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Abstract

Reward Models (RMs) are crucial to aligning large language models (LLMs), but
the degree to which an RM specialized to one task (e.g. writing) generalizes to
new tasks (e.g. math) is often not known a priori, often making using only one
fixed RM to train LLMs suboptimal. However, optimizing LLMs with multiple
RMs simultaneously can incur a prohibitively high computational cost and lead to
conflicting signals from different RMs that may degrade performance. To address
these challenges, we introduce LASER (Learning to Adaptively Select Rewards),
which frames reward model selection as a multi-armed bandit problem, efficiently
and iteratively training LLMs using multiple RMs by selecting the most well-
suited RM for each instance. On commonsense and math reasoning tasks, we
show that LASER boosts iterative LLM training, improving the absolute average
accuracy of Llama-3-8B over three datasets by 2.67% over an ensemble of RM
scores while also showing superior efficiency (e.g., a 2× speedup). Moreover, on
WildChat (open-ended instruction-following tasks), LASER leads to a 72.69%
AlpacaEval win rate over the RM score ensemble baseline. Extending to long-
context generation, LASER improves by 2.96 F1 points (avg.) on single-document
QA tasks and 2.97 F1 points on few-shot learning over the RM score ensemble
baseline with best-of-n sampling.1

1 Introduction

When comparing two responses, human preferences often differ depending on factors like the
underlying task, who the annotators are [Santurkar et al., 2023, Ahmadian et al., 2024], and how
preferences are elicited [Bansal et al., 2024]. Therefore, models of preference data are also likely to
differ and might include noise as well as any biases contained in the preference data used to train them.
This can pose a problem when using such models as “reward models” (RMs) to align large language
models (LLMs) to human preferences using reinforcement learning with human feedback [Christiano
et al., 2017, Ziegler et al., 2019, Ouyang et al., 2022]. Recent work has focused on aligning LLMs
through iterative training, using reward models as proxies for human judgment [Gulcehre et al., 2023],
leveraging the LLM to act as an implicit RM or judge [Yuan et al., 2024b, Chen et al., 2024b], or
using the gold answer to compute a reward [Pang et al., 2024]. Under this paradigm, there are three
stages to training LLMs: (i) generating multiple responses to a query from an LLM; (ii) scoring
the responses with an RM to create preference data with better and worse responses; and (iii) using
model-generated preference data to further train the LLM. Note that for most domains, the gold
reward is not readily available, making the quality of the RM or the degree to which it reflects human
preferences (i.e., the gold reward) crucial to improving LLM performance. Indeed, several prior
efforts aim to train new RMs that better reflect human preferences [Lambert et al., 2024].
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However, selecting one reward model to guide LLM training can be suboptimal for three main reasons:
(1) A single RM may not generalize to heterogeneous sets of examples. RMs are typically designed
to reflect specific objectives and may be trained on offline preference datasets. Thus, an RM that
performs well on one dataset or domain may not generalize effectively to others, leading to misaligned
outputs across different tasks or domains [Kirk et al., 2023, Chen et al., 2024a, Casper et al., 2023,
Gao et al., 2023]. For instance, creativity plays a key role in evaluating the quality of a story, whereas
correctness is more important in scoring math solutions. (2) RM performance leaderboards (e.g.,
Lambert et al. [2024]) that rely on human-annotated preferences can have unreliable rankings due to
the presence of incorrect and ambiguous preferences [Yu et al., 2024, Hejna et al., 2023]. (3) Lastly,
over-optimization on one RM can lead to reward hacking problem [Skalse et al., 2022, Rafailov et al.,
2024a], even resulting in downstream performance drops.

To mitigate these issues, a prevalent approach is to ensemble multiple reward models [Coste et al.,
2023, Eisenstein et al., 2023, Zhang et al., 2024, Ramé et al., 2024]. However, these methods also
come with significant challenges: as RMs are typically based on LLMs, training with multiple
RMs often requires loading and managing several large models simultaneously, which can be
computationally expensive, becoming infeasible as models increase in size. Moreover, aggregating
multiple RM scores together is susceptible to noisy rewards or conflicting preferences from RMs,
especially RMs that are not well-suited for the specific task [Rita et al., 2024]. This, in turn, can
degrade the quality of the preference data, leading to low-quality updates during training [Wang
et al., 2024a]. Finally, manually selecting a subset of RMs to combine is a labor-intensive process
that involves training many different variants on a combinatorially large set of RM groupings. This
underscores the need for a more efficient and robust LLM training method with multiple RMs.

To fill this gap, we introduce Learning to Adaptively Select Rewards (LASER), that, given a set
of RMs, adaptively and efficiently selects a suitable RM for each instance by casting selection as a
multi-armed bandit problem [Vermorel and Mohri, 2005, Audibert et al., 2009]. Specifically, during
training, the RM (arm) is chosen dynamically based on contextual information about the model’s
performance and past interactions. The LLM is then fine-tuned based on the RM-annotated data,
and the bandit’s parameters are updated accordingly to reflect the performance of the LLM after
training on preference data annotated using selected RM (see Fig. 1). By design, LASER’s adaptive
instance-level or batch-level RM selection (c.f. Sec. 3) addresses the three shortcomings of choosing
one reward model: lack of generalization, unreliable rankings, and over-optimization. LASER
eliminates the need for manual tuning or oracle RM selection, with users only tasked with selecting a
pool of RMs from a leaderboard like RewardBench [Lambert et al., 2024] without needing to know
in advance which RM is best suited for a specific task. Moreover, previous multi-RM methods do not
explicitly analyze and address conflicting signals from multiple RMs, and require simultaneously
loading and running multiple RMs [Ramé et al., 2024, Coste et al., 2023] or training an RM for a
specific task [Quan, 2024]. On the other hand, LASER selects one RM at each training step (Sec. 4),
avoiding conflicts between RMs and improving the overall training efficiency.

Empirically, we demonstrate the effectiveness of LASER for iteratively training LLMs using multiple
RMs on three broad domains: reasoning, instruction-following in text generation, and long-context
understanding (Sec. 4.2). We show that on reasoning benchmarks such as StrategyQA [Geva et al.,
2021] (testing commonsense reasoning), GSM8K [Cobbe et al., 2021] (testing math reasoning),
and MMLU [Hendrycks et al., 2021b] (testing general knowledge reasoning), LASER with Llama-
3-8B improves absolute accuracy (averaged across 3 datasets) by 1.45% over a baseline that uses
best single RM for training and 2.67% over an ensemble of RM scores baseline. LASER is also
effective on general instruction-following: we show that using LASER with four strong 7B RMs
from RewardBench to fine-tune Llama-3-8B on a subset of WildChat [Zhao et al., 2024] beats LLMs
trained with the best RM and with a baseline that sequentially selects RMs, with 56.34% and 71.45%
win rates (respectively) on length-controlled AlpacaEval [Dubois et al., 2024]. LASER also beats the
ensemble of RM scores baseline with 72.69% win rates using Llama-3-8B. Moreover, beyond the
use in LLM training, our results demonstrate the effectiveness of LASER’s RM selection strategy
at inference time for long-form generation tasks in reranking LLM responses using multiple RMs;
on LongBench [Bai et al., 2022], we find LASER beats the ensemble of RM scores baseline by
2.96 F1 points on single-document QA tasks and 2.97 F1 points on few-shot learning when using
best-of-n sampling for Llama-3-8B. Our analysis reveals that LASER is more efficient than sequential
multi-RM and RM score ensemble baselines in terms of training time (wall-clock hours) by a factor
of 3×, and 2×, respectively, while being more robust to conflicting preferences (Sec. 5).
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2 Related Work

Multiple Reward Ensembles. Recent work explores training LLMs using multiple rewards, often
via ensembles [Ramé et al., 2024, Wu et al., 2024, Coste et al., 2023, Zhang et al., 2024, Wang et al.,
2024b, Jang et al., 2023, Eisenstein et al., 2023]. These methods typically aggregate or align scores
across RMs, but suffer from inefficiency (both in terms of training and using multiple RMs) and
conflicting rewards [Rita et al., 2024]. In contrast, LASER selects one pretrained RM per training
step, avoiding these issues while outperforming ensemble-based baselines [Coste et al., 2023, Wang
et al., 2024e]. Other approaches train an RM from interpretable objectives using a human-annotated
dataset [Wang et al., 2024c] or jointly train multiple task-specific RMs with a sparse router [Quan,
2024]. Unlike these methods, LASER instead uses off-the-shelf RMs to train on LLM-generated
outputs, which has shown better performance [Ivison et al., 2024], and dynamically selects RMs from
a leaderboard using a multi-armed bandit without any RM training or annotated datasets.

Iterative LLM Training. Standard RLHF pipelines rely on static human preference data [Ouyang
et al., 2022, Bai et al., 2022, Touvron et al., 2023], which limits scalability by the size and quality of
annotated preference data and the effectiveness of off-policy optimization [Xu et al., 2023, Xiong
et al., 2024, Yuan et al., 2024b, Guo et al., 2024]. Recent iterative methods improve this by generating
feedback from model outputs, using gold labels [Singh et al., 2023, Pang et al., 2024], single
RMs [Gulcehre et al., 2023], or self-judgment [Yuan et al., 2024b, Chen et al., 2024b]. LASER
extends this by leveraging multiple RMs, avoiding pitfalls of single RM reliance (unreliable rankings,
lack of generalization, and over-optimization), and reducing user burden in RM selection for a specific
task [Huang et al., 2023].

Multi-Armed Bandits (MABs). MABs have been widely applied in ML for optimization and
selection tasks [Chen et al., 2013, Li et al., 2010, 2018, Graves et al., 2017], including language
models [Pasunuru et al., 2020, Krishnamurthy et al., 2024, Dwaracherla et al., 2024]. LASER uses
MABs to dynamically select RMs during training, unlike prior work, which uses MABs to select the
annotated samples for a single fixed RM [Dwaracherla et al., 2024] or uses MABs for model selection
at test-time without RMs [Nguyen et al., 2024, Li, 2025]. This allows LASER to improve LLMs
iteratively without gold labels or explicit optimization for evaluation metrics. To our knowledge,
LASER is the first method to do that in the context of aligning LLMs with multiple RMs.

3 LASER: Learning to Adaptively Select Rewards

First, we expand on the single-iteration training pipeline with a general reward function (Sec. 3.1).
Then, in Sec. 3.2, we describe how LASER dynamically selects an RM using MAB algorithms,
assigning the RM for a given instance or batch. Finally, in Sec. 3.3, we describe cross-iteration
training and how we update the MAB parameters. An illustration of LASER is shown in Fig. 1.

3.1 Training LLMs Using a Reward Function

LASER involves training with multiple RMs using a multi-armed bandit (MAB), which selects one
model at a time. Therefore, we first describe how we train LLMs with generated data assuming a
single RM; this corresponds to the top-right in Fig. 1 (in blue).

Notation. Following Yuan et al. [2024b] and Pang et al. [2024], we adopt an iterative training
pipeline to fine-tune the LLM for M iterations. Let πm be the LLM at iteration m; we assume that
we start from an initial pretrained model π0. Let D = {x1, x2, . . . , xN} represent the training inputs,
where xi is an input query or prompt. Corresponding to each input query xi, we sample a set of
n responses from the LLM at the current mth iteration as yi = {y1i , y2i , . . . , yni } ∼ πm(y|xi). Let
R⋆ : (yji |xi)→ R be a reward function that can score an LLM-generated response yji to a query xi

based on how well it aligns with specific task objectives or instructions. Note that R⋆(.) can be any
reward function and may correspond to a single RM, one of the multiple RMs selected by the MAB
(as in our case), or even the true reward.

