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Abstract
Prompt-based tuning for pre-trained language001
models (PLMs) has shown its effectiveness in002
few-shot learning. Typically, prompt-based tun-003
ing wraps the input text into a cloze question.004
To make predictions, the model maps the out-005
put words to labels via a verbalizer, which is006
either manually designed or automatically built.007
However, manual verbalizers heavily depend008
on domain-specific prior knowledge and hu-009
man efforts, while finding appropriate label010
words automatically still remains challenging.011
In this work, we propose the prototypical ver-012
balizer (ProtoVerb) which is built directly from013
training data. Specifically, ProtoVerb learns014
prototype vectors as verbalizers by contrastive015
learning. In this way, the prototypes summa-016
rize training instances and are able to enclose017
rich class-level semantics. We conduct exper-018
iments on both topic classification and entity019
typing tasks, and the results demonstrate that020
ProtoVerb significantly outperforms current au-021
tomatic verbalizers, especially when training022
data is extremely scarce. More surprisingly,023
ProtoVerb consistently boosts prompt-based024
tuning even on untuned PLMs, indicating an025
elegant non-tuning way to utilize PLMs.026

1 Introduction027

The massive-scale pre-trained language models028

(PLMs) (Han et al., 2021a) have been proven029

to be backbones for solving a variety of NLP030

tasks (Kowsari et al., 2019; Rajpurkar et al., 2016).031

To further adapt these PLMs to downstream tasks032

such as classification, traditional approaches fine-033

tune the language models through an extra classi-034

fier (Howard and Ruder, 2018). However, when035

task-specific data is limited (Bragg et al., 2021),036

training the extra classifier effectively is challeng-037

ing due to the gap between pre-training tasks (e.g.,038

masked language modeling) and fine-tuning tasks039

(e.g., classification and regression). This gap im-040

pedes the fast adaptation of PLMs to downstream041

tasks.042

A [MASK] news: Tokyo Olympic Daily Preview, July 26th.
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Figure 1: Illustration of three verbalizer construction
methods.

Recently, prompt-based tuning (Schick and 043

Schütze, 2021; Liu et al., 2021) has risen to be 044

a powerful way for few-shot learning by bridging 045

the gap between the pre-training stage and down- 046

stream task stage. In prompt-based tuning, the in- 047

put texts are wrapped with task-specific templates 048

to re-formalize the original task as a cloze-style 049

task. For example, in topic classification task, we 050

can use template “<text> This topic is about 051

[MASK]”, where <text> is the placeholder for 052

input sentences. The PLMs are asked to infer the 053

words to fill in [MASK] and the words are further 054

mapped to corresponding labels through a verbal- 055

izer (e.g. “sports” for label “Sports”). Verbaliz- 056

ers are of great importance in prompt-based tun- 057

ing (Gao et al., 2021) since they are the bridges 058

between model outputs and the final predictions. 059

How to build effective verbalizers for prompt-based 060
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tuning—especially for many-class classification, is061

