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ABSTRACT

World models achieved great success in learning the dynamics from both low-
dimensional and high-dimensional states. Yet, there is no existing work to address
multi-step generation task with high dimensional data. In this paper, we propose
the first action-conditioned multi-frame video generation model, advancing world
model development by generating future states from actions. As opposed to re-
cent single-step or autoregressive approaches, our model directly generates mul-
tiple future frames conditioned on past observations and action sequences. Our
framework extends its capabilities to action-conditioned video generation by in-
troducing an action encoder. This addition enables the spatiotemporal variational
autoencoder and diffusion transformer in Open-Sora to effectively incorporate ac-
tion information, ensuring precise and coherent video generation. We evaluated
performance on Atari environments (Breakout, Pong, DemonAttack) using MSE,
PSNR, and LPIPS. Results show that conditioning solely on future actions and
embedding-based encoding improve generation accuracy and perceptual quality
while capturing complex temporal dependencies like inertia. Our work paves the
way for action-conditioned multi-step generative world models in dynamic envi-
ronments.

Figure 1: Examples of our generation results for three Atari games: Breakout (top row), Pong
(middle row), and DemonAttack (bottom row). The four leftmost frames in each row represent
the condition frames provided to the model, while the subsequent frames are generated based on
the condition frames and corresponding action sequences. The generated frames demonstrate the
model’s ability to produce temporally consistent and action-aligned predictions.

1 INTRODUCTION

In the pursuit of Artificial General Intelligence, diffusion-based world models serve as fundamental
building blocks for planning and reasoning. The introduction of the Sora video generation model

*Equal contribution.
†Corresponding author.
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Table 1: A comparison of representative diffusion-model based world models

Method Diffusion Model State Modality Multi-Step

DIAMOND Alonso et al. (2024) p(sn+T |sn:n+T−1, an:n+T−1) visual frame ✗
Diffuser Janner et al. (2022) p(an:n+T−1, sn+1:n+T |sn) low-dimensional ✓
DD Ajay et al. (2023) p(sn+1:n+T−1|sn, gn) low-dimensional ✓
DWM Ding et al. (2024) p(rn:n+T−1, sn+1:n+T−1|sn, an, gn) low-dimensional ✓
GameNgine Valevski et al. (2024) p(sn+1|s0:n, a0:n) visual frame ✗
D-MPC Zhou et al. (2024) p(sn+1:n+T |s0:n, a0:n+T−1) low-dimensional ✓
Our best model p(sn+1:n+T |s0:n, an:n+T−1) visual frame ✓

Brooks et al. (2024) has attained significant attention. However, most existing diffusion-based
world models are constrained to either single-step (SS) next-frame generation, such as GameNgine
Valevski et al. (2024), DIAMOND Alonso et al. (2024) or multi-step (MS) low-dimensional state
representations generation Zhou et al. (2024); Ding et al. (2024). We provide a comprehensive
summary of current related works in Table 1.

Building on the progress of action-conditioned diffusion-based generative models like DIAMOND
and GameNgine, which have demonstrated strong capabilities in video generation, we explore the
potential of MS video generation under action-conditioning scenarios. Following Zhou et al. (2024),
we condition our model on action sequences to guide the generation process. While existing video
generation models primarily focus on SS generation, MS generative models are limited to low-
dimensional state representation generation. In contrast, our work bridges this gap by enabling the
generation of multiple frames at once in high-dimensional state spaces. Our MS approach reduces
the redundancy inherent in step-by-step generation, resulting in a more computationally efficient
framework.

Furthermore, although DIAMOND claims to mitigate compounding errors effectively, Ding et al.
(2024) emphasizes that reducing the frequency of calls to the world model is crucial for minimizing
error accumulation. Moreover, Bar et al. (2024); Earle et al. (2024) report that both DIAMOND
and GameNgine still produce trajectories with significant compounding errors. Our newly proposed
MS approach mitigates these errors by predicting several future steps conditional to a given action
sequence in parallel.

To make video-based world models practically effective and efficient, two primary challenges must
be addressed. First, the accuracy of the dynamics model is crucial in mitigating compounding er-
rors Venkatraman et al. (2015); Asadi et al. (2019), where small prediction errors accumulate over
time and lead to significant deviations from the true trajectory. Second, while the Sora model gen-
erates videos based on language prompts, our objective is to shift from text-conditioning to action-
conditioned generation. This requires adapting to a different data modality—specifically, action
sequences while ensuring the generated future frames remain visually realistic and temporally con-
sistent.