Generating Preference Pairs. We evaluate each response yji using the reward function R⋆(yji |xi).
By comparing the rewards assigned to different responses, we can form P preference pairs (ywi , y

l
i),

3



RM Selection for Prompts

Generating Preference Pairs

Updating LLM & MAB

Generating LLM
responses and

scoring using RM

Reward:
0.8

Reward:
0.2

Current LLM:

mth Iteration

Update
LLM

MAB selects     
     an RM

Reward:
0.3

x M Iterations 

Q: Are Christmas trees dissimilar
to deciduous trees? 

Question

Multi-Armed
Bandit (MAB)

No, both trees are similar as they have
roots, trunks, and branches

Response

Yes, Christmas trees are evergreen but
deciduous trees shed annually

Response

No, Christmas and deciduous trees are
similar as both are woody plants

Response

Train Loss 
m+1th

Iteration

Different
RMs

Update
MAB

Exploration vs. Exploitation

Usage:

MAB Rewards:

15% 35% 30% 20%

≻

≻Yes, Christmas
trees are

evergreen but ...

Yes, Christmas
trees are

evergreen but ...

No, both trees are
similar as they

have ...

Preference Pairs

No, Christmas
and deciduous

trees are ...

Created using MAB-selected RMs

Usage:

MAB Rewards:

13% 31% 28% 28%

Figure 1: Overview of LASER. Given the query, the multi-armed bandit selects an RM depending on
the underlying query and the bandit’s parameters (based on the usage of each RM and the expected
MAB reward). At iteration m, the LLM generates multiple responses that are scored based on the
selected RM for that query. These responses are ranked into preference pairs, which are then used to
fine-tune the model. The same training loss Lm is used to update the parameters of the LLM as well
as the MAB for the next iteration, making the entire pipeline iterative.

where ywi is preferred over yli if R⋆(ywi |xi) > R⋆(yli|xi), thereby building a preference dataset:2

Dpref = {(xi, y
w
i , y

l
i) | xi ∈ D, R⋆(ywi ) > R⋆(yli).

Training Loss Function (Lm). In each iteration, we fine-tune the model using the generated
preference dataset Dpref , resulting in M models π1, π2, . . . , πM . Specifically, we update the model
using the DPO loss [Rafailov et al., 2024b] for learning from the preference pairs, which is consistent
with other work on iterative LLM training [Yuan et al., 2024b, Pang et al., 2024]. In this work, we
use the following loss functions:

Lm
DPO(πm)=−EDpref

[
log σ

(
β
(
rwi − rli

))]
;Lm

NLL(πm)=−EDpref

[
log πm(ywi | xi)

|ywi |

]
,

where rwi = log
πm(yw

i |xi)
πm−1(yw

i |xi)
, rli = log

πm(yl
i|xi)

πm−1(yl
i|xi)

, πm and πm−1 denote the LLM in the current
iteration m and the previous iteration m−1 (used as the reference model in DPO loss). Following Yuan
et al. [2024b], we use the standard DPO loss for instruction-tuning. Following Pang et al. [2024],
we use the NLL loss on the preferred responses as an additional regularizer for reasoning tasks, i.e.,
Lm=Lm

DPO + Lm
NLL. In Appendix C, we show that LASER outperforms baselines irrespective of the

choice of the loss function Lm.

3.2 Bandit Algorithms for Adaptive RM Selection

Sec. 3.1 described the data creation and LLM training procedure for our method when using a general
RM (Fig. 1; top-right), which trains the LLM for a single mini-batch. Here, we describe the process
by which we adaptively select an RM for each batch of queries using bandit algorithms (shown in
Fig. 1-left, in yellow) and update the parameters of the bandit (more details in Appendix A.2).

Background: Multi-Armed Bandits. The multi-armed bandit (MAB) problem addresses the
challenge of balancing exploration and exploitation in sequential decision-making [Vermorel and
Mohri, 2005, Audibert et al., 2009]. The goal is to maximize cumulative MAB rewards over time by
selecting arms that yield the highest MAB rewards. In order to distinguish between rewards or scores
generated by RMs and the rewards used in MAB literature, we refer to the latter as “MAB rewards”.
A decision-making agent in a bandit setting faces a trade-off: whether to exploit the arm with the
highest known MAB reward based on past observations or explore other, less familiar arms to gather
more information that might lead to even better rewards in the future. In a contextual MAB setting,

2Following Pang et al. [2024], we randomly sample P =10 pairs corresponding to each prompt xi. For
brevity, we omit this in the notation of Dpref ; but in our setting |Dpref | = P × |D|.
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the agent is also provided with additional information in the form of a context, such as the current
state and input, to help inform arm selection accordingly.

Challenges in Applying MAB to LLM Training. Although MAB is a promising framework for
selecting RMs in LLM training, several challenges remain. First, in typical MAB problems, the
arms are often fixed with stable reward distributions. In contrast, during preference fine-tuning of
LLMs, the arms are RMs whose outputs interact with and influence the training of the LLM itself.
As the LLM is updated, the distribution of responses (and therefore the RM-derived reward signal)
shifts. Second, unlike traditional MAB settings where rewards are observed directly, in our setting,
no explicit supervision is available to indicate which RM is best per query. Finally, a static MAB
setup struggles when new RMs are introduced or when existing RMs are noisy or domain-specific.
We describe LASER in detail, explain how it incorporates MAB into LLM training, and addresses
these challenges in the following section.

Exploration and Exploitation of RMs. LASER uses MABs to dynamically identify the most
suitable RM for each query xi and task through exploration while simultaneously training the LLM
(since this fine-grained information is not known a priori). Pulling a previously un(der)-explored arm
allows the MAB to adaptively update its information about the relevance and quality of preference
pairs built using that RM via the MAB reward (discussed below). If we over-explore RMs, we might
waste time on underperforming RMs, slowing down the overall training progress. On the other hand,
if we over-exploit, we might prematurely focus on one RM that seems best initially but is not optimal
for all queries or tasks. The exploration-exploitation nature of MAB ensures that LASER adapts to
the specific needs of each query (see Appendix B for further analysis) while improving the overall
performance of the model.

RM Selection in LASER. LASER uses mini-batch training for each iteration, i.e., we use MABs
to select a single RM for a batch of prompts xm,t for tth batch or training step of iteration m
(total of T steps/batches in each iteration).3 Let the set of K reward models (or arms) be denoted
by R = {R1, R2, . . . , RK}, where each Rk corresponds to a different RM. We use the negative
cumulative train loss function on the batch (−Lm) at the given iteration m, i.e., Lm=Lm

DPO + Lm
NLL

for reasoning tasks, Lm = Lm
DPO for other tasks, as mentioned in Sec. 3.1, as the MAB reward.

The MAB reward is computed after the model is trained on each batch. Specifically, the MAB
reward is the negative training loss (DPO), which depends on how clearly the model learns to
prefer the RM’s chosen outputs over the rejected ones. A lower DPO loss or a higher MAB reward
corresponds to a larger log-likelihood margin between preferred and dispreferred responses, i.e.,
log πm(ywi | xi) − log πm(yli | xi) for a query xi and preference pair (ywi , y

l
i), indicating that the

RM’s feedback helped the model sharpen its rankings and increase confidence in distinguishing
between chosen and rejected responses. Thus, an RM that provides more informative and consistent
rankings is given a higher reward compared to a less-suited RM providing uninformative rankings4.
To further validate our MAB reward design, we empirically compare it with alternative learning
signals for MAB in Appendix C. It is also worth noting that, since the MAB reward is computed based
on preference pair data, LASER can treat any RMs, including learned RM signals or domain-specific
metrics as part of its selection framework, thereby enabling generalization and adaptation to different
types of RMs (see Appendix C for further analysis and experiments).

We employ LinUCB [Li et al., 2010], a contextual bandit algorithm for the arm or RM selection. We
choose LinUCB because it is a contextual bandit algorithm that effectively leverages context infor-
mation, making it well-suited for integration into LLM frameworks due to its ability to dynamically
adapt decisions based on contextual embeddings. Additionally, LinUCB has been shown to provide a
good trade-off between computational efficiency and performance [Zhou, 2015]. Therefore, it can be
incorporated into any iterative LLM training framework with minimal overhead (described in detail
in Appendix A.1). LinUCB assumes that the MAB reward can be modeled linearly as a function
of context features and computes the expected MAB reward of each arm with an upper confidence
bound to ensure exploration [Garivier and Moulines, 2008, 2011]. In each step t, we have a batch of
input prompts xm,t for which we compute sentence embeddings, using the policy model πm, and use

3Note that LASER can switch between RMs at the instance level if the batch size is set to 1; however, for the
sake of efficiency, we batch instances together both for LASER and the baselines, as this reduces the computa-
tional overhead associated with loading RMs onto the GPU. We provide further discussion in Appendix A.1.

4Note that since DPO training typically begins from a supervised fine-tuning (SFT) checkpoint, the policy
model already has some ability to distinguish good responses from bad ones. In Fig. 5 we show empirically that
the model’s margin is typically positive, further supporting this claim.
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the mean sentence embedding as the context c(t) to the MAB, i.e., c(t) =
∑

x∈xm,t
em(x)/|xm,t|,

where em(.) ∈ Rd yields the sentence embedding from the model πm. We calculate the embedding
for a prompt as the last token embedding from model πm. We use the last-token embedding as
the context representation because in Transformer-based LLMs, this position typically aggregates
information from the entire sequence. Moreover, this method is a standard and commonly used
approach for extracting LLM embeddings [Wang et al., 2024d, BehnamGhader et al., 2024]. We
provide more details regarding token embedding extraction in Appendix A.1 and an ablation study
comparing context embedding methods in Appendix D. Even if individual batches vary, the repeated
exposure to diverse inputs allows the bandit to learn which RMs are more helpful overall. Over
training iterations, this appears to provide a robust signal for the bandit to learn effective RM selection,
as demonstrated by LASER’s consistent gains across datasets and the convergence behavior of MAB
rewards shown in Appendix D.

The learned parameters of the LinUCB bandit include θ̂k ∈ Rd which represents the learned weights
for the features of each reward model and Ak ∈ Rd×d (a covariance matrix) and a bias vector
bk ∈ Rd corresponding to each arm or RM Rk. We initialize the parameters for LinUCB by randomly
initializing bk and setting parameter Ak to the identity matrix. Based on the LinUCB algorithm, for
each batch, the selected RM R⋆

t is determined by R⋆
t = Rj such that:

j = arg max
k∈[1,K]

(
c(t)⊤θ̂k + α

√
c(t)⊤A−1

k c(t)

)
, (1)

where θ̂k = A−1
k bk, and α is a parameter that controls the degree of exploration in LinUCB. A higher

α encourages the algorithm to explore more aggressively by assigning higher uncertainty bonuses to
actions with less information, while a lower α leads to more conservative behavior that prioritizes
exploitation of known information. We provide an ablation study in Appendix D to examine the effect
of α on the performance of LASER. Ak and bk are updated based on the MAB reward for each RM,
which corresponds to the normalized negative train loss −L̂m (described in detail in Appendix A.2):

Ak ← Ak + c(t)c(t)⊤; bk ← bk − L̂m(t)c(t). (2)

We emphasize that the effectiveness of our approach is not tied to particular bandit algorithm but
rather from the exploration-exploitation trade-off of MAB framework. LASER is agnostic to the
bandit algorithms and can incorporate alternatives to LinUCB. Indeed, we provide a comparison of
LinUCB and other bandit algorithms in Appendix C.