a critical issue in prompt-based tuning.062

Typically, most current works adopt three kinds063

of verbalizers: manual verbalizers, search-based064

verbalizers, and soft verbalizers. We show them065

by an example in Figure 1. Human-designed man-066

ual verbalizers pick some label words (e.g. label067

names) to depict classes. These verbalizers are068

powerful across multiple tasks (Schick and Schütze,069

2021). Despite their success, a major drawback070

roots in the strong assumption that we own precise071

understandings of downstream tasks and are able072

to sum up each class with several words. Without073

task-specific prior knowledge, selecting appropri-074

ate label words is non-trivial. Further, they also075

need intensive human labors when facing many076

classes. To mitigate these issues, search-based ver-077

balizers aim at finding suitable label words from078

vocabulary with algorithms (Schick et al., 2020;079

Shin et al., 2020; Gao et al., 2021) and soft ver-080

balizers use trainable tokens which are optimized081

during tuning (Hambardzumyan et al., 2021; Zhang082

et al., 2021). However, it is challenging to search083

or optimize adequately in a large vocabulary or em-084

bedding space under a low-data regime, making085

automatic verbalizers suboptimal compared with086

manual ones.087

Intuitively, class proxies in verbalizers should088

encapsulate class-level semantic features, which089

are expressed implicitly by instances. To obtain090

these semantic representatives with few data, one091

promising approach is computing central points of092

class instances, namely prototypes, as approxima-093

tion. To this end, we manage to estimate prototype094

vectors for each class to serve as verbalizer. Sum-095

marized from instances, prototypes are supposed096

to establish concepts similar with human-designed097

labels.098

In this work, we introduce prototypes into this099

problem and propose prototypical verbalizer (Pro-100

toVerb), which learns class prototypes from train-101

ing data to build verbalizers automatically. For102

prototype learning, inspired by the idea of PCL (Li103

et al., 2021), ProtoVerb trains the prototype vec-104

tors by contrastive learning with the InfoNCE es-105

timator (Oord et al., 2018). Specifically, our opti-106

mization objective includes two components: The107

first part is an instance-instance loss to cluster108

intra-class instances and separate inter-class in-109

stances; The second part is an instance-prototype110

loss which enforces the prototypes to be center111

points of classes. Compared with other verbalizer 112

construction methods, ProtoVerb learns continuous 113

vectors straight from training instances efficiently, 114

which makes it a plug-in-and-play algorithm with 115

high flexibility. 116

To verify the effectiveness of ProtoVerb, we con- 117

duct extensive experiments on topic classification 118

and entity typing tasks. We study two different 119

settings where ProtoVerb can work: (1) When man- 120

ual verbalizers are available, ProtoVerb can play 121

as an extra verbalizer in the inference stage. Re- 122

sults show that ProtoVerb consistently improves 123

the classification performance with low cost, and 124

even untuned PLMs benefit largely. (2) Consider 125

a realistic setting where only a limited number of 126

samples are provided with no manual verbalizers, 127

ProtoVerb also produces verbalizers of high quality. 128

Experimental results demonstrate that ProtoVerb 129

significantly outperforms existing search-based and 130

soft verbalizers. 131

2 Related Work 132

2.1 Prompt-based Tuning 133

Despite the success of PLMs (Devlin et al., 2019; 134

Liu et al., 2019; Raffel et al., 2019) in massive NLP 135

tasks, few-shot fine-tuning of PLMs was subopti- 136

mal due to the gap between pre-training and down- 137

stream tasks. Inspired by the “in context learning” 138

proposed by GPT-3 (Brown et al., 2020), stimulat- 139

ing model knowledge with a few prompts has re- 140

cently received much attention. A series of prompt- 141

based work on knowledge probing (Trinh and Le, 142

2018; Petroni et al., 2019; Davison et al., 2019), 143

text classification (Schick and Schütze, 2021; Gao 144

et al., 2021), relation extraction (Han et al., 2021b), 145

and entity typing (Ding et al., 2021a) emerge and 146

achieve impressive progress. Typically, a piece of 147

prompt contains a template and a verbalizer. Early 148

prompts employ human-picked prompts which de- 149

mand human knowledge and manual efforts. To 150

alleviate this issue, later works explore automatic 151

designing and optimizing prompts (Liu et al., 2021; 152

Gao et al., 2021; Zhang et al., 2021). Recently re- 153

search works further propose continuous prompts 154

to replace the discrete phrases (Lester et al., 2021; 155

Li and Liang, 2021). However, the designation of 156

verbalizers, an important part of prompts, is less ex- 157

plored. In this work, we investigate the automatic 158

verbalizer construction in prompt-based tuning. 159
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2.2 Verbalizer Design160

