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ABSTRACT

We propose a simple, scalable algorithm for using stochastic interpolants to per-
form sampling from unnormalized densities and for fine-tuning generative mod-
els. The approach, Tilt Matching, arises from a dynamical equation relating the
velocity field for a flow matching method to the velocity field that would target
the same distribution tilted by a reward. As such, the new velocity inherits the
regularity of stochastic interpolant transport plans while also being the minimizer
of an objective function with strictly lower variance than flow matching itself. The
update to the velocity field that emerges from this simple regression problem can
be interpreted as the sum of all joint cumulants of the stochastic interpolant and
copies of the reward, and to first order is their covariance. We define two ver-
sions of the method, Explicit and Implicit Tilt Matching. The algorithms do not
require any access to gradients of the reward or backpropagating through trajecto-
ries of the flow or diffusion. We empirically verify that the approach is efficient,
unbiased, and highly scalable, providing state-of-the-art results on sampling un-
der Lennard-Jones potentials and is competitive on fine-tuning Stable Diffusion,
without requiring reward multipliers. It can also be straightforwardly applied to

tilting few-step flow map models.

1 INTRODUCTION

Generative models built out of dynamical transport
like flow and diffusion models are highly scalable
tools that serve as building blocks for foundation

models across industries (Rombach et all 2022}
Geffner et all, [Watson et al.l 2023} [Brooks|
et al., 2024} [Zeni et all, [2023). These models work

by building a continuous time map connecting a
base distribution to a target distribution, realized by
solving a differential equation whose coefficients are
outputs of neural networks.

There is now a vested interest in applying them in
settings where there is not a priori an abundance
of data to learn from to complete a task of inter-
est. These include learning to sample under Boltz-
mann distributions appearing in molecular dynamics
INoé et al.| (2019); Herron et al.| (2024); Plainer et al.|
(2025) and statistical physics |Albergo et al.| (2019);
Gabrié et al| (2022); [Kanwar et al.| (2020); Nicoli
et al|(2021), as well as fine-tuning an existing gen-
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Figure 1: Example improvements to Stable Dif-
fusion 1.5 using Tilt Matching and ImageReward.

erative model so as to produce samples that align with user requests.

Both of these problems can be framed as tilting some existing distribution toward a new target. For
Boltzmann sampling, this means adapting the energy function defining the theory; for fine-tuning,
this means adapting the base generative model to score highly against a reward r(z). Our aims in this
paper are precisely centered around this picture. Given access to samples from a distribution with
density p;(z) : R? — R, we want to learn to sample the tilted distribution Pla X P1 e?(*) where



Under review as a conference paper at ICLR 2026

r(x) is a scalar function which defines the tilt and « is an annealing parameter that characterizes
the extent of the tilt. This initial distribution p; = p1,4—¢ could be given by an existing generative
model, as in the case of fine-tuning, or it may be a reference distribution that is easy to sample with
conventional techniques when performing sampling. We will ultimately be interested in p; ,—1, i.€.
the density fully tilted toward the reward.

While diffusions (Song et al.l [2020; |Ho et al. [2020) and flow-based models (Lipman et al.| [2022;
Albergo & Vanden-Eijnden| 2022} [Liu et al., |2022) work well when data is available, regression
objectives for the data-less contexts we focus on here are still not available, or come with caveats. In
what follows, we briefly summarize the highly scalable generative models. Then, we will motivate a
practical modification to these approaches so that they maintain many of their appealing optimization
qualities while making them applicable to fine-tuning and sampling. To this end, we specify our
main contributions:

* We derive an evolution equation for stochastic interpolant velocity fields under reward tilts
that has a fundamental connection to the higher order moments between the interpolant and
the reward.

* We show how the above fact allows us to construct Tilt Matching, a family of simple itera-
tive regression loss functions for the tilted velocity field that do not rely on backpropagating
through generated trajectories, do not require spatial gradients of the reward, can avoid like-
lihood computations during training, and whose variances are strictly less than that of flow
matching itself and can be further systematically improved with control variates.

* We instantiate two versions of the objective, Explicit Tilt Matching and Implicit Tilt Match-
ing; the latter completely removes discretization errors from iteratively updating the tilt.

* We show how the method can be applied to both sampling distributions known up to nor-
malizing constant and to fine-tuning existing generative models, where we achieve state-of-
the-art performance on sampling Lennard-Jones potentials with diffusion based samplers,
and can improve perceptual scores of Stable Diffusion 1.5 with a straightforward applica-
tion of the algorithm.

