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Abstract
In this paper, we present a novel approach, termed
Double-Filter, to “slim down” the fine-tuning
process of vision-language pre-trained (VLP)
models via filtering redundancies in feature inputs
and architectural components. We enhance the
fine-tuning process using two approaches. First,
we develop a new patch selection method incorpo-
rating image patch filtering through background
and foreground separation, followed by a refined
patch selection process. Second, we design a
genetic algorithm to eliminate redundant fine-
grained architecture layers, improving the effi-
ciency and effectiveness of the model. The for-
mer makes patch selection semantics more com-
prehensive, improving inference efficiency while
ensuring semantic representation. The latter’s
fine-grained layer filter removes architectural re-
dundancy to the extent possible and mitigates
the impact on performance. Experimental re-
sults demonstrate that the proposed Double-Filter
achieves superior efficiency of model fine-tuning
and maintains competitive performance compared
with the advanced efficient fine-tuning methods
on three downstream tasks, VQA, NLVR and Re-
trieval. In addition, it has been proven to be effec-
tive under METER and ViLT VLP models.

1. Introduction
Vision-Language Pre-trained (VLP) models (Du et al., 2022;
Chen et al., 2020; Lu et al., 2019; Dou et al., 2022b) have
established themselves as essential tools within the research
community. Through large-scale pre-training on extensive
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Figure 1. VLP models exhibit two primary types of redundancy:
image patches and architectural layers. For the former, we segment
patches into foreground and background by a YOLO detector, then
filter them based on their importance as determined by a pre-trained
ViT model. For the latter, fine-grained layer filtering overcomes
architectural optimization bottlenecks, offering greater flexibility.

datasets (e.g., paired image-text datasets), these models
achieve remarkable performance when fully fine-tuned for
tasks such as visual question answering (VQA) (Zhou et al.,
2020; Hong et al., 2021), natural language for visual reason-
ing (NLVR) (Suhr et al., 2019) and cross-modal retrieval
(Gao et al., 2024; Long et al., 2024), etc. However, fully
fine-tuning these models for downstream tasks incurs sub-
stantial computational costs, prompting researchers to inves-
tigate more efficient fine-tuning methods, such as integrat-
ing adapters or replacing specific components within the
model’s backbone.

Mainstream efficient fine-tuning methods, such as adapter-
based and other parameter-efficient approaches (Houlsby
et al., 2019; Hu et al., 2021; Karimi Mahabadi et al., 2021;
Gao et al., 2024; Fu et al., 2024b), reduce the number of
trainable parameters by incorporating adapter modules into
the layers of the pre-trained backbone. Although these
methods lower the training costs by freezing the backbone
network, they are still inefficient in the inference process
because they do not optimize the original architecture of
the VLP model. Considering the architecture redundancies
in the complex VLP-based backbone and extra parameters
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of adapters, some recent works (Wu et al., 2024b; Kim
et al., 2021; Wu et al., 2024a) focused on removing such
redundancy in VLP models. For example, a simple block-
skipping strategy (Wu et al., 2024b) reduces redundancy
in VLP models by replacing complex blocks in the original
backbone with adapters that minimally impact downstream
tasks. These studies prove the existence of architectural re-
dundancy in existing VLP models and alleviate the problem
of inefficiency in the architecture level to a certain extent.

However, these basic, coarse-grained de-redundancy meth-
ods, which reduce transformer blocks in VLP models, over-
look the finer architectural details, such as the sub-layers
within transformer blocks. Specifically, as shown in Fig-
ure 1, when a transformer block is identified as redundant
(as in (Wu et al., 2024b)), all its components (e.g., cross-
attention, self-attention, and feed-forward network layers)
are removed together, overlooking opportunities for selec-
tive optimization. Furthermore, these studies overlook data-
level redundancy. In VLP models, both text and image data
are processed; however, the main bottleneck arises from
image patches, as their quantity significantly exceeds the
length of text in these tasks (see Section 3.3 for details). As
shown in MAE (He et al., 2022b), an image can be effec-
tively reconstructed using just 25% of its patches, indicating
that many patches are redundant and hinder model efficiency.
However, directly applying the random patch selection strat-
egy from (He et al., 2022b) risks omitting valuable image
information, leading to significant information loss. (Liang
et al., 2022) addresses this by using the ViT (Alexey, 2020)
classification token to rank and select patches with the high-
est scores, however, this approach mainly captures objects
and often neglects contextual information essential for com-
plex multimodal tasks.

To address these two issues, we propose a novel Double-
Filter to address both data-level and architecture-level re-
dundancies, enabling efficient fine-tuning of VLP models.

Novel Data-level Redundancy Removal: We introduce
an Image Patch Filter (IPF) to eliminate extraneous image
patches that do not impact contextual semantics. Specif-
ically, using an offline YOLO detector (Redmon, 2016),
we distinguish between foreground and background areas,
where detected salient objects represent the foreground,
and the remaining areas are considered background. Low-
importance patches within both foreground and background
regions are then filtered based on the attention scores of the
classification ([CLS]) token. As illustrated in Figure 1, our
IPF effectively preserves global semantics across patches,
rather than focusing solely on salient objects.