To address these challenges, we introduce the first action-conditioned MS video generation model
that learns a joint trajectory-level representation of world dynamics. Specifically, given a condition
length n, and a generation length T , we model the world dynamics p(s(n+1):(n+T )|s0:n, ai:(n+T−1))
with different action conditions, where i ∈ {0, n}, re-formulating the state-of-the-art OpenSora
framework Zheng et al. (2024). Furthermore, we investigate how historical action sequences influ-
ence video generation results. Our key contributions are as follows:

• We propose the first action-conditioned multi-step video generation model that directly
generates multiple future frames without relying on the autoregressive framework, address-
ing a critical gap in the literature.

• The proposed action-conditioned world model is based on OpenSora. We shift the original
text-conditioned generation approach into an action condition generation. Our model en-
hances the accuracy of the generation process by perfectly aligning the action conditions
with the generated frames.
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Figure 2: Overview of the world model pipeline

• Extensive experiments show that conditioning solely on future actions improves generation
quality compared to incorporating both past and future actions. Additionally, applying
an embedding layer for action representation significantly enhances accuracy over one-hot
encodings.

We evaluate our approach on the Atari Mnih et al. (2013) benchmarks, our results demonstrate the
model’s effectiveness in generating high-quality video sequences with modality shifts while main-
taining reasonable compounding errors. Our findings challenge conventional assumptions about the
importance of past actions in world modeling, suggesting a promising direction for future research.

2 RELATED WORK

World models Ha & Schmidhuber (2018) are generative models of environments, and we can
categorize different world models mainly as single-step (SS) or multi-step (MS). We structure re-
lated work in Table 1. SS model the dynamics as p(sn+1|sn−H:t, an−H:n) (where H indicates the
length of the sequence for dynamics modeling), so we predict the next state sn+1 conditioned on
past observations of states and actions Alonso et al. (2024); Valevski et al. (2024). On the con-
trast, MS methods model the joint distribution at an episode level, which could be formulated as
(sn+1:n+T |sn−H:n, an−H:n+T−1) Ding et al. (2024); Zhou et al. (2024). In contrast with previous
MS methods, our method is capable of generating videos conditioned to action sequences instead of
generating dense low dimensional representation Tassa et al. (2018).

Video Generation as a general world model The video generation models are considered as world
models that create realistic videos, which requires the video generative model to understand and
simulate the mechanism in the physical world. The emergence of the Sora model has attracted
attention because of its generation and simulation capabilities, and OpenSora Zheng et al. (2024)
was the original inspiration for our methods, is originally designed for text-prompted video genera-
tion. Liu et al. (2024) categorizes video generative models into three main classes: text-prompted,
image-prompted, and video-prompted generation. However, none of these approaches focus on ac-
tion sequences, making our work fundamentally different as we introduce action-conditioned video
generation.

3 METHOD

We present a framework for generating action-conditioned trajectories using a diffusion-based world
model. Our approach consists of two key phases: (1) collecting interaction data from an RL envi-
ronment and (2) training a world model based on OpenSora, incorporating customized adaptations
for action-conditioned video generation. To ensure stable training and effective trajectory modeling,
we employ a teacher-forcing objective Valevski et al. (2024).

Figure 2 provides an overview of our method. In the first phase, an agent interacts with the en-
vironment by executing actions and receiving observations, generating a dataset of trajectories. In
the second phase, we fine-tuned a pre-trained video generation model based on OpenSora Zheng
et al. (2024), modifying its conditioning mechanism to incorporate action sequences. The model

3



Published as a conference paper at ICLR 2025

Table 2: Results for video generation across different Atari environments, condition on future actions
only. Lower MSE and LPIPS, and higher PSNR indicate better performance.

Game Generation Length MSE ↓ PSNR ↑ LPIPS ↓

Breakout 1 frame 13.1859 36.9485 0.0132
2 frames 13.3697 36.8881 0.0356
4 frames 14.3638 36.5727 0.0662

Pong 1 frame 12.2973 37.4956 0.0122
2 frames 12.4529 37.3184 0.0217
4 frames 12.9572 37.8253 0.0390

DemonAttack 1 frame 4.6977 41.4244 0.0558
2 frames 5.0467 41.1289 0.0665
4 frames 5.1662 41.0179 0.0670

learns to generate temporally coherent video by integrating action-conditioned cross-attention at
every denoising step. Further details on data collection and model training are provided below.
Implementation details are provided in Appendix B.

