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Abstract

Self-supervised learning has achieved impres-001
sive results in speech processing, but current002
models are computationally expensive, gener-003
ating environmental concerns because of their004
high energy consumption. Therefore, we pro-005
pose an efficient self-supervised approach to006
address high computational costs, using a sin-007
gle GPU during 24 to 48 hours of pretraining.008
The proposed approach combines linear, con-009
volutional, and self-attention layers with sev-010
eral optimizations, including dynamic batch-011
ing, flash attention, mixed-precision training,012
gradient accumulation, and acoustic feature013
extraction with input preprocessing. Com-014
putational cost estimations for our proposed015
model represent up to two orders of mag-016
nitude improvements in computational effi-017
ciency against existing speech models.018

1 Introduction019

Self-supervised models generate impressive re-020

sults when learning latent representations, but their021

training is computationally expensive (Peng et al.,022

2023). Yet, their results in speech processing are023

astounding because downstream tasks strongly ben-024

efit from their learned representations (Mohamed025

et al., 2022; Parcollet et al., 2023b).026

Self-supervised approaches for speech represen-027

tation learning can be based on consistency or self-028

training (Zhang et al., 2020). Whether using consis-029

tency or self-training, large training costs represent030

a challenge. Indeed, most existing models require031

several GPUs for days to pretrain their neural ar-032

chitectures. This requirement causes several limita-033

tions. First, it hinders the training and deployment034

of speech models in computing platforms with low035

resources, such as edge devices and mobile plat-036

forms (Gaol et al., 2023; Mohamed et al., 2022).037

Secondly, reproducibility is challenging, as few038

labs can afford large computational resources (Lin039

et al., 2022). Last but not least, it creates environ-040

mental issues because of the high energy consump- 041

tion during training (Parcollet et al., 2023b). 042

To address those limitations, we propose an effi- 043

cient self-supervised model to learn speech repre- 044

sentations. Instead of focusing on the model perfor- 045

mance in downstream tasks, the proposed model 046

focuses primarily on computational costs, limiting 047

the resources available for pretraining. We set a 048

pretraining limit based on cramming (Geiping and 049

Goldstein, 2023): we use a single GPU for 24 to 050

48 hours to train the model. 051

2 Related work 052

Several models have been recently proposed for 053

self-supervised learning of speech representations, 054

including CombinedSSL (Zhang et al., 2020), 055

Mockingjay (Liu et al., 2020), Spiral (Huang et al., 056

2022), Data2vec2(Baevski et al., 2023), and Di- 057

noSR (Liu et al., 2023a). But two approaches 058

have clearly emerged (Mohamed et al., 2022): Hid- 059

den unit BERT (HuBERT) (Hsu et al., 2021) and 060

wav2vec2 (Baevski et al., 2020b). However, self- 061

supervised models are quite costly, requiring a lot 062

of computational resources for training. One alter- 063

native to reduce training costs is knowledge dis- 064

tillation (Allen-Zhu and Li, 2020), where a small 065

student model learns from a large teacher model, 066

which has been pretrained previously (Peng et al., 067

2023). 068

Using knowledge distillation, LightHuBERT 069

(Wang et al., 2022) improves HuBERT with a once- 070

for-all transformer model. The teacher is a Hu- 071

BERT base model, while the student learns by pre- 072

dicting masked inputs in an iterative process. The 073

transformer in LightHuBERT comprises subnets 074

with sharable weights and several configuration pa- 075

rameters, enabling a random search to adjust the 076

model to different resource constraints. 077

The student architecture in knowledge distilla- 078

tion methods is manually designed, and it does not 079
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change during training. However, modifying stu-080