Novel Architecture-level Redundancy Removal: At the
architectural level, we introduce a novel adjustable genetic
algorithm (AGA) to precisely identify and filter redundant
fine-grained sub-layers within the transformer blocks of

VLP models, and implemented in our fine-grained Archi-
tecture Layer Filter (ALF). Unlike traditional methods (Wu
et al., 2024b) that replace entire transformer blocks, our
approach targets specific sub-components, such as the Multi-
Head Self-Attention layer (MHSA), Multi-Head Cross At-
tention layer (MHCA), and Feed-Forward Network (FFN)
layer. By selectively filtering these fine-grained sub-layers
and substituting them with lightweight adapters, we effec-
tively reduce architecture-level redundancy at a more granu-
lar level. Notably, our AGA evaluates the filtering effects of
complex sub-layer combinations through multi-generation
crossover inheritance and regulatory mutation, guided by a
specially designed fitness function.

Our contributions in this paper are as follows:

• We propose a novel multi-level efficient fine-tuning
strategy for VLP models, called Double-Filter, by re-
moving both image patch redundancy and fine-grained
architecture layer redundancy.

• We devise a new Image Patch Filter (IPF) that filters
redundant patches using ViT attentions, applied sepa-
rately to the foreground and background as detected by
YOLO. This approach ensures both spatial and seman-
tic integrity.

• We design an efficient adjustable genetic algorithm-
based (AGA) fine-grained Architecture Layer Filter
(ALF) designed to minimize architectural layer redun-
dancy in VLP models for downstream fine-tuning. ALF
leverages multi-generation crossover inheritance and
regulatory mutation to swiftly identify filtered model
variants, eliminating redundant sublayers.

Experimental results show that by filtering over 60% of im-
age patches and 12 model layers, our Double-Filter achieves
comparable performance on METER model fine-turning
compared to state-of-the-art PEFT methods, reducing com-
putational costs by 21.18G in terms of FLOPs. In addition,
Double-filler is equally effective in the ViLT model.

2. Related Work
Vision Language Pre-trained models Vision-language pre-
training (VLP) (Chen et al., 2024; Du et al., 2022) has
advanced through leveraging large-scale image-text pairs
for tasks such as masked language modeling, masked image
modeling, and Image-Text Matching. Most VLP models
such as ViL-BERT (Lu et al., 2019) and LXMERT (Tan &
Bansal, 2019) relied on separate encoders for visual and
textual features (e.g., BERT for text, Faster-RCNN for im-
ages) and used independent Transformer branches for cross-
modal interaction. Later models like VisualBERT (Li et al.,
2019), VL-BERT (Su et al., 2019), and UNITER simpli-
fied this by integrating both modalities into a single Trans-
former network. METER (Dou et al., 2022b) takes this a
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Figure 2. The proposed Double-Filter framework comprises two primary components: the Image Patch Filter (IPF) and the fine-grained
Architecture Layer Filter (ALF). The IPF utilizes a YOLO detector to partition an image’s foreground and background areas and then
selects patches based on their [CLS] weights in each area. The Fine-grained ALF introduces new Adjustable Genetic Algorithm (AGA),
which formulates layer filtering as a genetic algorithm optimization problem to approximate optimal fine-grained filtering across layers.

step further by fully embracing an end-to-end transformer-
based design, exploring various combinations of vision en-
coders (CLIP-ViT (Radford et al., 2021)) and text encoders
(RoBERTga (Liu et al., 2019), DeBERTa (He et al., 2020)),
while also optimizing multimodal fusion mechanisms (e.g.,
merged attention vs. co-attention). Despite these improve-
ments, many VLP models still exhibit redundancy during
the finetuning at both model and data levels, leading to in-
efficiencies. The approach proposed in this paper aims to
deliver a universal and efficient fine-tuning solution that
addresses these challenges across a broad spectrum of VLP
models, particularly those with complex cross-modal inter-
actions.

Efficient Finetuning Previous studies have largely focused
on adapter-based methods (Gao et al., 2024; Sung et al.,
2022; Zhang et al., 2022; Feng et al., 2025; Zanella &
Ben Ayed, 2024; Wu et al., 2023; 2024a; Fu et al., 2024a) to
enable efficient fine-tuning of Vision-Language Pre-trained
(VLP) models, aiming to lower the adaptation cost to down-
stream tasks. However, these approaches often introduce
architectural redundancy due to the addition of new trainable
modules, which can limit overall efficiency. To tackle these
challenges, recent skipping-based approaches like DAS (Wu
et al., 2024b) have introduced parameter and computation
efficient transfer learning (PCETL). However, this approach
primarily targets structural redundancy by replacing entire
transformer blocks at a coarse level, overlooking a crucial ef-
ficiency bottleneck—patch redundancies in visual data and
finer-grained architectural layers. In contrast, the Double
Filtering framework uniquely addresses both architectural
and patch-level redundancies simultaneously, distinguishing

it from prior research approaches.

3. The Proposed Approach: Double-Filter
Figure 2 provides an overview of our Double-Filter method,
applied to the widely used VLP model METER (Dou et al.,
2022b). The method consists of two main components:
the Image Patch Filter and the Fine-Grained Architecture
Layer Filter. Double-Filter is designed to facilitate com-
prehensive and efficient fine-tuning at both the patch and
architectural levels in VLP models, particularly those with
complex cross-modal interactions.

In Section 3.1, we outline the image patch selection process,
detailing the foreground-background token filtering based
on the attention scores for the [CLS] token from Vision
Transformers (ViT) (Alexey, 2020). Section 3.2 discusses
fine-grained architectural redundancy removal using our
genetic algorithm, which prunes unnecessary layers while
preserving model performance.