3.3 LLM and Bandit Training in LASER

A key aspect of our approach is the generation of new preference training data in each iteration using
the generations of the LLM itself and the RM selected by the MAB. Fig. 1 presents our training
procedure, broken down into three stages: (i) the MAB selects an RM R⋆

t (see Sec. 3.2; Fig. 1 left),
generating preference pairs by scoring the LLM’s outputs using the RM (Fig. 1 (top-right)), and
parameter updates to the LLM and MAB. In this way, the model continuously learns from its own
outputs, guided by the selected reward model. After each LLM train step (i.e., one mini-batch),
the MAB’s parameters are updated based on the observed MAB reward, i.e., how much the LLM’s
loss decreased from using the selected RM. In the case of LinUCB, this involves updating the
parameter estimates bk, Ak (see Fig. 1; bottom in green). This entire process – selection of reward
models, generation of new supervision data, fine-tuning, and bandit updates – repeats for a total of
M iterations (summarized in Algorithm 1).

LASER with Best-of-n Sampling. For settings where fine-tuning the LLM is not desirable or
feasible, LASER can also be applied to learn the MAB parameters without training the LLM. Rather
than fine-tuning the model with preference data, we employ best-of-n sampling [Lightman et al.,
2023, Sun et al., 2024], where multiple responses are generated, and the best one is selected based on
the RM. The bandit parameters are then updated using equation (2), with the MAB reward calculated
as the negative normalized NLL loss on the train data. This updated bandit can subsequently be used
for inference on the test set. This approach is particularly useful for long-context understanding tasks,
where training would be too computationally intensive (see setting in Sec. 4.2).
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4 Experiments and Results

In this section, we evaluate LASER across three domains: reasoning, instruction following, and
long-context understanding. We compare our approach against baselines that utilize either a single
RM or multiple RMs during LLM training. More detailed settings for both LASER and the baselines
are provided in Appendix A.1, and additional experimental results are presented in Appendix B.

4.1 Experimental Setup

Models. We conduct our experiments on the Llama-3-8B base [AI@Meta, 2024] model. We
present additional results with Mistral-7b-v3-Instruct [Jiang et al., 2023] and Qwen2.5-32B [Qwen
Team, 2024a] in Appendix B. For training, all models are fine-tuned using Low-Rank Adaptation
(LoRA) [Hu et al., 2021] for efficiency. For both training and inference, we do 0-shot prompting and
sample n=30 responses per prompt with temperature 0.8 (see Appendix A.1 for more details).

Reward Models. We select K = 4 strong 7B RMs from RewardBench [Lambert et al., 2024], which
include Zephyr-7B-Alpha, Qwen1.5-7B-Chat, Eurus-7B-KTO, and OLMo-7B-Instruct. Following
the pipeline outlined in Lambert et al. [2024], for these models, we compute the reward for each
response as the log-likelihood of the RM for that response (see Appendices A.1 and E for more
details and discussion about the RM choices).

Datasets and Metrics. Our experiments cover a range of tasks and datasets (see Appendix A.1):

• Reasoning: Evaluating reasoning abilities is crucial for testing the model’s capacity to handle
complex, multi-step tasks and has presented a challenge to iterative preference optimization
methods [Yuan et al., 2024b, Chen et al., 2024b]. We train and evaluate on StrategyQA [Geva et al.,
2021], MMLU [Hendrycks et al., 2021b,a], and GSM8K [Cobbe et al., 2021].

• Instruction-Following: We further evaluate our method on heterogeneous tasks without gold labels.
We use user prompts from WildChat dataset [Zhao et al., 2024], which contains a collection of
natural user-chatbot interactions. This dataset has five primary categories of instruction-following
prompts: creative writing, analysis, coding, factual information, and math reasoning. Due to
computational constraints, we randomly subsample 5K prompts from each category for model
training. We compare models trained with LASER against baselines (described below) using
length-controlled AlpacaEval [Dubois et al., 2024] that pairs responses from two different LLMs
and uses GPT-4o as a judge to pick the winner, accounting for the length of both responses.

• Long-Context Understanding: As fine-tuning LLMs on long-context inputs is computationally in-
tensive, we demonstrate the effectiveness of LASER using Best-of-n sampling on LongBench [Bai
et al., 2023], which consists of multiple tasks, such as single-document QA, multi-document QA,
summarization, and few-shot learning. For summarization, we report Rouge-L [Lin, 2004], whereas
for the rest, we report the F1 score.

Baselines. We compare LASER against two baseline categories reflecting different kinds of methods
for using RMs in LLM training: single RM selection and multi-RM ensemble baselines. For single
RM selection baselines, we evaluate against the following baselines:

• Best RM: From our collection of RMs, we pick the RM that corresponds to the best overall score
on RewardBench [Lambert et al., 2024]: Zephyr-7B-Alpha. We use this single RM during training
(c.f. Sec. 3.1). This baseline reflects the performance gain a user could expect when selecting the
best RM from a leaderboard without knowing a priori how it generalizes to a particular task.

• Avg. RM: Here, we perform single RM training over all the RMs in the pool and report the average
performance. A comparison with this baseline represents an expected gain from a randomly picked
RM from a leaderboard; however, note this baseline consists of multiple models averaged together.

• Random RM Selection: In this baseline, we randomly sample a single RM from the set of RMs
(from a uniform distribution) for each training batch in every iteration.

• Sequential RM Selection: In training, this method explores RMs sequentially and based on a set
order in each iteration to examine their impact on model training, demonstrating that, instead of
optimizing with all RMs, LASER can adaptively select the best RM for each batch of samples.

• Classifier Selection: To compare against a context-sensitive baseline that does not use an MAB, we
train a K-way classifier to perform RM selection using data from RewardBench (see Appendix A.1).
Specifically, for each query and RM, we compute the RM’s score of the annotated preferred and
dispreferred response. The RM that assigns the correct preference ordering with the highest
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difference between the scores of the preferred and dispreferred responses is chosen as the RM label
and used to train the classifier. While training the LLM, for each input xi ∈ D, we select the RM
for building preference pairs based on this trained classifier.

Additionally, we compare against the following RM ensemble baselines:

• RM Score Ensemble: We generate multiple responses for each query, which are then scored
using each RM, and the preference dataset is created by averaging the scores across all RMs
(following Coste et al. [2023]); thus, comparing LASER with using all RMs simultaneously.

• RM Agreement Ensemble: Because ensembling scores through averaging is sensitive to the
absolute scores produced (which may differ between RMs), we follow Wang et al. [2024e] in
ensembling through ranking and agreement. Specifically, we generate 32 responses for each query
and sample 100 pairs for each. We score each pair with RMs, constructing a preference dataset by
choosing the 10 pairs with the highest agreement of preference rankings across RMs.

• Online RM Ensemble: Since uniformly-ensembled RM scores might fail to prevent the LLM
from exploiting an underperforming RM, we further compare our method to an additional ensemble
baseline that uses an online learning approach. Instead of setting uniform weights for each RM
as in RM Score Ensemble, each RM is assigned a learned weight; these weights are dynamically
updated after each training batch using the multiplicative weights algorithm [Arora et al., 2012].

Conceptually, among the single RM selection methods, the best RM baseline serves as an “exploit-
only” setting that exploits the best available RM based on aggregate RewardBench scores. On the
other hand, the random and sequential selection baselines are “explore-only” in that they pick a new
RM either randomly or via a predefined sequence, irrespective of the performance of each arm (RM).
LASER and the classifier approach represent two methods for selecting a single optimal RM for
each instance; however, we note that the classifier approach depends on a fine-grained, in-distribution
dataset of queries paired with their corresponding suitable RMs for annotating preferences, which is
often absent in practice. In our experiments, we demonstrate the benefits of balancing the exploration-
exploitation trade-off compared to "exploit-only" and "explore-only" approaches. Additionally,
different RM ensemble baselines employ various methods for combining RMs while utilizing them
simultaneously. Furthermore, we analyze potential conflicting signals among RMs to highlight the
advantages of our framework over RM ensemble baselines (Sec. 5).

4.2 Main Results

LASER achieves the best average accuracy on reasoning tasks. Table 1 demonstrates that
our method consistently outperforms the baselines across multiple reasoning benchmarks, par-
ticularly in the StrategyQA and GSM8K datasets. For example, LASER improves by approxi-
mately 2% absolute accuracy over the sequential baseline on both GSM8K and StrategyQA datasets.

Table 1: Performance on reasoning benchmarks on Llama-
3-8B. The baselines also include supervised fine-tuning on
human-written responses (SFT) as a reference for perfor-
mance without preference optimization. The highest accu-
racy is shown in bold, and the second-highest accuracy is
underlined. LASER yields the highest average accuracy.

Method StrategyQA GSM8K MMLU Avg.

SFT 80.41 69.43 65.66 71.83

Best RM 84.29 73.16 67.15 74.87
Avg. RM 82.62 71.57 66.67 73.62
Random RM Selection 84.37 71.99 67.85 74.74
Seq. RM Selection 83.90 72.94 68.02 74.95
Classifier Selection 83.13 72.73 67.96 74.60

RM Score Ensemble 82.96 70.94 67.04 73.65
RM Agree. Ensemble 84.03 73.85 68.35 75.41
RM Online Ensemble 83.25 72.04 66.85 74.05

LASER (Ours) 85.96 74.75 68.24 76.32

In cases where the best RM is not
known beforehand, LASER surpasses
the performance of the average RM
baseline by 2.7% and the RM Score
Ensemble baseline for each instance
by 2.67% (in accuracy averaged over
the three datasets). Moreover, this
lower performance by the RM Score
baseline is not purely due to vari-
ance in the scores: LASER also sur-
passes the RM Agreement Ensem-
ble and RM Online Ensemble by
0.91% and 2.27%, respectively. Over-
all, LASER provides consistent re-
sults while the underlined second-
place models show inconsistent per-
formance across datasets. These re-
sults also emphasize the advantages
of LASER, as it eliminates the need
to choose a different RM in advance
or ensemble multiple RMs.
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56.34% 43.66%
LASeR vs. Best RM

71.45% 29.55%
LASeR vs. Seq. RM Selection

78.33% 21.67%
LASeR vs. Random RM Selection

69.52% 30.48%
LASeR vs. Classifier Selection

72.69% 27.31%
LASeR vs. RM Score Ensemble

52.64% 47.36%
LASeR vs. RM Agree. Ensemble

67.88% 32.12%
LASeR vs. RM Online Ensemble

LASeR Wins Baseline Wins

Figure 2: Length-controlled AlpacaEval win rates comparing LASER against baselines on WildChat
instruction-following tasks using Llama-3-8B. The top row shows comparisons against single RM
selection methods, while the bottom row shows comparisons against multi-RM ensemble methods.

