Finding the SWEET spot: Anal- 786
ysis and improvement of adaptive inference in low 787
resource settings. In Proceedings of the 61st An- 788
nual Meeting of the Association for Computational 789
Linguistics (Volume 1: Long Papers), pages 14836– 790
14851, Toronto, Canada. Association for Computa- 791
tional Linguistics. 792

Abigail See, Peter J. Liu, and Christopher D. Manning. 793
2017. Get to the point: Summarization with pointer- 794
generator networks. In Proceedings of the 55th An- 795
nual Meeting of the Association for Computational 796
Linguistics (Volume 1: Long Papers), pages 1073– 797
1083, Vancouver, Canada. Association for Computa- 798
tional Linguistics. 799

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuo- 800
han Li, Max Ryabinin, Beidi Chen, Percy Liang, 801
Christopher Ré, Ion Stoica, and Ce Zhang. 2023. 802
Flexgen: High-throughput generative inference of 803
large language models with a single gpu. In Inter- 804
national Conference on Machine Learning, pages 805
31094–31116. PMLR. 806

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, 807
Wen Bo, and Yunfeng Liu. 2024. Roformer: En- 808
hanced transformer with rotary position embedding. 809
Neurocomputing, 568:127063. 810

10

https://doi.org/10.18653/v1/2023.acl-short.146
https://doi.org/10.18653/v1/2023.acl-short.146
https://doi.org/10.18653/v1/2023.acl-short.146
https://doi.org/10.18653/v1/2023.emnlp-main.391
https://doi.org/10.18653/v1/2023.emnlp-main.391
https://doi.org/10.18653/v1/2023.emnlp-main.391
https://doi.org/10.18653/v1/2023.acl-long.162
https://doi.org/10.18653/v1/2023.acl-long.162
https://doi.org/10.18653/v1/2023.acl-long.162
https://doi.org/10.18653/v1/2023.emnlp-main.794
https://doi.org/10.18653/v1/2023.emnlp-main.794
https://doi.org/10.18653/v1/2023.emnlp-main.794
https://doi.org/10.18653/v1/2023.emnlp-main.794
https://doi.org/10.18653/v1/2023.emnlp-main.794
https://doi.org/10.18653/v1/2023.acl-long.829
https://doi.org/10.18653/v1/2023.acl-long.829
https://doi.org/10.18653/v1/2023.acl-long.829
https://doi.org/10.18653/v1/2023.acl-long.829
https://doi.org/10.18653/v1/2023.acl-long.829
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099

Tianxiang Sun, Yunhua Zhou, Xiangyang Liu, Xinyu811
Zhang, Hao Jiang, Zhao Cao, Xuanjing Huang, and812
Xipeng Qiu. 2021. Early exiting with ensemble inter-813
nal classifiers. arXiv preprint arXiv:2105.13792.814

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-815
bert, Amjad Almahairi, Yasmine Babaei, Nikolay816
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti817
Bhosale, et al. 2023. Llama 2: Open founda-818
tion and fine-tuned chat models. arXiv preprint819
arXiv:2307.09288.820

Xinjian Wu, Fanhu Zeng, Xiudong Wang, Yunhe Wang,821
and Xinghao Chen. 2023. Ppt: Token pruning822
and pooling for efficient vision transformers. arXiv823
preprint arXiv:2310.01812.824

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song825
Han, and Mike Lewis. 2023. Efficient streaming826
language models with attention sinks. arXiv preprint827
arXiv:2309.17453.828

Seongjun Yang, Gibbeum Lee, Jaewoong Cho, Dim-829
itris Papailiopoulos, and Kangwook Lee. 2023. Pre-830
dictive pipelined decoding: A compute-latency831
trade-off for exact llm decoding. arXiv preprint832
arXiv:2307.05908.833

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soo-834
jeong Kim, and Byung-Gon Chun. 2022. Orca: A835
distributed serving system for {Transformer-Based}836
generative models. In 16th USENIX Symposium837
on Operating Systems Design and Implementation838
(OSDI 22), pages 521–538.839

