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Abstract

Transformer models (TMs) pretrained on diverse datasets exhibit impressive in-
context learning (ICL) capabilities, enabling them to adapt to new tasks without
parameter updates. In reinforcement learning (RL), in-context RL (ICRL) leverages
this capability by pretraining TMs on diverse RL tasks to adapt to unseen ones.
However, the robustness of pretrained TMs in ICRL remains underexplored, with
performance often degrading under disturbances in deployment. To address this, we
propose a pretraining framework that augments the data with adversarial variations
of training environments. This approach improves robustness and enhances gener-
alization by increasing task diversity, while avoiding the computational overhead
and pessimism of worst-case optimization used in robust RL. We further introduce
an adaptive variant that uses the ICRL capability of pretrained TMs to efficiently
generate high-quality data through online rollouts. Extensive experiments on a
diverse set of ICRL tasks prove the efficacy of the proposed methods.

1 Introduction

Transformer models (TMs) pretrained on a massive amount of data have achieved remarkable
successes spanning a wide range of application areas [1} 24} |37]]. Notably, TMs exhibit remarkable
in-context learning (ICL) capabilities, solving unseen supervised learning tasks using only a few input-
label pairs as demonstrations, without requiring any parameter updates [28]]. Although reinforcement
learning (RL) represents a more complex sequential learning problem than supervised learning, in-
context reinforcement learning (ICRL) has recently found impressive achievements. ICRL methods
first pretrain TMs on a diverse set of RL tasks and subsequently deploy these pretrained TMs to new
environments (tasks) unseen during the pretraining.

One particularly successful pretraining method is through supervised pretraining which directly trains
the TMs to predict the optimal actions for some query states across different RL tasks, conditioned on
a given context dataset consisting of trajectories collected from those pretraining environments [16].
See Figure[I(a)| for the supervised pretraining framework. During pretraining, TMs learn to infer the
optimal policies by leveraging the environmental information embedded within the trajectories of the
given context dataset. During deployment, the pretrained TMs act as policies for new RL tasks, with
only a couple of trajectories collected from the new RL tasks as the context dataset to condition on.
See Section [2]for details of supervised pretraining and Algorithm I)in Appendix [H]for deployment.

Challenges. Although pretrained TMs exhibit impressive performance by inferring near-optimal
actions in new RL tasks, robustness has yet to be thoroughly examined. We observe that even
mild perturbations(representing corrupted or unreliable interaction data) can lead to significant
performance degradation.
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Figure 1: Overview of the supervised pretraining framework for ICRL across multiple tasks, where
each task corresponds to an MDP instance 7%, with 7¢ € {1,2,3} as illustrated. (a) A TM is
pretrained to predict the optimal action across RL tasks [16], using optimal action labels a* from
expert policies 7;, given query states Squery and offline trajectories collected from different RL tasks

by distinct behavioral policies 7T . (b) To enhance policy robustness, a robust action label a"”

sampled from the robust pohcy 7rT,i rather than ;. (¢) To approximate robust learning W1thout
explicit max-min optimization, each task 7* is augmented with K adversarial variations {¢"*} 1 |
(e.g., black and white hackers), and the optimal action labels are derived from 7'(': & representing the
optimal policy under disturbance ¢. (d) Alternatively, high-quality action labels a and trajectories

are generated for K task variants via recursive online adaptation using pretrained models 7}, for
je{1,2,3,...}.

In Figure 2] we present experiments in the Dark Room Jofeturn Degradation under Disturbance for Dark Room
environment [15]] to investigate the performance of pre- o0
trained TMs under deployment disturbances. Deployment 11.2%
disturbances can be viewed as corrupted interaction data or 60
adversarial manipulations in the RL environment, leading 40
to unreliable observations and degraded performance. Our 200 [357% ] [ o
results show that their performance degrades under even

mild disturbances, specifically with action perturbation
applied at probability p = 0.2. Although the magnitude of
degradation varies across methods (i.e., DPT [[16], prompt-
DT [43], mix-DPT [39]), the consistent downward trend
reveals a common vulnerability: While ICRL models are
pretrained to adapt to new tasks or environmental changes,
they still exhibit limited robustness to perturbations—an
important challenge in real-world applications. We at- o hatched white regions indicate the
tribute this observed lack of robustness to distributional ortion of return lost due to disturbance.
shift, that is, the environmental change caused by perturbation 1s out-of-distribution with respect to
the ICRL pretraining tasks.

Return
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Figure 2: Return degradation of three
in-context RL methods under action per-
turbation with probability p = 0.2 in the
Dark Room environment. Bars represent
performance without disturbance, while

This observation motivates us to design an ICRL framework (a) with robust performance under
disturbance while (b) maintaining strong generalization to new tasks. To address this challenge, we
draw inspiration from solutions developed for standard RL. In these settings, one of the most effective
and popular approaches to improve policy robustness is through worst-case optimization, that is,
to find policies with the best worst-case performance among an uncertainty set through solving a



max-min problem [22} [26]. In the sequel, we will refer to these policies obtained through max-min
optimizations as robust policies.

Notably, within the supervised pretraining framework for ICRL, the worst-case optimization approach
from standard RL can be directly extended to ICRL by simply modifying the action labels used
during pretraining. See Figure [I(b)|for illustrations and Section 3| for details. In this case, we pretrain
TMs to infer robust actions that would be taken by robust policies in new RL tasks.

However, this approach has several limitations. First, the worst-case optimization approach is known
to have two challenges: (a) its success hinges on the quality of its uncertainty set construction,
e.g., the worst-case formulation can easily to lead to over-pessimistic policies if the uncertainty set
includes too many environments [6]]; (b) in the current era of deep RL, characterized by complex
policies and value estimators, the associated max-min problems are often difficult to be solved
efficiently. Moreover, while solving the worst-case optimization problem for a single RL task is
already challenging, identifying robust policies across a large and diverse set of RL tasks is even
more demanding.

Contributions. Our insight for addressing these challenges is that we can use the in-context learning
capability of TMs to transform the robust optimization (i.e., max-min) problems into generalization
problems. Instead of pretraining the TMs to infer a robust policy for a new RL task, we propose
to directly pretrain them to generalize across varying disturbances and adversaries. We term this
proposed approach In-context Adversarial Generalization (ICAG).

Thus, the proposed framework ICAG requires generalization on two axes. One axis is the generaliza-
tion across different RL tasks; the other axis is the generalization across varying disturbances and
adversaries, thus addressing the out-of-distribution problem. To help TMs achieve generalization on
these two axes, we propose to augment the pretraining dataset to include perturbed environments.
Specifically, for every pretraining task, we create multiple variations of it, each of which including a
randomly sampled adversary. We learn an optimal policy for every variation, and use it to generate
action labels for supervised pretraining. In particular, the adversaries remain fixed and is deemed as
an integral part of the environment so that identifying the optimal policies for variation environments
can be parallelized and considerably easier than finding a robust policy through max-min optimization.
See Figure for a conceptual demonstration.

ICAG offers many notable benefits. From the perspective of improving policy robustness for standard
RL, ICAG avoids sacrificing performance for robustness, as it can adapt to varying environments
and disturbances while robust policies often show degraded performance due to challenges such as
over-pessimism and effective solutions to the max-min problems. In particular, the adaptation is
in-context and without any parameter update. This provides considerable practical advantages as we
only need to deploy one fixed model, especially in the common scenarios where active updates of
models are expensive or even infeasible. Furthermore, we observe that ICAG also improves ICRL
performance when deployed to new environments without disturbances. This is because ICAG also
functions as a data augmentation method, where the generated disturbances effectively increase the
diversity of pretraining tasks to help generalization

To further reduce the computational burden of collecting optimal action labels for each variation
environment, we introduce In-context Adversarial Adaptation (ICAA), a complementary method
to ICAG. Instead of solving for the optimal policy from scratch, ICAA efficiently adapts a pretrained
ICRL model to each variation environment through online rollouts. It then extracts high-quality
query state—action pairs from high-performing trajectories to augment the pretraining dataset. This
recursive process iteratively enhances the robustness and generalization capabilities of the model
with minimal training overhead, which is illustrated in Figure

Throughout extensive experiments on sparse-reward navigation tasks [15] and two complex continu-
ous control tasks (Meta-World and MuJoCo with 11 problems [36]), our [CAG and ICAA demonstrate
superior performance, particularly when under agent disturbances during deployment.

2 Preliminary

Markov Decision Process (MDP). Sequential decision-making tasks are modeled as MDPs [12] 2].
An MDP 7 is defined by the tuple (S, A, Py, R,,~, p-), where S is the set of states, A is the set
of actions, P, : § x A — A(S) is the state transition function, R, : S x A — R is the reward



function, v € (0, 1) is the discount factor, and p, € A(S) is the initial state distribution. At each
time step h, an agent selects an action a, € A, receives a reward r, = R, (sp, ap,), and transitions to
the next state s;,41 according to Py (sp,ar). A policy 7 : & — A(A) maps the current state to an
action distribution. The agent’s goal is to learn the optimal policy 7* that maximizes the expected
cumulative reward G, (7) = E[>_;"  v"“1ry | 7, 7] in 7.