LASER beats baselines at instruction-following. Often, LLMs are used by large numbers of
people with a diverse set of queries, goals, and intentions, and their preferences vary based on
the underlying query. To demonstrate the effectiveness of LASER in such settings, we compare
the instruction-following performance in Fig. 2, i.e., AlpacaEval win rates, of LLMs trained using
LASER with the baselines using WildChat. Specifically, LASER achieves substantial win rates
compared to single RM selection baselines such as random and sequential selection, with 78.33%,
and 71.45%, respectively. We also outperform training with the single best RM (per RewardBench)
by a 56.34% win rate. Compared to RM ensemble baselines, LASER achieves 72.69% and 67.88%
win rates over RM Score Ensemble and RM Online Ensemble, respectively. We hypothesize the
lower win rate of the baselines stems from the inability of these baselines to deal with conflicting
signals from multiple RMs (see Fig. 3 for further analysis). Overall, these results highlight that
LASER excels without gold labels and performs consistently well at following instructions across
various user queries, showcasing its adaptability to diverse tasks.

LASER’s adaptive RM selection helps long-context understanding. Given the cost of train-
ing long-context systems, for LongBench [Bai et al., 2023], rather than fine-tuning a model us-
ing RMs, we employ the selected RM to rerank generation in Best-of-n sampling (see Sec. 3.3).

Table 2: LASER outperforms baselines in long-
context understanding tasks with Llama-3-8B. Se-
quential RM selection is not applicable in this setting,
as only inference is conducted. For QA and few-shot
learning tasks, we report F1 scores, and for summa-
rization, we report Rouge-L.

Method SiQA MuQA Sum FS

Base model 33.89 32.96 29.54 70.23

Best RM 35.12 35.83 34.26 71.79
Random RM Selection 34.83 35.19 31.57 70.91
Classifier RM Selection 34.42 34.24 32.41 70.58

RM Score Ensemble 34.51 35.52 32.38 70.34
RM Agree. Ensemble 35.79 35.41 33.19 72.15
RM Online Ensemble 34.69 35.80 32.89 70.51

LASER (Ours) 37.47 36.94 34.13 73.31

In Table 2, we observe that LASER consis-
tently outperforms the baselines across tasks.
LASER improves single-doc QA (SiQA) by
3.58 F1 points over the base Llama-3-8B
model and 2.64 F1 points over random RM
selection. On multi-doc QA (MuQA), our ap-
proach improves performance over the Llama-
3-8B base model by ≈ 4 F1 points. Fur-
thermore, on few-shot (FS) learning tasks,
LASER provides over 3 points gain in F1
compared to the base model, surpassing the
average RM performance by up to 2.4 F1
points and demonstrating its effectiveness
across tasks. Lastly, Table 2 demonstrates
that LASER consistently outperforms the
RM Score Ensemble baseline across different
long-context tasks (except for the Summariza-
tion task where LASER is comparable to Best
RM), e.g., a ≈3 F1 point boost on single-doc
QA and few-shot learning tasks.

5 Additional Analysis of LASER

In this section, we present analyses on the presence of conflicts among RMs, which helps justify the
benefits of LASER, as well as its training efficiency compared to the baselines. We further provide
additional analyses, including the generalization ability of LASER in Appendix C, and ablation
studies on LASER’s design in Appendix D.

Presence of Conflicting Signals among RMs. In Sec. 4.2, we find that LASER consistently outper-
forms other RM ensemble baselines across a wide variety of tasks. We attribute some of these perfor-
mance gains to the inability of the multi-RM baseline to handle conflicting signals, resulting in subpar
training data from multiple RMs. To study this, we sample pairs of outputs generated by Llama-3-8B
on MMLU as well as WildChat and evaluate the consistency of response preferences measured by mul-
tiple RMs. Since pair-wise preferences are binary, we compute F1 to measure consistency with one
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RM’s preferences serving as the reference. Fig. 3 (left on MMLU) reveals that Qwen and Zephyr have
the highest agreement rate at 0.77, while Qwen’s agreement with Eurus and Olmo is lower at 0.58 and
0.43, respectively. This is expected as Qwen and Zephyr are the top-performing models in reasoning
according to RewardBench, while Olmo ranks the lowest in reasoning ability among the four models.

Qwen Zephyr Eurus Olmo

Qw
en

Ze
ph

yr
Eu

ru
s

Ol
m

o

1 0.77 0.58 0.43

0.77 1 0.79 0.57

0.58 0.79 1 0.75

0.43 0.57 0.75 1

Qwen Zephyr Eurus Olmo

1 0.69 0.56 0.48

0.69 1 0.67 0.54

0.56 0.67 1 0.71

0.48 0.54 0.71 1

0.4 0.6 0.8 1.0

Figure 3: Agreement in preference rankings between RMs
on MMLU (left) and WildChat (right).

We observe similar trends in agree-
ment across RMs on WildChat (al-
beit with different agreement scores),
which contains user queries asked
LLMs in the wild; see Fig. 3 (right).
It appears that for more heteroge-
neous datasets with more categories,
the level of disagreement among
RMs (or conflict) increases. This
also highlights LASER’s advantages
over multi-RM baselines that do not
address conflicts in RMs and may
explain why choosing one RM in
LASER and the best RM baseline out-
performs multi-RM ensembles.

Training Efficiency of LASER. We show the accuracy-training time tradeoff in Fig. 4 by com-
paring the GSM8K performance of training with LASER and different baselines, along with the
corresponding wall clock training time. Wall clock time is measured as the training time of a
model (hours), keeping compute resource consistent. We find that sequentially optimizing over
each RM performs the worst in terms of training time (3× of LASER) while RM score en-
semble has the worst accuracy (and takes 2× the training time of LASER). Moreover, LASER
outperforms all other baselines in terms of accuracy while maintaining the lowest training time,

5 10 15
Wall-clock time (hours)

70

72

74

76

Ac
cu

ra
cy

Sequential
Agree. Ensemble

LASeR

Score Ensemble

Classifier

Online Ensemble

Figure 4: Training efficiency of LASER vs.
different baselines on GSM8K.

being more than twice as fast as the second-best base-
line. LASER’s efficiency comes from fast conver-
gence compared to the sequential selection baseline
and avoiding the overhead of loading and evaluating
multiple RMs per step, as required in RM ensem-
ble methods (Online Ensemble, Score Ensemble, and
RM Agreement Ensemble). Instead, it selects and
uses only one RM per mini-batch, saving GPU mem-
ory and compute. Ensemble baselines require scor-
ing all candidate responses with all RMs, whereas
LASER scores responses with only the selected RM,
reducing overhead. Lastly, we note that LASER can
be run in an offline data creation mode, where RM
selection and scoring are done once to generate pref-
erence data, unlike online ensemble methods that
require multiple RM passes per step.

6 Conclusion

We present LASER, an adaptive method for selecting RMs and iteratively training LLMs using
multiple RMs. We formulate the problem as a contextual multi-armed bandit problem, learning
to select the RM that most improves the LLM conditioned on the given input or query. We test
LASER across diverse settings, showing its utility on reasoning tasks, instruction-following tasks,
and long-context generation. Across domains, we show that LASER consistently results in superior
performance, whereas multi-RM baselines that select RMs using random or fixed strategies or
ensemble multiple RMs uniformly have lower and more variable performance. In our analysis, we
show that LASER is robust to noisy RMs, and flexibly uses different RMs depending on the domain,
and generalizes to multiple settings. Lastly, by selecting one RM at a time, LASER provides the best
of both worlds: consistently outperforming all baselines while still maintaining efficiency by only
optimizing for one model at a time.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly state LASER as an adaptive RM selection framework using MAB
that resolved many problems of the previous work, and the rest of the paper supports this
with detailed method (Sec. 3), empirical results across models, tasks (Sec. 4), and analysis
(Sec. 5).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide the discussion regarding limitations in the supplementary material.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: Our work does not have formal theoretical results or proofs; rather, it presents
a practical algorithmic framework and supports it through empirical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We include sufficient information to reproduce the main experimental results,
including detailed descriptions of the training setup, MAB algorithm, RMs, evaluation
benchmarks, and baselines in Sec. 4.1 and Appendix A.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide code with instructions to reproduce results in the supplementary
material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All details are included in Sec. 4.1 and Appendix A.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide the statistical analysis of LASER and baselines in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the compute resources information in Appendix A.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our work conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We provide the societal impact statement in the supplementary material.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not include a discussion of safeguards because we do not
release any models or datasets as part of this work.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We explicitly credit the use of datasets and models in the appendixreferences
section of the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release any new assets in this paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not have any crowdsourcing experiments or research with human
subjects in this paper.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human subjects are involved in this research.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We do not use LLM for method development.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Limitations and Broader Impacts

Limitations. While LASER demonstrates strong empirical performance and generalization across
tasks, policy models, and RMs, it still has some limitations. First, like all work using RMs to improve
LLMs, it relies on the availability of a high-quality pool of RMs, and downstream performance may
degrade if the pool contains only weak or biased models. Additionally, although the bandit-based
approach mitigates reliance on a single RM, it does not explicitly address issues of safety, fairness,
or bias in RM selection and consider potential trade-offs between safety and task effectiveness
when choosing an RM. Finally, besides the MAB formulation, other methods such as reinforcement
learning-based RM selection might be applicable. This could allow for more flexible RM selection
policies, but would introduce substantial optimization and stability challenges, especially when
dealing with non-stationary and noisy RM feedback. We consider these directions as promising for
future research.

Broader Impact. LLMs have been shown to reflect stereotypes, biases, and other negative traits
contained in their pretraining data [Weidinger et al., 2021]. Consequently, fine-tuned LLMs (including
those trained with LASER) may also exhibit such undesirable traits in their generations during
inference or training and exhibit the same potential for misuse as any other fine-tuned model. While
prior work has made some headway in detecting such harmful content generated by LLMs [Inan et al.,
2023], considerable research effort is needed in mitigating bias in LLMs. Conceptually, classifiers
that detect risky, harmful, or biased content in the text can also be used as an additional RM in
LASER’s training to reinforce avoiding bias via preference optimization. However, we do not study
this in our work and leave it to future work to explore these directions.

A Experiments

A.1 Experimental Setting

Training Setup. We provide the training details for our method and baselines as follows:

• LoRA: For training with LoRA, we set the rank to 16 and alpha to 32.
• Preference pairs construction: Following Pang et al. [2024], we generate P = 10 pairs per query

for training with our loss in Sec. 3.1.
• Training iterations: For all experiments, we trained each method to converge. The number of

iterations is selected based on the observed convergence, with a performance metric threshold
of 0.1 across training batches on the dev set. In particular, LASER, “Best RM”, “Avg. RM”,
“Classifier RM”, and RM ensemble baselines were trained for 10 iterations. For both the sequential
and random RM selection, we found LLM training took longer to converge, and consequently, the
model was trained for 25 iterations.

• Batch size: We fine-tune the model using a learning rate of 5e−6 and a batch size of 16. Noted that
we experimented with different batch sizes to evaluate their impact. Using a batch size of 1 yielded
comparable performance to a batch size of 16 but was significantly less efficient in training the
LLM due to the increased computational overhead. Based on this, we opted to use a batch size of 16
for a better trade-off between performance and efficiency. For datasets like Wildchat, which contain
clearly defined and diverse categories, we structure the batches such that each batch consists of data
belonging to a single category. This setup minimizes the risk of mismatches between the RM and
the batch data, as each RM is evaluated on its most relevant data category. For reasoning datasets
where such predefined categories do not exist, shuffling the data during training ensures diverse
data and a good training signal for LLM within each batch. Even if individual batches vary, the
repeated exposure to diverse inputs allows the bandit to learn which RMs are more helpful overall.
Over training iterations, this appears to provide a robust signal for the bandit to learn effective
RM selection, as demonstrated by LASER’s consistent gains across datasets and the convergence
behavior of MAB rewards shown in Appendix B.