Verbalizers bridge between model outputs and la-161

bels and make great impact on prompt-based tun-162

ing (Gao et al., 2021). With task-specific knowl-163

edge, human-picked words are widely used and164

proved effective (Schick and Schütze, 2021). The165

major drawback of manual verbalizers is the as-166

sumption that we possess sufficient knowledge of167

downstream tasks, which is not always satisfied. To168

avoid intensive human labor and expert knowledge169

dependency in manual verbalizers, some works ex-170

plore search-based verbalizers (Schick et al., 2020;171

Gao et al., 2021; Shin et al., 2020) that identify172

label words automatically with training data. How-173

ever, with a large vocabulary and few examples,174

it is non-trivial to find suitable words. Another175

line of researches focuses on soft verbalizers (Ham-176

bardzumyan et al., 2021; Zhang et al., 2021), which177

insert continuous embeddings as soft labels. The178

label embeddings are optimized along with model179

tuning. Similarly, soft verbalizers require abun-180

dant data for sufficient optimization, which can not181

be satisfied with the few-shot setting. In contrast,182

our approach learns prototype vectors from scratch,183

hence is more effective for few-shot tuning.184

2.3 Prototype-based Few-shot Learning185

In few-shot learning, prototype-based metric-186

learning methods have been promising approaches187

for their simplicity and effectiveness. Prototypical188

Networks (ProtoNet) (Snell et al., 2017) is the pio-189

neering work that introduces prototypes into deep190

learning. Specifically, ProtoNet calculates proto-191

type vectors by taking the average of instance vec-192

tors and makes predictions by metric-based com-193

parisons between prototypes and query instances.194

A set of following works concentrates on the ad-195

vancement of prototype estimation (Li et al., 2021;196

Gao et al., 2019; Ding et al., 2021c). Among them,197

PCL (Li et al., 2021) achieves remarkable results198

on self-supervised few-shot learning by using pro-199

totypes as latent variables and inspires us in design-200

ing training objectives. The success of prototype-201

based models indicates that prototypes, which are202

representative embeddings of instances from the203

same classes, encapsulate some class-level seman-204

tic features. Inspired by the intrinsic similarity of205

prototypes and verbalizers, we find it natural and206

elegant to introduce prototypes into verbalizer con-207

struction for prompt-based tuning.208

3 Background 209

Given a pre-trained language model M, our goal 210

is to tune it for specific downstream tasks. Take 211

text classification as an example, the input dataset 212

D = {x1, · · · , xN} contains N sentences. We aim 213

to predict the label y ∈ Y for each sentence, where 214

Y is the label set with K distinct classes. 215

3.1 Fine-tuning 216

For a sentence concatenated with special to- 217

kens x = {[CLS], t1, · · · , tT ,[SEP]}, language 218

model M encodes it into hidden representations 219

{h[CLS],h1, · · · ,hT ,h[SEP]}. Conventional fine- 220

tuning trains an extra classifier F over the [CLS] 221

embedding h[CLS] and output the probability dis- 222

tribution on label set Y . 223

P (·|x) = Softmax(F (h[CLS])). (1) 224

The classifier and PLM are tuned by maximizing 225
1
N

∑N
i=1 logP (yi|xi), where yi is the label of xi. 226

3.2 Prompt-based Tuning 227

The vanilla prompt-based tuning converts the down- 228

stream task to a cloze-style mask language mod- 229

eling problem. For example, to formulate the text 230

classification task, we can modify the original in- 231

put x with a template T (·) = A [MASK] news: to 232

get the prompt input T (x) = A [MASK] news: x. 233

With T (x), M produces the hidden vector at the 234

[MASK] position h[MASK]. To calculate the proba- 235

bility distribution over the label set, a manual ver- 236

balizer stores a set of label words V and the score 237

for label y is 238

PM(y|x) = g(PM([MASK] = v|T (x))|v ∈ Vy),
(2) 239

where Vy is the label words of y and g(·) is to 240

aggregate multiple scores. 241

4 Prototypical Verbalizer 242

In previous sections, we introduce the general 243

pipeline of prompt-based tuning. As manually 244

defining or automatically searching for appropriate 245

verbalizers can be challenging, here we propose to 246

learn prototypes directly from training instances. 247

Inspired by PCL (Li et al., 2021), the prototypes 248

are trained with contrastive learning. As shown in 249

Figure 2, we first get the hidden states of [MASK] 250

tokens to represent instances, then project them 251

to another embedding space for prototype learn- 252

ing. The prototypes are used as verbalizers for 253
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A [MASK] news: Stocks Fall as Oil Hits High.

A [MASK] news: Technology as Fashion.

A [MASK] news: Arsenal Beats Everton.

A [MASK] news: Tokyo Olympic Daily Preview, July 26th.

Sports
Tech
World

Verbalizer Labels

Template Input

Figure 2: Illustration of ProtoVerb. Left: We project the hidden states of [MASK] tokens to the embedding space and
learn prototypes. Right: The learned prototypes constitute the verbalizer and map the PLM outputs to corresponding
labels.