2 RELATED WORK

Neural Samplers Employing transport in Monte Carlo sampling algorithms has been an active
research topic beginning with the work of [Marzouk et al.| (2016), and made parametric with neu-
ral networks in (Noé€ et al., [2019; |Albergo et al.l 2019), using coupling-based normalizing flows
(Rezende & Mohamed, 2015} IDinh et al., [2017). Recent works have sought to perform this sam-
pling with continuous time flow and diffusion models. These “neural samplers” take on various
forms. Some approach the problem from an optimal control perspective (Zhang & Chenl 2022;
Tzen & Raginsky} 2019} |[Havens et al., [2025)) involving backpropagating through stochastic trajec-
tories. Others interface with annealed importance sampling Neal| (1993)) and attempt to learn drift
coefficients along a geometric annealing path either through trajectories (Vargas et al., [2024) or
physics informed neural network (PINN) objectives (Maté & Fleuretl [2023;; |Tian et al.| [2024; |Al-
bergo & Vanden-Eijnden, 2024; [Holderrieth et al.| |2025)). The trajectory based losses can become
unstable if the number of steps taken in solving the SDE is not sufficiently small, and while the
PINN based losses avoid this, they can sometimes involve unstable or expensive terms based off of
derivatives of neural networks in the loss function. Other works like (Vargas et al.| |2023) also try
to learn to sample along the time-dependent density of a diffusion process, but their formulation re-
quires backpropagating through trajectories. Our proposed approach inherits the potential efficiency
of coupling based flows because all of it can be defined with the any step flow map (Boffi et al.,
20245 2025; |Sabour et al., |2025)); does not rely on backpropagating through trajectories; does not
require computation of likelihoods; and does not require enforcing a PINN loss with gradients of
neural networks in it. A related method PTSD (Rissanen et al., [2025) iteratively trains a diffusion
model along a temperature ladder, using approximate samples coming from a diffusion model using
a finite-difference approximation of the score function. PTSD also employs reweighting and local
parallel tempering refinement to reduce bias. These techniques are compatible with our framework,
while the ITM objective avoids the finite-difference approximation error.
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Figure 2: Schematic overview of the proposed method. When a stochastic interpolant is used to learn a
generative model b; ,—o that samples p; —o and in particular p; o—o (gray curve), then the evolution of that
velocity field in a in order to sample p1,a>0 = % pl,oe‘”(’:), where 7 is a reward function, has closed form
given by the covariance of the dynamics of the interpolant at (¢, a) and the reward. The velocity field, denoted
as up or down arrows showing direction of motion in x, changes from negative to positive in the above toy
example.

Fine-tuning flows and diffusions Modifying the drift of the generative process is the predom-
inant strategy for fine-tuning dynamical transport models. Existing work follows two high-level
approaches: 1) reward-maximizing methods that directly optimize the quality of generated sam-
ples, such as D-Flow [Ben-Hamu et al| (2024) and DRaFT [Clark et al.| (2024)), and 2) distribution
matching techniques that align the model with a reward-tilted distribution to prevent overfitting,
seen in DEFT (Denker et al [2024), adjoint matching (Domingo-Enrich et al.| 2025), GFlowNet
approaches (Zhang et al., 2024} [Liu et al.}[2025b), and approaches adapted from DPO
(2024). Nevertheless, these algorithms frequently suffer from major disadvantages, including the
need to differentiate through trajectories [Denker et al.| (2024); Ben-Hamu et al.| (2024)); [Clark et al.|
or the requirement of a differentiable reward function (Ben-Hamu et al., [2024; |Clark et al.|
2024; [Zhang et al| 2024} [Liu et al., 2025b; [Domingo-Enrich et al.l 2025), while some are only ap-
proximate [Wallace et al.| (2024). The proposed tilt matching method is free from these limitations.

2.1 DYNAMICAL TRANSPORT, STOCHASTIC INTERPOLANTS, AND FLOW MAPS

Many state-of-the-art generative models that aim to model a data distribution p;(x) learned from
samples {z1}Y, do so by means of dynamically mapping samples from a reference distribution
2o ~ po. This mapping is defined by a drift coefficient in a flow |Albergo & Vanden-Eijnden|(2022);
Lipman et al.| (2022) or diffusion process Song et al.| (2020); [Ho et al.| (2020), e.g. appearing in the

ordinary differential equation (ODE)
Ty = bt(ivt), Zo ~ Po (D

where b; : [0,1] x R — R? is a vector field that governs the transport such that the solution
to equation [I] up to time ¢ produces a sample z; ~ p;. The PDF p; of this process satisfies the
continuity equation