• Resources: The LinUCB algorithm has a total of 1.6M learnable parameters (including matrix A
and bias vector b). Regarding the computation of MAB parameters, empirically, we find that for
query embedding with dimension 4096 and using 4 reward models, inverse computation needs to
be performed for each RM once per batch (and can be cached to be reused later), which only adds
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a latency of 1.27 seconds. In comparison, a forward and backward pass of the LLM takes 36.39
seconds. Our experiments are run on 4 RTX A6000 with 48G memory each.

RewardBench. Following Lambert et al. [2024], rewards are computed with no reference model and
only use the log-likelihood of the reward model. For instance, given a reward model πR⋆ , the reward
for an input xi and response yi is calculated as: log πR⋆(yi | xi). There is no need for normalization
since we use this log-likelihood to rank the responses.
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Figure 5: Reward difference distribution of chosen and rejected responses of Llama-3-8B on Reward-
Bench.

To test the hypothesis that the log probabilities of the chosen and rejected responses from the policy
model are generally close in value, with the chosen response tending to have a slightly higher
log probability, we conduct an experiment using Llama-3-8B and RewardBench dataset. For each
instance, we calculated the reward difference by subtracting the log probability (reward) of the chosen
response from that of the rejected response. Formally, given a policy model π0, a prompt xi and a
pair of chosen response ywi and rejected response yli from RewardBench data, we calculate the reward
difference as log π0(y

w
i | xi)− log π0(y

l
i | xi). As shown in Fig. 5, the distribution is centered near

zero, indicating that the values are often close. However, the mass is skewed slightly to the right,
suggesting that the chosen response tends to have a higher log probability than the rejected one in the
majority of cases. This suggests the policy model generally has a reasonable ranking, but benefits
from DPO’s maximization of the margin.

Details of RMs. We provide details for each chosen RM:

• Zephyr-7B-Alpha: is a fine-tuned version of Mistral-7B model that was trained on on Ultra-
Chat [Ding et al., 2023] and UltraFeedback [Cui et al., 2023] using DPO.

• Qwen1.5-7B-Chat: is pretrained with human-style conversation data inspired by Ouyang et al.
[2022] along with questions, instructions, and answers in natural language, and post-trained with
both SFT and DPO using diverse prompts [Lu et al., 2023].

• Eurus-7B-KTO: is a fine-tuned version of Eurus-7B-SFT model using KTO loss on UltraInter-
act [Yuan et al., 2024a] and UltraFeedback [Cui et al., 2023].

• OLMo-7B-Instruct: is the instruct version of OLMo-7B base model and was fine-tuned using
UltraFeedback [Cui et al., 2023].

Extracting Embeddings for a Query Using πm. To extract embeddings for a query using πm, we
first process the input query through the policy model πm. We use the embedding of the last token in
the query as the representation for the query. The embedding is then used as input to the subsequent
bandit algorithm.

Datasets. For StrategyQA, GSM8K, and MMLU, we divided each dataset into training and test sets.
The model is fine-tuned on the training set and dev set and then evaluated on the test set. For WildChat,
the dataset was split into a 70/10/20 ratio for training, development, and testing. Following Zhao et al.
[2024], prompt categorization is done using a small off-the-shelf classifier.5 For LongBench, we
subsample 5K examples for three tasks: multi-document QA, summarization, and few-shot learning.

5Link: https://huggingface.co/valpy/prompt-classification
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Table 3: Number of examples in train, val, and test sets.
Task Dataset/Category Train Dev Test Total

Reasoning StrategyQA 1946 278 556 2780
GSM8K 6750 750 1000 8500
MMLU 11135 1591 3182 15908

WildChat Creative 3500 500 1000 5000
Analysis 3500 500 1000 5000
Coding 3500 500 1000 5000
Factual 3500 500 1000 5000
Math 3500 500 1000 5000

LongBench Single-doc QA 3534 505 1010 5049
Multi-doc QA 3500 500 1000 5000
Summarization 3500 500 1000 5000

Few-shot learning 3500 500 1000 5000

Each category was split into a 70/10/20 ratio, and the bandit model was trained and validated on
the training and development sets and then tested on the test set. We report the detailed number of
instances for train, development, and test sets in Appendix A.1.

Baselines. Here we provide more details for baselines:

• Classifier Selection. We add an additional baseline that uses the RewardBench data to train a
classifier that maps queries to an RM C : Rd → R, whereR = R1, R2, . . . , RK is the set of RMs.
Specifically, to construct a dataset for training C, we take each query in the RewardBench data
along with its corresponding chosen and rejected responses. The RewardBench dataset contains a
total of 2985 examples across several categories, including chat, safety, and reasoning. The dataset
is split into an 80/20 ratio for training/development sets, then the classifier is trained on the training
set and validated on the development set. We use each RM to score these responses. The RM that
assigns the correct score with the highest difference between the chosen and rejected response is
selected to label the RM for that query. After training C, we use this classifier to select the RM
used for training the LLM in our pipeline. In the experiments, we use a three-layer MLP with
hidden dimensions of 2048 and 1024 and an output dimension of 4 (number of RMs), with ReLU
activation in each layer.

• RM Ensembles. While the ensemble methods generate scores from multiple RMs in a single
iteration for a fixed set of responses sampled at the start of the iteration, we still generate new
responses at each training iteration as part of the overall learning process. This ensures that the
training dynamically incorporates updated responses from the LLM.

Licenses for Models and Datasets. Below is the license for models and datasets used in this paper:

• LLMs: Llama-3-8B (Llama 3 Community License), Mistral-7B (Apache 2.0 License), Qwen2.5-
32B (Apache 2.0 License).

• Datasets: StrategyQA, GSM8K, MMLU (MIT License), WildChat (ODC-BY License), LongBench
(Apache 2.0 License).

Additional Results and Analysis. In Appendix B, we present additional analyses on the statistical
stability of LASER and baselines across multiple runs (Table 4). We show that the RM selected by
LASER adapts to input queries (Fig. 6) and aligns well with RewardBench ground truth rankings
(Fig. 8). We also show that MAB rewards converge over training (Fig. 9), and that the learned MAB
policy can be reused to improve cold-start training (Table 6). Detailed comparisons against individual
RMs used in isolation (Tables 8 and 9) further confirm that LASER consistently outperforms all
single-RM baselines. In addition, we show that LASER maintains strong performance across different
sets of RMs (Table 10).

In Appendix C, we evaluate the generalization of LASER across multiple dimensions: different
bandit algorithms (Table 11), base models and RMs (Tables 12 and 14), number of RMs (Fig. 11),
training loss functions (Table 17), and out-of-distribution tasks (Table 18). We also show that LASER
can successfully select evaluation metrics tailored to domain-specific reasoning tasks [Golovneva
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et al., 2022, Prasad et al., 2023] (Table 19). Finally, LASER demonstrates robustness to both noisy
RMs and underperforming reward signals (Figs. 12 and 13).

A.2 Details of Bandit Algorithms

Algorithm for Sec. 3.3. We provide the detailed algorithm for Sec. 3.3 in Algorithm 1.

Algorithm 1 Bandit-based Reward Model Selection for LLM Training

1: Input: LLMM, reward modelsR = {R1, R2, . . . , RK}, datasetD = {x1, x2, . . . , xN}, bandit
algorithm (LinUCB)

2: Initialize: Bandit algorithm parameters (e.g., θk for each RM)
3: for each training iteration m = 1, 2, . . . ,M do
4: for each batch or train step t = 1, 2, . . . , T do
5: Select reward model R⋆

t for time step t using equation (1) (LinUCB)
6: Sample a batch of samples from D and generate preference pairs following 3.1
7: Fine-tune πm using preference pairs in Dpref using Lm

8: Update bandit parameters based on equation (2) (LinUCB)
9: end for

10: end for

Exp3. Exp3 is a non-contextual bandit algorithm designed for adversarial settings. It maintains a
probability distribution over the arms and selects arms based on the exponential weighting of past
rewards. The probability for choosing arm ak at round t is calculated as follows:

pk(t) = (1− γ)
exp(Sk(t))∑

ak∈A exp(Sk(t))
+

γ

K
,

where Sk(t) is the cumulative score for arm a up to time t and γ is a parameter controlling the
exploration rate.

The arm ak is selected by sampling the following categorical distribution
at ∼ Categorical(p1(t), . . . , pK(t)) (3)

The score for arm at is updated based on the observed normalized reward−L̂m(t) and the probability
pk(t) of selecting that arm:

Sk(t+ 1) = Sk(t)−
L̂m(t)

pk(t)
· ⊮(at = ak), (4)

where ⊮(at = ak) is an indicator function that equals 1 if arm ak was selected at time t, and 0
otherwise.

MAB reward normalization. To maintain a consistent scale and magnitude of MAB rewards
across training, we apply scaled rewards based on the quantiles of the reward history, following
the method outlined by Graves et al. [2017]. Let L = {−Lm(1), . . . ,−Lm(t − 1)} represent the
unscaled reward history up to time step t. This history’s lower and upper quantiles are denoted as qlot
and qhit , respectively. We set qlo

t and qhi
t to be 20th and 80th quantiles. The scaled reward, −L̂m(t),

becomes:

−L̂m(t) =


0 if − Lm(t) < qlo

t

1 if − Lm(t) > qhi
t

−Lm(t)−qlo
t

qhi
t −qlo

t
otherwise.

We chose to use the cumulative MAB reward because it provides a more comprehensive measure
of how well the algorithm performs over time. In our framework, cumulative MAB reward reflects
the performance of the model across batches and iterations, capturing the long-term impact of both
exploration and exploitation decisions. Algorithms like LinUCB are designed to optimize cumulative
rewards, as they ensure a balanced trade-off between exploration (gathering information about
less-tested RMs) and exploitation (using the best-known RM).
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B Additional Empirical Results

Analysis on Statistical Significance of LASER. While our main results are based on single runs,
we note that this is standard practice in iterative preference optimization setups, including recent
works such as Pang et al. [2024], where large-scale LLM training limits the feasibility of multi-seed
replication across all benchmarks. Nonetheless, to provide some insights regarding the statistical
significance of LASER, we report the mean and standard deviation over 5 seeds on reasoning
tasks. We compare LASER against the Best RM and RM Agreement Ensemble (identical random
seeds to ensure fair comparison), which are the most competitive across our benchmarks. Table 4
shows that LASER consistently outperforms the baselines across runs, with standard deviations
below 0.3% (lower than RM Agreement Ensemble), showing stable performance. We believe these
consistent gains across tasks and models support the claim that LASER is not only superior but also
reliable in expectation. To further support these results, we conduct a non-parametric hypothesis
test. Specifically, we evaluate the following hypotheses: Null hypothesis: LASER’s accuracy is
equal to that of the competing method; Alternative hypothesis: LASER’s accuracy is greater than
that of the competing method. We use a one-sided non-parametric Wilcoxon signed-rank test on
paired accuracy values across random seeds. The p-values of the tests between LASER and the two
strongest baselines are reported in Table 5. At a significance level of 0.05, the results in Table 5
indicate that we can reject the null hypothesis, demonstrating that LASER significantly outperforms
both baselines across all three tasks.