Manzil Zaheer, Guru Guruganesh, Kumar Avinava840
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-841
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,842
Li Yang, et al. 2020. Big bird: Transformers for843
longer sequences. Advances in neural information844
processing systems, 33:17283–17297.845

Dong Zhang, Shimin Li, Xin Zhang, Jun Zhan,846
Pengyu Wang, Yaqian Zhou, and Xipeng Qiu. 2023.847
Speechgpt: Empowering large language models with848
intrinsic cross-modal conversational abilities. arXiv849
preprint arXiv:2305.11000.850

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q851
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-852
uating text generation with bert. arXiv preprint853
arXiv:1904.09675.854

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai855
Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.856
2021. Informer: Beyond efficient transformer for857
long sequence time-series forecasting. In Proceed-858
ings of the AAAI conference on artificial intelligence,859
volume 35, pages 11106–11115.860

Lei Zhu, Xinjiang Wang, Zhanghan Ke, Wayne Zhang,861
and Rynson WH Lau. 2023. Biformer: Vision trans-862
former with bi-level routing attention. In Proceed-863
ings of the IEEE/CVF Conference on Computer Vi-864
sion and Pattern Recognition, pages 10323–10333.865

11

A Dataset Statistics866

In Table 6, we present the statistical information867

of the datasets used in our experiments, including868

dataset partitioning and sequence length statistics.

Dataset Dataset partitioning Sequence Length

Train Valid Test Average Median 90 percentile

UltraChat 696600 77400 77400 1476 1411 2265
EverythingLM 972 108 108 1743 1765 2550
Math 45000 5000 5000 510 459 910
StreamEval 2825 353 352 1686 1679 2160
CNN Daily Mail 287113 13368 11490 1132 1060 1825
SAMSum 14700 818 819 3227 3212 3900

Table 6: Performance comparison on StreamChat across
different length subsets. The best results are shown in
bold.

869

B Implementation Details870

In this section, we illustrate the details of our im-871

plementatio, primarily encompassing training data872

collection, fine-tuning with QLoRA, details of the873

controller module, inference settings, and hardware874

settings.875

Training data collection As detailed in Sec-876

tion 2.2, it is imperative to gather word embed-877

dings and token indices that contribute to the top-878

K attention for the current word for training our879

controller module. Furthermore, during the fine-880

tuning phase of our model, attention masks are881

generated utilizing the collected indices to align882

with the inference process. Specifically, during the883

fine-tuning process of the full attention (baseline)884

on the training set, we collect the word embed-885

dings and the most frequently top-K indices of886

each sample. Given that full attention encompasses887

the entire sequence, it consistently yields the low-888

est loss during fine-tuning, thereby ensuring that889

the attention distribution modeled is reliable and890

informative for capturing the top-K indices.891

Fine-tuning with QLoRA (i) Hyper-parameters:892

For all methods, we utilize the Adam optimizer893

with a learning rate of 3e-5, decayed by a rate894

of 0.98 every 40 steps. Regarding the parame-895

ters for Q-LORA, we uniformly set the rank pa-896

rameter r = 16 and the learning rate scaling fac-897

tor lora_alpha = 32. (ii) Alignment fine-tuning898

with ADORE: By collecting the top-K indices,899

we create attention masks for full attention, which900

block the attention from current token to the low-901

contribution tokens. This implementation achieves902

dynamic sparse attention during fine-tuning, result- 903

ing in a model aligned with our inference optimiza- 904

tion approach. 905

Details of the controller module (a) Controller 906

network structure: (i) Input layer: A GRU layer 907

with an input size of 4096 and a hidden size of 128; 908

(ii) Position layer: A fully connected layer with 909

an input size of 1, projected to 128; (iii) Interac- 910

tion layer: A fully connected layer with a hidden 911

size of 128 and a Tanh activation function; (iv) 912

Output layer: Each output, mapped to [0,1] for 913

cross-entropy loss over the sequence length, is ob- 914

tained through a fully connected layer followed 915

by a sigmoid function. (b) Training Details: We 916

employ the Adam optimizer with a learning rate 917

of 0.005, accompanied by a decay rate of 0.98 ev- 918

ery 2000 steps. We split the collected dataset into 919

a training set and a validation set with an 8:2 ra- 920

tio, and save the model parameters achieving the 921

highest F1 score on the validation set. 922

Hardware settings We utilized four GeForce 923

RTX 3090 GPUs, with a total runtime exceeding 924

20 hours. 925

4 8 12 16
Layers

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 (%

)

(a) Proportion of overlap-
ping tokens between the uni-
form token set and top-K/2
tokens sets at each layer.