Oipe +V - (bepy) = 0, Pt=0 = Po- 2
In generative modeling, our aims are to learn b; over neural networks such that the marginal law

arising from () satisfy (Z)). A highly scalable, unifying perspective for dynamical transport models is

that of stochastic interpolants|[Albergo & Vanden-Eijnden|(2022);|Albergo et al| (2023)). A stochastic
interpolant I;(zg, z1) : [0,1] x R? x R? — R? defined as

Iy == oqxo + By xo, 1 ~ p(xo, 1), 3)
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where a4, B; are functions of time satisfying ag = 51 = 1 and oy = By = 0, is a stochastic process
such that Law([;) = p;. Importantly, the velocity field associated to this p; which solves equation
has a closed form which is given by b;(x) = E[I;|I; = x|, where the expectation is taken over the
coupling (zg, x1) ~ p(xo,x1) conditional on I; = x. Plugging this expression into a regression loss
function to learn b; over neural networks gives, by tower property of the conditional expectation,

N .12
by(Iy) — Iy dt. 4

1
b; = arg min / E
bt 0
This procedure is the backbone of various large-scale generative models across various domains
such as image and video generation |[Esser et al.[|(2024) and protein design |Geffner et al.[(2025). The
main question to keep in mind going forward is: how is the solution by of one transport problem
related to the solution of another?

2.2  FINE TUNING AND SAMPLING AS TILTING

One might ask how this b; could be modified such that it solves the transport not for p;, but rather
the tilted distribution p; , which defines our fine-tuning or sampling problem. That is, how are the
velocity fields b; ,—o and b, >0 related, and is there a learning paradigm that would allow us to
estimate b, , when initially given access only to the ground truth velocity field b; ¢ for the original
generative model? This would allow us to ultimately evolve b, , all the way to b; ;, which would
be the velocity field that can be used to directly sample the tilted distribution. We now introduce
our method focused on this evolution, which we call Tilt Matching Models (TMMs), a scalable
procedure for adapting velocity fields under tilting.

3  DERIVING TILT MATCHING

To approach this question, consider modifying (3) so that it instead uses samples 2 ~ p1 4
I} i= oywo + Brat )

i.e. Law(I') = p,q. Learning the velocity directly from this interpolant would be convenient, but
we do not have samples a priori under p; 40 to construct it, so this object is not immediately useful.
However, it is possible to define b; ,, in terms of the original interpolant, which we do have access
to, combined with weights via:

E[[pe*")|I) = a]

bt,a(ﬁ[}) = E[ear(ml)u? — x] .

(6)

This relation is proven in the appendix, and it also straightforwardly holds for a shift of arbitrary
size h from a to a + h:
E[ffeh’"(g”mj'ta =z

bt,a—&-h(l') = E[ehr(m‘f)u'? = x] '

)

If h is large, then the variance of this expression may make any computational realizations of it
impractical. Instead, by taking the derivative of (7)) with respect to a, we can ask how b, , should
evolve to anneal it toward our target velocity field. The following proposition shows that the evolu-
tion of the velocity field b; ,, () associated to equation with respect to a has a closed form defined
solely in terms of known or learnable quantities:

Proposition 1. (Covariance ODE.) Let I} = oz + Bix{ be the interpolant constructed from
samples x¢ ~ p1,q(x). Then the augmented drift b, ,(x) satisfies
6bt7a (J?)
oa
where the expectation is taken over the law of I{ conditional on I} = x. The right-hand side
of this equation is the conditional covariance Cov,(I7, r(x$) | I} = ).

= Elfr(@))|I} = 2] = bra(@) Elr@i)If = 2], bra—o(z) =bi(z) (¥
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Proposition [I] is proven in Appendix [A] The above relation can be interpreted as a dynamical for-
mulation of the Esscher transform (Esscher, |1932)) arising from . The Esscher transform charac-
terizes how expectations evolve under exponential tiltings. Here, applied to stochastic interpolant
velocity fields, tilting by e""(*) induces a flow on bi, whose infinitesimal generator is the con-
ditional covariance between the interpolant and the reward. Importantly, this evolution of b; , with
respect to a only depends on the current b, , (), the modified interpolant equation and the reward.