Table 4: Mean and standard deviation across methods on reasoning tasks.
Method StrategyQA GSM8K MMLU

Best RM 84.26 ± 0.09 73.10 ± 0.22 67.11 ± 0.13
RM Agree. Ensemble 84.05 ± 0.26 73.65 ± 0.42 68.07 ± 0.44
LASER 85.87 ± 0.11 74.95 ± 0.27 68.32 ± 0.26

Table 5: Statistical significance (p-values) of LASER and baselines on reasoning tasks.
LASER vs. Baseline StrategyQA GSM8K MMLU

LASER vs. Best RM 0.036 7e-4 0.019
LASER vs. RM Agree. Ensemble 8e-3 0.024 0.046

LASER’s Selected RM Adjusts to the Query. Fig. 6 shows the relative utilization rates of each arm
(i.e., RM) of the bandit on WildChat. We observed vastly different RM utilization rates depending on
the underlying query within the same dataset. On queries requiring creativity in LLM responses, we
find that Olmo and Eurus RMs are utilized about 20% more often than Qwen RM, despite Qwen RM
being ranked higher on RewardBench. This can be explained by the fact that the Qwen RM largely
underperforms on the “chat” subsplit of RewardBench (behind Olmo and Eurus by nearly 40 points
in chat score). On the other hand, Qwen RM is used roughly half the time for user prompts involving
math, while Olmo and Eurus are used sparingly. This is consistent with Qwen RM’s ranking on
the “reasoning” split of RewardBench, outperforming Eurus and Olmo RMs by 15-20 points. Note
that LASER automatically deduces these relative rankings of RMs and uses them depending on the
underlying query without having access to the RewardBench leaderboard. Therefore, RM utilization
of LASER can serve as an analysis tool for future work when assessing performance on untested
domains.

We observe a similar trend in LASER’s RM selection on LongBench. We observe distinct utilization
patterns for the QA tasks vs. summarization and few-shot learning. QA tasks exhibit nearly equal
utilization of the top-2 RMs on RewardBench (Zephyr-7B-Alpha and Qwen1.5-7B-Chat in decreasing
order), with the utilization of the Qwen RM even exceeds that of Zephyr RM for multi-document QA.
In contrast, on summarization and few-shot learning the top RM (Zephyr) is far more preferred by
LASER with margins of 59% and 31% over the second-best RM and the least performant RM being
utilized less that 3% of the times.

To further validate our findings, we conducted an additional experiment on RewardBench data. In
this setup, we used the MAB trained on Wildchat to select the most appropriate RM for each query.
This selected RM was then used to choose the preferred response, which we compared against the
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Figure 6: Utilization (%) of each RM on instruction-following queries from WildChat. The bars are
arranged based on their overall scores on RewardBench, from lowest to highest. LASER dynamically
selects from different RMs depending on the nature of the underlying instance.
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Figure 7: Utilization (%) of each RM on long-context understanding tasks. The bars are arranged
based on their overall scores on LongBench, from lowest to highest. LASER dynamically selects
from different RMs depending on the nature of the underlying instance.

ground-truth preferences in RewardBench. We also report the accuracy of each RM in selecting
the correct preferred responses. The results are shown in Fig. 8, which demonstrates that LASER
consistently selects the RM whose scoring aligns most closely with the ground-truth preferences.

Olmo Eurus Qwen Zephyr LASeR60

65

70

75

80

85

90

Ac
cu

ra
cy

 (%
)

Figure 8: Accuracy (%) of each RM on selecting the preferred responses on RewardBench. LASER
achieves the highest accuracy.

MAB Rewards Stabilize Over Time. We observed empirically that the average return (i.e.,
normalized MAB rewards) of each iteration tends to stabilize over time, particularly after 6-8 training
iterations. Fig. 9 shows per-RM normalized MAB reward over training iterations on GSM8K. Notably,
the more effective RMs (e.g., Qwen and Zephyr for math reasoning tasks) retain higher MAB rewards
over time, suggesting that convergence does not imply uniformity, but rather stabilization of relative
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effectiveness (this is also consistent with results in Fig. 6 and Fig. 7 that RM selection adapts to the
best RM for each task).
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Figure 9: Average MAB rewards of different RMs over iterations on GSM-8K.

LASER Benefits Cold-start Training and RM Adaptation. As MAB rewards tend to converge
over training iterations, the trained MAB on one dataset can be used for cold-start training on another
dataset without retraining the MAB. We conducted an additional experiment where we reinitialized
the LLM from the SFT checkpoint and re-trained on reasoning tasks using the converged MAB
policy from a prior LASER run on Wildchat. We denote this new method as cold-start LASER
(CS-LASER) and present the result in the table below. Results show a comparable performance
compared to LASER (76.32% vs 76.24% on average of 3 tasks), suggesting that using a fixed, learned
RM selector policy can benefit cold-start training.

Table 6: Performance of CS-LASER on reasoning tasks.
Method StrategyQA GSM8K MMLU Avg.

SFT 80.41 69.43 65.66 71.83
LASER 85.96 74.75 68.24 76.32
CS-LASER 85.78 74.58 68.37 76.24

Another benefit of LASER is that it can add or update an RM without requiring the entire MAB
to be retrained from scratch. LinUCB maintains independent statistics (Ak, bk) for each RM arm.
To add a new RM, we can initialize its parameters and begin exploration, allowing the bandit to
learn its utility online. When adding a new RM to LASER, only the new RM’s bandit parameters
need to be initialized (e.g., (Ak = I, bk = 0)). The existing RMs’ statistics remain unchanged,
meaning the MAB retains all prior learning about their utility. This allows the bandit to continue
exploiting well-performing existing RMs while gradually exploring the new RM. Similarly, if an
existing RM is updated (e.g., improved or retrained), the MAB can re-learn its statistics gradually
through continued training. To empirically demonstrate this, we conduct an experiment where we
resume training Llama-3-8B from a saved checkpoint and add a new, stronger RM QRM-Llama3-8B
based on the latest RewardBench [Lambert et al., 2024] leaderboard to the current pool of RMs.
We observe that the MAB quickly adapts to the new RM, with training converging after just 2
additional iterations and achieving 75.58% accuracy on the GSM8K test set, improving over LASER
without QRM-Llama3-8B by 0.83%. We also run an additional experiment where we reset the MAB
parameters for an existing RM (Qwen) and then resume training Llama-3-8B from a saved checkpoint.
Training converges after 3 additional iterations and achieves comparable accuracy to the original
checkpoint before the reset (74.72% vs. 74.75% accuracy).

Besides accuracy, we also show the utilization rates of each RM before (Checkpoint), after (Transfer)
adding the new RM, and restart (Restart) in Table 7. These results show that LASER can effectively
integrate new RMs and adapt its selection strategy, shifting toward using stronger RMs when they
offer more informative supervision, while still retaining and utilizing previously effective RMs
like Qwen for reasoning tasks. Additionally, in our restart experiment, where we reset the MAB
parameters of Qwen and resume training, demonstrates that LASER can quickly relearn the utility of
a strong RM, returning to similar usage levels with just a few additional iterations.
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Table 7: Utilization rate (%) across RMs when including a different RM or restarting a RM.
Utilization Rate (%) Olmo Eurus Qwen Zephyr QRM

Checkpoint 6.26 2.06 66.81 24.87 -
Transfer (Add QRM) 1.68 0.77 35.08 8.93 53.54
Restart (Qwen) 7.68 2.47 65.25 24.59 -

Detailed Results for Each RM. Here, we provide detailed reasoning results for each chosen RM
where we use a single RM during training (c.f. Sec. 3.1) in Table 8. These results demonstrate
that Qwen1.5-7B-Chat outperforms other RMs on StrategyQA and MMLU, whereas on GSM8K
Zephyr-7B-Alpha has the best performance with Llama-3-8B. However, LASER still yields the best
performance, outperforming all RMs by at least 1% on average across reasoning tasks, without the
knowledge of which RM is most suited for each task a priori. This is consistent with the results on
Wildchat in Table 9 where LASER outperforms all RMs with significant win rates (e.g., 63.47% and
59.02% against Qwen and Eurus, respectively).

Table 8: Performance of 4 RMs including OLMo, Eurus, Zephyr, and Qwen1.5 on Llama-3-8B. The
best is bolded, and the second-best is underlined.

Method StrategyQA GSM8K MMLU Avg.

OLMo-7B-Instruct 80.23 68.91 65.74 71.62
Eurus-7B-Kto 81.15 71.13 66.26 72.84
Zephyr-7B-Alpha 84.29 73.16 67.15 74.87
Qwen1.5-7B-Chat 84.79 73.07 67.53 75.13
LASER (Ours) 85.96 74.75 68.24 76.32

Table 9: Win rates of LASER against individual RMs.
Win Rates

LASER vs. Zephyr 56.34%
LASER vs. Qwen 63.47%
LASER vs. Eurus 59.02%
LASER vs. Olmo 66.72%

Impact of RMs Diversity. In this experiment, we test the impact of RMs diversity on downstream
performance. Instead of selecting RMs based on overall RewardBench scores across categories as in
our initial experiments, we created a more capability-diverse RM set by choosing the best-performing
RM in each category in RewardBench: "Chat", "Chat Hard", "Safety", and "Reasoning". This
selection improves the diversity in the types of tasks and evaluation criteria each RM specializes
in. The new RM set includes Qwen1.5-7B-Chat, Zephyr-7B-Alpha, Tulu-2-DPO-7B, and MMPO-
Gemma-7B, replacing Eurus and OLMo models from the previous RM set. Using this updated RM
set, we test LASER’s ability (denoted as "LASER-Diverse") to generalize across diverse categories
on WildChat. We compare LASER-Diverse to the Best RM (from the revised RM set) and RM
Agreement Ensemble baselines (the strongest baselines across our benchmarks) and report the
results in Table 10. These results show that with a new set of RMs, LASER continues to perform
better, outperforming both the Best RM and RM Agreement Ensemble baselines. We emphasize
that whether RMs are selected based on overall scores or diversity across RewardBench categories,
LASER consistently outperforms baselines. This reflects the core contribution of LASER: its ability
to automatically select reward models at the instance level, achieving consistent gains across tasks
without requiring manual tuning or oracle selection. Users can simply provide a pool of RMs without
knowing which is best.

C Generalization Capabilities of LASER

Generation to other Bandit Algorithms.
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Table 10: Win rates of LASER against the two best baselines with a more diverse set of RMs.
Win Rates

LASER-Diverse vs. Best RM 56.28%
LASER-Diverse vs. RM Agree. Ensemble 57.21%

To demonstrate the generalization of LASER to other Bandit Algorithms, we include empirical
comparisons with NeuralUCB, a more expressive contextual bandit and Exp3, a widely used non-
contextual bandit algorithm. NeuralUCB is parameterized by a 3-layer MLP with hidden dimensions
256 and 128. The output layer of NeuralUCB produces a single scalar, which is the predicted
expected reward for each RM based on the context. Table 11 shows that LinUCB achieves comparable
performance to Exp3 and performs slightly below NeuralUCB on 2 out of 3 datasets. However,
LinUCB is significantly more efficient and stable because it uses closed-form updates and maintains
simple per-arm information, avoiding the overhead of training neural networks as in NeuralUCB.
These results support our central claim: regardless of the specific bandit algorithm used, LASER
consistently outperforms baseline RM selection and ensemble baselines.

Table 11: Performance and efficiency of LASER with different bandit algorithms.
Method StrategyQA GSM8K MMLU Wall-clock hours (Avg.)