Supervised Pretraining. Our approach builds on the DPT architecture [16], a supervised pretraining
method designed to equip transformer models with ICRL capabilities. In DPT, a set of tasks {7¢},
is drawn from a task distribution p,. Each task 7° € M represents an instance of an MDP where M is
the space of all tasks of interest, and for each task, a context dataset Diis generated from interactions
between a behavioral policy and 7%, i.e., D' = {(s},al, s}, i1 i) }h, where @i, is selected by the
behavioral policy. For each task 7¢, a query state sguery € S is chosen, and the optimal action a} is
sampled from 7%, (s!,.. ), where 7*; is the optimal policy for 7*. The complete pretraining dataset
is then denoted as D,,. = {D", siuery7 ar}™,. Let Tp represent a causal GPT-2 transformer with

parameters 6 [28]]. The pretrainingqobjective of DPT is formulated as follows:

m

. 1 x| .1 i
ménE;—long (ai|squery,D ) . (1)

ICRL Deployment. The pretrained autoregressive TM T} can be deployed as an agent in both offline
and online settings. During deployment, an unseen task 7 is sampled from the task distribution p. In
offline deployment, a dataset Dy is first collected from 7, typically using trajectories generated by a
random policy. Once available, DPT selects actions based on the policy Ty(+|sp, Do) after observing
the state sj, at time step h. For online deployment, DPT begins with an empty dataset D,,. At each
episode, DPT follows Ty (-|sp, Don) to collect a trajectory £ = {s1,a1,71,...,8y,aH,TH }, which
is appended to D,,. This process repeats for a predefined number of episodes. The pseudocode for
this process is provided in Algorithm[T]in Appendix

3 Extending Robust RL for Robust ICRL

To improve the robustness of ICRL methods, a natural starting point is to adapt existing robust
RL techniques developed for standard RL settings to the ICRL context. In Section [3.1] we briefly
review adversarial training, a widely used technique for enhancing policy robustness in standard RL.
Then, in Section[3.2] we explore how adversarial training can be directly extended to ICRL within
the supervised pretraining framework and highlight its inherent limitations in this setting. 7hese
limitations, in turn, motivate our proposed frameworks in Section[d] which leverage the in-context
learning capabilities of transformer models to overcome these challenges more effectively.

3.1 Robust RL From Adversarial Training

While the objective of standard RL is to find a policy 7, that performs well for a specific target
MDP 7, robust RL aims to ensure performance even when the deployment MDP 7/ differs from the
pre-specified target 7 [22].

Adversarial training is one of the most effective robust RL methods, which proposes to learn a
policy robust to adversarial attacks and disturbances [26]]. Adversarial training has shown great
success in improving the policy robustness to both (i) environment mis-specification and (ii) external
disturbances. It can be formulated as a Markov Game, defined by a tuple of 6 elements 78 =
(S, A, A% P R% ~, p,); here, S, v, and p, are defined as in the MDP formulation, representing
the set of states, the discount factor, and the initial state distribution, respectively; A and A%
are respectively the sets of actions that the agent (protagonist) and the adversary can take; PY :
S x A x A* — A(S) is the transition function that describes the distribution of the next state given
the current state and actions taken by the agent and the adversary; RS : S x A x A* — R is the
reward function for the agent. Consider a parameterized adversary 7¢ : S — A(A%) where ¢ is its
parameter. We use 7 : S — A(A) to denote the agent policy to learn. Let s;, € S be the state of the
environment, and let aj, € A (respectively af € A®) denote the action of the agent (respectively the
adversary) at time step h. We use

727’(’”; ¢) = E[ZOO

oV R (sn,an, af)|so ~ pr] ©)



where aj, ~ (sp), af, ~ 7§ (sn) to represent the cumulative discounted reward that the agent 7 can
receive under the disturbance of the adversary following policy 7. For a specific target MDP 7, the
objective of adversarial training for robustness is defined as

rb :
w7 € argmax min R, (7, @), 3)
gmax min R-(,9)
where ®(7) is a pre-defined adversary space for 7. In this approach, the RL agent 7 optimizes the
worst-case performance among all the adversarial disturbances from &.

3.2 In-Context Robust Reinforcement Learning

Although primarily designed for standard RL scenarios, the adversarial training approach can be
directly adapted to ICRL within the supervised pretraining framework. We term this approach In-
context Robust RL (IC2RL), which we illustrate in Figure[T(b)]and elaborate next.

Specifically, given the pretraining tasks {7°}™ ,, we can construct a dataset for supervised pretraining
following two steps. In the first step, we solve for a robust policy w:{’ for each task 7, defined as

rb .
m; € argmax min R i (7, @), 4)
BT pea(r) (m,¢)

where ®(7%) is the adversary set for task 7¢. The second step mirrors the data collection process
of supervised pretraining in Section [2 except that the sampled query state s, € S is annotated

with a robust action label a!® drawn from the robust policy w:i’ (séuery) rather than the optimal policy
77, used in standard supervised pretraining. Thus, the complete pretraining dataset for IC2RL is

D;f,e = {D7, séuery, ar®}m ., and we can pretrain a causal transformer with the same pretraining
objective as in (I). In this approach, the TMs are pretrained to infer an action which would be
taken by a robust RL policy, conditioning on a given context (thus the name In-Context Robust RL).
By definition in (@), the robust policies optimize their worst-case performance under disturbances.
However, as a straightforward extension of the regular robust RL approaches, this approach inherits a

couple of long-standing limitations within robust RL and induces considerable computation cost.

First, the max-min problem in (@) poses a challenging optimization problem, especially in the current
era of deep RL, where such problems are often non-convex and non-concave. Solving this problem
requires substantial computational effort to approximate robust RL for a single task. While this
computational burden may be manageable in standard robust RL settings with only one task of interest,
the (often vast) number of RL tasks involved in ICRL pretraining renders the required computational
cost prohibitively high. Second, the success of the max-min approach in robust RL relies on effective
construction of the adversary parameter set. If not properly constructed, an adversary set which is too
broad leads to over-pessimistic policies due to the worst-case optimization, and, on the other hand, an
adversary set which is too limited leads to policies with insufficient robustness to disturbances and
environment mis-specification [6].

4 In-Context Adversarial Generalization and Adaptation

In Section @], we present our framework, In-Context Adversarial Generalization (ICAG), which
overcomes the aforementioned limitations and effectively enhances the robustness of ICRL deploy-
ment. Recognizing ICAG may incur extra computational cost, in Section 4.2 we propose In-Context
Adversarial Adaptation (ICAA) which bootstraps pretrained TMs to efficiently collect high-quality
action labels with minimal data consumption.

4.1 In-Context Adversarial Generalization

Motivational Insight. The proposed framework is motivated by our insight that worst-case optimiza-
tion is not necessary when the model can generalize in-context to various disturbances. In particular,
instead of pretraining the TMs to infer actions taken by the robust policies that solve max-min
problems, we propose to pretrain TMs to directly infer the optimal actions to take under various
disturbances. Compared to regular ICRL, the proposed approach has two axes of generalization: one
for generalizing across the environments and the other for generalizing across the disturbances. We
next propose a supervised pretraining framework In-Context Adversarial Generalization (ICAG) to



achieve generalization on these two axes, which is illustrated in Figure[I(c)] Notably, ICAG addresses
the aforementioned challenges by entirely circumventing the max-min optimization.

Algorithm. Recall that M is a set of MDPs representing the space of environments (RL tasks) of
interest for ICRL. Our goal is to pretrain TMs to generalize across the following adversary-augmented
task space

My ={(1,¢): 7 € M;¢ € (1)},

where ®(7) is defined as in (@), representing a pre-specified set of adversaries for 7. Here, each pair
(1,¢) € M, represents an environment 7 along with an associated disturbance policy 745. When
an agent is deployed into an environment 7 with a disturbance policy 74, from the perspective
of the agent, the disturbance 7 is an integral part of the environment 7. Thus, 7 and ¢ jointly
create an environment. We refer to such a new environment created by incorporating an adversary
¢ into an environment T as a variation environment, denoted by (7, ¢). Specifically, the MDP
of this environment can be defined as (S, A, P; 4, R; 4,7, pr), Where S, A, v, p, are defined as
in the MDP formulation in Section and Py 4(s,a) = Eq/or,(s) [P (s,a,a’)] and Ry 4(s,a) =
Eq o, (s)[RE (s, a,a’)] with PE and RS defined as in the Markov Game formulation in Section

To pretrain TMs to generalize across M., we sample a set of variation environments belonging to M,
for supervised pretraining. To this end, given a set of m pretraining tasks {7°}7*, C M, we create
K variations of every pretraining task 7° by randomly sampling K adversaries {¢"*}5_| C ®(7?)
and including the sampled adversaries into 7¢. Thus, we create a set of variation environments
{(4, ¢i"k)}ie[m], ke[k)- For every variation environment, we sample an in-context dataset D, a query
state Squery, and an optimal action label following the optimal policy 7 , (Squery), defined as

T s € argmax R.(m, @). )

We note that the objective function in () does not involve max-min optimization. Moreover, learning
optimal policies for K variation environments can be easily parallelized. This can significantly
improve the efficiency the pretraining. See Algorithm 2]in Appendix [H|for its pseudocode.