3.1. Image Patch Filter

In this section, we introduce the Image Patch Filter (IPF),
a method designed to efficiently filter image patches by
discarding less relevant regions while preserving vital back-
ground details that offer essential contextual cues. The
innovation in IPF lies in its approach to partitioning the
entire image into foreground and background portions using
a YOLO detector, which enhances the informativeness and
efficiency of the patch selection process.
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Algorithm 1 Image Patch Filter
1: Input: YOLO detector D, Image Sparsity ρ

2: Output: Retained patches T I
PF

3: Extract classification score sCLS for I;
4: Get n bounding boxes {B1, B2, . . . , Bn} = D(I)

5: Get foreground FG =
⋃n

i=1 Bi, Get background
BG = I − FG

6: Compute the space occupancy ratio using the areas of
FG and BG: ϵ = A(FG)

A(FG)+A(BG) ;
7: Compute the total number of patches to retain, |T I

PF| =
⌈(1− ρ) · |T I |⌉;

8: Compute the number of patches for FG and BG:
|TFG

PF | = ⌈ϵ · |T I
PF|⌉ and |TBG

PF | = |T I
PF| − |TFG

PF |;
9: Select the top |TFG

PF | patches for FG based on sCLS:
TFG

PF = Top-|TFG
PF |

(
TFG

)
;

10: Select the top |TBG
PF | patches for BG based on sCLS:

TBG
PF = Top-|TBG

PF |
(
TBG

)
;

11: Obtain the retained patches: T I
PF = TFG

PF ∪ TBG
PF ;

3.1.1. PATCH IMPORTANCE

VLP models typically represent an image as a sequence
of patches (Alexey, 2020; Dou et al., 2022b;a). To enable
effective patch filtering, we assign an importance score to
each patch by leveraging the classification token ([CLS]) of
the pre-trained ViT following (Liang et al., 2022).

The ViT discerns and weighs the relevance of various image
patches, primarily through attention scores assigned by the
[CLS] capturing their relative importance for image classifi-
cation tasks. This attention mechanism can be formulated
as follows:

sCLS = Softmax
(
qclass ·

KT

√
d

)
where qclass is the query vector associated with the [CLS]
token. K is the aggregated key matrices from all tokens.
d is the dimensionality of the query vector. sCLS denotes
the attention weights that modulate the contributions of
different tokens based on their computed relevance. In the
multi-head attention layer, multiple sets of attention scores
are computed for the [CLS] token, each reflecting different
facets of the image’s context.

3.1.2. FOREGROUND AND BACKGROUND

While filtering patches based on their importance appears
logical, relying solely on the attention scores for [CLS]
token tends to prioritize object-specific information, poten-
tially overlooking essential background details necessary
for complex multimodal tasks. To address this, we pro-
pose categorizing images into foreground and background
portions.

Algorithm 2 Fine-Grained Architecture Layer Filter
1: Input: Number of transformer blocks N , target number

of layers L, number of elite chromosomes K, number
of generations G, population size M , training set TS,
validation set V S, fitness score function, crossover and
mutation operations.

2: Output: Optimized architecture C∗ with reduced num-
ber of layers L.

3: Initialize M chromosomes Cm = [c
(m)
1 , . . . , c

(m)
3N ],

where c
(m)
i ∈ {0, 1}, for m = 1 to M , to repre-

sent architectural choices. Denote the population as
MC = {C1, C2, . . . , CM}.

4: for g = 1 to G do
5: Sample random training and validation subsets:

T̃ S ⊂ TS, Ṽ S ⊂ V S.
6: for m = 1 to M do
7: Train Cm on T̃ S.
8: Compute FSm = Fitness(Cm, T̃ S, Ṽ S).
9: end for

10: Compute Pi =
FSi∑M
j=1 FSj

for each Ci ∈ MC.

11: Select K elite chromosomes with highest fitness
scores: EC = Top-K(MC).

12: Get remaining chromosomes RC = MC \ EC
13: Perform selection by sampling with a roulette wheel

approach (Lipowski & Lipowska, 2012), choosing
|RC| parent chromosomes from RC to form the set
PC based on P : PC = {C1, C2, . . . , Cn | Ci ∈
RC}.

14: Perform crossover to create child chromosomes:
CRC = Crossover(PC).

15: for each C
′

i in CRC do
16: if

∑3N
j=1 c

(i)
j ̸= L then

17: Perform mutation: C
′′

i = Mutation(C
′

i).
18: end if
19: end for
20: Update MC combining them with the elite chromo-

somes EC: MC = CRC
⋃

EC.
21: end for
22: Return: Optimized architecture C∗, which is the chro-

mosome in MC with the highest fitness score.

Specifically, for a given image I , its foreground and back-
ground are denoted as FG and BG. The patches corre-
sponding to I , FG, and BG are denoted as T I , TFG, and
TBG, respectively. A YOLO Detector is employed to gen-
erate n bounding boxes {Bi, B2, . . . , Bn} for the image,
where each bounding box represents an individual object.
The foreground, FG, is defined as FG =

⋃n
i=1 Bi, repre-

senting the union of these bounding boxes. The background,
BG, comprises the remaining portions of the image, as
BG = I − FG. 1

The objective of IPF is to retain informative patches T I
PF,

with a sparsity ρ ∈ (0, 1) compared to the original patches

1In practice, some patches overlap between FG and BG; We
also include these patches to TFG for simplicity.
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T I . Formally, |T I
PF| = ⌈ρ · |T I |⌉, where |T | denotes the

number of patches T , and ⌈·⌉ represents the ceiling oper-
ation. Once the target patch count is determined, a space
occupancy ratio ϵ is introduced to specify the number of
foreground patches TFG

PF and background patches TBG
PF to

retain. The ϵ is calculated as the ratio of the area of the
foreground regions to the area of the entire image. The
number of retained foreground patches is calculated as
|TFG

PF | = ⌈ϵ · |T I
PF|⌉, while the number of retained back-

ground patches is defined as |TBG
PF | = |T I

PF|−|TFG
PF |. Within

each region, patches are ranked based on their importance
scores, sCLS, and only those with the highest scores are
retained according to the defined counts. The detailed pro-
cedure for IPF processing is provided in Algorithm 1.