LASER (LinUCB) 85.96 74.75 68.24 5.92
LASER (Exp3) 85.58 75.04 68.56 6.26
LASER (NeuralUCB) 85.73 75.62 69.15 10.27

Generalization to Different Base Models. In the main paper, we present the results for the Llama-
3-8B model. Here we present the results for Mistral-7B model across reasoning, instruction-following
and long-context understanding tasks.

In reasoning tasks, LASER improves average accuracy by roughly 2% and 1.44% over the sequen-
tial baseline and the best RM baseline, respectively. Compared to ensemble baselines, LASER
outperforms RM Agreement Ensemble, Online RM Ensemble, and RM Score Ensemble by 1.65%
and 2.71%, respectively. Overall, we observe the same results as Llama-3-8B model, we achieve
consistent results while the underlined second-place models show inconsistent performance across
datasets and models.

Table 12: Performance on reasoning benchmarks on Mistral-7b. The baselines also include supervised
fine-tuning on human-written responses (SFT) as a reference for performance without preference
optimization. The highest accuracy is shown in bold, and the second-highest accuracy is underlined.
LASER yields the highest average accuracy.

Method StrategyQA GSM8K MMLU Avg.

SFT 68.57 43.62 56.48 56.22
Best RM 70.06 45.81 62.04 59.30
Avg. RM 69.62 45.47 59.58 58.22
Random RM Selection 69.97 45.12 59.88 58.32
Seq. RM Selection 70.59 46.11 59.66 58.79
Classifier Selection 70.31 45.28 60.35 58.65
RM Score Ensemble 68.89 44.53 58.23 57.22
RM Agree.Ensemble 70.26 45.92 61.09 59.09
Online RM Ensemble 68.95 45.65 59.49 58.03
LASER (Ours) 73.06 46.89 62.27 60.74

In instruction-following tasks, Fig. 10 shows that LASER consistently outperforms all baselines,
including Best RM (58.72%), Sequential RM Selection (63.72%), and Random RM Selection
(70.61%). It achieves the highest win rate against RM Score Ensemble (73.27%) and surpasses
Online RM Ensemble (65.41%), demonstrating its ability to generalize to different LLMs.

In long-context understanding tasks, Table 2 highlights LASER’s superior performance on long-
context understanding tasks with Mistral-7B. LASER achieves the highest scores for Single-Doc
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58.72% 41.28%
LASeR vs. Best RM

63.72% 36.28%
LASeR vs. Seq. RM Selection

70.61% 29.39%
LASeR vs. Random RM Selection

60.37% 39.63%
LASeR vs. Classifier Selection

73.27% 26.73%
LASeR vs. RM Score Ensemble

63.77% 36.23%
LASeR vs. RM Agree. Ensemble

65.41% 34.59%
LASeR vs. RM Online Ensemble

LASeR Wins Baseline Wins

Figure 10: Length-controlled AlpacaEval win rates comparing LASER against baselines on the
instruction-following tasks on WildChat using Mistral-7B.

Table 13: LASER outperforms baselines in long-context understanding tasks with Mistral-7B.
Sequential RM selection is not applicable in this setting, as only inference is conducted. For QA and
few-shot learning tasks, we report F1 scores, and for summarization, we report Rouge-L.

Method Single-Doc QA Multi-Doc QA Summarization Few-shot Learning

Base model 26.01 24.06 26.47 64.93
Best RM 28.93 27.93 30.42 68.34
Random RM Selection 27.44 25.38 27.19 66.72
Classifier RM Selection 27.59 25.69 27.97 67.04
RM Score Ensemble 26.75 25.71 28.17 66.97
RM Agree. Emsemble 27.96 26.60 28.27 67.23
Online RM Ensemble 27.55 25.42 28.63 66.81
LASER (Ours) 29.14 27.80 30.08 68.47

QA (29.14) and Multi-Doc QA (27.80), significantly outperforming the base model. In Few-Shot
Learning, LASER achieves 68.47, surpassing both the Best RM (68.34) and Online RM Ensemble
(66.81). While its Rouge-L score for summarization (30.08) is slightly below Best RM (30.42),
LASER remains comparable. These results demonstrate the consistent performance of LASER
across the model family.

Generalization to the Base and RMs of Bigger Sizes. To further analyze the generalization of
LASER to the base and RMs of bigger sizes, we add an experiment with Qwen2.5-32B [Qwen Team,
2024a] policy model and the following 4 similarly sized RMs from RewardBench: RISE-Judge-
Qwen2.5-32B, Bagel-DPO-34B, Archangel-DPO-30B, Archangel-KTO-30B. We compare LASER
with the best RM and the RM Agreement Ensemble baselines, which are the second-best baselines
for most of the benchmarks on Wildchat. Table 14 demonstrates that LASER has higher win rates
than baselines.

Table 14: Win rates of LASER compared to Best RM and RM Agreement Ensemble baselines on
Qwen-32B model.

Win Rates

LASER vs. Best RM 54.44%
LASER vs. RM Agree. Ensemble 55.78%

Generalization to Correctness Rewards for Reasoning. As verifiable rewards emerge as a
powerful RM for reasoning tasks, in this experiment, we analyze how does it compared with current
multiple RMs framework of LASER, and whether it is possible to incorporate them into LASER.

First, we implement a Correctness Reward baseline for the reasoning datasets. Specifically, we
assign a reward of 1 if the generated answer matches the correct final answer and 0 otherwise. We
maintain the same iterative training setup as in our main experiments and compare with LASER
training with multiple RMs. Table 15 shows that while the correctness-based reward performs
competitively, especially on GSM8K (74.56% vs. 74.75% accuracy), LASER outperforms it across
all tasks, including commonsense reasoning tasks (StrategyQA and MMLU). This is likely because
correctness-based rewards are well-suited for tasks with clearly verifiable outputs, such as math or
code, but they struggle to capture the multi-step reasoning and contextual understanding needed in
factual or open-domain QA, where answers are often ambiguous or depend on background knowledge.
In these cases, other forms of supervision such as process-based rewards [Ma et al., 2025] or human
preference signals modeled by RMs are typically more effective. LASER is designed to leverage this
by selecting among multiple RMs, allowing it to perform well across a variety of task types.

33



Table 15: Performance comparison of LASER and the Correctness Reward baseline.
Method StrategyQA GSM8K MMLU Avg.

Correctness Reward 83.42 74.56 66.35 74.78
LASER 85.96 74.75 68.24 76.32

As noted in Sec. 3, LASER can treat any RMs as part of its selection framework. We show that
LASER can integrate correctness-based rewards, combining their strengths with those of preference-
based models. To validate that, we run an additional experiment on GSM8K, where we add the
correctness-based RM to the existing pool of learned RMs (Olmo, Eurus, Qwen, Zephyr). To further
test LASER’s ability to adaptively select appropriate RMs, we create a mixed dataset combining
GSM8K with WildChat (subsampled to 1.2K examples per category to ensure balance). Since
correctness-based signals are not applicable to WildChat’s open-ended prompts, we assign a random
binary reward (0 or 1) for those examples to simulate a misleading RM. We observe that LASER
achieves an accuracy of 75.06% accuracy on the GSM8K test set, improving over LASER without
correctness rewards by 0.31%. We also report the utilization rate of each RM in the pool (Olmo, Eurus,
Qwen, Zephyr, correctness/random) for two types of queries: GSM8K and WildChat in Table 16. On
GSM8K, LASER heavily leverages the correctness-based RM (40.26%) alongside strong learned
RMs like Qwen (43.58%), indicating that it effectively identifies and uses the most reliable supervision.
In contrast, for WildChat, LASER downweights the misleading correctness-based RM (2.84%) and
shifts toward more suitable RMs like Zephyr and Qwen. These results demonstrate LASER’s ability
to adapt RM usage based on task domain, even in the presence of noisy or misleading supervision.

Table 16: Utilization rate (%) of different RMs including a correctness RM and a random RM on
GSM8K and WildChat.

Utilization Rate (%) Olmo Eurus Qwen Zephyr Correctness/Random

GSM8K 4.02 2.32 43.58 19.82 40.26
WildChat 9.09 16.41 27.75 45.90 2.84

Generalization to the Number of RMs. To study the generalization capability of LASER across the
number of RMs, we expand the candidate set of RMs with up to 4 more RMs from the RewardBench
leaderboard, including Tulu-2-DPO-7B [Ivison et al., 2023], Zephyr-7B-Gemma [Tunstall and
Schmid, 2024], Qwen1.5-MoE-A2.7B-Chat [Qwen Team, 2024b], Archangel-7B [Ethayarajh et al.,
2024]. Fig. 11 shows that the accuracy remains consistent across all datasets as the number of RMs
varies. StrategyQA remains near 85.9%, GSM8K around 74.8%, and MMLU close to 68.1%, with
minimal fluctuations, indicating robust performance regardless of the number of RMs while RM
Agreement Ensemble performance declines more steeply.

Generalization to Training Loss Functions. In Sec. 3.1, we state that the choice of loss function
used to train the LLM depends on the underlying task or domain. Nevertheless, we always use the
training loss as the MAB reward to update the MAB’s parameters. Here we study the performance
of LASER and baselines with 4 different loss functions, NLL, DPO, NLL + DPO [Pang et al.,
2024], and KTO [Ethayarajh et al., 2024], in the reasoning domain. Results in Table 17 show that
training LLMs with multiple rewards using LASER outperforms sequential RM selection by 2.4%,
1.7%, and 1.3% when using NLL, DPO, NLL+DPO loss functions, respectively; while both methods
yield comparable performance with KTO. Additionally, we found that the most effective training
loss functions are NLL + DPO for StrategyQA, NLL for GSM8K, and KTO for MMLU. However,
irrespective of the choice of the underlying loss function, LASER is more effective at balancing and
adaptively selecting from multiple RMs. Lastly, we compare LASER with a variant in which we
use Acc(yw)−Acc(yl) as the MAB reward, which uses the ground-truth information about the final
answer. We find that using the negative training loss of the LLM is more effective than using accuracy
as the MAB reward.

Generalization to OOD Tasks. We first assess the generalization ability of our method by training
models on specific datasets and evaluating their performance on out-of-distribution reasoning tasks.
Specifically, we train the model on the StrategyQA and MMLU datasets and evaluate its generalization
on the CommonsenseQA [CSQA; Talmor et al., 2019] dataset. Similarly, we train on GSM8K and
test on MATH [Hendrycks et al., 2021c] to assess the model’s ability to generalize across different
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Table 17: Across different training loss functions, optimizing with multiple RMs via LASER
outperforms the sequential RM selection with Llama-3-8B. SQA denotes StrategyQA.

Loss Method SQA GSM8K MMLU Avg.

NLL Sequential 82.75 71.80 65.41 73.32
LASER 85.11 74.94 67.09 75.71

DPO Sequential 83.26 71.94 65.38 73.53
LASER 84.71 73.94 67.02 75.22

KTO Sequential 83.62 73.07 69.02 75.24
LASER 84.87 73.86 69.05 75.66

NLL+DPO Sequential 83.90 72.94 68.02 74.95
LASER w/. Acc 83.04 73.12 65.46 73.87

LASER 85.96 74.75 68.24 76.24
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Figure 11: LASER’s performance is robust to adding weaker RMs to the candidate set to select from.

reasoning datasets. These tasks are designed to capture both general reasoning ability and OOD
generalization across domains. We report the results in Table 18, where we find that across both
Llama-3-8B and Mistral-7B models, models trained with LASER yield the best average accuracy,
beating training with the best RM by roughly 2% (absolute) on CSQA with Llama-3-8B. On Mistral-
7B, training with LASER outperforms both training with single best RM and sequential RM selection
by slightly over 1%.