ICAG Augments Tasks. On top of improving the robustness of TMs for ICRL, ICAG can also be
viewed as a data augmentation method. In particular, consider the adversary set ®(7), which includes
the null disturbance ¢ such that the MDP of the variation environment (7, ¢g) remains identical to
the original MDP 7. This can be trivially achieved by simply omitting an adversary when augmenting
the pretraining tasks. In this case, the augmented task space M, covers the original task space M,
ie., M C M,. Thus, ICAG effectively increase the diversity and number of pretraining tasks,
leading to improved ICRL performance, as shown by the extensive empirical evidence in Section [5]

4.2 In-Context Adversarial Adaptation

The proposed ICAG framework has one notable limitation: obtaining optimal action labels for a
variation environment (7, ¢) is computationally intensive, as it requires training a policy from scratch
to approximate the optimal policy 7 ¢(squery) defined in (3). To address this challenge, we propose
leveraging a pretrained ICRL model to efficiently generate high-quality, though not necessarily
optimal, action labels that are sufficient to improve robustness through iterative supervised updates.

We introduce In-Context Adversarial Adaptation (ICAA), a scalable method that uses an existing ICRL
model to efficiently adapt to each variation environment (7¢, $***) and generate query state—action
label pairs for pretraining. Given an initial dataset D°, we first train an initial model T, with
supervised pretraining on D° and then deploy it in each variation environment. Here, DY can be
the pretraining dataset containing only trajectories from the original, unaugmented environments.
Starting with an empty context buffer, the model performs online deployment by interacting with
the environment and incrementally updating its context using its own rollouts, yielding a trajectory
sequence &g, &1, . . ., En (see Section 2| for details).

With these trajectories {&,, })_,, we construct a new pretraining dataset for each variation environment
to update the current ICRL model 7. Recall that an instance of the pretraining dataset { D, Sqery, @* }
has three elements: a context dataset D of trajectories, a query state Sy, and its corresponding

action label a*. To this end, we first collect the initial N < N trajectories {&, nﬂ:O to construct the

context datasets for pretraining. Next, we independently sample state—action pairs {sgucry, an}nﬂzo



from the remaining trajectories {&,})_,,. The sampled pairs are used as the query state-action
label pairs for pretraining. In particular, as the performance of ICRL models increases with more
trajectories during deployment, we sample from later trajectories n > NN to focus on trajectories with
higher cumulative returns and obtain action labels with higher quality.

This yields an environment-specific pretraining dataset of the form {D,, = &,, Squerys @n }nﬂzo. Aggre-
gating such datasets across all m tasks and their respective K variations, we combine them with D°
to construct an augmented training set D'. We then update the ICRL model by supervised pretraining
on D! to obtain 7, 91, which improves robustness and generalization without requiring task-specific
policies to be trained from scratch. This process is repeated for J rounds to iteratively refine the
model T on D’. See Algorithm [3/in Appendix [H|for a detailed procedure and the ablation study on
the number of model refinement in Dark Room environment in Appendix

Why ICAA Can Improve ICRL Performance. While the convergent policies of ICRL models
in variation environments do not necessarily have optimal performance, their action labels are still
helpful in improving the ICRL models’ performance, as we select out the improved actions generated
by ICRL models for supervised pretraining. In other words, the actions generated by the ICRL
models after convergence in online deployment have better performance than its original performance
in the variation environments. Consequently, the good actions get reinforced during the sequential
supervised finetuning, leading to improved ICRL performance.

4.3 Theoretical Analysis

We provide theoretical guarantees for both ICAG and ICAA to gain further insights into their efficacy.
We present informal versions of our results to provide insights and defer our full results to Appendix [E]

Theorem (Informal) ICAG Generalization. Assume that the pretraining is sufficiently well, then
ICAG pretrains TMs for implicit Posterior Sampling over both the deployment task and the potential
adversary.

In particular, Posterior Sampling (PS) is widely recognized as one of the most sample-efficient
algorithms for a broad class of sequential decision-making problems [25]. By implicitly performing
PS during deployment over both the deployment environment and potential adversarial perturbations,
transformer models pretrained by ICAG are able to act optimally in the presence of an adversary
capable of modifying the environment. This design enables ICAG to achieve efficient robustness,
adapting to new tasks and perturbations with minimal sample complexity and without sacrificing
performance for robustness.

Theorem (Informal) ICAA Self-Improvement. Under mild generalization assumptions on the
supervised pretraining framework, ICAA is equivalent to sequential supervised pretraining where
action labels are generated by a policy whose performance does not degrade over the course of
algorithm iterations.

The generalization assumptions essentially require the DPT model to demonstrate better performance
with context datasets collected by stronger behavioral policies. This has been well-established through
extensive experiments in [[16]. Under this assumption, ICAA can progressively refine its action labels
through iterative self-labeling, leading to steady performance and robustness improvements until
its performance plateaus. However, we emphasize that convergence to fully optimal action labels
is generally unattainable without unrealistic conditions such as an unlimited number of exploratory
trajectories. Thus, ICAA should be understood as an data efficient complement to ICAG, designed to
quickly enhance model robustness with minimal data consumption, rather than to guarantee optimality
under environment perturbations.

5 Experiments

We evaluate our proposed methods across three benchmarks compared against standard baselines.
Specifically, in Dark Room [[15]] and Meta-World [46l, we compare with in-context learning methods,
including Decision Pretrained Transformer (DPT) [16], Mixed Decision Pretrained Transformer
(mix-DPT) [39], Prompt-based Decision Transformer (prompt-DT) [43]], and Adversarially Robust
Decision Transformer (ARDT) [34]. In MuJoCo [36], we additionally compare witht SAC [8]],
RARL [26], and QARL [31]], alongside the in-context baselines. Further, we show that ICAG
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Figure 3: Performance on held-out Dark Room goals with average return over 10 random seeds. The
error bar and the shaded area represent the standard error. (a) Offline evaluation given random and
expert datasets. (b) Online evaluation without disturbances. (c) Online evaluation under disturbances
with higher probability. (d) Online evaluation under disturbances with unseen priors.
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Figure 4: Performance on held-out Meta-World goals with average return over 10 random seeds.
The error bar and the shaded area represent the standard error. (a) Offline evaluation given random
and expert datasets. (b) Offline evaluation given random and expert datasets under disturbances. (c)
Online evaluation without disturbances. (d) Online evaluation under disturbances.

generalizes better with environmental change in Appendix D} Full implementation and environment
details are provided in Appendix [B]and Appendix [C]

5.1 Dark Room

Dark Room is a sparse-reward navigation task in a 10 x 10 2D discrete grid. For environment
details and data generation, see Appendix [C] Following the DPT evaluation protocol [16], we assess
generalization to unseen tasks, by training on 80 goals and evaluating on 20 unseen goals. As shown
in Figure [3(a)] we report offline performance using both random and expert trajectories. All methods
outperform the random trajectories (red), yet DT-based methods like prompt-DT and ARDT struggle
with both random and expert test trajectories due to the randomness of the training set. In contrast,
ICAG and ICAA outperform all baselines, including DPT, on both testing datasets, highlighting
strong adaptation to expert-like behavior without direct exposure to expert trajectories.

In Figure[3(b)|and Figure[3(d)] we evaluate online adaptation over 40 episodes. Figure[3(d)|introduces
environmental disturbances with unseen priors, modeled using a Dirichlet distribution with takeover
probability p = 0.2. ICAG achieves the highest return, while ICAA and DPT gradually converge
toward ICAG’s performance with increased adaptation. Under perturbations, ICAG’s advantage
becomes more pronounced in Figure[3(d)] Finally, Figure evaluates robustness across varying
disturbance probabilities. The x-axis denotes the probability of adversarial action override, while the
y-axis shows the average return after 40 episodes. ICAG consistently outperforms all other methods
under disturbance, maintaining robustness even under high disturbance level (e.g., p = 0.6).

5.2 Meta-World

In the Meta-World benchmark, the agent is tasked with controlling a robotic hand to reach target
positions in 3D space. Detailed descriptions of the environment and data generation process can be
found in Appendix [C}] Meta-World includes 20 tasks in total. To assess the generalization capability
of our approach to unseen reinforcement learning tasks, we train on 15 tasks and evaluate on the



remaining 5. Offline performance is evaluated using both random and expert trajectories, as shown
in Figure and Figure while online performance is reported in Figure and Figure
Across both offline and online settings, we observe that all methods exhibit performance degradation
under state disturbances. Notably, while DPT suffers a significant drop in performance, ICAG and
ICAA maintain higher robustness, consistently outperforming other methods under perturbation.