3.1 EXPLICIT TILT MATCHING

First order expansion. Because we can use the current b; ,(x) (or its flow map equivalent) to
produce samples x{, this suggests that the corrections to b; ,—¢ that need to be learned to sample
the true tilted density can be learned in an iterative fashion by discretizing equation [§] That is, for
0 < h < 1, we can write an explicit Euler discretization as

Oby o ()

bt,a+h(m) = bt_,a(x) + hT + O(hz) (9)

= bra(z) + h(]E {I}? r(z1)

I = ] = bia(@)Elr(@9) | I} = 2] ) + O(h2).  (10)

This perspective highlights TM as an iterative, covariance-guided procedure: starting from b; g,
one can generate successive updates by p,, b op, . . ., b1 that gradually transform the velocity field
toward the fully tilted distribution. As h — 0, this discretization recovers the continuous evolution
in equation ensuring convergence to the desired b, ;. To formalize this, we introduce the residual
operator:

TEN = bra (1) + h( 12 (@) = bea(I) r(a)) an

residual

The following proposition shows that b; . can be efficiently regressed and is first-order accurate
using what we call Explicit Tilt Matching (ETM):

Proposition 2. (Explicit Tilt Matching.) Assume a + by o(x) is C* with ,b; o given by ,
and let h > 0. Then, the unique minimizer of the regression objective

LI n(b) = /0 E [6e(1¢) = Than]|” . (12)

is given by
bt.a+n (@) = ElTyan | If = 2]. (13)
As such, training lA)t7a+h to optimality on produces a first-order accurate Euler update of

the tilted velocity. lterating for a = kh with samples x{* drawn using the current model
defines a consistent scheme that converges to b, 1 as h — 0 under the above regularity.

\ J

This procedure is appealing because it gives a velocity field b; ,—; with favorable regularity con-
ditions since the ultimate transport from p;—g 4=1 t0 pt=1,4=1 follows the interpolant path. This
should make b, ,—; well-posed to be estimated with neural networks, as the transport for such paths
starting from the Gaussian is geometrically smooth and does not exhibit any teleportation. At the
same time, there are two main approximation errors to account for, which we outline next.

Approximation error due to incomplete minimization of the objective. A first source of error
arises if the regression problem in is not minimized exactly at each iteration. This means the
learned drift IA)m may deviate from the ideal b, ,, with errors compounding over successive updates.
To mitigate this, we can introduce importance weights during training, which corrects for residual
mismatch between the model distribution and the tilted target. This strategy effectively debiases the
procedure and prevents incomplete optimization from undermining convergence.

Discretization error in a. A second source of error comes from discretizing the Covariance ODE
in the annealing parameter a. Since defines a continuous evolution, replacing it with discrete
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steps introduces a bias. In practice, this issue is negligible: we typically choose h to be very small,
so the resulting discretization bias can be almost completely eliminated. Moreover, the step size can
be adapted dynamically using diagnostic quantities such as effective sample size (ESS) or changes
in the estimated drift, which ensures the updates remain close to the continuous trajectory. How-
ever, computing diagnostics like the ESS can be computationally expensive, as it often requires
calculating the divergence of the learned vector field. This motivates an alternative approach that
eliminates discretization error by construction, rather than managing it with this adaptive scheme.

3 3
h3K3

3.2 IMPLICIT TILT MATCHING

h?K?
Higher order expansions. The explicit scheme defined by b?*h
(12) arises by discretizing the evolution of b, , given in (8) h Cova(2, 7| 19)
with a forward Euler step. While convenient, such updates -
inherit a discretization bias, which, even if small, might com-
pound over successive steps in a. A natural extension is to by
consider taking higher-order Taylor expansions. Extending (9)
to all orders gives Figure 3: Pictorial additivity of higher

order corrections to by q4n. First or-

hn a”l A R T .
b ) =b, (x o b, ()], 14) der is the covariance, while higher or-
tath(?) ta(@) + nz>0 n! Oa™ [ tal )] 14 der terms are cumulants K.

This statement on its own is contentless, but the following proposition shows that each term in the
expansion has rich meaning:

Proposition 3. (Tilt expansion.) For b, = E[I¢|I¢ = z], the n'" term 8'9; [bt,a(2)] in the
expansion in is the (n + 1) order joint cumulant of the interpolant and n instances of the
reward, k™ (I, r(z$),...,r(z})).

This result is proven in Appendix [A]and relies on a relation between the Esscher representation of
bt,a+n and the moment generating function of the interpolant density. Since the cumulants involve
higher order moments of the reward, a Monte Carlo training objective that attempts to match these
term by term would be computationally infeasible.