prediction. Next, we will introduce the learning254

and inference stages of ProtoVerb in detail.255

4.1 Instance Representation and Similarity256

Function257

Given a piece of training text x wrapped with a258

template, we take the last layer’s hidden state of259

the [MASK] token h[MASK] as the initial represen-260

tation of the text. With an encoder Eϕ(·) param-261

eterized by ϕ, the instance representation of x is262

263

v = Eϕ(x) = Wh[MASK]. (3)264

In practice, we simply adopt a linear encoder265

with weight W. To measure the similarity between266

instances, we adopt cosine similarity function S(·),267

where268

S(vi,vj) =
vi

||vi||
· vj

||vj ||
. (4)269

4.2 Instance-Instance Loss270

With the instance representation and similarity271

function, we discuss how to define our training ob-272

jective. Denote C = {c1, · · · , cK} as the set of pro-273

totype vectors. Intuitively, there are two goals we274

need to achieve by optimization: (1) For instance-275

instance pairs, intra-class pairs should get higher276

similarity scores than inter-class pairs. (2) For277

instance-prototype pairs, the similarity scores be-278

tween prototype ck and instances of class k should279

be higher than ck and other instances. To realize280

these two goals, we define the objective function281

based on the InfoNCE estimator (Oord et al., 2018),282

which is widely adopted in contrastive learning.283

For The instance-instance objective, we mini-284

mize the following loss function285

Lins = − 1

N2K

∑
i,j

log
expS(vi,vj)∑
j′ expS(vi,vj′)

, (5)286

where (vi,vj) are instance pairs of the same class. 287

This loss function maximizes intra-class similar- 288

ity and minimizes inter-class similarity between 289

instances. 290

Similarly, the instance-prototype loss function is 291

defined as 292

Lproto = − 1

NK

∑
i,k

log
expS(vi, ck)∑
k′ expS(vi, ck′)

, (6) 293

and vi is of class k. This objective forces each 294

prototype to lie at the center point of its instances. 295

Overall, combining the instance-instance loss 296

and instance-prototype loss, our final training ob- 297

jective is 298

L = Lins + Lproto. (7) 299

4.3 Inference 300

During inference, following the same metric, we 301

calculate the similarity scores of query and proto- 302

types. The probability score for class k is 303

PM(yk|x) =
expS(v, ck)∑
k′ expS(v, ck′)

. (8) 304

Then we make prediction by argmax function 305

ỹ = argmax
k

PM(yk|x). (9) 306

When there are other verbalizers (e.g. manual 307

verbalizers), we first process the logits from differ- 308

ent verbalizers with a standard scaler (minus mean 309

then divide by standard deviation). Then we take 310

the mean value of the scores to get the final score. 311

5 Experiments 312

We conduct extensive few-shot learning experi- 313

ments to illustrate the effectiveness of ProtoVerb. 314

In this section, we first introduce the experimental 315

settings in use. Then we present and discuss the 316

experiment results. 317

4



Dataset Task #Class #Test

AG’s News TC 4 7,600
DBPedia TC 14 70,000
Yahoo TC 10 60,000
FewNERD ET 66 96,901

Table 1: Dataset statistics. TC is for topic classification
and ET is for entity typing.