5.3 MuJoCo Control

We evaluate our methods on a diverse set of continuous control tasks from the DeepMind Control
Suite [38], covering 6 environments and 11 tasks (see Appendix|C). Pretraining datasets are built from
historical trajectories of SAC agents. To improve robustness during ICAG supervised pretraining, we
introduce K fixed adversaries {¢"*}/_ | for each task 7%, each modeled by a separate neural network.
SAC is trained to convergence under adversarial disturbances ¢**, and the resulting trajectories form
variation environments {(7¢, (;Si’k)}ie[m], ke[x] for m pretraining tasks. Additional dataset details are
in Appendix [C|

We assess robustness from two perspectives: (a) adversarial disturbances affecting the agent, and
(b) environment variations, such as changes in mass and friction. Under adversarial disturbances,
ICAG demonstrates strong performance across Cartpole and locomotion tasks, particularly in high-
dimensional control problems like Quadruped (see Figure [IT]in Appendix D). Under environment
variations, ICAG also outperforms other baselines in OOD settings, with the performance gap
widening relative to in-distribution results. We present the full experimental results in Appendix

6 Related Works

Owing to space limitations, we only review the most relevant work here and defer the comprehensive
literature review to Appendix [A] We position our work at the intersection of offline RL, transformer-
based decision-making, and robust RL. Offline RL typically focuses on learning policies from fixed
datasets for the same tasks, using value pessimism or policy regularization to address distributional
shift. In contrast, ICRL aims to generalize to unseen tasks without parameter updates by leveraging
transformers pretrained on diverse trajectories. While recent transformer-based methods [3} 43 [16|
15]] demonstrate promising generalization, they often remain vulnerable to perturbations and out-of-
distribution shifts. Robust and adversarial RL [26] 33]] enhance resilience by optimizing worst-case
performance or introducing disturbances during training, but frequently incur high computational
costs or degrade in-distribution performance. Our proposed methods, ICAG and ICAA, integrate the
strengths of both paradigms to improve robustness and adaptability in ICRL.

7 Discussion and Conclusion

In this work, we propose two efficient frameworks—ICAG and ICAA—that enhance both robustness
and generalization of transformer models for ICRL. ICAG improves robustness by augmenting
pretraining tasks with perturbed environment variants, enabling the model to learn behaviors that
generalize across potential disturbances. While this adds some computational cost, the overhead
scales linearly with the number of variants and can be reduced via parallelized policy learning. To
further improve data efficiency, we introduce ICAA, which lets a pretrained TM generate high-quality
action labels for itself through interaction. This self-improvement loop quickly refines robustness
using the model’s generalization capability. Together, ICAG and ICAA provide complementary
benefits: ICAG targets performance under adversarial or perturbed settings, while ICAA enables
fast, data-efficient robustness enhancement. Practitioners can select the approach best suited to their
computational and data constraints. We hope this work advances more robust and adaptable ICRL
agents for real-world deployment.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We provide both theoretical results and extensive empirical results to support
our claims.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We talk about the limitation of our method in both Section[7]and Appendix
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide full results in Appendix [E]and [F
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Implementation details—including algorithms, model architectures, and hyper-
parameters—are provided in Appendix [B] The experimental environment settings and the
procedure for generating the pretraining dataset are described in Appendix

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Implementation details—including algorithms, model architectures, and hyper-
parameters—are provided in Appendix Bl The experimental environment settings and the
procedure for generating the pretraining dataset are described in Appendix [C|

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have multiple runs of each experiment. We report the mean value and
standard error in the plots.

Guidelines:

» The answer NA means that the paper does not include experiments.

¢ The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the GPU as well as the RAM and the computation time for each
experiment.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: Our data is standard benchmarks in the RL research field.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: This work investigates general in-context reinforcement learning problems,
and there is no direct societal impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We run the experiment on the simulated RL benchmarks; thus, no such issue
exists.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We provide citations to all the data and related work in our paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We include the code in our paper. Also, details about the implementation are
included in the appendix.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our experiments are conducted on the RL benchmarks and thus do not involve
any crowdsourcing or research with human subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our research and experiment don’t require IRB as we conducted experiments
on simulated RL benchmarks.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

19


paperswithcode.com/datasets

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development and results do not involve LLMs. We only use
LLM for editing (e.g., grammar, spelling, word choice)

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Related Work

Offline RL. Our work is situated within the broader field of offline RL [17} 21} 27]. Offline RL
methods often employ approaches such as value pessimism or policy regularization to address the
distributional shift between behavioral and optimal policies [41} [13} [14, |30} 45} 111 4, [7]. While
offline RL aims to solve the same tasks from which the offline datasets are collected, ICRL aims to
efficiently generalize and adapt to unseen tasks.

Transformers for Decision Making. Autoregressive models [28 [1} 40} 37, 24]] have achieved
remarkable successes across various domains. Their application to sequential decision-making tasks,
such as bandit and MDP problems, has shown transformers outperforming traditional methods [18}47]].
Decision Transformer (DT) [3} 49} 20, |44]] formulates offline RL as return-conditioned supervised
learning and scales well across multi-task settings. Methods like prompt-DT [43]], Algorithm
Distillation (AD) [15]], and DPT [16] aim to enhance in-context generalization to new goals and tasks.
Recent efforts [5,150] further relax the assumptions on pretraining datasets by leveraging suboptimal
trajectories or policies. However, challenges remain in addressing out-of-distribution (OOD) contexts
with different environment dynamics and robustness to disturbances. To tackle these issues, we
propose a transformer-based approach that leverages in-context learning to address the robustness
problem and further utilize online adaptation to learn high-quality action without training separate
policies for each adversarial task from scratch.

Robust RL and Adversarial Training. Robust reinforcement learning (RL) focuses on gener-
alizing to out-of-distribution (OOD) environments by optimizing worst-case performance across
various transition models [23}[10]. Deep RL methods commonly achieve robustness during training
through parametric uncertainty, which considers a range of simulation parameters to optimize for
worst-case performance 33, 29], or through adversarial training, which introduces perturbations to
the environment (e.g., actions, observations, or transitions) to simulate potential deployment-time
disturbances [26} 135} 148, [31}, 9]. These methods enhance generalization to dynamics unseen during
training but often sacrifice in-distribution (ID) performance.

B Implementation Details

B.1 Algorithm.

Soft Actor-Critic (SAC) [8]. Soft Actor-Critic (SAC) is an off-policy reinforcement learning
algorithm designed to balance exploration and exploitation by optimizing the trade-off between
expected rewards and action entropy. SAC aims to learn a policy that not only maximizes long-term
rewards but also encourages exploration by maximizing the entropy of the policy’s action distribution.
The algorithm utilizes an actor network to select actions, along with two critic networks that estimate
the Q-values of state-action pairs. The learning objective is to maximize a soft Bellman equation:
J(m) =31 Eispoan)~n[Q(5h, an) — alog w(an|sy)], where Q(sp, ay) represents the value of the
state-action pair as estimated by the critics, « is a temperature parameter controlling the exploration-
exploitation balance, and 7(ay, |sy) is the probability of selecting action ay, in state sp. SAC is trained
by sampling mini-batches from a replay buffer to update both the policy and the Q-value estimates.
We use the implementation without adversarial training from Reddi et al. [31].

Decision-Pretrained Transformer (DPT) [16]. The Decision-Pretrained Transformer (DPT) is
designed for in-context learning in reinforcement learning (RL) tasks by leveraging supervised
pretraining. The key idea behind DPT is to train a transformer model to predict optimal actions for
a given query state, using an in-context dataset that includes interactions from a variety of tasks.
These interactions are represented as state-action-reward tuples, which provide the necessary context
for decision-making. During pretraining, DPT samples a distribution of tasks. For each task 7;, an
in-context dataset D?, is constructed, consisting of sequences of state-action-reward transitions that
reflect prior experience with that task. A query state Séuery is then sampled from the MDP’s state
space, and the model is trained to predict the optimal action based on both the query state and the
task-specific context D?. The training objective is to minimize the expected loss over the sampled
task distribution, where the model learns to predict a distribution of actions given the query state
and context. DPT shares the same set of finite environments as ICAG and ICAA, but its pretraining
dataset does not consider robustness.
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Mixed Decision-Pretrained Transformer (mix-DPT) [39]. The mix-DPT framework extends
DPT by splitting the learning process into two phases: the early training phase and the mixed training
phase, addressing the out-of-distribution (OOD) issue between training and testing. During the early
training phase, data are generated using a pre-specified decision function f, such as a random policy
for the Dark Room task or SAC-trained policies for Meta-World and MuJoCo control. In the mixed
training phase, data are generated using both the function f and the current DPT model, with the
proportion controlled by a hyper-parameter «. In the experiments conducted by Wang et al. [39],
historical trajectories include the optimal actions for each time step. To ensure a fair comparison, we
follow their setup but use only a query state and the corresponding optimal action, as done in DPT
and ICAG. For our experiments, we follow the parameter choice k = 1/3 from Wang et al. [39], with
the total number of training iterations set to 40% of the overall training iterations.