Table 18: Generalization performance of different models trained on StrategyQA, MMLU, and
GSM8K, and evaluated on CSQA and MATH, respectively.

Method CSQA MATH Avg.

Llama-3-8B
SFT 65.64 29.13 47.39
Best RM 67.59 31.54 49.57
Avg. RM 67.16 30.36 48.76
Random RM Selection 68.31 30.21 49.26
Sequential RM Selection 67.73 30.25 48.99
LASER (Ours) 69.26 31.67 50.47

Mistral-7B
SFT 59.06 16.38 37.72
Best RM 60.46 18.08 39.27
Avg. RM 60.06 17.25 38.65
Random RM Selection 60.61 16.96 38.58
Sequential RM Selection 60.56 17.96 39.26
LASER (Ours) 61.65 18.97 40.31

Robustness to Noisy Rewards. To examine the robustness of our method in the presence of noisy
or irrelevant rewards, we conduct the following analysis using Llama-3-8B on GSM8K. We add
varying amounts of Gaussian noise σ to the rewards generated by RMs sampled from the distribution
N (0, σI), where I is the identity matrix, to simulate noisy rewards when using RMs in out-of-
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distribution settings. In addition to LASER using the LinUCB algorithm (c.f. Sec. 3.2), we also use
Exp3 [Auer et al., 2002] designed for adversarial bandit settings. In Fig. 12, we find that even as the
degree of noise in RM scores increases (from σ=0.1 to 0.4), LASER’s selection strategy continues
to perform robustly, mitigating the effects of noise compared to the sequential baseline. Specifically,
LASER has an average performance drop of only 0.55% accuracy at a noise level of σ=0.3, whereas
the sequential baseline suffers a 1.6% accuracy drop (3 times as much) under the same conditions.
Furthermore, LASER using Exp3, the most noise-robust method, maintains consistent performance,
with only a 0.26% accuracy drop.

0.0 0.1 0.2 0.3 0.4
Gaussian noise ( )

72

74

76

Ac
cu

ra
cy

0.04 0.02 0.00 0.02 0.04
0.05

0.00

0.05
Sequential LASeR(Exp3) LASeR(LinUCB)

Figure 12: Impact of the magnitude of Gaussian noise on the accuracy of LASER and sequential
baseline on RewardBench.

LASER Training with Domain-specific Evaluation Metrics. While recent works focus on building
RMs that reflect preferences across domains, an extensive body of prior work develops a suite of
evaluation metrics catered to specific domains such as reasoning [Golovneva et al., 2022, Prasad et al.,
2023]. To show that LASER can be used to select any kind of evaluation metric from a collection
of metrics during training, in Table 19, we present results with training LLMs on model-based
metrics from ROSCOE [Golovneva et al., 2022] by replacing RMs with informativeness, faithfulness,
reasoning alignment, hallucination, common sense error, semantic, coherence and perplexity in Sec. 3.
Llama-3-8B models trained using LASER yield 1.62% accuracy improvement over baselines on
average across three datasets. These results are also generalized to Mistral-7B, except for GSM8K,
where we achieve comparable performance to the Base + Informativeness baselines. Note that the
perplexity of most responses is nearly identical, making it difficult to distinguish between them,
explaining why perplexity shows little to no improvement compared to the base model.

Table 19: Comparison of LASER and baselines on ROSCOE. The baselines include supervised
fine-tuning (SFT), sequential optimization, uniform rewards selection, and base model optimized
with one specific evaluation metric (Perplexity, Informativeness).

Method StrategyQA GSM8K MMLU Avg.

Llama-3-8B
SFT 80.41 69.43 65.66 71.83
Perplexity 80.55 69.21 65.62 71.79
Informativeness 82.87 73.55 66.69 74.37
Random RM Selection 82.72 70.93 66.10 73.25
Seq. RM Selection 83.15 73.38 66.17 74.23
LASER (Ours) 83.54 73.80 66.79 74.71

Mistral-7B
SFT 68.57 43.62 56.48 56.22
Perplexity 68.83 43.47 57.14 56.48
Informativeness 70.29 44.98 59.29 58.19
Random RM Selection 69.24 44.05 57.68 56.99
Seq. RM Selection 70.40 44.79 59.07 58.09
LASER (Ours) 70.91 44.93 59.63 58.49

Robustness to Underperforming Evaluation Metrics. Similar to our analysis on noise in rewards
in Sec. 5, we investigate how adding ROSCOE metrics with poor correlation to human-annotated
labels in meta-evaluation by Golovneva et al. [2022] impacts the performance of Llama-3-8B on
GSM8K. Once again, even with ROSCOE metrics, demonstrates LASER can maintain consistent
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performance by adaptively prioritizing the most relevant reward signals, outperforming the sequential
baseline, which fails to filter out irrelevant information effectively. Fig. 13 shows that as the number of
irrelevant metrics increases, LASER’s selection strategy continues to perform robustly. Specifically,
LASER has an average performance drop of only 0.13%, whereas the sequential baseline suffers a
2.15% accuracy drop under the same conditions. Lastly, LASER using Exp3 maintains a consistent
performance level with a 0.4% accuracy drop.
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Figure 13: Impact of irrelevant metrics from ROSCOE on the GSM8K accuracy of LASER and
sequential baseline.

D Ablation Study

Context Embedding. As noted in Sec. 3, to validate the effectiveness of the last-token embedding
method, we conduct an ablation study comparing three context embedding approaches: first-token
(using the embedding of the first token in the prompt), average-token (using the average of all token
embeddings in the prompt), and last-token (using the embedding of the last token in the prompt).
We evaluate these methods on Llama-3-8B and reasoning tasks. Table 20 shows that the last-token
embeddings consistently outperform the alternatives across all three datasets, demonstrating the
effectiveness of this method in LASER.

Table 20: Comparing different token embedding methods in LASER.
Method StrategyQA GSM8K MMLU Avg.

LASER (first) 83.59 73.03 67.03 74.55
LASER (avg.) 83.22 73.47 66.52 74.40
LASER (last) 85.96 74.75 68.24 76.32

Impact of Bandit Parameter α. We conduct an ablation study to assess the impact of the exploration
parameter α in the LinUCB algorithm on Llama-3-8B and reasoning tasks. Table 21 shows that
for reasoning datasets, disabling exploration leads to suboptimal performance, particularly in early
training stages where the bandit may overfit to a suboptimal RM. In contrast, enabling exploration
(α > 0) improves performance by allowing the model to discover and leverage more informative
RMs over time. We find that setting α in the range of 0.4 to 0.6 consistently yields the best results
across tasks, offering a good balance between exploration and exploitation. This is consistent with
our observations on the performance on dev set for reasoning tasks as noted in Appendix A.1.

Table 21: Effect of varying α on accuracy for reasoning tasks.
Dataset α=0.0 α=0.2 α=0.4 α=0.6 α=0.8 α=1.0

StrategyQA 83.11 85.29 85.96 85.32 84.53 83.77
GSM8K 71.68 73.22 74.10 74.75 74.63 73.94

E Additional Discussion

LASER with different “kinds” of RMs. In Sec. 4.2, we show that LASER can choose from a
set of candidate RMs, and our analysis in Fig. 12 highlights the fact that LASER is robust to noisy
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RMs. In Appendix C, we show that LASER can also be used with metric-based rewards [Golovneva
et al., 2022]. These experiments reflect a conceptual split between the generator (the LLM) and the
scorer (the RM or metric). Thus, LASER is applicable to other settings that follow this paradigm,
e.g., using an LLM-as-a-judge [Zheng et al., 2023], where LASER could be used to choose between
different judge models, prompts, or different combinations of RMs and metrics. However, consistent
with the “self-preference” bias of LLMs [Panickssery et al., 2024], we caution that using an RM
that is based on the same model as the LLM used for generating responses could lead to the MAB
spuriously favoring certain RMs. We leave further study on extending LASER to future work.

Quality of RMs used with LASER. Methods that rely on RMs for scoring generally assume that
these RMs have a strong correlation with human judgments. LASER tempers this assumption in a
number of ways: First, by ensembling multiple RMs, LASER weakens the effect of noisy RMs; this
can be seen in Fig. 12, where LASER mitigates the negative impact of a noisy RM even as the level
of noise is increased. Moreover, the fact that LASER can select RMs at an instance level means that
there need not be a single RM that always correlates well across all instances. However, LASER does
require at least one RM to be positively correlated with human judgments on each instance. If this
assumption is not met (i.e., all RMs are poorly correlated across all instances), then optimizing for the
RMs will yield poor results. Note that this holds true for any method optimizing for RMs. Because
LASER selects from multiple RMs, its contributions are complementary to developments in RMs,
which can easily be integrated into LASER, as well as improvements to preference optimization loss
functions (see Appendix C). Such RM improvements are likely to be necessary as LLMs are deployed
in domains that are out of scope for existing systems and domains with heterogeneous requirements
(e.g., our generation domains in Sec. 4.2). In these cases, there will be no single “perfect” existing
RM, and successful solutions will likely involve mixing multiple RMs. A core benefit of LASER is
its ability to automatically filter RMs; in Fig. 6 we see that utilization differs across domains. This
allows users to avoid expensive experimentation with subsets of RMs: they can simply offload this
task to LASER, which will automatically select the more useful RM(s).

F Prompts

We provide the prompts used for our experiments as follows:

Reasoning

Prompt: Your task is to answer the question below. Give step by step reasoning before you
answer, and when you’re ready to answer, please use the format “Final answer:...”
Question: {input}
Solution:

Instruction-Following

Prompt: You are an assistant capable of assisting users in various tasks, including creative
writing, analysis of texts and data, coding, providing factual information, and solving math
problems. For creative writing, help users brainstorm ideas and develop their narratives.
For analysis, guide users in breaking down concepts and exploring different perspectives.
In coding, assist with programming questions and debugging. When providing factual
information, ensure accuracy and cite reliable sources. For math reasoning, offer step-by-step
solutions and encourage logical thinking. Maintain a clear, engaging, and supportive tone
throughout your responses to foster learning and creativity.
Question: {input}
Answer:
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Long-Context Understanding

Single-Doc QA:
Prompt: You are given a scientific article and a question. Answer the question as concisely
as you can, using a single phrase or sentence if possible. If the question cannot be answered
based on the information in the article, write “unanswerable”. If the question is a yes/no
question, answer “yes”, “no”, or “unanswerable”. Do not provide any explanation.
Article: context Answer the question based on the above article as concisely as you can,
using a single phrase or sentence if possible. If the question cannot be answered based on the
information in the article, write “unanswerable”. If the question is a yes/no question, answer
“yes”, “no”, or “unanswerable”. Do not provide any explanation.
Question: {input}
Answer:

Multi-Doc QA:
Prompt: Answer the question based on the given passages. Only give me the answer and do
not output any other words. The following are given passages.
{context}
Answer the question based on the given passages. Only give me the answer and do not output
any other words.
Question: {input}
Answer:

Summarization:
Prompt: You are given several news passages. Write a one-page summary of all news.
News: {context}
Now, write a one-page summary of all the news.
Summary:

Few-shot Learning:
Prompt: Answer the question based on the given passage. Only give me the answer and do
not output any other words. The following are some examples.
{context}
Question: {input}
Answer:
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