4 8 12 16
Layers

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 (%

)

(b) Proportion of cumula-
tive softmax scores from the
uniform token set at each
layer.

Figure 7: The effectiveness of the uniform token set at
each layer.

C Analysis of Dynamic Sparse Attention 926

In this section, we first demonstrate the effective- 927

ness of applying a uniform scheduling policy across 928

different layers. Then we showcase the superior 929

performance of dynamic sparse attention in compar- 930

ison to other methods and delve into the underlying 931

reasons behind its effectiveness. 932

According to the setup in Section 2.2, we select 933

the top-K/2 tokens sets for each layer and consider 934

the top-K tokens that appear most frequently in 935

these sets as the uniform token sets. In Figure 7(a), 936

we observe that the uniform token set covers the 937

majority of the top-K/2 token sets at each layer. 938

12

0 1000 2000
Samples

0.00

0.02

0.04

0.06

Th
e

so
ftm

ax
 sc

or
e

Self-attention distribution at Head0@Layer1

0 1000 2000
Samples

0.0

0.1

0.2

0.3

0.4

Th
e

so
ftm

ax
 sc

or
e

Self-attention distribution at Head7@Layer16

0 1000 2000
Samples

0.000

0.025

0.050

0.075

0.100

0.125

Th
e

so
ftm

ax
 sc

or
e

Self-attention distribution at Head14@Layer32

Figure 8: The Softmax scores in the self-attention from a 32-layer Transformer on CNN-DM dataset.

0 250 500 750 1000
Steps

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Lo
ss

UltraChat

0 250 500 750 1000
Steps

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Lo
ss

EverythingLM

0 250 500 750 1000
Steps

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

Math

Ours Strided Attention Window Attention StreamingLLM Full Attention

Figure 9: Comparison of loss during fine-tuning across different methods.

Additionally, in Figure 7(b), we illustrate the cumu-939

lative softmax attention scores from the uniform940

token set for the current token across different lay-941

ers, demonstrating that the uniform token set can942

effectively replace the contributions of the top-K/2943

token sets at each layer.944

Figure 9 illustrates the comparison of loss with945

QLoRA fine-tuning for various methods on Ultra-946

Chat, EverythingLM, and Math. It is evident that947

the loss by focusing on the tokens with the top-K948

highest attention (dynamic sparse attention) main-949

tains consistency with the full attention approach950

and results in a notable reduction in loss compared951

to other methods.952

The superior performance of dynamic sparse at-953

tention can be attributed to the observation that only954

a small portion of tokens significantly contributes955

to the attention mechanism during the modeling956

process for the current token. The Softmax scores957

in the self-attention curve on the cnn-daily dataset958

is presented in Figure 8. It can be observed that the959

blue curve in Figure 8 form a long-tail distribution.960

This observation provides a reasonable explanation961

for effective dynamic sparse attention and further962

demonstrates its good performance in the task.963

D Comparison of unidirectional and 964

bidirectional GRU performance 965

In this section, we compare the performance of 966

unidirectional and bidirectional GRU in terms of 967

top-K prediction accuracy and computation time 968

for 1,000 tokens to illustrate why we choose unidi- 969

rectional GRU as the primary architecture for the 970

controller module. 971

Table 7 demonstrates the accuracy and precision 972

on the collected data validation set. We can ob- 973

serve that bidirectional GRU does not significantly 974

improve performance compared to unidirectional 975

GRU. Instead, bidirectional GRU is more compu- 976

tationally expensive in terms of runtime because 977

it requires forward and backward computations at 978

each time step. 979

Model Acc. F1 Time
unidirectional GRU 87.9 82.3 120.5
bidirectional GRU 88.4 83.8 177.3

Table 7: Performance comparison of unidirectional and
bidirectional GRU

13