3.2. Fine-grained Architecture-Layer Filter

To mitigate redundancy in Transformer-based models for
cross-modal tasks, we propose an Adjustable Genetic Al-
gorithm (AGA) for fine-grained architecture filtering, ap-
proximating an optimal configuration 2. For a fine-grained
replacement, AGA decomposes Transformer blocks into
detailed components, including Multi-Head Self-Attention
(MHSA), Feed-Forward Network (FFN), and in some cases,
Multi-Head Cross-Attention (MHCA), collectively termed
“architecture layers (AL)”. AGA selectively substitutes these
computationally intensive ALs with lightweight adapter
blocks (Houlsby et al., 2019). The novelty of AGA lies
in three main aspects: (1) fine-grained architectural replace-
ments; (2) novel formulation of architecture filtering task as
a genetic algorithm; (3) We customize the design of muta-
tion operation to satisfy the requirement while diversifying
each generation effectively.

Problem Formulation: Specifically, for a VLP model with
N Transformer blocks, where each layer contains MHSA,
MHCA, and FFN modules, each individual is encoded as a
chromosome C = [c1, c2, . . . , c3N ]. Here, each gene ci ∈
{0, 1} indicates whether the corresponding layer is replaced
by a lightweight adapter: a value of 1 indicates replacement
while 0 signifies retention of the original structure.

The AGA aims to identify the approximate optimal reduc-
tion with L filtered layers. AGA proceeds over G gener-
ations, with M individuals in each generation. In each
generation, individuals are evaluated on subsets T̃ S and Ṽ S
that are randomly sampled from the training set TS and vali-
dation set V S, respectively. The most promising individuals
from the final generation is selected as the final architecture.
Similar to traditional genetic algorithms (Sampson, 1976;
Mirjalili & Mirjalili, 2019), we define our fitness function,
crossover, and mutation operations as follows.

2Note that identifying an absolute optimal structure is NP-hard,
rendering exhaustive search impractical.

Fitness Function: The fitness function is crucial in a genetic
algorithm, evaluating each individual’s quality. In AGA, the
fitness function is defined as:

Fitness(C, T̃S, Ṽ S) = −1

2

(
L(C, T̃S) + L(C, Ṽ S)

)
+β,

where L(·, ·) denotes the loss on sampled datasets
for a given model, and a bias term β is defined as β >
1
2 max

({
L(Ci, T̃ S) + L(Ci, Ṽ S) | i ∈ {1, 2, · · · ,M}

})
to ensure that the Fitness score remains positive for the
following selection.

Crossover Operation: The crossover operation gener-
ates fresh individuals through single-point or two-point
crossover methods. In the single-point crossover method, a
random crossover point k is selected, and genes beyond this
point are swapped between two parent individuals, produc-
ing two offspring individuals:

C
′

child1 = [cE1 , . . . , c
E
k , c

F
k+1, . . . , c

F
3N ];

C
′

child2 = [cF1 , . . . , c
F
k , c

E
k+1, . . . , c

E
3N ],

where E and F represent the two parent individuals.

Mutation Operation: To cater to the replacement of L
layers within the chromosome C

′
, we propose a mutation

operation for adjusting gene values. Firstly, we calculate
Z =

∑3N
i=1 ci which gives the current count of genes with

value 1. If Z ̸= L, we then adjust as follows: if Z > L,
randomly select Z − L genes with a value of 1 and switch
them to 0; if Z < L, select L − Z genes with a value of
0 and change them to 1. This mutation process ensures
that the updated chromosome C

′′
fulfills the condition of∑3N

i=1 ci = L, ensuring the desired L layers are replaced.

The Double-Filter strategy combines an IPF strategy for
image patch selection with an AGA for a Fine-grained
Architecture-Layer Filter, comprehensively enhancing the
efficiency of fine-tuning for VLP models.

3.3. FLOPs Analysis

In this section, we analyze the Floating Point Operations
(FLOPs) (Li et al., 2020; Hobbhahn & Sevilla, 2021) re-
quired by the transformer model. Using the image tower
from the fusion layer of METER (Dou et al., 2022b) as
an example, we theoretically estimate the potential FLOPs
savings offered by the Double-Filter Framework compared
to the vanilla model.

We denote the number of transformer blocks in METER
(Dou et al., 2022b), the sequence length of the image, the
sequence length of the text, and the hidden dimension as
N , S, S̃, and D, respectively. Note that, in practical VLP
models, S̃ ≪ S, and we consider a batch size of 1 for sim-
plicity. Within a transformer block, the main computational
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costs arise from the Multi-Head Self-Attention (MHSA),
Multi-Head Cross-Attention (MHCA), and Feed-Forward
Network (FFN). Here, we focus our analysis on the FLOPs
associated with these three components.