Expanding to all orders. In order to fully eliminate the discretization error, we should consider
all higher-order cumulants. Surprisingly, this expression is tractable as we show in the following
proposition. If we define the implicit residual operator as

I o= by o (1) + ("0 — 1) (I = beasn(@)), (15)

residual

then we can learn the infinite cumulant expansion by directly matching against it:

Proposition 4. (Implicit Tilt Matching.) Let by o4 be defined to all orders as in (I4). Then

h™ o" a .
> 7 gan bra(@)] = B[ 1) (I = brasn(@)) 11} = ] (16)
n>0

and by o+, is the minimizer of
1
A~ A~ a 2
Loasn(b) = /O E||be(I7) — Tiam|| dt, (17)

for any h, where expectation is taken over (xo, x$) ~ p(xo,x$) conditional on I = .

This result removes the discretization error inherent to ETM and shows that all orders of the correc-
tion to the interpolant velocity field are directly learnable. Enforcing (16)) is equivalent to enforcing
that the residual update to b; o, is exact to all orders. We call this condition implicit tilt matching
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because the residual term that we add to b; , depends on b; ., itself, leading to this fixed-point
method.

The expression on the right-hand side of (I6) may seem opaque, but it can be motivated with a
simple derivation. Starting from the expression for the velocity b, 4 in , we can multiply by the

conditional expectation of the weight E[e""(*)|I# = x] and rearrange terms to obtain the optimality
condition for (17) in terms of by 4n

E[ehr(w{f) (btﬂ_;,_h(l') - Ig)

I8 = x} —0. (18)

Notice that if we take A to be small, replace €""(*1) ~ 1+ hr(x¢) and replace one of the by oy, With
bt.q, then we recover the optimality condition of ETM. Thus we can view Implicit Tilt Matching as a
generalization of the discretized procedure in (9 since its linearization recovers the ETM covariance
update as specified by (9).

Variance reduction via control variates. We can further introduce a control variate c(z) : R? —
R into (I8)) to obtain a generalized optimality condition

E[e(@) (btan(@) = bua(@)) + (€7D = o(@)) (brasnl@) = ) | I =] =0, (19)

where we used the fact that E[c(z)[2|I¢ = z] = E[c(z)by o (z)|I¢ = z]. The identity (19) holds for
any choice of ¢(x) and therefore suggests a family of valid implicit objectives we could use to find
bt,a+n- If we enforce via a regression loss, the c-ITM objective would take the general form of

1
clah(®) = / E [ o) (bolI7) = braIf)) + ("D — e(1p)) (bu(17) = )] .

(20)
Alternatively, we can ensure (I9) by finding the fixed point of the following stopgrad objective

1
LE M (b) = /0 B|[e(18) (b (If) b a(I3)) + (") —c(I7)) (stopgrad(by(I8)) —I¢)||*d.

1)
Notice that the gradient of the latter objective is a c¢(x) scaling of the former’s gradients. The
role of ¢(z) is to control the variance of the Monte Carlo estimator of the loss function. Notice
that the choice ¢(x) = 1 recovers exactly. Moreover, this choice has the convenient property
that for h < 1, it is close to the optimal control variate since ¢(z) = 1 clearly minimizes the
variance conditional on I = = when h = 0. (See the proof of Proposition[5}) More generally, one
can optimize ¢(x) to minimize the variance, yielding adaptive control variates that further stabilize
training.

In practice when £ is very small, these higher order cumulants are likely negligible, and this process
is still driven by the covariance. Nonetheless, it is now robust to any discretization errors, which we
will explore experimentally later.

3.3 REWEIGHTING FLOW MATCHING VERSUS TILT MATCHING

In principle, the tilted drift b; 4 could be obtained by applying flow matching directly to the

interpolant I with samples 29" ~ p1 o4

1
brash = arg min/ E{Hbt(fg*h) _ I;”h]ﬂ dt. (22)

by JO
Since we do not have samples from p; ., the expectation in @I) must be expressed in terms of

Pt.q, from which we do have samples. Introducing importance weights leads to what we call the
reweighted flow matching (WFM) objective:

1
L0 = [ E[m D i) - 12| ar @
0

Notice that this is precisely the ¢-ITM loss with ¢(z) = 0. Therefore WFM is an instantiation
of c-ITM. As such, it has the same expected loss as any c-ITM variant. What differs between
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the different algorithms is how the Monte Carlo estimates of the loss are taken: WFM regresses
directly on I, whereas ITM substitutes the dynamics of stochastic interpolant I £ with its conditional
expectation by ,(I7*). As such, ITM enjoys strictly lower variance than the WFM objective, at least
for sufficiently small h:

Proposition 5. (Variance control). Let LS., and L™, | be the regression losses in

and (I2)). For sufficiently small h, the gradient estimator of WFM has variance at least as large
as that of ACM:

Var[VLYEM T > Var[VelDN ). (24)

This result formalizes that ITM enjoys a variance advantage over WFM because it centers updates
on the conditional mean b; ,(I;*) rather than the noisy sample I7. We find this bound to have a
meaningful implication in numerical experiments.