3.1 DATA COLLECTION VIA AGENT PLAY

An Interactive Environment E is defined by a latent state space S, a visual space of partial projections
of the latent state O, a partial projection function f : S → O, an action space A, and a transition
probability function that indicates the dynamics p(s|a, s′) such that s, s′ ∈ S, and a ∈ A.

Our objective is to develop a world model capable of generating high-quality video data. In this
context, the policy π for data collection is not a primary focus, as it is only responsible for sampling
data from the true environment E . In this case, to construct the dataset TPPO, we utilize a standard
pre-trained PPO Schulman et al. (2017); Anand et al. (2019) RL agent. We collected 1M interactions
for each of the environments used for training our world model.

3.2 TRAINING THE WORLD MODEL

We repurpose a pre-trained action-to-video diffusion model based on OpenSora Zheng et al. (2024),
fine-tuning it on collected trajectories TPPO with teacher forcing objective. Specifically, we con-
dition the model fθ on sequences of actions ai:n+T−1, where i ∈ {0, n} and T represents the
generation length. To condition on actions, we first encode them using an embedding layer network
EA that learns an action embedding Aemb, which maps each action to a single token. This embed-
ding is then used to replace the text embedding in the cross-attention module Chen et al. (2021) from
OpenSora, as shown in the right side of Figure 2. For conditioning on observations, we followed the
OpenSora to apply the Spatio-temporal Variational Autoencoder (VAE) Kingma & Welling (2022),
denoted as ϕ to encode the sequence of observations o0:n+T into a latent space, facilitating their use
in the diffusion generation process. During the diffusion process, a mask m is applied, ensuring that
Gaussian noise is only added to on:n+T at each diffusion step t, denoted as ϕ(o0:n+T ,m). In the
denoising process, the diffusion model needs to denoise ϕ(o0:n+T ).

We train the model to minimize the diffusion loss with velocity model Salimans & Ho (2022):

L = Et,ϵ,T

[
∥v(ϵ, x0, t)− v′θ(xt, t, EA(ai:n+T−1))∥

2
2

]
(1)

where T = {o0:n+T , ai:n+T−1} ∼ TPPO, i ∈ {0, n}, x0 = ϕ(o0:n+T ,m), t ∼ U(0, 1), ϵ ∼
N (0, I). The diffusion process is defined as xt =

√
ᾱtx0 +

√
1− ᾱt, with the corresponding

reverse process given by v(ϵ, x0, t) =
√
ᾱtϵ−

√
1− ᾱtx0, and v′θ represents the predicted velocity

output by the model fθ. During training, the parameters of the VAE ϕ(·) are kept frozen. The noise
schedule

√
ᾱt is described in Liu et al. (2022).
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Table 3: Results for video generation across different action conditions for Breakout Environment.
Lower MSE and LPIPS, and higher PSNR indicate better performance.

Generation Length Action Conditions MSE ↓ PSNR ↑ LPIPS ↓

1 frames 1 Future Action 13.1859 36.9485 0.0132
Past + 1 Future Action 13.2076 36.7749 0.0145

2 frames 2 Future Action 13.3697 36.8881 0.0356
Past + 2 Future Action 13.2152 36.6384 0.0376

4 frames 4 Future Action 14.3638 36.5727 0.0662
Past + 4 Future Action 14.5893 36.1825 0.0554

4 EXPERIMENTS AND DISCUSSION

4.1 EXPERIMENTAL SETUP

To thoroughly evaluate our approach, we utilize the RL benchmark Atari Mnih et al. (2013), which
includes 26 games to assess the quality of generated videos. Our experiments focus on three rep-
resentative environments: Breakout, Pong, and DemonAttack. This benchmark was chosen as it is
also used by DIAMOND for evaluation. Additionally, our work paves the way for future research
by exploring the potential and broader applications of our approach in the RL domain.

Our evaluation aims to address the following research questions: (1) Can the text-conditioned world
model adapt to an action-conditioned world model with minimal data and capture environment dy-
namics? (2) How should action sequence conditioning and action embeddings be designed to en-
hance the model’s understanding of the environment? (3) Is the world model capable of effectively
learning and simulating inertia?