FLOPs in Multi-Head Self-Attention (MHSA): Each
MHSA layer consists of three projection operations (6SD2),
Query, Key, and Value, followed by the computation of at-
tention scores (2S2D), application of these scores (2S2D),
and a subsequent linear projection of the concatenated heads
(2SD2).3 Therefore, the total FLOPs for MHSA can be ex-
pressed as:

FLOPsMHSA = 6SD2 + 2S2D + 2S2D + 2SD2

= 8SD2 + 4S2D

FLOPs in Multi-Head Cross-Attention (MHCA): The
primary distinction between MHCA and MHSA lies in the
sequence length of the Query, Key, and Value. The Query
has the same sequence length as the image, while the Key
and Value align with the sequence length of the text. Conse-
quently, the FLOPs can be formulated as:

FLOPsMHCA = (2SD2 + 4S̃D2) + 2SS̃D + 2SS̃D + 2SD2

= 4SD2 + 4S̃D2 + 4SS̃D

≈ 4SD2

We omit the term 4S̃D2 + 4SS̃D since S̃ ≪ S, allowing
for a clearer computation in the following steps.

FLOPs in Feed-Forward Network (FFN): A standard
FFN has an expansion factor of 4, meaning the hidden layer
size is 4D. Consequently, the total FLOPs for the FFN is
16SD2.

Total FLOPs for a transformer model: Therefore, the
total FLOPs for N transformer blocks are:

FLOPstotal = N(FLOPsMHSA + FLOPsMHCA + FLOPsFFN)

≈ N
(
(8SD2 + 4S2D) + 4SD2 + 16SD2

)
≈ 28NSD2 + 4NS2D

FLOPs with Double-Filter: Using the Double-Filter frame-
work, we retain a fraction p of the original patches (sequence
length), q in the MHSA layers, and r in the MHCA, and o
in FFN, where 0 < p, q, r, o < 1. The total FLOPs under
the Double-Filter (DF) can then be calculated as:

FLOPsDF ≈ N
(
q(8pSD2 + 4pS2D) + 4rSD2 + 16poSD2

)
≈ (8pq + 16po+ 4r)NSD2 + 4pqNS2D

This analysis demonstrates that the Double-Filter Frame-
work can reduce the FLOPs of a transformer model from

3The FLOPs for matrix multiplication [m,n]× [n, p] is 2mnp
(Ozaki et al., 2011).

28NSD2 + 4NS2D to approximately (8pq + 16po +
4r)NSD2 + 4pqNS2D. In practical computation, we also
consider incorporating the FLOPs of YOLO; however, since
its computational complexity is significantly smaller com-
pared to the transformer model, we omit it from the theoret-
ical analysis.

4. Experiment
In this section, we conduct experiments to evaluate the pro-
posed Double-Filter for efficient fine-tuning of VLP models.

4.1. Datasets & Metrics

We validated our approach on three visual language tasks:

Visual Question Answering (VQA): We conducted exper-
iments on the VQA2.0 dataset (Goyal et al., 2017), which
transforms traditional open-ended natural language ques-
tioning into a multi-classification task with 3,129 answer
options. Following the foundational configurations of the
METER (Dou et al., 2022b) and ViLT (Kim et al., 2021)
models, we trained the models on the training and validation
sets and assessed performance through online evaluations
of the test set.

Natural Language for Visual Reasoning (NLVR):
NLVR2(Suhr et al., 2019) dataset is designed as a binary
classification to determine whether a text accurately
describes the content of two images. According to the
default settings of ViLT and METER, we first input one of
the images combined with the text into the model, followed
by the other image combined with the same text. The final
prediction is derived by concatenating the outputs from
these two inputs.

Cross-modal Retrieval: We evaluate the cross-modal
retrieval capability of our model on the Flickr30K dataset
(Plummer et al., 2015), using the standard split introduced
by (Karpathy & Fei-Fei, 2015; Ge et al., 2024). For
initialization, we follow the same operation as DAS (Wu
et al., 2024a), leveraging the pre-trained retrieval heads of
METER and ViLT for similarity estimation. To improve
the robustness of training, we adopt a hard-negative mining
strategy where each positive sample is paired with 15
randomly sampled negatives per iteration.

Metric: We evaluate using accuracy for NLVR and VQA,
and Recall@1 for the image retrieval (IR) and text retrieval
(TR).

4.2. Implementation Details

We conducted experiments on the METER (Dou et al.,
2022b) and ViLT (Kim et al., 2021) models. For the ME-
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Table 1. Comparison between Double-Filter and other PEFT methods for widely used VLP modals, METER (Dou et al., 2022b) and
ViLT (Kim et al., 2021), on VQA and NLVR tasks, as well as cross-modal retrieval task. The best performance is bold and the second
best is underlined.

METER

Method Updated VQA NLVR Retrieval
Param. test-dev +FLOPs test-P +FLOPs IR/TR R@1 +FLOPs

Full Tuning 323.31M 77.43 0.00 83.05 0.00 82.22/94.30 0.00
Classifier Only - 69.93 0.00 73.23 0.00 78.80/89.00 0.00
Shallow Prompt 0.30M 68.51 +28.71G 65.69 +26.84G 74.20/88.60 +28.71G
Deep Prompt 1.84M 70.78 +6.53G 72.64 +5.59G 78.84/89.40 +6.53G
LoRA 0.29M 74.00 0.00 78.82 0.00 79.86/92.60 0.00
Adapter 5.34M 74.70 +1.64G 79.93 +1.38G 80.38/91.90 +1.64G
Scaled PA 3.59M 75.11 +1.12G 80.38 +0.66G 80.40/93.20 +1.12G
DAS 5.34M 74.80 -11.16G 80.11 -5.13G 80.12/91.80 -11.16G
Double-Filter 5.34M 74.25 -21.18G 80.12 -12.51G 80.05/91.22 -21.18G

ViLT

Method Updated VQA NLVR Retrieval
Param. test-dev +FLOPs test-P +FLOPs IR/TR R@1 +FLOPs

