RoboEXP: Action-Conditioned Scene Graph via Interactive Exploration
for Robotic Manipulation
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Fig. 1: Interactive Exploration to Construct an Action-Conditioned Scene Graph (ACSG) for Robotic Manipulation. (a) Exploration:
The robot autonomously explores by interacting with the environment to generate a comprehensive ACSG. This graph is used to catalog
the locations and relationships of items. (b) Exploitation: Utilizing the constructed scene graph, the robot completes downstream tasks by
efficiently organizing the necessary items according to the desired spatial and relational constraints.

Abstract— Robots need to explore their surroundings to adapt
to and tackle tasks in unknown environments. Prior work has
proposed building scene graphs of the environment but typically
assumes that the environment is static, omitting regions that
require active interactions. This severely limits their ability to
handle more complex tasks in household and office environments:
before setting up a table, robots must explore drawers and
cabinets to locate all utensils and condiments. In this work,
we introduce the novel task of interactive scene exploration,
wherein robots autonomously explore environments and produce
an action-conditioned scene graph (ACSG) that captures the
structure of the underlying environment. The ACSG accounts
for both low-level information, such as geometry and semantics,
and high-level information, such as the action-conditioned
relationships between different entities in the scene. To this

end, we present the Robotic Exploration (RoboEXP) system,
which incorporates the Large Multimodal Model (LMM) and
an explicit memory design to enhance our system’s capabilities.
The robot reasons about what and how to explore an object,
accumulating new information through the interaction process
and incrementally constructing the ACSG. We apply our system
across various real-world settings in a zero-shot manner, demon-
strating its effectiveness in exploring and modeling environments
it has never seen before. Leveraging the constructed ACSG,
we illustrate the effectiveness and efficiency of our RoboEXP
system in facilitating a wide range of real-world manipulation
tasks involving rigid, articulated objects, nested objects like
Matryoshka dolls, and deformable objects like cloth. Project
Page: https://jianghanxiao.github.io/roboexp-web/


https://jianghanxiao.github.io/roboexp-web/

I. INTRODUCTION

Imagine a future household robot designed to prepare
breakfast. This robot must efficiently perform various tasks
such as conducting inventory checks in cabinets, fetching
food from the fridge, gathering utensils from drawers, and
spotting leftovers under food covers. Key to its success is the
ability to interact with and explore the environment, especially
to find items that aren’t immediately visible. Equipping it
with such capabilities is crucial for the robot to effectively
complete its everyday tasks.

In this work, we investigate the interactive scene explo-
ration task, where the goal is to efficiently identify all objects,
including those that are directly observable and those that can
only be discovered through interaction between the robot and
the environment (see Fig. 1). Towards this goal, we present
a novel scene representation called action-conditioned 3D
scene graph (ACSG). Unlike conventional 3D scene graphs
that focus on encoding static relations, ACSG encodes both
spatial relationships and logical associations indicative of
action effects (e.g., opening a fridge will reveal an apple
inside). We then show that interactive scene exploration can
be formulated as a problem of action-conditioned 3D scene
graph construction and traversal.

Tackling interactive scene exploration poses challenges:
how can we reason about which objects need to be explored,
choose the right action to interact with them, and main-
tain knowledge about our exploration findings? With these
challenges in mind, we propose a novel, real-world robotic
exploration framework, the RoboEXP system. RoboEXP
can handle diverse exploration tasks in a zero-shot manner,
constructing complex action-conditioned 3D scene graph
in various scenarios, including those involving obstructing
objects and requiring multi-step reasoning (Fig. 2). We
evaluate our system across various settings, spanning simple,
single-object scenarios to complex environments, demon-
strating its adaptability and robustness. The system also
effectively manages different human interventions. Moreover,
we show that our reconstructed action-conditioned 3D scene
graph demonstrates strong capacity in performing multiple
complex downstream tasks. Action-conditioned 3D scene
graph advances LLM/LMM-guided robotic manipulation and
decision-making research [, 2], extending their operation
domain from environments with known or observable objects
to complicated environments with unknown or unobserved
ones. To our knowledge, this is the first of its kind.

Our contributions are as follows: i) we propose action-
conditioned 3D scene graph and introduce the interactive
scene exploration task to address the challenging interaction
aspect of exploration; ii) we develop the RoboEXP system,
capable of exploring complicated environments with unseen
objects in a wide range of settings; iii) through extensive
experiments, we demonstrate our system’s ability to construct
complex and complete action-conditioned 3D scene graph,
demonstrating significant potential for various manipulation
tasks. Our experiments involve rigid and articulated objects,
nested objects like Matryoshka dolls, and deformable objects

like cloth, showcasing the system’s generalization ability
across objects, scene configurations, and downstream tasks.