dent architectures can have a considerable impact081

on model results, even for student architectures082

with similar sizes (Ashihara et al., 2022). There-083

fore, a joined distillation and pruning approach for084

speech SSL has been recently proposed, using Hu-085

BERT (DPHuBERT) or WavLM (DPWavLM) as086

the teacher models (Peng et al., 2023).087

Yet, knowledge distillation approaches need a088

pretrained teacher model because student models089

can not be trained standalone (Chen et al., 2023).090

Thus, computational costs do not improve as they091

should include teacher model training. In con-092

trast, MelHuBERT (Lin et al., 2022) proposes a093

simplified version of HuBERT that has twelve094

self-attention layers and a weighted sum of all095

the layers for downstream tasks. The input is a096

40-dimensional Mel log spectrogram, so input se-097

quences are shorter, reducing the multiplication098

and addition calculations by 33% (Lin et al., 2022).099

There are also efforts to improve the wav2vec100

architecture. Proposed approaches improving101

wav2vec include squeezed and efficient wav2vec2102

with disentangled attention (SEW-D) (Wu et al.,103

2022) and stochastic squeezed and efficient104

wav2vec2 (S-SEW) (Vyas et al., 2022).105

Despite existing efforts to improve self-106

supervised model efficiency, there is still room to107

reduce the computational costs of self-supervised108

models. Computational costs create challenges109

when using these models in mobile devices and110

for training on very large datasets (Mohamed et al.,111

2022; Parcollet et al., 2023b). They also hinder the112

development of new approaches, the study of other113

training recipes, and the reproduction of experimen-114

tal results, as few researchers can afford the cost115

(Chen et al., 2023; Lin et al., 2022; Parcollet et al.,116

2023b; Wang et al., 2023). Besides, computational117

costs have environmental implications, as training118

requires considerable amounts of energy (Parcollet119

et al., 2023b).120

Likewise, few existing self-supervised models121

use half-precision numbers, even though this tech-122

nique can half the memory requirements and accel-123

erate the arithmetic computations on recent GPUs124

(Micikevicius et al., 2018). A similar issue hap-125

pens with dynamic batching (Gaol et al., 2023;126

Tyagi and Sharma, 2020), a procedure that avoids127

wasting computing resources on the padded por-128

tion of speech mini-batches. Also, most models129

use standard self-attention layers, though efficient130

alternatives have been recently proposed, without131

using approximations (Dao et al., 2022; Parcollet 132

et al., 2023a). 133

3 Efficient self-supervised approach 134

In this section, we describe our proposed efficient 135

self-supervised learning (ESSL) model and the op- 136

timizations used to improve model efficiency. 137
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Figure 1: Neural architecture for our proposed ESSL
approach, based on a teacher – student configuration
(Huang et al., 2022).

3.1 Model architecture 138

The architecture uses a teacher – student configu- 139

ration based on recent work for speech processing 140

(Huang et al., 2022). The student part comprises an 141

encoder, a projection head, and a predictor, while 142

the teacher part comprises an encoder and a pro- 143

jection head (Figure 1). Following a conformer 144

configuration (Gulati et al., 2020), the encoder has 145

3 convolutional layers, followed by 2 self-attention 146

layers, 2 convolutional layers, and 10 self-attention 147

layers. Projection heads are linear layers, and the 148

predictor has 3 convolutional layers (Huang et al., 149

2022). Self-attention layers use relative position 150

embeddings to better capture the sequence ordering 151

of input sequences (Chen et al., 2022). 152

Pretraining relies on a contrastive loss to force 153

the student latent representation to converge to 154

the latent representation of the teacher part of the 155

model, updating teacher weights with an exponen- 156

tial moving average of student weights (Chen et al., 157

2020; Huang et al., 2022). 158

Regularization for the proposed model includes 159

dropout, SpecAugment (Park et al., 2019), random 160

positional shifting (Huang et al., 2022), and mul- 161

ticondition training (Chiba et al., 2019) through 162

noise addition. For noise addition, audio data 163

comes from the DNS 2021 challenge (Reddy et al., 164
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2021), adding noise audio to the utterances in the in-165