Full Tuning 115.43M 71.26 0.00 76.13 0.00 64.40/83.50 0.00
Classifier Only - 65.75 0.00 66.08 0.00 57.42/78.00 0.00
Shallow Prompt 0.15M 66.47 +19.53G 66.47 +19.53G 55.92/74.80 +19.53G
Deep Prompt 1.84M 69.30 +5.14G 73.34 +5.14G 58.64/79.50 +5.14G
LoRA 0.15M 68.44 0.00 72.77 0.00 57.44/77.70 0.00
Adapter 3.56M 70.85 +0.86G 75.51 +0.86G 62.68/81.40 +0.86G
Scaled PA 1.80M 70.40 +0.44G 75.13 +0.44G 61.88/79.00 +0.44G
DAS 3.56M 69.28 -1.03G 74.89 -1.03G 60.66/80.80 -1.03G
Double-Filter 3.56M 68.37 -4.72G 74.50 -4.72G 61.18/79.39 -4.72G

TER model, we focus on filtering the most computationally
intensive component: the fusion layer for METER and, the
transformer encoder for ViLT. The adapter bottleneck for
both networks was set to 96 following (Wu et al., 2024b).
We used YOLOv8 (Reis et al., 2023) as the Yolo Detecter.
Notably, compared with METER, ViLT does not include
the fusion network. So we only consider de-redundancy of
its encoders. Therefore, when calculating FLOPs cost in the
later experiments, we only considered YOLO’s FLOPs for
METER, not ViLT. The FLOPs of YOLO are about 4.5G.
For images without any detected objects, we used the me-
dian of CLS scores to distinguish between foreground and
background. To better align the IPF method with the ViLT
model, we did not skip the first block’s self-attention layer,
and other settings remained consistent with the base settings
of the METER and ViLT models. The other detailed set-
tings for Double-Filter are placed in Appendix Table 1. All
experiments were conducted on one RTX 3090 GPU.

4.3. Efficiency-Performance Comparison

We evaluate our proposed Double-Filter based on two
widely-used VLP models, i.e. METER (Dou et al., 2022b)
and ViLT (Kim et al., 2021), on three benchmarks (NLVR2

(Suhr et al., 2019) , VQA (Goyal et al., 2017) and Flickr30K
(Plummer et al., 2015)) of different downstream tasks. We
compare it on efficiency and effective fine-tuning with other
popular PEFT methods, including Shallow Prompt (Li &

Table 2. Efficient comparisons of different methods in terms of
inference time (items/s) on two tasks based on different VLP
models with the inference time.

METER
Method Full Tuning Adapter DAS Double-Filter

VQA 55.32 54.05 60.49 70.72
NLVR 46.50 45.73 51.47 55.13

ViLT
VQA 115.50 113.62 124.63 135.24

NLVR 54.49 53.86 55.80 58.36

Liang, 2021), Deep Prompt (Jia et al., 2022), LoRA (Hu
et al., 2021), Adapter (Sung et al., 2022), Scaled PA (He
et al., 2022a), and DAS (Wu et al., 2024b).

Detailed comparisons are shown in Table 1. Existing PEFT
methods generally use fewer updated parameters compared
to full finetuning. However, except for our Double-Filter,
DAS, and LoRA, other methods tend to increase compu-
tational complexity (e.g. FLOPs). While LoRA does not
increase computational complexity, its performance is lower
than the other two methods. Specifically, compared to meth-
ods with lower inference complexity, our Double-Filter
achieves the largest reduction, with an average of more
than twice the reduction compared to DAS (-21.18G FLOPs
for VQA, -12.51G FLOPs for NLVR on METER). More-
over, the performance degradation is minimal, averaging
only 0.30% on the METER network and 0.55% on ViLT net-
work. We also compared full tuning, Adapter, DAS, and our
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Table 3. Efficiency-Performance balance of Image Patch Filter
(IPF) for METER and ViLT on VQA, NLVR tasks.

Method Patch VQA NLVR
Filtering test-dev +FLOPs test-P +FLOPs

METER
Baseline 0 75.28 1.68G 81.28 0.99G

IPF

40% 75.16 -8.97G 81.15 -4.49G
50% 75.01 -14.81G 81.16 -6.59G
60% 74.67 -16.52G 81.32 -8.6G
70% 74.16 -20.24G 80.14 -10.6G

ViLT
Baseline 0 70.13 0.73G 76.26 0.73G

IPF
20% 69.32 -3.06G 75.47 -3.06G
30% 68.95 -5.09G 74.68 -5.09G
40% 68.36 -7.11G 74.60 -7.11G
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Figure 3. Ablation studies of different image patch filtering meth-
ods, i.e. Image Patch Filter (IPF) vs. EViT (Liang et al., 2022)
vs. Random Filter, and architecture filtering methods, i.e. fine-
grained architecture layer filter (ALF) vs. DAS (Wu et al., 2024b)
vs. Random Filter, for METER on NLVR task.

method regarding inference speed. In Table 2, our proposed
Double-Filter improves the inference speed, demonstrating
superior efficiency. Our proposed Double-Filter exhibits the
lowest computational complexity among all existing PEFT
methods, improving inference speed. Additionally, it shows
competitive results compared to other PEFT methods.