5.1 Datasets and Templates318

Verbalizers in many-class classification tasks are319

difficult to get precise definitions. Hence we adopt320

three topic classification datasets: AG’s News, Ya-321

hoo (Zhang et al., 2015), and DBPedia (Lehmann322

et al., 2015) and one entity typing dataset: FewN-323

ERD (Ding et al., 2021d) as benchmarks, and their324

statistics are summarized in Table 1.325

To focus on the verbalizer and alleviate the influ-326

ence of templates, we adopt multiple fixed man-327

ual templates. For topic classification, follow-328

ing (Hu et al., 2021), we use four templates on329

each dataset. For entity typing, we use three tem-330

plates from (Ding et al., 2021a). Details about the331

templates can be found in Appendix A.332

5.2 Experimental Settings333

Under the few-shot setting, we randomly sample334

k = 1, 2, 4, 8, 16 instances in each class from the335

training set and test the model on the entire test set.336

As for the evaluation metric, we use accuracy in all337

experiments. For the different usages of ProtoVerb,338

we consider two specific settings:339

(1) ProtoVerb as a single verbalizer (§ 5.5).340

When manual verbalizers are not available, we can341

tune the model with ProtoVerb. Under this setting,342

we want to evaluate the performance of ProtoVerb343

compared with other automatic verbalizer construc-344

tion methods.345

(2) ProtoVerb as an extra verbalizer (§ 5.6). Nat-346

urally, we suppose that there exists a manual ver-347

balizer and we append ProtoVerb to strengthen the348

performance. Under this setting, ProtoVerb is a349

plug-in-and-play component and does not partici-350

pate in the tuning process.351

5.3 Implementation Details352

All our models and baselines are implemented with353

PyTorch (Paszke et al., 2019) framework, Hugging-354

face transformers (Wolf et al., 2020), and Open-355

Prompt toolkit (Ding et al., 2021b). We optimize356

PLMs with AdamW optimizer (Loshchilov and 357

Hutter, 2019). For prototype learning, we set the 358

prototype dimension to 128 and optimize the loss 359

function with Adam optimizer (Kingma and Ba, 360

2015). For topic classification, we use RoBERTa- 361

large (Liu et al., 2019) as our PLM backbone and 362

tune the model for 5 epochs. The batchsize is 2 363

and the learning rate is 3e-5. For entity typing, we 364

tune a BERT-base (Devlin et al., 2019) model for 365

30 epochs and set the batchsize to 16. The learning 366

rate here is 5e-5. 367

5.4 Baselines 368

The vanilla prompt-based tuning method fuses the 369

input text with a task-specific template and maps 370

the model outputs to labels through a verbalizer. 371

For fair comparisons, all our baselines and pro- 372

posed models are built on this pipeline and they 373

merely differ from the verbalizers in use. 374

Manual verbalizers (ManualVerb) are defined 375

by human with domain knowledge. Here we 376

simply employ the verbalizers provided by Open- 377

Prompt (Ding et al., 2021b). 378

Search-based verbalizers (SearchVerb) search 379

for suitable words from vocabulary automatically. 380

We adopt the implementation in PETAL (Schick 381

et al., 2020), which finds the words that maximize 382

the likelihood of the training data. 383

Soft verbalizers (SoftVerb) introduce trainable 384

tokens as verbalizers in prompt-based tuning. We 385

follow the approach in WARP (Hambardzumyan 386

et al., 2021) that applies soft tokens as a linear de- 387

coding layer, and the token embeddings are learned 388

along with model tuning. Note that the templates in 389

WARP are also trainable, but here we only use its 390

soft verbalizers. Also, WARP initializes the token 391

embeddings with label names, while we initialize 392

them randomly for fairness. 393

5.5 Single Verbalizer Results 394

Table 2 presents the performance of different ver- 395

balizers. Overall, ManualVerb is the most powerful 396

verbalizer, which is reasonable because it is picked 397

by human with domain knowledge. ProtoVerb out- 398

performs SearchVerb and SoftVerb remarkably and 399

consistently, especially when only 1 or 2 instances 400

per class are given. The poor performances of the 401

two baselines under extreme data scarcity corrobo- 402

rate the issues we claim in § 1. As the training data 403

become sufficient, ProtoVerb gets comparable or 404

even exceeding scores compared with ManualVerb, 405

showing that ProtoVerb is able to learn prototypes 406
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k Method AG DB Yahoo Few

0 ManualVerb 75.13 67.06 43.11 20.00

1

ManualVerb 76.67 85.47 50.22 41.68
SearchVerb 41.50 60.06 27.39 20.88
SoftVerb 49.79 65.35 22.72 18.78
ProtoVerb 64.19 72.85 36.12 25.00

2

ManualVerb 81.06 93.61 58.65 46.44
SearchVerb 65.82 78.21 40.71 31.28
SoftVerb 56.37 80.69 30.72 32.80
ProtoVerb 77.34 85.49 46.30 35.72

4

ManualVerb 84.73 95.83 61.41 52.54
SearchVerb 77.43 86.40 51.58 43.10
SoftVerb 74.38 89.12 41.62 48.77
ProtoVerb 81.65 90.91 55.08 48.28

8

ManualVerb 85.85 96.46 64.12 56.59
SearchVerb 82.17 88.41 58.64 50.78
SoftVerb 79.35 93.69 46.82 53.78
ProtoVerb 84.03 95.75 61.40 56.06

16

ManualVerb 84.74 96.05 58.77 61.17
SearchVerb 83.40 92.00 59.66 55.49
SoftVerb 80.57 86.90 58.20 58.87
ProtoVerb 84.48 96.30 64.35 61.29

Table 2: Results for single verbalizer experiments. We
report the mean accuracy scores (%) over 3 random
seeds. Italic: results with task-specific knowledge.
Bold: best results without task-specific knowledge.