1.4 0.06 ] True data

4 NUMERICAL EXPERIMENTS o] Proposal

0.05

1.04
An algorithm detailing the numerical im- 0041

plementation of ETM or ITM are given ]
in Appendix [C] In what follows, we test 0]

0.03 1

the proposed algorithms on both sampling .4 0021

Lennard-Jones (LJ) potentials (of 13 and ] T

55 particles) and fine-tuning Stable Diffu- J

sion v1.5. For both setups, we build on " : i s Mo o e o
existing code bases, e.g. from (Akhound- Interatomic distance E(x)

Sadegh et al | [2025) for the L] experiments Figure 4: Comparison of LJ13 results using explicit tilt
and (Domingo-Enrich et al, 2025}, [Bless- matching vs ground truth molecular dynamics data. Left:
ing et al, 2025) for the fine-tuning. All Histogram of interatomic distances amongst particles in the
system. Right: Histogram of the energy of 10000 samples
of the system. The method shows strong alignment with both
measures.

network architectures are the same unless
otherwise stated.

4.1 SAMPLING LENNARD-JONES POTENTIALS

In the context of sampling, the goal is to draw samples from a target density p;, which is typi-
cally the Boltzmann distribution for a given potential energy function E(x), such that pq(z)
exp(—FE1(z)). For TM, we begin with a simple prior density, p1,4=0, which corresponds to an
initial potential F(z), and define an annealing path via linear interpolation:

E.(z) = (1 —a)Ey(z) + aF1(x). (25)

This defines a family of densities p1 4(x) x exp(—FEq(z)) for a € [0, 1]. This path is equivalent to
the geometric annealing path described by the reward tilt formulation, where the reward is given by:

r(z) = Eo(z) — Ex(2) (26)

A common choice for the prior p; 4—o is a Gaussian distribution. For molecular systems, a more
effective strategy is to define the prior as a high-temperature analogue of the target by setting the
initial potential as Ey(x) = E1(x)/To, where Ty > 1 is a high temperature. The resulting prior,
p1,0=0 X exp(—E1(z)/Tp), has a smoothed energy landscape that facilitates more efficient MCMC
sampling. We adopt this temperature annealing approach for our numerical experiments.

We measure the performance of Tilt Matching against other methods by computing the effective
sample size (ESS), the 2-Wasserstein distances on the energy and interatomic distance between the
ground truth and our model outputs. We use the code from (Akhound-Sadegh et al.| 2025)) to perform
the calculation. Note that their code attempts to replicate the Dist Vs as it appears in (Havens et al.,
2025]), which is also where the results for DDS and PIS come from, but that code is not available for
exact reproduction.

We highlight a key advantage of ITM is its computational efficiency, as it performs well without
requiring an adaptive annealing schedule. This contrasts with our implementation of ETM, where its



Under review as a conference paper at ICLR 2026

Table 1: Performance comparison on LJ-13 and LJ-55 using the effective sample size, 1D Energy histogram
2-Wasserstein and Distance 2—Wasserstein metrics. Missing —— entries indicate the metric is not applicable to
that method or not available. We omit the ESS comparison for LJ-55 because it is too computationally intensive
for us to compute, and other works do not provide a number to juxtapose with for similar reason.

LJ-13 LJ-55

Method ESST E()W:2] DistWa| E()W2] DistWs ]
DDS (Vargas et al.,[2023) 0.101 24.61 1.99 173.09 4.60
PIS (Zhang & Chen,|[2022) 0.004 1.93 18.02 228.70 4.79
iDEM (Akhound-Sadegh et al.|[2024) 0.231 1.352 0.127 93.53 4.69
Adjoint Sampling (Havens et al.|[2025) —— 2.40 1.67 58.04 4.50
ASBS (Liu et al.} 2025a) —— 1.28 1.59 27.69 4.00
PITA (Akhound-Sadegh et al.||2025) —— 2.26 0.040 - -
ETM (Ours) 0.740 0.270 0.012 - -
ITM (Ours) 0.507 0.879 0.014 29.52 0.054

strong performance relies on an adaptive schedule guided by the ESS. The ESS calculation, however,
requires computing the divergence of the learned vector field, which is a computationally intensive
step. The overhead from this calculation made applying our adaptive ETM to larger systems such as
LJ-55 impractical, highlighting that ITM is a more scalable and efficient algorithm.