We investigated these questions through qualitative and quantitative experiments and analysis.
For the quantitative analysis, we measure Mean Squared Error (MSE), peak signal-to-noise ratio
(PSNR), and LPIPS Zhang et al. (2018) to compare the generated frames with ground-truth obser-
vations at both the pixel and perceptual levels. For the qualitative analysis, we visualized generated
video frames under different action conditions.

4.2 EXPERIMENTAL RESULTS

Table 2 shows the quantitative results of our approach on the three Atari environments with con-
ditions an:n+T−1. As there are no current works that evaluate Atari with such metrics, we simply
compare the performance differences on different condition designs to facilitate discussion. Table 3
shows the results on the environment Breakout with different action conditions, namely a1:n+T−1

and an:n+T−1. As observed in both Tables, the MSE and PSNR metrics remain relatively stable
across different frame generation lengths, indicating that the generated frames are pixel-wise sim-
ilar to the ground truth. Across all games, as the generation length increases from 1 to 4 frames,
MSE rises by 1.2–6.9%, PSNR decreases by only (-)1.3–0.8%, suggesting that while errors accumu-
late, the degradation remains within a controlled and reasonable range. These findings indicate that
the compounding error is effectively managed and does not escalate drastically over time in pixel
level. However, the LPIPS scores reveal that as more frames are generated, perceptual differences
accumulate between the generated sequences and the ground truth.Moreover, Table 3 shows that
the generation results improve when conditioning solely on future actions. To further examine the
impact of action embedding design on performance, we compared two different action embedding
strategies and report the results in Table 4. Our findings also suggest that the learned action embed-
ding layer significantly outperforms the one-hot action vector, implying that a more refined action
embedding design could enhance perceptual quality. This insight opens up potential avenues for
future research.

Additionally, we conducted a qualitative evaluation to gain deeper insights for discussion. Figure 3
presents a set of examples from the Breakout environment, allowing us to assess whether the world
model correctly interprets the given conditions and generates plausible outputs. Furthermore, it en-
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Figure 3: frames for inertia analysis

ables us to evaluate the model’s ability to understand and simulate inertia. The first four columns
depict the same observation conditions, where the paddle’s position remains unchanged, while dif-
ferent future action sequences are applied. The generated frames illustrate that the paddle moves
according to the given action conditions an:n+4. The last four frames in Figure 3, from top to bot-
tom, correspond to the action sequences 0000, 2222, 3333, 3222, where actions are defined as {0:
Noop, 1: Fire, 2: Right, 3: Left}. By analyzing the generated frames, we observe that the model
captures inertia effects. For instance, in the second row, the paddle’s leftward motion intensifies as
the action 2 is repeated. Similarly, in the third row, where the action sequence is 3333, the paddle’s
movement follows the same pattern, but in the opposite direction, reinforcing the model’s ability
to simulate inertia in both directions. In the last row, the action 2 counteracts the previous left-
ward movement, gradually bringing the paddle to a stop. Additional results for 1 step and 2 steps
generations can be found in Appendix C.

The results demonstrate that our model can effectively perform domain adaptation with minimal
data, transitioning from text conditioning to action conditioning, while also generating reasonable
trajectories under different action conditions. Moreover, the model successfully learns and simulates
inertia.

4.3 DISCUSSION

Can the text-conditioned world model adapt to an action-conditioned world model with min-
imal data and capture environment dynamics? The pre-trained OpenSora model was originally
trained on text-video data. We show that it can be effectively adapted to a different data modality
using an RL dataset with just 1M environment interactions. In contrast, OpenSora pretraining in-
volved 10M samples from WebVid-10M Bain et al. (2022) and 20M samples from Panda-70M Chen
et al. (2024), followed by a final training stage on a dataset of 2M video clips Zheng et al. (2024).
Our quantitative and qualitative results show that the model successfully leverages action sequences
instead of text to generate visually coherent frames, indicating a strong understanding of this new
data modality. By conditioning only on future actions, the model preserves consistency between the
generated frames and action inputs, further reinforcing its capability to align visual predictions with
structured temporal dynamics.