Prompt-based Decision Transformer (prompt-DT) [43]. Prompt-DT builds upon Decision Trans-
former [3]] and organizes its data to enable few-shot policy generalization through the use of trajectory
prompts. For each task 75, a prompt 7;° of length K* is constructed from a set of few-shot demon-

strations P;, which consist of state-action-reward-to-go tuples (s*, a*, G*). This prompt captures the
task-specific context required for policy adaptation. To further enrich the context, the most recent
trajectory history 7;, sampled from an offline dataset D;, is appended to the task-specific prompt. This
forms the complete input sequence 7;,p¢ input. Specifically, the input sequence is represented as:
Tinput = (7;°,7;). This sequence consists of 3(K* + K) tockens, following the state-action-reward
format. The full sequence Ty 1S then processed by a Transformer model, which autoregressively
predicts the next actions corresponding to each state token. We follow the original prompt-DT setup
and set £ = 20. Prompt-DT uses the same pretraining dataset as DPT, but lacks query state-action
pairs, highlighting the architecture’s effectiveness in DPT-based methods (e.g., DPT, ICAG, ICAA).

Adpversarially Robust Decision Transformer (ARDT) [34]. ARDT enhances the Decision Trans-
former by associating worst-case returns-to-go via minimax expectile regression with trajectories
to improve robustness against adversarial perturbations. Specifically, the estimated @ values from
expectile regression replaces the returns-to-go in vanilla DT during training.

Robust Adversarial Reinforcement Learning (RARL) [26]. RARL trains a protagonist to com-
pete against destabilizing forces introduced by an adversary in a zero-sum Markov game, where the
optimal strategy (i.e., the rational strategy) corresponds to a Nash equilibrium. In this setup, the
protagonist selects actions to maximize performance, while the adversary is trained to take actions
that minimize the same performance metric. By training under these destabilizing perturbations,
the protagonist learns to develop robust skills that help it counter distribution shifts and adversarial
attacks when deployed in real-world scenarios. We implement RARL using the framework from
Reddi et al. [31]], where both the protagonist and adversary are represented as agents with SAC
policies.

Quantal Adversarial Reinforcement Learning (QARL) [31]. QARL formulates a robust adver-
sarial reinforcement learning objective with entropy regularization, designed to model Markov games
under bounded rationality. It introduces two temperature coefficients for the Shannon entropy of both
the protagonist’s and adversary’s action distributions, allowing the optimization problem between
the two players to be framed as a Quantal Response Equilibrium (QRE). QRE is a generalization of
the Nash equilibrium, extending it to scenarios where agents may not act with complete rationality.
We implement QARL using the framework from Reddi et al. [31], where both the protagonist and
adversary are represented by SAC-based agents.

B.2 Model Architecture and Hyper-parameters

Transformer. Our models, DPT, MDPT, and prompt-DT are all based on a causal GPT-2 archi-
tecture [28]. It consists of 4 attention layers, each with a single attention head. In DarkRoom,
the embedding size is 32, while Meta-World and MuJoCo environments’ embedding size are 256.
Prompt-DT and ARDT are built on Decision Transformer, separating the individual (s, a, s, r) into
their own embeddings to be made into one long sequence. The remaining transformer-based baselines
and our models view the transition tuples in the dataset as their own singletons, to be related with
other singletons in the dataset through the attention mechanism. We use the AdamW optimizer with
a weight decay of 1e — 4, a learning rate of 1e — 3, and a batch size of 128.
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Multilayer perceptron (MLP). For all non-transformer agents, e.g., SAC, RARL, QARL, we
directly list their shared hyper-parameters and architecture in Table

Table 1: Non-transformer agent hyper-parameters (e.g, SAC, RARL, QARL)

Hyper-parameters Values
No of hidden layers 3

No of hidden units per layer 256
activation function ReLU
optimizer (actor and critic) Adam
actor learning rate 1-1074
critic learning rate 3-1074
initial replay memory size 3-103
max replay memory size 1-10°
warmup transitions 5-103
batch size 256
target smoothing coefficient 5- 1073
initial temperature 5-103
temperature learning rate 3-1074

C Environment Settings and Pretraining Dataset

C.1 Darkroom.

Dark Room is a sparse-reward navigation task set in a discrete 10 x 10 grid. At the beginning of each
episode, the agent is randomly placed in one of the grid cells, while the goal location is hidden and
fixed at a random cell. The agent receives an observation of its current (z, ) position and selects from
five discrete actions: move left, right, up, down, or stay in place. The episode horizon is H = 100
steps. The agent receives a reward of » = 1 only when it reaches the goal, and = 0 otherwise. At
test time, the agent always starts from the origin (0, 0).

To construct the pretraining dataset, we generate 100, 000 trajectories using a uniform-random policy,
evenly distributed across 100 different goal locations. For each, we sample query states uniformly
and compute optimal actions using a heuristic that first aligns the agent’s y-coordinate with the goal
and then the x-coordinate. The dataset is partitioned into 80, 000 training examples (corresponding
to 80 goal locations) and 20, 000 validation examples (corresponding to the remaining 20 goals).

To improve robustness, we augment the environment with adversarial perturbations. Specifically,
for each of the m training tasks {7°}"™,, we construct a set of perturbed environments M, =
{(4, qbi’k)}ie[m]’ e[k by allowing an adversarial action to override the agent’s intended action with
probability p ~ 2£(0.0,0.2). The adversarial action is sampled from a Dirichlet distribution by
priors a, with the most probable action selected. With probability 1 — p, the agent executes its
original action. This construction models each perturbed task as a probabilistic MDP [335]], capturing
structured uncertainty in action dynamics.

The Dirichlet distribution used satisfies Zf:l x; = 1 and z; € [0, 1] for all 4. The probability density
function is given by:

1
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These perturbed environments are used to generate additional trajectories in the style of DPT,
increasing the diversity and robustness of the pretraining dataset.
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C.2 Meta-World.

We focus on the ML1 pick-place benchmark, where the agent must grasp an object and place it at
a designated target location. Each task is defined by a 39-dimensional state space that includes the
gripper’s position and binary open/close state, the 3D pose of the object, and the coordinates of the
target. The agent operates in a continuous action space, allowing it to adjust its end-effector position
in three dimensions and control the gripper’s open/close state to facilitate object manipulation.

The environment provides shaped rewards to guide learning, including incentives for approaching
the object, establishing a grasp, transporting the object, and releasing it at the target. The goal is
to learn a policy that effectively sequences these skills to solve the overall manipulation task. For
generalization evaluation, we train on 15 task configurations and test on 5 held-out tasks with novel
object and target positions.

To construct the pretraining dataset, we collect historical trajectories from agents trained using Soft
Actor-Critic (SAC). For each task, SAC is trained until convergence, and we sample from the resulting
trajectories to form offline datasets. The built-in deterministic policy is treated as the optimal expert
policy.

To simulate real-world deployment challenges, we introduce robustness through adversarial perturba-
tions to the observation space. Specifically, for each task 7°, we construct K perturbed variations
{(*, qﬁl’k)}ie[m]’kem, where each ¢** is implemented as a fixed-weight neural network with

bounded magnitude (|¢**| < 1). These perturbations target only the perceptually estimated com-
ponents of the observation—namely, object pose, end-effector position, and goal location—while
avoiding internal robot states such as joint angles or velocities, which are typically less affected by
real-world noise. This design mimics sensor uncertainty (e.g., from depth cameras or visual drift)
without destabilizing control signals that are precise on physical hardware.

C.3 MuJoCo.

The MuJoCo environments [36] used in our experiments are standard implementations from the
DeepMind Control Suite [38]]. Specifically, we consider modified versions of these environments that
incorporate adversarial settings (i.e., RARL, QARL, and pretraining for ICAG). In each environment,
adversarial actions and force magnitudes are carefully selected to challenge the agent and promote
robust behavior. The adversarial action spaces are intentionally designed to differ from those of the
protagonist agent to exploit domain knowledge. The adversary forces are calibrated to be sufficiently
large to foster agent robustness and generalization, while still posing a significant challenge to the
protagonist.

Table 2: MuJoCo Environment-specific parameters for adversarial training and (protagonist) agent’s
standard observation/action space

Environment | Adversary max force ~Adversary action space Observation space  Action space
Cartpole 0.005 2D forces on pole (1) 5 1

Cheetah 1.0 2D force on feet & torso (6) 17 6

Hopper 1.0 2D force on feet & torso (4) 15 4

Quadruped 10 3D force on torso (1) 78 12

Reacher 0.1 2D force on arm (2) 6 2

Walker 1.0 2D force on feet (4) 24 6

We conduct experiments in 6 environments shown in Figure[5] Then environment-specific parameters,
along with the corresponding observation and action spaces for the standard environments, are
detailed in Table[2] For all environments, the discount factor is set to 0.9 and the horizon is set to 200.