4.2 FINE-TUNING STABLE DIFFUSION 1.5

To validate our proposed method, we finetune Stable Diffusion 1.5 (Rombach et al.l|2022) using the
ImageReward score (Xu et al.||2023)) as the objective. Our implementation builds upon the codebase
and parameters established in (Domingo-Enrich et al., 2025} Blessing et al., 2025). As our method
operates within the stochastic interpolant framework (Albergo et al., [2023)), we adopt the necessary
transformations to recast the underlying denoising diffusion model, following the procedure detailed
in the Appendix of (Domingo-Enrich et al.| [2025).

To ensure a comprehensive evaluation and mitigate concerns of overfitting to a single reward met-
ric, we additionally assess performance across three distinct axes: (1) text-to-image consistency,
measured by CLIPScore (Hessel et al., 2021); (2) human aesthetic preference, quantified by HPSv2
(Wu et al 2023); and (3) sample diversity, evaluated with DreamSim (Fu et al., [2023)). We primar-

Method ImageReward (1) ClipScore (1) HPSv2 (1) DreamSim (1)
SD 1.5 (Base) 0.1873 £0.0762  0.2746 £0.0032 0.2566 = 0.0030  0.3849 + 0.0105
AM(A=1) 0.2170 £0.0755  0.2754 £0.0032 0.2576 £ 0.0030 0.3826 + 0.0104
ETM (A=1) 0.3799 £ 0.0744  0.2801 = 0.0036 0.2655 +0.0029 0.3530 £ 0.0118
ITM(A=1) 0.4465 = 0.0709  0.2794 £ 0.0036  0.2659 + 0.0027 0.3383 +£0.0116
AM (A =10%) 0.7873+0.0689  0.2792 +0.0033 0.2791 + 0.0028 0.3363 + 0.0101

Table 2: Finetuning results on Stable Diffusion 1.5. We compare our method against Adjoint Matching
(Domingo-Enrich et al.| 2025). We report on ClipScore (Hessel et al.| [2021), HPSv2 (Wu et al., 2023), and
DreamSim (Fu et al.}[2023). For all metrics, higher values are better, as indicated by the up-arrow (7).

ily benchmark against adjoint matching (Domingo-Enrich et al., 2025)), the current state-of-the-art
for reward finetuning, which has demonstrated superior performance over prominent methods like
DRaFT (Clark et al., |2024), DPO (Wallace et al.,[2024)), and ReFL (Xu et al., [2023)). We emphasize
that we finetune only on the ImageReward score, but measure performance on other scores as well.

Our results are summarized in Table 2} example images can be found in [D] It is standard practice
for adjoint matching to employ a reward multiplier, A\, which amplifies the reward signal to steer the
learned distribution towards pl(x)e(“r(“?)). A key finding in our experiments is that our method
achieves competitive performance against this strong baseline without a need for such a multiplier
(A = 1) or other hyperparameter tuning. This suggests that our approach provides a direct and stable
mechanism for incorporating reward signals into the generation process, likely due to the fact that it
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does not rely on spatial gradients of the reward for training or generation. Further gains could likely
be made by hyperparameter sweeps.
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A PROOFS

Proposition 1. (Covariance ODE.) Let I} = «auxo + Pix§ be the interpolant constructed from
samples x§ ~ p1,q(x). Then the augmented drift b, ,(x) satisfies
Oby o ()
da

where the expectation is taken over the law of I conditional on I = x. The right-hand side of this
equation is the conditional covariance Cov, (I, r(z§) | If = x).

= E[fr(@)|If = 2] = bea(@) E[r(@f)|[f = 2], bra—o(z) =bi(x)  (§)

Proof. To show equation|[8] note that the pdf of I{* is given explicitly as
pra(r) = E[3(z — 1))V, @7)

where 2 ~ po,z) ~ p1,0 and we ignore the normalizing constant as it will not be relevant for the
proof. Taking the time derivative on both sides of this equation

~V -+ (bt,a(@)pr.a(@)) = =V - E[I{5(z — I)e* )] (28)
where we assume p; ,(x) > 0 else by () = 0. Isolating b; () gives

by () = L0 = ID)er )]
S BB — e @]

(29)

Dividing the numerator and denominator by E[§(x — I?)] proves equation @ Taking its derivative
with respect to a and using the quotient rule, we have

Dy () = B0 = )er@Dr@)] B0 — I)e D) Bl — I)errDr(at)
Oa B — e D] (e~ )e @] Ef3(r — 1)e D)
(30)
= E[i{r(z9)| I} = 2] = be,a(2) E[r(2) |1} = 2], 31)
which completes the proof. O

Proposition 2. (Explicit Tilt Matching.) Assume a — by () is C* with 0,by o given by , and let
h > 0. Then, the unique minimizer of the regression objective

1
7 7 2
LN, (b) = / E ||be(If) = Tyan || dt. (12)
0
is given by
btasn(®) = E[Tpan | If = 2]. (13)

As such, training lA)t)aJrh to optimality on produces a first-order accurate Euler update of the
tilted velocity. lIterating for ai, = kh with samples ©{* drawn using the current model defines a
consistent scheme that converges to by 1 as h — 0 under the above regularity.