put dataset. Noise addition is performed randomly,166

with a probability of 0.5 (Huang et al., 2022).167

3.2 Model optimizations168

Optimizations in our proposed model include flash169

attention (Dao et al., 2022), mixed precision train-170

ing (Micikevicius et al., 2018), dynamic batching171

(Tyagi and Sharma, 2020), gradient accumulation172

(Huang et al., 2023), and acoustic feature extraction173

(AFE) with input preprocessing (Parcollet et al.,174

2023b). AFE comprises the first part of the neural175

model, processing the input signal before feeding176

it to the subsequent layers. The best-performing177

approaches for AFE combine Mel Filterbanks for178

preprocessing the raw waveform before the convo-179

lutional module (Parcollet et al., 2023b), as we do180

in ESSL.181

Batch sizes have a considerable impact on train-182

ing performance (Chen et al., 2023; Hsu et al.,183

2021). To deal with the high memory requirements184

of large batch sizes with a single GPU, gradients185

are accumulated for a few training steps before ap-186

plying them to update the parameters of the model187

(Huang et al., 2023). This approach enables the188

increase in batch size to get close to batch sizes189

used in large models (Liu et al., 2023a).190

Another optimization involving training batches191

is dynamic batching (Ravanelli et al., 2021). Based192

on the duration of each audio file, dynamic batch-193

ing packages one or several files into a single batch,194

keeping the total batch duration under a specified195

maximum duration. By doing so, dynamic batch-196

ing minimizes the amount of padding that fixed197

batch sizes must use. This optimization reduces198

the amount of RAM required to train a model. It199

also eliminates the GPU iterations wasted when200

processing the padding data in fixed batch sizes.201

Concerning the number format for model param-202

eters and data, mixed precision training uses the203

floating point 16 (FP16) format. FP16, also known204

as half-precision, diminishes the size of the model205

and the batches, using less RAM during training206

than the floating point 32 (FP32) commonly used207

in computations. FP16 also enables faster training208

in the GPU, without affecting the convergence of209

the model (Micikevicius et al., 2018; Narayanan210

et al., 2021).211

Lastly, FlashAttention (Dao et al., 2022) im-212

proves the efficiency of self-attention layers by213

focusing on the optimization of the input-output214

(IO) memory operations in the GPU. In general,215

GPUs have two kinds of memories. A small SRAM 216

is associated with each kernel, and a large high- 217

bandwidth memory, which is slower and is shared 218

between all the kernels. Memory-intensive opera- 219

tions, like the matrix operation of the self-attention 220

layers, have their bottleneck at the read-write RAM 221

access. In contrast, compute-intensive operations 222

have their bottleneck in the number of arithmetic 223

operations that must be realized. As self-attention 224

is primarily a memory-intensive operation, FlashAt- 225

tention reduces the number of IO operations by 226

tiling, assigning a matrix operation to a single ker- 227

nel, and saving some results from the forward pass 228

to share in the subsequent backward pass. 229

4 Results and discussion 230
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Figure 2: Cost estimation for pretraining speech SSL
models. ESSL represents a remarkable reduction in
computational costs against existing models.

All experiments run on a single GPU, an 231

NVIDIA GeForce RTX 3090 Ti with 24 GB of 232

memory. Considering training data, LibriSpeech 233

960h provides speech utterances for unsupervised 234

pretraining. Finetuning for Automatic Speech 235

Recognition (ASR) is performed with LibriSpeech 236

100h (Panayotov et al., 2015), using a CTC loss 237

(Yan et al., 2023). Regarding training configura- 238

tion, pretraining requires 60k iterations, which is 239

equivalent to 15k pretraining steps because we do 240

4 gradient accumulations. The learning rate warms 241

up the first 8% of iterations to a maximum of 3e-4. 242

For finetuning, 160k iterations are performed. This 243

is equivalent to 40k finetuning steps with 4 gradient 244

accumulations. The learning rate warms up the first 245

10% of iterations to a maximum of 3e-5 (Huang 246

et al., 2022). 247

Efficiency gains of ESSL are remarkable (Figure 248

2). Though metrics degrade against large speech 249

models (Table 1), the computational cost estima- 250
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SSL Model ASR

Mockingjay (Liu et al., 2020) 15.48
wav2vec (Schneider et al., 2019) 11.00
vq-wav2vec (Baevski et al., 2020a) 12.80
wav2vec2 Base (Baevski et al., 2020b) 4.79
HuBERT Base (Hsu et al., 2021) 4.79
Spiral Base (Huang et al., 2022) 3.30
WavLM Base (Chen et al., 2022) 3.40
CombinedSSL (Zhang et al., 2020) 1.60
ESSL 10.69