that well represent the classes. At the same time,407

the gaps between ManualVerb and other verbalizers408

narrow, which also indicates that we can summa-409

rize data across various ways.410

Across tasks, ProtoVerb gets better results on411

topic classification than entity typing. A possible412

reason is that FewNERD is a fine-grained entity typ-413

ing dataset, in which the differences across classes414

are subtle. For example, it is hard for ProtoVerb415

to discriminate between “person-artist/author” and416

“person-director” with only a few instances. How-417

ever, ProtoVerb can also catch up with ManualVerb418

with enough samples.419

5.6 Extra Verbalizer Results420

Table 3 shows the experiment results when we421

take ProtoVerb as an extra verbalizer (denoted as422

ProtoVerb-E). From the table, we have the follow-423

ing observations: (1) Basically, prompt-based tun-424

ing outperforms fine-tuning by a large margin with425

few samples (1∼2 per class). When sufficient train-426

ing data is available, fine-tuning models will pro-427

duce comparable results. (2) Overall, ProtoVerb-428

E certainly improves the performance of prompt-429

k Method AG DB Yahoo Few

0 ManualVerb 75.13 67.06 43.11 20.00

1

Fine-tuning 25.45 10.80 10.59 7.48
ManualVerb 76.67 85.47 50.22 41.68
ProtoVerb-E 77.71 88.16 50.08 43.20

w/o tuning 76.28 78.32 45.01 29.51

2

Fine-tuning 25.78 49.01 11.26 19.03
ManualVerb 81.06 93.61 58.65 46.44
ProtoVerb-E 84.09 94.77 59.33 48.69

w/o tuning 82.13 86.11 50.34 34.44

4

Fine-tuning 28.14 94.08 26.02 20.98
ManualVerb 84.73 95.83 61.41 52.54
ProtoVerb-E 85.71 96.74 66.14 54.16

w/o tuning 83.05 89.56 55.59 35.55

8

Fine-tuning 72.78 96.83 54.76 49.77
ManualVerb 85.85 96.46 64.12 56.59
ProtoVerb-E 87.25 97.64 66.61 58.30

w/o tuning 83.79 92.61 59.42 34.37

16

Fine-tuning 84.14 97.25 64.27 52.66
ManualVerb 84.74 96.05 58.77 61.17
ProtoVerb-E 87.98 97.22 65.65 62.55

w/o tuning 84.78 93.46 60.89 33.96

Table 3: Results for ProtoVerb as an extra verbalizer.
We report the mean accuracy scores (%) over 3 random
seeds. ManualVerb: prompt-based tuning with a manual
verbalizer. ProtoVerb-E: apply ProtoVerb to models
tuned by ManualVerb. ProtoVerb-E w/o tuning: apply
ProtoVerb to untuned PLMs. Bold: best results.

based tuning under most cases, which demonstrates 430

the effectiveness of ProtoVerb-E. As ProtoVerb-E 431

does not introduce any external knowledge, this 432

illustrates that ProtoVerb-E provides a better way 433

to utilize training data. 434

Finally, we also present the results of applying 435

ProtoVerb-E on untuned PLMs. It is worth noting 436

that even for untuned models, ProtoVerb-E also 437

boosts them considerably on all tasks. For exam- 438

ple on DBPedia, showing only one instance per 439

class to PLMs with ProtoVerb-E leads to 11.26% 440

absolute accuracy improvement. On topic classi- 441

fication, when more training samples are given, 442

untuned PLMs achieve competitive scores. This 443

observation indicates a new cost-efficient way to 444

leverage training data, which we highlight as valu- 445

able for future study of none-tuning methods for 446

PLMs. Compared to the “in context learning” in 447

GPT-3 (Brown et al., 2020), ProtoVerb-E is not 448

limited by input length and can deal with arbitrary 449

number of samples. We further study this “fixed 450

model” scenario in § 6.1. 451
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6 Analysis452

In this section, we discuss several analytical top-453

ics for further understandings of ProtoVerb. For454

simplicity, we conduct experiments on AG’s News455

dataset.456

6.1 Fixed Model Experiments457

In § 5.6, we see ProtoVerb is still powerful with458

fixed PLMs. For further comparisons, we conduct459

experiments to quantitatively evaluate verbalizers460

when PLMs are fixed. Figure 3 gives the results.461

To clarify, using ManualVerb on fixed PLMs equals462

the zero-shot setting, which we plot with a dashed463

line. Meanwhile, different from § 5.6, ProtoVerb464

here is a single verbalizer. From the figure we can465

conclude that (1) Similar with § 5.5, ProtoVerb out-466

performs SoftVerb and SearchVerb by a large mar-467

gin under low-shot settings. Notably, ProtoVerb468

exceeds ManualVerb with only 2 shots per class,469

illustrating the experessive power of prototypes.470

(2) SoftVerb is also better than SearchVerb under471

this setting, demonstrating that tunable verbalizers472

could exploit training data better with PLMs fixed.473

1 2 4 8 16
Shot

40

50

60

70

80

Ac
c

SearchVerb
SoftVerb
ProtoVerb
ManualVerb

Figure 3: Experiment results with fixed PLMs. We
report the mean accuracy (%) with 95% confidence
interval on AG’s News.