4.4. Efficiency-Performance Balance of Image Patch
Filter

We conduct extensive ablation studies to investigate the im-
pact of different variants of the proposed image patch filter
(IPF) on performance and efficiency. We investigate the ef-
fects of different patch filtering ratios and different filtering
methods in Table 3 and Figure 3. Specifically, in VQA task
of the METER model (Dou et al., 2022b), as the patch filter-
ing ratio increases, although the accuracy decreases slightly,
the FLOPs decrease significantly in Table 3. It shows that
our IPF greatly helps model fine-tuning efficiency. Addi-
tionally in the NLVR2 task, reducing different patches can
sometimes improve performance, suggesting that redundant
patches may have a negative impact on performance.

In the left of Figure 3, to further validate the effectiveness of
our proposed IPF, we conducted ablation studies comparing

Table 4. Efficiency-Performance balance of fine-grained architec-
ture layer filter for METER and ViLT on VQA and NLVR tasks.

Method Filtering VQA NLVR
Layers test-dev +FLOPs test-P +FLOPs

METER
Baseline 0 75.28 1.71G 81.28 1.02G

ALF

6 74.92 -3.84G 80.60 -2.64G
12 74.82 -8.43G 80.98 -7.57G
18 74.23 -22.9G 80.06 -10.03G
24 73.61 -27.91G 80.25 -14.25G

ViLT
Baseline 0 70.13 0.73G 76.26 0.73G

ALF
2 69.15 -1.04G 75.50 -1.04G
4 67.78 -3.06G 75.15 -3.59G
6 66.63 -5.08G 73.88 -5.6G

random patch filtering (Random) and patch filtering based
on CLS attention scores (EViT (Liang et al., 2022)). The
experiments are performed on the NLVR task on METER
model. The results show that our IPF can better maintain
performance when filtering patch redundancy. And this ad-
vantage becomes greater as the patch filtering rate increases.
At a reasonable ratio, we can achieve the best efficiency and
performance balance for VLP model fine-tuning.

4.5. Efficiency-Performance Balance of Architecture
Layer Filter

In this section, we conducted ablation experiments on our
proposed ALF method by skipping different layers, and ob-
served that the METER model exhibits a significant amount
of redundancy. For instance, even after removing 24 layers
out of a total of 36 layers in the NLVR task, it still performs
well. In contrast, ViLT shows a noticeable performance
decline after removing just 4 layers. This discrepancy likely
stems from the structural differences between the models:
METER employs two separate encoders for processing tex-
tual and visual information and includes cross-attention
modules, whereas ViLT only utilizes word embeddings and
image patch embeddings, and lacks cross-attention modules.

To further validate the effectiveness of our ALF method, we
compare it against DAS (Wu et al., 2024b) and a Random
approach (which randomly removes an equivalent number of
layers) in the NLVR task on the METER model. As shown
in the right of Figure 3, compared to two other methods,
our ALF effectively maintains performance stability even
with more layers removed, demonstrating its advantage in
balancing model reduction and performance retention.

4.6. Visualization

To more intuitively demonstrate our proposed Double-Filter
method, we provide detailed visualizations of the results
of Image Patch Filter (IPF) and fine-grained Architecture
Layer Filter (ALF) in Figure 4. It shows that our IPF ef-
fectively preserves key information in images. Compared
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Figure 4. Visualizations of the proposed Double-Filter for METER
(Dou et al., 2022b) on NLVR and VQA tasks, including the results
of our proposed image patch filter and fine-grained architecture
layer filter.

with EViT (Liang et al., 2022) which only focuses on salient
objects, our IPF can better focus on global contextual se-
mantics, including important objects in the foreground and
background contextual contents. Additionally, by visualiz-
ing filtered layer results of fine-grained ALF based on the
VLP model – METER (Dou et al., 2022b) for NLVR and
VQA tasks, we note varying patterns in the layers omitted
by the model across different tasks. The reason may be
that the simple shorter texts in VQA allow it to filter more
fine-grained layers of the text tower compared to the long
text with complex semantics in the NLVR task. Overall,
visualizations clearly demonstrated the effectiveness of effi-
cient filtering based on the proposed Double-Filter approach
at both data- and network-level.

5. Conclusion
In this paper, we introduce a novel Double-Filter method for
efficient fine-tuning of VLP models, aimed at optimizing
both data input and network architecture. For data input
optimization, we developed a new Image Patch Filter (IPF)
that employs a pre-trained ViT model to identify signifi-
cant patches in the foreground and background, detected
by YOLO. This effectively reduces data redundancy while
preserving comprehensive information. For network archi-
tecture optimization, we propose a fine-grained Architecture
Layer Filter (ALF) based on an adjustable genetic algorithm
(AGA). AGA efficiently eliminates redundant layers in the
original VLP models through multi-generation crossover
inheritance and mutation, enhancing the model’s efficiency.

Extensive experimental evaluations on three downstream
tasks, VQA , NLVR2 and Cross-modal Retrieval, demon-
strate that our Double-Filter method achieves a better bal-
ance between efficiency and performance in fine-tuning
various VLP models.

Limitation. Our Double-Filter leverages patch importance
weights derived from Vision Transformers (ViT) and se-
lected based on a pre-trained YOLO detector. While they
are widely adopted, this reliance may limit flexibility. In
future work, we plan to explore alternative strategies for
determining patch importance and patch selection, such as
offline lightweight pre-trained models. In addition, we will
use a better genetic algorithm variant to search for the op-
timal subnetwork structure to solve the problems of high
computational complexity and easy convergence to local
optimality during training.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning and Deep Learning. There are many
potential societal consequences of our work, none which we
feel must be specifically highlighted here.
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A. Appendix
A.1. Hyperparameters and Details

In this section, we present the hyperparameters and imple-
mentation details of the proposed Double-Filter method,
which consists of two main components: (1) Image Patch
Filter (IPF) and (2) fine-grained Architecture Layer Filter
(ALF).