Table 1: WER for LibriSpeech test-clean dataset (Yang
et al., 2021). Models are pretrained with LibriSpeech
960h. ASR results use a language model for decoding.

tion represents a fifth of recent work (Lin et al.,251

2022), diminishing from 150 GPUh to only 28252

GPUh, and about a third of recent work (Liu et al.,253

2020). When doing a comparison against large254

models, their computational cost estimations are255

around one or two orders of magnitude larger. For256

example, Spiral takes 480 GPUh, which is 15 times257

larger than our proposed approach. Similarly, Com-258

binedSSL takes 18432 GPUh, which is 576 times259

larger than ESSL.260

As mentioned, batch size is crucial for training261

speech processing models (Chen et al., 2023). Us-262

ing dynamic batching, half-precision, and gradi-263

ent accumulation enables ESSL to get close to the264

batch sizes used in large speech models – but using265

one GPU only. The batch size has 18 minutes of266

audio data. With 4 gradient accumulations, it gets267

to 72 minutes. This size is close to batch sizes used268

in recent speech models, such as 47 minutes in Hu-269

BERT, 96 minutes in wav2vec2, or 187 minutes in270

WavLM (Liu et al., 2023a).271

Perturbations on input speech sequences are also272

crucial for the performance of ESSL. Removing273

them makes WER degrade from 29.91% to 40.08%274

(Table 2). This drop in performance indicates the275

importance of SpecAugment, random positional276

shifting, and multicondition training through noise277

addition in the pretraining process.278

Other experiments to analyze ESSL include ran-279

dom initialization and MelHuBERT configuration.280

For experiments with MelHuBERT configuration,281

we used 40 Mel Filterbanks, with a 20ms hop282

length (Lin et al., 2022). Though training steps283

can be up to 36% faster given shorter input se-284

quence lengths, WER drops considerably, going285

from 29.91% down to 51.09%. Concerning ran-286

dom initialization, we discarded pretrained weights 287

and finetuned from a model with random weights. 288

Results suggest finetuning only is not enough for 289

speech processing. A WER of 99.7% highlights 290

the importance of pretraining in final ESSL results. 291

Configuration dev-other dev-clean

ESSL 28.18 10.38
- w/o perturbations 40.08 17.88
- w/ 40 Mel Filterbanks 51.09 26.41
- random initialization 99.70 99.78

Table 2: Analysis of different configurations for ESSL.
Results include WER performance on LibriSpeech dev-
other and dev-clean datasets.

5 Limitations 292

Very-low data settings are challenging. The limited 293

availability of data hinders research in speech pro- 294

cessing for under-resourced languages (Liu et al., 295

2023b; Shi et al., 2021). We tested finetuning ESSL 296

for ASR with the Librilight dataset (Kahn et al., 297

2020). Librilight has 10 hours, 1 hour, and 10 min- 298

utes datasets to finetune models, in contrast with 299

the 100 hours available in LibriSpeech. Results 300

indicate ESSL struggles in very-low data settings, 301

with a WER of 99.97% in LibriSpeech dev-other, 302

a degradation too high to perform ASR for under- 303

resourced languages. 304

6 Conclusion 305

In this work, we proposed ESSL, an efficient ap- 306

proach for self-supervised learning of speech rep- 307

resentations. ESSL addresses high computational 308

costs by combining several model optimizations 309

and fixing a limit on computational resources avail- 310

able for pretraining. Estimations of computational 311

cost reduction reveal up to two orders of magnitude 312

improvements against existing speech SSL models. 313

Overall, ESSL is a step in the process of reducing 314

computational costs in SSL models, enabling their 315

training in edge devices, facilitating the develop- 316

ment of new approaches, and making them more 317

environmentally friendly. 318

For future work, we will investigate our efficient 319

approach for other speech processing tasks, includ- 320

ing intent classification, keyword spotting, query 321

by example, and other downstream tasks. We will 322

also explore architectural modifications to improve 323

model performance in very-low data settings. 324
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