474

Method k = 2 k = 4 k = 8

Lins + Lproto 77.34 81.65 84.03
Lproto 76.37 81.06 82.91
Instance Mean 73.36 77.76 82.57

Table 4: Ablation study of ProtoVerb on AG’s News.
Instance Mean: using the mean embeddings of instances
as prototype embeddings. Bold: best results

k Method
# Noisy Samples

1 2 3

8
SearchVerb 4.86 5.96 5.19
SoftVerb 4.84 7.80 11.71
ProtoVerb 2.34 3.11 4.37

16
SearchVerb 0.80 2.93 5.18
SoftVerb 2.01 4.17 4.58
ProtoVerb 0.04 2.13 3.16

Table 5: Accuracy drop (%) with noisy samples. Lower
is better. Bold: best results.

6.2 Ablation Study 475

To validate the effect of each part in the loss func- 476

tion, we conduct an ablation study on AG’s News 477

dataset. For comparison, we consider two variants 478

of prototype calculation methods: (1) ProtoVerb 479

with Lproto only. (2) Following ProtoNet (Snell 480

et al., 2017), take the average of instance embed- 481

dings for prototype embeddings. Table 4 shows the 482

results. Compared to taking the mean embedding 483

vectors directly, optimizing the embedding vectors 484

of prototypes using our loss functions leads to bet- 485

ter performances and stability. Adding Lins is also 486

beneficial, meaning that Lins helps ProtoVerb in 487

learning instance embeddings. 488

6.3 Robustness on Noisy Samples 489

Noisy data are commonly seen as threats in real- 490

world datasets for few-shot learning systems. For 491

automatic verbalizers, noisy data are more harmful 492

because of the effect on both the quality of ver- 493

balizers and the training process. In this section, 494

we evaluate the robustness of different automatic 495

verbalizers against noisy samples on AG’s News. 496

For training stability, we set k = 8, 16. Table 5 497

presents the accuracy drop when there are 1, 2, or 498

3 samples having wrong labels. It is clearly seen 499

that a limited number of noisy samples will hinder 500

the performance greatly, showing the vulnerability 501

of automatic verbalizers. Meanwhile, we can also 502

find that ProtoVerb is more robust than baseline 503

methods when facing noisy samples. 504

6.4 Prototype Discretization 505

Since ProtoVerb learns continuous prototype vec- 506

tors, their meanings are implicit. Here we man- 507

age to investigate which words are most similar to 508

the learned prototypes. Due to word embeddings 509

and prototype vectors lying in different embedding 510

7



Class k = 1 k = 16

World Qaida, Syria, Iraq, Nusra, TPP Taliban, Iraq, Afghan, militants, rebellion
Sports Steelers, Raptors, Knicks, Dodgers ball, ESPN, baseball, Fifa, Sports
Business cash, earnings, Securities, NYSE Dow, dividend, investing, markets
Tech LTE, Tel, Huawei, Mbps, VPN Vault, IBM, Qualcomm, Technologies

Table 6: Words that are most similar with prototypes of each class on AG’s News.