Each environment is associated with one or more problems, defined as instances of the model with
specific Markov Decision Process (MDP) structures. For example, in the CartPole environment,
we define two problems: swingup, where the pole starts pointing downward, and balance, where
the pole begins near the upright position. The goal in both problems is to manipulate the forces
applied to a cart at the base in order to either swing up or balance an unactuated pole. In the Reacher
environment, a two-link planar arm must reach a randomized target location, with a reward of 1 when
the end effector reaches the target sphere. Two problems are defined here: in the easy problem, the
target sphere is larger than in the hard problem.
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Figure 5: Illustrations of the MuJoCo environments.
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Figure 6: Ablation study for ICAG with different number of training priors on held-out Dark Room
goals from test tasks with average return over 10 random seeds. The error bar and the shaded area
represent the standard error. (a) Offline evaluation given random and expert datasets. (b) Online
evaluation without disturbances. (c) Online evaluation under disturbances with higher probability.
(d) Online evaluation under disturbances with unseen priors. Note that prior K € {4, 8,16} in each
subfigure implies K adversaries involved in pretraining dataset.

In the Hopper environment, a planar one-legged hopper is initialized in a random configuration
and is rewarded based on torso height and forward velocity. The remaining three environments:
Walker, Cheetah, and Quadruped focus on maximizing forward velocity. In the Cheetah environment,
the reward is linearly proportional to the forward velocity, capped at a maximum of 10m/s. The
Walker environment includes two tasks: walk and run, which differ in their velocity requirements
and include components to encourage upright posture and minimal lateral movement. For standard
in-context reinforcement learning (ICRL) methods, such as DPT [16], We use m pretraining tasks
{r}™, C M with varying internal conditions. For each task 7, we construct a pretraining dataset
using 6000 historical trajectories collected from SAC agents trained to convergence.

We generate K variations of each pretraining task 7%, incorporating adversaries ¢** to form a set
of variation environments {(7*, $**)};c(n) ke[k]- In our experiments, m = 16 tasks (from a 4 x 4
grid) and K = 10 variations, with hyper-parameter tuning in Appendix [D.3]

We follow the SAC training approach in Reddi et al. [31]), training K = 10 SAC policies for each
7% under different variations, which are treated as distinct tasks. Each variation is initialized as
a fixed-weight neural network (\¢i’k| < 1), unlike RARL or QARL, where adversarial policies
are updated during training. These variations act as adversaries, with SAC policies trained under
disturbance.

D Additional Experimental Results

D.1 Ablation on number of priors for adversaries in Dark Room

We conduct ablation studies to assess the impact of varying the number of adversaries {(;W‘C}kK:1
with different Dirichlet priors in the pretraining dataset to ICAG. The total number of pretraining
trajectories remains consistent across different priors. Specifically, we explore K € {4, 8,16} with
varying a values (see Appendix [C.1)), and present the results in Figure 6]

In offline evaluation (shown in Figure [6(2)), both random and expert trajectories yield similar
performance across different K values. For online evaluation, Figure [6(b)] shows results without
disturbances, while Figure [6(d)]introduces disturbances with a probability of p = 0.2, which were
absent during pretraining. When fewer adversaries are used (e.g., K = 4), the agent requires more
episodes to adapt to environments with unseen priors, as indicated in Figure [6(d)]
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Figure 7: Performance on held-out Dark Room goals with average return over 10 random seeds
among our methods. Note that ICAA-iter] denotes the online evaluation with 7. The error bar and
the shaded area represent the standard error. (a) Online evaluation without disturbances. (b) Online
evaluation under disturbances with unseen priors.
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Figure 8: Generalization capability mainly among IC2RL and ICAG with varying K variations,
where ICAG K, with K € {1,5,10}.

Finally, we evaluate all methods with a single adversary using a uniform distribution for disturbances,
varying the disturbance probability in Figure[6(c)] Based on these results, we select ' = 8 for a better
balance between online and offline performance, and use it for comparisons with other baselines in

Figure[3]

D.2 Ablation on the Number of ICAA Rounds in Dark Room

In Section and Algorithm[3] ICAA employs an online approach to generate high-quality action
labels and iteratively refine the model 7 using the dataset D”, thereby reducing dependence on
optimal action labels. We present the online evaluation results both with and without disturbances
in Figure[7] and compare them against ICAG. Here, ICAA-iter] represents the online evaluation using
the model 7} . The results demonstrate that increasing the number of refinement iterations consistently
improves performance under both without and with disturbances. However, the performance of ICAA
remains bounded above by ICAG, as ICAG directly leverages optimal action labels.

D.3 Variant of ICAG and IC2RL

As discussed in Section [3.2] extending traditional robust adversarial RL approaches to in-context
settings presents challenges. To explore this, we conduct experiments in the Cheetah environment,
where for each task 7% with 16 pairs of internal conditions, we learn a robust policy via RARL, as
shown in Figure[I(b)} In Figure[8] we demonstrate that IC2RL improves RARL performance, but it is
relatively impractical, solving max-min optimizations for all tasks. Additionally, we investigate the
effect of varying the number of adversaries K in {(7¢, gzbi’k)}ie[m]’ ke[K]- We show that increasing K
acts as a data augmentation technique, supporting our statement in Section.T|that the augmented task
space M, covers the original task space M (M C M,), leading to better generalization. Notably,
ICAG10 with K = 10, as shown in Figure|8| outperforms IC2RL.
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D.4 MuJoCo Performance and Robustness

Notably, we use SAC agents in an adversarial training framework in both RARL and QARL, making
SAC a natural baseline. Our adversarial setup follows [31], with environment-specific parameters
detailed in Table[2] We investigate two types of robustness:

Robustness to Agent Disturbance. We measure this by evaluating learned policies under a worst-
case adversary, which minimizes the agent’s return without modifying the policy parameters.

Robustness to Environmental Change. We evaluate how well policies generalize to environments
with variations in physical parameters such as mass and friction. Generalization is assessed by
deploying policies in environments with shifted dynamics coefficients.

To analyze performance, we group MuJoCo tasks into three domains: cartpole, reacher, and loco-
motion (e.g., quadruped, cheetah, walker, hopper). For all experiments, both standard RL baselines
(SAC and QARL) and ICRL methods are deployed in the same training environments used by SAC,
favoring the former. This gives SAC and QARL significant advantages and explains why all ICRL
methods other than ours are outperformed by QARL while /CAG consistently outperforms QARL
and other ICRL methods in all evaluations.

Performance metrics are visualized through box plots and heatmaps in Figure 0] Figure [I0} Figure [T T}
Figure[12] Figure[I3] and Figure[I4] Note: PDT denotes prompt-DT [43]], and MDPT refers to mix-
DPT [39]]. Specifically, ICAG improves robustness against adversaries compared to DPT. Consistent
with findings in standard robust RL [26] 6], we observe that training for robustness can also improve
performance in disturbance-free settings. ICAG particularly excels in high-dimensional control
problems, such as the quadruped task (Figure [T T)).

Furthermore, ICAG demonstrates strong generalization under out-of-distribution (OOD) environmen-
tal changes. In Figure[I2] Figure[I3] and Figure[I4] we evaluate how methods adapt when tested
on parameter grids not seen during training. Each 8 x 8 heatmap varies two internal environment
parameters, while the pretraining dataset only covers the central 4 x 4 grid. ICAG consistently
achieves the best performance on these OOD environments, outperforming all baselines in tests such

as Figure[T4(b)|and Figure [T4(d)}

E Theoretical Results

Here we provide theoretical guarantees for ICAG to gain further insights into their efficacy. Complete
proofs of results in this section can be found in Appendix [F

We present two results. Our first result show that ICAG addresses the adversaries (disturbances)
encountered during deployment in a manner similar to Posterior Sampling (PS) [25], which is widely
recognized as the most sample-efficient algorithm for many sequential decision-making problems.
Our second result shows that ICAA continuously improve the quality of its action labels so that we
can improve the performance of ICRL models in each ICAA iteration.

To facilitate analysis, we consider a slightly modified supervised pretraining framework similar
to Lee et al. [16] and Lin et al. [19] for ICAG where, for any variation environment (7, ¢), the
TMs also condition on a sequence (p, = (s1,aj, s2, ..., S, a}) where s1.;, follows the distribution
ps € A(S") and a} ~ 77 ,(sn) where 7 , is the optimal policy for (7, ¢) as defined in (). Thus,
the joint distribution over (7, ¢, D, Squery, Cp) for ICAG pretraining is
P(T7 ¢a Da Squery» Ch) =Pr (7)17{)(7) (¢)pD (D7 T, d))
h

pquery(squery)ps (Slzh) H 7T:7¢(CL; |5h,)a
j=1

(6)

where p- and pg ;) are the sampling distributions of the environment and disturbance for ICAG,
respectively; pp(D; T, ¢) is the distribution of context dataset D given the variation environment
(T, @)} Pauery 18 the distribution for sampling query states. Given the joint distribution in (6)), posterior
distributions such as P(7, ¢|D) are well-defined.