How should action sequence conditioning and action embeddings be designed to enhance the
model’s understanding of the environment? Our analysis indicates that incorporating past action
information introduces redundancy, as it is already implicitly encoded in the previously generated
frames. Explicitly conditioning on past actions may degrade performance by introducing ambigu-
ity between past and future inputs. Instead, relying solely on future actions leads to more precise
and controllable frame generation, particularly for short-horizon predictions. Based on these find-
ings, we show the “future actions only” conditioning approach to enhance both data efficiency and
predictive accuracy.
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Does the video diffusion World Model understand dynamics behind the video? Our qualita-
tive experiments demonstrate that the model not only generates visually coherent frames but also
faithfully adheres to the inherent physical dynamics of the game environments, such as inertia. The
model accurately simulates the effects of different action sequences, ensuring that generated frames
reflect not only the immediate action input but also the implicit continuation of prior motion. This
capability highlights the model’s ability to encode and predict dynamic transitions in Atari environ-
ments with high temporal consistency.

5 CONCLUSION

We introduced a novel action-conditioned multi-step video generation model that enables direct
video generation while preserving temporal coherence and visual fidelity. Our approach integrates
an action encoder that adapt OpenSora to efficiently capture complex temporal dependencies in
action-conditioned video data. Experimental results demonstrate that (1) the text-video generative
model can be efficiently adapted to an action-video generative model, (2) conditioning solely on
future actions improves generation performance by eliminating redundant past information, and (3)
learned action embeddings outperform one-hot encodings for action representation. Notably, the
model successfully captures inertia effects in Atari environments, showcasing its ability to gener-
ate realistic, action-conditioned sequences. These findings highlight the model’s effectiveness in
producing high-quality, temporally consistent video predictions and provide a new framework for
model-based reinforcement learning.
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A DATASET CONSTRUCTION

A.1 DATA COLLECTION

To construct a high-quality dataset for training and evaluation, we collected expert-level trajectories
using pre-trained Proximal Policy Optimization (PPO) agents in three Atari environments: Breakout,
Pong, and Boxing. For each environment, we collected 1 million steps, resulting in a dataset com-
prising 3 million steps of state-action pairs. Learning from expert trajectories allows the model to
internalize high-quality decision-making patterns and capture essential spatiotemporal relationships
in the environment.

A.2 SLIDING WINDOW FOR SEQUENCE GENERATION

To prepare sequential data for training, we applied a sliding window approach that segments raw
state observations into structured video clips. Specifically, we used a sliding window of 32 frames
with a stride of 4, ensuring that each resulting video sequence captures temporal dynamics over time
while maintaining continuity between overlapping sequences. This overlap enhances data diversity
and helps the model learn smooth transitions between frames. By structuring the data in this way,
we provide sufficient temporal context for spatiotemporal models while keeping computational costs
manageable.

B MODEL STRUCTURE

The Spatio-temporal Variational Autoencoder (VAE) Kingma & Welling (2022) serves as the
initial processing stage, encoding observations oo:n into a compressed latent representation. This
latent space is subsequently used by the diffusion model for generation. The VAE captures both
spatial and temporal dependencies while ensuring computational efficiency.

The spatial and temporal encoders employ a two-stage compression strategy, where each video frame
is first spatially downsampled by a factor of four, followed by temporal downsampling with the
same factor. This hierarchical approach, implemented using causal 3D convolutional layers, ensures
temporal causality while encoding compact, information-rich representations. The latent space is
regularized via a Gaussian prior to enhance smoothness and sampling efficiency, and the decoder
reconstructs video frames through upsampling layers, preserving both local and global structures for
robust video generation.

Spatio-temporal Diffusion Transformer The Spatiotemporal Diffusion Transformer (ST-DiT) in-
tegrates transformer-based architectures with diffusion modeling Peebles & Xie (2023) to capture
complex spatio-temporal dependencies in video data. ST-DiT comprises a hierarchical structure
with dedicated spatial and temporal processing blocks, enabling effective modeling for generation.

The input video frames are first partitioned into spatio-temporal patches, which are then projected
into a high-dimensional latent space using a PatchEmbed3D module. A PositionEmbedding2D
layer further enhances these embeddings by encoding spatial and temporal positional information,
ensuring the model retains sequence structure.

ST-DiT consists of alternating spatial and temporal transformer Vaswani et al. (2023) blocks. Spa-
tial blocks use self-attention mechanisms Vaswani et al. (2023) to model intra-frame dependencies,
while temporal blocks focus on inter-frame correlations. Each block incorporates rotary embed-
dings (RoPE) Su et al. (2023) for improved position encoding and flash attention for computational
efficiency. Modulation parameters, generated by timestep and size embeddings, dynamically adjust
attention and MLP operations, enhancing adaptability for sequential data tasks.