spaces, we can not directly calculate their similar-511

ity. Hence we use the vocabulary as the input texts512

(one word at a time) to get the top-scored word for513

each class. On AG’s News dataset, we collect some514

most similar words for each class and list them in515

Table 6.516

To investigate the property of prototypes learned517

with different numbers of samples, we present518

words for k = 1 and k = 16. With the table, we519

see that: (1) Even when only one example is avail-520

able, the learned prototypes are meaningful. Most521

of the similar words are proper nouns and entity522

names closely related to class topics. For example,523

“Steelers”, “Raptors”, “Knicks”, and “Dodgers” are524

all baseball or basketball teams that appear fre-525

quently in sports news. We attribute this to prompt526

mechanism that allows PLMs to extract the most527

conclusive information and fill the [MASK] with528

it. Then the relevant words are also included. (2)529

With more training instances, prototypes show di-530

verse interests. Despite entity names, more “con-531

ceptual” words show up on the list, such as “ball”532

and “Sports” for class Sports. We interpret this as533

the summarization and abstraction ability of pro-534

totypes. Given many instances, prototypes are en-535

forced to capture their common features, hence536

some abstract concepts are found automatically. In537

this way, ProtoVerb encapsulates class-level, rather538

than entity-level, semantics, which leads to better539

performance on unseen data.540

6.5 Is ProtoVerb Similar with ManualVerb?541

To give further analyses for the inner workings of542

prototypes, we measure the similarity between Pro-543

toVerb and ManualVerb to see whether ProtoVerb544

is able to learn abstract concepts as humans do.545

On AG’s News dataset, we calculate the similarity546

scores between prototypes and manual verbalizers547

and normalize the scores using the softmax func-548

tion across the four classes. In Figure 4 we plot the549

scores with various shots. It is clearly seen that the550

similarity of prototypes and corresponding verbal-551

izers are above average (0.25). As shot increases,552

1 2 4 8 16
Shot

0.30

0.35

0.40

0.45

0.50

Sc
or

e

World
Sports
Business
Tech

Figure 4: Similarity scores between ProtoVerb and Man-
ualVerb on AG’s News.

the scores also gradually grow, which illustrates 553

that prototypes can capture the conceptual informa- 554

tion better from more instances. This observation 555

matches our findings in § 6.4. Among the four 556

classes, Business and Sports get higher scores than 557

World and Tech. A reasonable guess is that World 558

and Tech news includes diverse sub-topics that are 559

hard to summarize. 560

7 Conclusion 561

In this paper, we propose a novel approach for au- 562

tomatic verbalizer construction in prompt-based 563

tuning. The proposed ProtoVerb learns class pro- 564

totypes from training instances using contrastive 565

learning. We explore the performance of ProtoVerb 566

on few-shot topic classification and entity typing 567

tasks. As a single verbalizer, ProtoVerb outper- 568

forms state-of-the-art automatic verbalizers consid- 569

erably. Working together with manual verbalizers, 570

ProtoVerb can also consistently improve prompt- 571

based tuning with minor effort. The results validate 572

the effectiveness of ProtoVerb. Our analysis further 573

reveals the intrinsic properties of prototypes. For 574

future work, we will focus on extending ProtoVerb 575

for effective non-tuning algorithms of PLMs and 576

prompt-tuning with soft templates. Moreover, we 577

are finding proper ways to combine label words 578

and prototypes for verbalizer construction. 579
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A Templates 746

For topic classification, we use the default tem- 747

plates and verbalizers in OpenPrompt (Ding et al., 748

2021b). 749

AG’s News is a news’ topic classification dataset. 750

There are four categories: World, Sports, Business, 751

and Tech. We use the following templates. 752

T1(x) = A [MASK] news: x 753

T2(x) = x This topic is about [MASK]. 754

T3(x) = [ Category : [MASK] ] x 755

T4(x) = [ Topic : [MASK] ] x 756

DBPedia is an ontology classification dataset. 757

Each sample contains an article title x and abstract 758

y extracted from Wikipedia, and the task is to clas- 759

sify the subject’s ontology class. There are 14 760

classes in total. We employ four templates shown 761

below: 762

T1(x, y) = x y x is a [MASK]. 763

T2(x, y) = x y In this sentence, x is a [MASK]. 764

T3(x, y) = x y The type of x is [MASK]. 765

T4(x, y) = x y The category of x is [MASK]. 766

Yahoo is a question classification dataset with 767

10 classes. Each piece of text consists of a question 768

and an answer. We use the templates in AG’s News 769

where “news” is replaced with “question” in T1(·) 770

T1(x) = A [MASK] question: x 771

T2(x) = x This topic is about [MASK]. 772

T3(x) = [ Category : [MASK] ] x 773

T4(x) = [ Topic : [MASK] ] x 774

FewNERD is a large-scale fine-grained entity 775

typing dataset with 66 types and we use the official 776

split of its supervised setting. Following (Ding 777
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et al., 2021a), we employ 3 templates as below778

T1(x) = x [ENT] is [MASK].779

T2(x) = x [ENT] is a [MASK].780

T3(x) = x In this sentence, [ENT] is a [MASK].781

where [ENT] copies the entity mention in the sen-782

tence.783
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