II. PROBLEM STATEMENT

We unfold this section with an introduction of action-
conditioned 3D scene graph, a novel scene representation
illustrating interactive object relationships (Sec. II-A). We
then formulate interactive scene exploration as an action-
conditioned 3D scene graph construction and traversal prob-
lem (Sec. II-B). Check our Appendix for more details on the
formal definition.

A. Action-Conditioned 3D Scene Graph

An action-conditioned 3D scene graph (ACSG) is an
actionable, spatial-topological representation that models
objects and their interactive and spatial relations in a scene.
Fig. 2 depicts a complete action-conditioned 3D scene graph
of a tabletop scene. One advantage of our interaction-aware
scene graph lies in its simplicity for retrieving and taking
actions on an object. Regardless of how complicated the
scene is, given our scene graph and a target object, an agent
merely needs to sequentially execute all the actions on the
paths from the root to the object node in a topological order
to retrieve the object. For example, in Fig. 2, to reach the
tape inside a cabinet whose door is blocked by a condiment,
according to the graph, one simply needs to: 1) pick up the
condiment on the table that blocks the cabinet door, and 2)
open the cabinet through the door handle.

B. Interactive Exploration

This subsection describes how we can construct a complete
action-conditioned scene graph of a real-world scene. This is a
challenging problem due to partial observability. For instance,
a banana cannot be populated without opening the cabinet. To
solve this task, we formulate the scene graph construction as
an active perception and exploration problem using POMDP-
inspired notations. Formally, at each time ¢, based on our past
graph estimation G*~!, and past sensor observations O'~1,
our agent takes an action A, which causes the environment
to transition to a new state, and the agent receives a new
observation O?, which is used to update its current inferred
graph G!. This update might include adding new nodes to
the graph or updating the state of an existing node. We will
then continue with exploration and keep updating the set of
remaining unexplored nodes U C V (see algorithm in our
Appendix).

The goal of the exploration is simple: discover and explore
all the nodes of the scene graph in as little time as possible.
Towards this, we formulate a reward function with three
terms:

R' = R!

t t
graph + Rexp]ore + Rtime

where Rl = [V'| — [V*7!| is the graph construction
term, which promotes our agent to discover as many nodes as
possible to the graph, RY, ... = max(0, [U*~!|—[U"]) gives

positive reward to actions that reduce unexplored node set,

which prioritize the agent to explore previously unexplored

nodes, and immediate reward R., . = -\, 0 < A < 1lisa



(a) Real Robot

Pa)
S , |
£ ,
(] I
= I
T :

>
g |
g ! |
g, :
O :
i Belong |
! — Drawer Handle®sy ——— Open :
1
i — Cabinet — |
2! —— Drawer HandleSyy——mm n Inside ) |
5 Belong . Ope ———— Banana___/ :
51 L :
= Belong |
T on r— Door Handle‘ — Open :
g | Table — Cabinet |, | —— ! :
< oi b |
5 — DoorHandIe‘ :
o Belong nside !
e > Open Tape ) i
: O Object Node
1 . —t I
i Pick |

<> Action Node

Fig. 2: Action-Conditioned 3D Scene Graph from Interactive Scene Exploration. To illustrate the construction process of our ACSG
in the interactive scene exploration, we depict a scenario wherein a robot arm explores a tabletop scene containing two cabinets and a
condiment obstructing the left door. (a) The robot arm actively interacts with the scene, completing the interactive scene exploration
process. (b) We showcase the corresponding low-level memory in our ACSG, which represents the geometry and semantic information of
the scene. The small graph within each visualization represents a segment of the final scene graph. (c) We present the high-level memory
of our action-conditioned scene graph. The graph reveals that picking up the condiment serves as a precondition for opening the door, and
opening the bottom drawer allows the observation of the concealed tape and banana.

negative time reward that optimizes the time efficiency and
allows the exploration to terminate when there is no more
node to explore.

III. METHOD

To tackle the task outlined in Section Sec. II, we present
our RoboEXP system, designed to autonomously explore
unknown environments by observing and interacting with
them.

At the core of our system is a large foundational model-
powered instantiation of ACSG. Specifically, our framework
consists of four modules: perception, memory, decision-
making, and action, as shown in Fig. 3. To address the
challenge of perceiving what is present in the scene, our
perception module (Fig. 3a) utilizes Grounding-DINO ([3]),
Segment Anything in High Quality (SAM-HQ) [4, 5], and
CLIP [6] to detect objects or parts and extract their language-
embedded semantic features. Our decision-making module
(Fig. 3c) employs the rich commonsense knowledge contained
in large multimodal models, such as GPT-4V [7, 8], to assist
in selecting which objects to explore and what actions to take,
and in validating their plausibility. Once the decision-making
module has chosen a skill, our action module (Fig. 3d) is then
activated to follow the plans formulated by the prior modules.
During the entire physical interaction process, our memory

model (Fig. 3a), which maintains the action-conditioned scene
graph, will be continuously updated to preserve the scene’s
knowledge for future exploration and exploitation. Despite its
strong capacity, our hardware system is simple—it requires
only a single RGB-D wrist camera as sensor input and uses
a single robot arm for actions (see our appendix for more
details).