A.1.1. IMAGE PATCH FILTER (IPF):

For the METER model (Dou et al., 2022b), we assessed
patch importance using the attention weights of the classifi-
cation ([CLS]) token from the last layer of the pre-trained
Vision Transformer (ViT) (Alexey, 2020). In the case of
ViLT (Kim et al., 2021), all image patches were processed
through the first self-attention layer, and the attention map
of the first [CLS] token was extracted to evaluate patch im-
portance. It is noteworthy that ViLT contains two [CLS]
tokens: a text [CLS] token and a visual [CLS] token, the
latter of which is used to separate modalities.

A.1.2. ARCHITECTURE LAYER FILTER (ALF):

We focused on filtering the most computationally intensive
components of each model. For METER (Dou et al., 2022b),
this is the two-end fusion layer, and for ViLT (Kim et al.,
2021), it is the transformer encoder.

ALF configurations were adjusted based on the specific
requirements of each task. For the VQA task, we employed
a population size of 100, 20 iterations, and a two-point
crossover method. For the NLVR task, we used a population
size of 50, 10 iterations, and a single-point crossover method.
Loss calculations in the fitness function were based on 100
batches of training data (equivalent to 2 epochs), and losses
were recorded over 10 validation batches.

After determining the optimal network structure, we applied
the filtered network structure, followed by 10 epochs of
training in combination with the IPF approach. The first
epoch served as a warm-up, and after completing all the
epochs, the model’s performance was evaluated on the test
set. For the VQA task, evaluations were conducted via an
online platform4.

During training, only the parameters of the additional mod-
ules, classifiers, pooler layers, modal-type embeddings, and
adapters were updated; the rest of the network remained
frozen. We adopted hyperparameters consistent with those
in the original papers, and FLOPs calculations included
YOLO detection to ensure comprehensive and accurate re-
sults.

All experiments were conducted on an RTX 3090 GPU.
During evaluation, inference time was measured with a

4https://eval.ai/web/challenges/
challenge-page/830/overview

Table 5. Experimental Parameters

Common Parameters

Parameter Value

Training epoch 10
Warm-up epoch 1
Learning rate 1× 10−5

Adapter hidden dimension 96

Image Patch Filter (IPF)

Parameter METER ViLT

CLS tokens Last layer of ViT First layer of ViLT

Architecture Layer Filter (ALF)

Parameter VQA Experiment NLVR Experiment

Population size 100 50
Number of iterations 20 10
Crossover method Two-point Single-point
Training data per generation 100 batches over 2 epochs
Validation data per generation 10 batches
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batch size of 64 for METER and 128 for ViLT. Additional
details on the Double-Filter method and hyperparameter
settings are provided in Table 5.

A.2. More Visualization

To more fully demonstrate our proposed Image Patch Filter
(IPF) of the proposed novel Double-Filter for VLP models,
we provide more detailed visualizations of the IPF results
in Figure 5 and Figure 6 from the NLVR task and VQA
5 task. respectively. Through specific text questions, we

5Since we use online evaluation to evaluate the effectiveness
of the VQA task, we cannot get an explicit answer. Therefore, we
use the training examples for visualization of our IPF, which do
not affect the effectiveness proof of IPF because it has no trainable
parameters.

found that only by combining the context of important ob-
jects in the image and the background environment where
they are located, the model can answer the questions more
accurately. Compared to EViT (Liang et al., 2022), which
focuses only on salient objects, our IPF can better focus on
global contextual semantics, including important objects in
the foreground and background contextual content, while ef-
fectively preserving key information in the image. This can
effectively solve the corresponding text questions, especially
those that require attention to background knowledge.

A.3. Memory Usage

We conducted a comparative analysis of memory usage dur-
ing inference across different fine-tuning methods, including
our own model (Table 6). All evaluations were performed

Question: A baby elephant is standing in the grass next to an adult elephant without tusks.  Answer: True.

Original Image YOLO Detection ViT [CLS] Random Filter EViT Our IPF

Question: A bird files right above the water in the image on the right.  Answer: True.

Question: A convertible is in a parking space overlooking the beach.  Answer: True.

Question: A black and white dog is standing in the grass looking at the camera.  Answer: True.

Figure 5. Visualizations of the comparisons of different patch filters, including the Random Filter, EViT (Liang et al., 2022) and our
proposed Image Patch Filter (IPF) in Double-Filter for METER (Dou et al., 2022b) on NLVR2 test set for NLVR task.
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with a batch size of 1 to ensure consistency.

METER Full tuning Adapter DAS Double-Filter

VQA 3068M 3090M 2950M 2906M
NLVR 3030M 3050M 2916M 2884M

Table 6. Comparison of memory usage on two tasks with different
tuning methods.
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Question: What is in the background?  Answer: “trees”, “sky”.

Original Image YOLO Detection ViT [CLS] Random Filter EViT Our IPF

Question: What is on the wall behind the girl?  Answer: “photo”, “picture”, “doll”, “painting”.

Question: Are there power lines in the image? Answer: “Yes”.

Question: What’s directly behind the bear?  Answer: “tree”, “trees”, “rocks”.

Figure 6. Visualizations of the comparisons of different patch filters, including the Random Filter, EViT (Liang et al., 2022) and our
proposed Image Patch Filter (IPF) in Double-Filter for METER (Dou et al., 2022b) on VQA task. Note that, the VQA online test set does
not provide standard answers, so we use the training examples to demonstrate the effectiveness of our IPF. Since IPF does not contain
training parameters, it does not affect the effectiveness verification.
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