ST-DiT concludes with a diffusion-based generation layer that maps latent representations back to
the video space. An unpatchification step reconstructs the original spatial and temporal dimensions,
yielding temporally coherent video outputs.

Action Encoder for Cross-Attention Conditioning To integrate action sequences as conditioning
signals for video generation, we introduce an Action Encoder EA that maps discrete action indices
into a continuous latent representation. This representation is compatible with the cross-attention
mechanism within ST-DiT, ensuring that generated frames align with provided action sequences.
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The Action Encoder consists of an embedding layer that transforms discrete action indices into
trainable dense vectors. These embeddings are processed through two fully connected layers with
ReLU activations, progressively mapping them into a higher-dimensional latent space. The resulting
representation is used as the key and value inputs in ST-DiT’s cross-attention layers, where spatial-
temporal embeddings serve as queries. This setup allows the model to dynamically attend to relevant
actions during generation.

Conditioning with Video Frames and Noise Injection To balance temporal context from observed
frames with stochastic variation, our framework employs a masking mechanism that conditions on
video frames while injecting controlled noise. This approach ensures temporally consistent yet
diverse video generation Song et al. (2022).

A binary mask determines which frames are retained from the input sequence, while the remaining
frames are replaced with Gaussian noise. The masked input is passed to the diffusion model along
with timestep and additional conditioning signals, such as encoded action sequences. This condi-
tioning strategy allows the model to generate coherent and temporally consistent video sequences
while incorporating stochastic variation, making it well-suited for action-conditioned video genera-
tion.

C ADDITIONAL EXPERIMENTS RESULTS

Figure 4 showcases a set of examples from the Breakout environment, allowing us to assess whether
the world model understands the conditions and generates reasonable outputs. Each row in the figure
4 starts with 4 conditioning frames from left to right, with the last frame representing the generated
result of our world model. The four different actions provided, listed from top to bottom, are Noop,
Fire, Right and Left. Furthermore, to evaluate the world model’s ability to understand and simulate
inertia, we present examples where the final conditioning frame involves the ”Right” action. The
subsequent generated frames reflect inertia-driven behavior under varying actions. When no action
or ”Fire” is taken, the paddle continues moving right due to the previous inertia. Repeated ”Right”
actions increase the movement, while a ”Left” action counteracts the motion, bringing the paddle to
a stop. The results are shown in Figure 5.

To compare the performance of different designs of action encoders, we demonstrate also both quan-
titative and qualitative experimental results, using future action sequence conditions an,n+T . The
results summarized in Table 4 demonstrate that utilizing the Embedding Layer for action encod-
ing leads to superior performance across all metrics and generation lengths, except for the LPIPS
score in the 2-frame generation scenario. The MSE remains consistently lower, while the PSNR
and LPIPS values suggest improved visual and perceptual quality of the generated videos. Quali-
tative analysis reveals that the One-hot Vector encoding occasionally introduces noticeable artifacts
in the generated frames, as shown in Figure 6. Meanwhile, in the 2-frame generation scenario, the
frames generated using one-hot vector encoding exhibit an artifact where two paddles appear, which
is perceptually incorrect. This observation also opens up a discussion on what could serve as a more
precise evaluation metric for video generation.
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Figure 4: frames for consistency analysis

Figure 5: frames for inertia analysis
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Table 4: Performance comparison between Embedding Layer and One-hot Vector representations
for different generation lengths.

Gen. Length Metrics Embedding Layer One-hot Vector

1 Frame MSE ↓ 13.1859 13.2162
PSNR ↑ 36.9485 36.7846
LPIPS ↓ 0.0132 0.0141

2 Frames MSE ↓ 13.3697 13.8342
PSNR ↑ 36.8881 36.7308
LPIPS ↓ 0.0356 0.0190

4 Frames MSE ↓ 14.3638 14.9298
PSNR ↑ 36.5727 36.2293
LPIPS ↓ 0.0662 0.0698

Figure 6: Comparison of generated video frames using Embedding Layer and One-hot Vector for
action encoding in Breakout. The top row shows video frames generated using the Embedding
Layer, while the bottom row shows frames generated using the One-hot Vector. In both cases, the
first four frames are condition frames, and the last two frames are generated frames.
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