IV. EXPERIMENTS

To assess our system’s efficacy across various exploration
scenarios, we compared it with a strong baseline by aug-
menting GPT-4V with ground truth actions. We designed five
types of experiments, each with 10 different settings varying
in object number, type, and layout. Our quantitative analysis
reveals that our RoboEXP system consistently surpasses the
baseline across various tasks. Furthermore, we validate the
performance of our system in constructing ACSG through
qualitative demonstrations. Check the Appendix and our
supplementary video for more details on the qualitative and
quantitative results.

Evaluation. To thoroughly assess the efficacy of our system
compared to the baseline, we have designed five key metrics
(Success, Object Recovery, State Recovery, Unexplored Space,
Graph Edit Distance) to measure its performance. It is crucial
to note that the output of our task, represented by ACSG,
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Fig. 3: Overview of Our RoboEXP System. We present a comprehensive overview of our RoboEXP system, comprised of four modules.
(a) Our perception module takes RGBD images as input and produces the corresponding 2D bounding boxes, masks, object labels, and
associated semantic features as output. (b) The memory module seamlessly integrates 2D information into the 3D space, achieving more
consistent 3D instance segmentation. Additionally, it constructs the high-level graph of our ACSG through the merging of instances. (c)
Our decision-making module serves dual roles as a proposer and verifier. The proposer suggests various actions, such as opening doors
and drawers, while the verifier assesses the feasibility of each action, considering factors like obstruction. (d) The action module executes
the proposed actions, enabling the robot arm to interact effectively with the environment.

aligns precisely with the format of ACSG for our system.
Conversely, for the baseline, we manually construct ACSG
based on its actions and the new observations it uncovers.
Due to the unstructured nature of the raw scene graph from
the baseline, we carefully refine it according to the observable
objects, providing an upper-bound baseline for comparison
during evaluation.

Comparison. The quantitative findings underscore the
superior performance of our system compared to the baseline
method. Our approach showcases a notable enhancement
across all metrics, outperforming the baseline by a consid-
erable margin. The collective assessment of success rate,
object recovery, and unexplored space metrics unequivocally
validates the efficacy of our system in exploring unfamiliar
scenes through interactive processes. It is essential to highlight
that in the case of object recovery, the baseline method may
occasionally choose to randomly open certain drawers or
doors to unveil objects. This randomness contributes to a
seemingly higher object recovery rate for the baseline, which
may not necessarily correlate with its overall success. The
unexplored space metric shows that our system is much more
stable in exploring all need-to-explore spaces.

Moreover, both the success rate and graph edit distance
underscore the close alignment of our system with human
actions, highlighting the efficiency of our approach across
diverse scenarios. The state recovery metric assesses whether
the final state post-exploration resembles the initial state. Our
system consistently shows effective state recovery; however,
the baseline may trick this metric by opting not to take any
action, resulting in an artificially high score in this aspect.

Our results also underscore our system’s ability to achieve
robust and efficient exploration throughout the exploration

process. Our system excels in efficiently discovering all
concealed objects, whereas the baseline fails either due to
a lack of early-stage actions or an inability to explore all
need-to-explore spaces even upon completion. The analysis of
errors in both our system and the baseline reveals the specific
failure cases encountered by the baselines. In contrast, our
system demonstrates enhanced robustness in both perception
and decision-making.

Our qualitative results further illustrates various exploration
scenarios along with their corresponding ACSG. These
scenarios encompass ACSG with varying width or depth,
highlighting our system’s adaptive capability across diverse
objects such as rigid, articulated objects, nested objects,
and deformable objects. In addition, the scenario in Fig. 2
shows that our system is able to deal with the scenario with
obstruction.

V. CONCLUSION

We introduced RoboEXP, a foundation-model-driven
robotic exploration framework capable of effectively identify-
ing all objects in a complex scene, both directly observable
and those revealed through interaction. Central to our system
is action-conditioned 3D scene graph, an advanced 3D scene
graph that goes beyond traditional models by explicitly mod-
eling interactive relations between objects. Experiments have
shown RoboEXP’s superior performance in interactive scene
exploration across various challenging scenarios, significantly
outperforming a strong GPT4V-based baseline. Notably, the
reconstructed action-conditioned 3D scene graph is crucial
for guiding complex downstream manipulation tasks, like
preparing breakfast in a mock-kitchen environment with
fridges, cabinets, and drawer sets.
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