Consider the following general PS process for a fixed task 7’ and disturbance ¢’: initialize the posterior
(1

distribution as the ICRL pretraining distribution p_ 35 = prPa(r), and initialize an empty dataset D to
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Figure 9: Performance and robustness on Cartpole problems (see the title of each boxplot), which are
evaluated at the end of training without an adversary (left column) and against an adversary (right
column). The number next to the name of each algorithm is the average performance across 10 seeds..

collect transitions; for h € {1,..., H}: (i) sample a variation environment (7(*), ¢(")) ~ p ¢, (ii)
solve for %, 3 (iii) given the current state s("), take an action following ™) ~ 7%, o, (s™),
and observe the reward (") and next state s("*1); (iv) add the transition (s, a(") (M) s(h+1))
into D, and update the posterior p( pg- P(r,¢|D).

¢

Note that although PS is provably sample-efficient, computing the posterior P(7, ¢|D) is often
intractable in practice. Next, we prove that ICAG is an implicit PS: during deployment, ICAG
takes actions like the PS process above, inferring the underlying environment and adversary without
explicitly computing the posterior. We first make some common mild assumptions for analysis [16].

Assumption E.1. Consider the context dataset D = {sy, an, 1, Sh+1}r- The actions ay, are condi-
tionally independent of the variation environment (7, ¢) given the history, i.e., pp(an|sp, Dp—1) =
pp(an|sn, Dn—1,T,¢) where Dy = {sp/, an/, Th', Sh41 }hr<h-

This assumption in essence assumes that the behavioral policies for collecting context datasets are

functions of the history only. This holds, for example, when the context dataset is collected by
random policies not depending on current states or any RL algorithms only using the history.
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column). The number next to the name of each algorithm is the average performance across 10 seeds.

Assumption E.2. Consider a sufficiently expressive and pretrained TM Ty. For all (Sqery, D, Cp)s
Te(a|squery’ D, Ch) = P(a|squery7 D, Ch) for all a.

The purpose of Assumption which states that the pretrained TM Ty matches the pretraining
distribution P, is to focus the analysis on ICRL deployment rather than the quality of pretraining.
This assumption is a common assumption for ICRL [[16] and in-context learning analysis [42]. To
see why this assumption is valid, it is well-established that deep learning models, such as Tj, are
universal approximators [32]]. Moreover, the maximum likelihood (ML)-based pretraining loss for Tp
is equivalent to find a minimizer of the following expected Kullback-Leibler (KL) divergence

E(Squery’Dvgh)NP [KL (P(a|squery, D7 Ch)HTe(alsquerw D7 Ch))] 9

where KL(p, ¢) = E,[log(p/q)] is the KL divergence between two distributions. Assuming sufficient
expressiveness, the above divergence can be minimized at 7y = P. Thus, with extra coverage
assumptions regarding P and sufficient amount of pretraining data, Assumption can hold with Ty
and P arbitrarily close to each other. However, we omit this proof as this would distract the focus of
the analysis. Next, we present our main theoretical results.

Theorem E.3. Fix an environment 7/ with a disturbance ¢’ for deployment and a context dataset
D ~ pp(D; 7', ¢') for the pretrained TM Ty to condition on for ICRL. Consider the random sequence
Ty = (S, AN §@ A® S0 AW, It holds that

PPS(Th|T/7 ¢/a D) = PO(Th‘T/a ¢I7 D)7

where (i) Pps(Yy|m', ¢, D) is the distribution of Y}, following the PS algorithm: (Tps, ¢ps) ~
P(r,6|D), 8Y ~ por g, forall b < h, A®) ~qx (S, SHEL~ P (ST, AM); (i)
Py(Yh|7', ¢, D) is the distribution of Y, following ICRL with Ty: S ~ pri g, forall B! < h,
A(h/) ~ ’:[1‘9((,“L|S(h,)7 l)7 Th’—l); and Sh’+1 ~ PT/7¢/(S(h/), A(h,)).

Theorem [E.3]states that the trajectory distribution under ICRL with the pretrained TM Ty is the same
as the trajectory distribution under PS, establishing that ICAG pretrains TMs for implicit PS. In
particular, ICAG implicitly estimates the posterior distribution of the environment 7 and the adversary
¢ so that ICAG can act optimally if there exists an adversary ¢ that can perturb the environment T.
Moreover, this process of estimating and adapting to a potential adversary is provably sample-efficient
given the optimal sample efficiency of PS.

Next, we show that ICAA can refine its action labels in an iterative manner.

Assumption E.4 (Posterior Consistency). For any pair of underlying task and adversary 7*, ¢*, as the
context dataset D contains more transitions, the posterior P(7, ¢| D) concentrates toward the true task
and adversary, i.e., for any neighbor U of (7*, ¢*), it holds that P(U|D) — 1 as |D| — +oc.
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Figure 11: Performance and robustness on locomotion problems, i.e., Quadruped, Cheetah, Walker,
and Hopper (see the title of each boxplot), which are evaluated at the end of training without an
adversary (left column) and against an adversary (right column). The number next to the name of
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Figure 12: Robustness analysis on Cartpole (see the title of each heatmap set). Heatmaps show the
performance obtained after training for varying properties of the environment, described in the x — y
axes. The number next to the name of each algorithm is the average performance across 10 seeds.

Assumption is a standard assumption and, in general, a fact for any Bayesian method. Following
Theorem that ICRL models are performing Posterior Sampling, this implies that the transformer
policy Ty has increasing performance when the context size | D| increases.

Theorem E.5. Under Assumptions|E.1} [E-2]and in every iteration of ICAA (Algorithm[3), and
for every variation environment (7, ¢) with sufficient exploration, the action label generation policy
achieves performance no worse than the transformer policy Ty from the previous iteration within the
same environment (T, ¢).

In particular, by matching the action labels generated by a stronger policy for the variation environment
(7, @) in the finetuning stage of each ICAA iterations, the performance of transformer policy Tj
increases and can generalize better to new tasks and adversaries. Theorem [E.3]implies that /CAA
continues to improve the quality of its action labels until it saturates.
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the performance obtained after training for varying properties of the environment, described in the
x — y axes. The number next to the name of each algorithm is the average performance across 10
seeds.

F Proofs of Theoretical Results

F.1 Proof of Theorem[E.3|

Fix an environment 7' with a disturbance ¢' for deployment and a context dataset D ~ pp(D; 7', ¢')
for the {Jretmmed TM Ty to condition on for ICRL. Consider the random sequence Th =
(S, AW 52 AR M) A It holds that

PPS(Th|7J,¢/a D) = Pe(’rh"rl’ ()blv D)v

where (i) Pps(Yp|T', &', D) is the distribution of Y, following the PS algorithm: (Tps, ps) ~
P(1,¢|D), 8N ~ prr g, forall b < h, A®) ~ T bre (S, SH L Pl (ST A (i)
Py(Yh|7', ¢, D) is the distribution of Y, following ICRL with Ty: S ~ pri g, forall B! < h,
AW ~ Ty(al ST, D, Ty 1), and S+ ~ Pr g (S A,

Proof of Theorem|E.3} The proof is based on induction on k. Given that the results are for any fixed
7', ¢', D, we omit the conditional dependence on them to improve clarity when there is no confusion.
Recall that P denotes the ICAG pretraining dataset distribution as defined in (6). We first prove a
result to be used in the proof. Under Assumption [EI} we have

Pps(Tps = ps, ¢ps = ¢|D) = P(7,4|D), (N
where P(7|D) is the posterior distribution of the ICAG pretraining distribution P. This follows from

PPS(Tps =T, ¢ps = ¢|D) X PPS<Tpsa d)ps = ¢7D) = P(T, ¢)PPS(D|T7 d))
< P(7, ¢)pr ¢ (1) 11 Prr g (8n41]Sh, an)pp(an|Dp—1)

(8h,an,Th,Sh41)ED

x P(1,¢)P(D;7;¢) = P(1,¢, D) o< P(1,¢| D),

where the second o is due to Assumption [E.1]so that we can plug in pp (an|Dp—1). Now we begin
the proof of induction.
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Case h = 1. We have

Pps(SM, AN) = Ppg(SW)Ppg(AV[SM) = ps 4 (SD) / Pps(AM 15 = 7, ¢ps = ¢|S1)drde
T,

= prr g (S1) / Pps(AD[SW 1,0 =7, ¢ps = ) Pps(Tps = T, bps = ¢|SM)drdg

T

= pr o (SV) / 71 5 (AN |SM) Pos(rys = 7, 6ps = IS drde.

T

To continue, note that Ppg(7ps = T, ¢ps = Sy = Pps(1ps = T, ¢ps = ¢|D) given that the
posterior sampling does not depend on S™). With (7, we further have

PPS(Tps =T, ¢ps = ¢|D) = P(7—7¢‘D)
Thus,
Ppg(SM, AM) = prr 4 (S1) / 77 o (AD|SW) P(7, ¢| D)drdg

T,

= prr o (5D) / P(ADr, 6, 5M) P(r, 6| D)drds
T,¢

= D (SDYPLADISD) = iy (SD) Py AV [SW) = Py(5D, AD),
where the last line is due to and Ty(AM|SM), D) = P(AM[SM) | D) under Assumption|E.2]
Case h. Assume that Case h — 1 holds that
Pps(Th-1) = Py(Th-1),
and we aims to prove Ppg(Y}) = Py(Y},), which is equivalent to prove
PPS(S(h),A(h)|Th—1) = Pg(S(h),A(h)|Th_1),
because of the factorization
Pps(SM, AM Y, 1 VPps(Tho1) = Pp(S™, AN |Y), 1) Py(Th_y).
To this end, we have

Pps(S™, AN, 1) = Pps(S™W|Th_1)Pps(AM|SM 1), _1) = Prr g (S| Y),_1) Pps(AM|SM) 1), 1)

= 77! (S(h)whq)/ PPS(A(h)vaS =T, (bps = ¢|S(h)v ’rhfl)d'rdﬁb
T,¢

= PT’,¢" (S(h)|Th—l) / PPS’(A(h)ans =T, (bps = ¢|S(h)7 Th—l)d7—d¢
7,9

= P g (S™| Y1) / Pps(AM|7, = 7, ¢ps = ¢, 8™, ), 1) Pps(Tps = T, dps = ¢|S™, T_1)drde
T5¢

= Py g (5<h>|Th,1)/ 72 o (AD|SO) Pog (15 = 7, ¢ps = ¢[S™), Y ),_1)drdg.
T,$
To continue, we prove that Ppg(7ps = T, ¢ps = AlSM ) 1) = P(r,6|S™ T),_1). Indeed,

PPS(Ta ¢)|S(h)a Th—l) = PPS(Ta ¢7 S(h)7 Th—l)/PPS(S(h)v Th—l)
X PPS(Ta d)? S(h)a Thfl)
= Pps(Yh-1|7,0)Pps(S™|Ys_1)Pps(r,¢| D)

x P(1,9|D)py(SU) T 77 5(A®7]517)
h'<h

= P(T,¢7S(h)7’rh71) X P<T7¢|S(h)7’rh71)-
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Given  that  Ppg(1,¢|S™ Yy_1) and  P(r,6|S™ Y,_1) are distributions,
Ppg(t,¢|S")-Tn1 Y, 1) o P(r,6|S™ Y)_1) implies that Ppg(r,d|S™, Ty 1) =
P(r,6|S™ T),_1). Thus,

Pps(S™M, AM|T),_1) = P g (SP|T)_1) / 72 H(AM|SMN P (7, ¢ ST Ty )drde
T,

= Py (SM|T), ) / PAM|7 ¢, M 1, ) P(r,¢|S™ Y),_1)drde
T,¢

— T',¢f(S(h)l'th)P(A(h)IS(h),Thfl)

= Py g (SMT),_1) Py (AW |SM Ty, 1) = Py(S™), AW |7, _y),

where the last line is due to Assumption [E.2] Hence, the induction is complete and this concludes the
proof. O

F.2 Proof of Theorem[E.5|

Under Assumptions [E1] [E:2] and in every iteration of ICAA (Algorithm [3)), and for every
variation environment (7, ¢) with sufficient exploration |D|, the action label generation policy
achieves performance no worse than the transformer policy Ty from the previous iteration within the
same environment (T, ¢).

Proof of Theorem|[E.5| We first prove a useful lemma.

Lemma F.1. Under Assumptions|[E.4} when deploying a pretrained Ty to a task T* with an adversary
@*, the performance of Ty converges to that of the optimal policy, i.e.,

E [RT* (T9(|7 D)7 ¢*)] - m?’X,R’T* (7T7 (b*) as ‘D‘ — +00.

Proof of Lemmal[F1} As |D| — +oo, from Assumption|E.4] we have the posterior P(7, ¢|D) con-
centrates toward the truth (7%, ¢*). As proved by Theorem a pretrained Ty is performance
Posterior Sampling during deployment. This leads to, for any neighbor U (¢) of (7*, ¢*) with radius
e >0,

B[Ry (To( D).6")] = [ P(r.6ID)Roe (700 6) ®)
> P(UID)  inf  Res(nts 4, d) 'D'*ﬁ’HORT*(W;W@*):m3x7zT*(7r,¢*). )

¢ €U (€)

In addtion, by definition of R. we have E [R,« (Ty(|-, D), ¢*)] < max, R+ (m, ¢*) almost surely.
This proves that E [R,+ (Tp(+|-, D), ¢*)] — max, R« (7, ¢*). O

For any D of finite transitions, with Lemma we can outperform Ty(-|-, D) by extending the
exploration to have D’ where |D’| > |D| such that the expected performance of Tp(-|-, D’) is
arbitrarily close to the optimal one. Here, by definition of ICAA algorithm, Ty(+|-, D’) is the action
label generation policy, thus concluding the proof. O

G Computation Requirements

We conduct each experiment on a single GPU: Nvidia RTX A5000 with 24GB RAM. In DarkRoom,
all transformer models converge within 150 epochs within an hour. In Meta-World, we run each
experiment up to 500 episodes with early termination mechanism. In MuJoCo, all models can
converge within 200 epochs with less than two hours.

H Pseudocode
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Algorithm 1 Deployment of ICRL Models

1: Input: Pretrained transformer Model T}; Horizon of episodes H; Number of episodes N for
online testing; Offline dataset Doy = {(Sn, @n, Sh+1,7r) }n, consisting of transitions collected
by a behavioral policy.

:// 0ffline Testing

: for every timestep h € {1,...,H} do

Observe state sy,

Sample action with Ty:

ap ~ Tp (|sh, Do)

Collect reward 7},
end for
:// Online Testing
9: Initialize an empty online data buffer D, = {}
10: for every online trial n € {1,..., N} do
11:  for every time step h € {1,..., H} do

A

12: Observe state s,
13: Sample action with Ty:
ap ~ Ty (|8, Don)
14: Collect reward r},
15:  end for
16:  Append the collected transitions {(sp, an, Sp+1,7h) }n into D,
17: end for

I Limitations

While ICAG involves generating expert policies across perturbed task variants, this step is performed
efficiently in parallel and amortized over pretraining, making it feasible for a modest number of
variants. ICAA uses self-generated labels derived from a robust pretrained model, which, despite
not being optimal, have been shown empirically to improve performance with minimal data. These
design choices strike a practical balance between robustness and scalability. While the proposed
methods improve robustness under structured perturbations, their generalization is currently focused
on tasks with in-distribution environment variations. Extending this framework to handle broader
generalization—such as out-of-distribution task structures and disturbances—remains a valuable
direction for future work.

36



Algorithm 2 In-Context Adversarial Generalization

1

—_ -
—_

12:
13:
14:

15
16

SV RXIINREN

: Input: Causal TM Tp; number of pretraining tasks m; number of variation environments per

task K
Construction of Pretraining Dataset
: Initialize an empty pretraining dataset D,,;..
:forie {1,...,m}do
Sample a task 7° € M;
forke{l,...,K}do
Sample a disturbance ¢** € ®(7%);
Collect a context dataset D** from the variation environment (77, ¢*F);
Sample a query state s&% ;
Train an optimal policy 71'; pirk following (3);
Sample an action label a; ; ~ 77 ;. (skk.):
Append (D™, stk ajy) into Dyre;
end for
end for
Supervised Pretraining

: Pretrain the TM T} by

m K

.1 * ik ik
HEHR ;; _logTe(a‘i,klsqﬁery’D )

Algorithm 3 In-Context Adversarial Adaptation

1:

Input: number of pretraining tasks m; number of variation environments per task K; initial
pretraining dataset DY

2: Initial Supervised Pretraining
3: Pretrain a causal transformer with D° to have the pretrained TM THO.
4: Set Dy = DO.
5: forj €{0,...,J} do
6 // Collecting New Pretraining Data
7:  Initialize an empty dataset D/*! for new data.
8: forie{l,...,m}do
9: Sample a task ¢ € M;
10 forke{l,...,K} do
11: Sample a disturbance ¢** € ®(7);
12: Deploy T} for each variation environment (7, ") (following Algorithm with N 4+ 1
trials to have trajectories &, = {(Sn, an, Sh+1,7h)h,n € {0,+-+ , N}.
13: Use the first N + 1 trajectories as context datasets D,, = &,,n € {0,--- , N}.
14: Sample query state-action label pairs from the remaining trajectories: {(s} ., a")}nﬂ:0 ~
Ug:ﬂ{(sha ah) €én f:_ol
15: Append {D,,, 5% an}iE  into DIt
16: end for
17:  end for
18: // Supervised Fine-Tuning
19:  Update the pretraining dataset with the new data D,,.. = D, U DIt
20:  Pretrain the latest TM T} with the updated D, to have T} +1
21: end for
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