Proof. By the Hilbert L? projection theorem, among all functions of I¢, the optimizer is the cond-
tional expectation E*[T} .5, | I} = x] where again E* denotes expectation over the coupling
(w0, ). Expanding by g+ 1 = bt,o+h dubt o +O(h?) and using (8) yields the expression above. []

Proposition 3. (7ilt expansion.) For b, , = E[I¢|I¢ = x], the n'" term (%; [be,a(2)] in the expan-
sion in is the (n + 1)™ order joint cumulant of the interpolant and n instances of the reward,
&I (1), - r(ah).

Proof. For a fixed x, define the joint conditional cumulant generating function of r(x{) and ff as

M(p,v) =logE [e”(ﬂ')ﬂ”’jfnlf = a:} , (32)
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for 4 € Rand v € RY, Tts partial derivative with respect to v evaluated at 0 is

E[Iger(#0)|[¢ = z
a. = =b " )
ov ('u’ ) ]E[e;m(ac‘l")uéz _ .’E] t,a+y (1‘)

(33)

where the second equality is (7). Taking n derivatives with respect to 4 and evaluating at 0, we
obtain

o M (0,0) = o ()] _, = o, () (34)
ou™ov T Qun T =0 T ggn e
The leftmost term is precisely the (n + 1) order joint cumulant. O

Proposition 4. (Implicit Tilt Matching.) Let by o}, be defined to all orders as in (I4). Then

h™ O™ a .
3 o [ae)] =B — 1) (72 = ban @)1 = 3] (16)
n>0

and by q4p, is the minimizer of
1
ITM 7y . 7 ITM ||2
Lo an(b) = /0 E|[b:(1f) = Tian|” dt, (17)
for any h, where expectation is taken over (xg,x§) ~ p(zo,x]) conditional on I = x.

Proof. Notice that the left side of (16) is equal to by o+ (z) — by o () since the series contains all

terms but 0™ order one in the Taylor series expansion in & for b; op (). Next, we rewrite (19) for
clx)=1

E[(berh(x) —bpa(@)) + (D Z 1) (bpayn(x) — 1) | 10 = x} —0. (35)
Rearranging, we obtain the following

bratn(r) = bra(z) =E [(e”"(”‘“ — 1) (It = bparn(@)) | I = w] , (36)

which is the right side of (]E[) O

Proposition 5. (Variance control). Let szj%  and E}gvé 1 be the regression losses in and

(12). For sufficiently small h, the gradient estimator of WFM has variance at least as large as that
of ACM:

Var[VLYEM T > Var[vel™Y . (24)

c—ITM

Proof. The first variation (the Gateaux derivative) of the loss £, _,, ' is

LG i (b) = 2/0 E [e(If) (be(1f) = bra (7)) + ("D — e(If)) (be(17) — I7)] dt. (37)

Therefore the Monte Carlo estimator used is

o= 2(elIf) (Bu(I7) — bealI7)) + (09 —e(1p) (be(I7) — I)) (38)
where ¢t ~ Unif|0, 1]. We will use the law of total variance
Var(§e) = E[Var(&c|I{')] + Var(E[E|7]). (39)
Notice that
El¢| 1] = B [eM 6D (by(17) — 1) 1] (40)

is independent of c and therefore the same for any c-ITM variant. On the other hand, we have that

Var(€| 1) = Var (G0 (b (1) = 1) + (1) Ef117) 41)
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Writing e""(®1) = 1 + O(h), we see that

E [Var(¢.|1})] = E [Var (1 = (1) if117) | + O(h). (“2)
Recall that £ |, corresponds to taking c¢(z) = 1 and LYEM , is ¢(x) = 0. When c(z) = 1,

we have E [Var(¢:|I")] = O(h). When c(z) = 0, we have E [Var(&:|1)] = E[Var(f.ﬂlf)] +
O(h). Provided that E[Var(I{|I{)] > 0, this completes the proof. We remark that E[Var(I2|I})] =
0 occurs only for a very limited collection of couplings p(zg, z¢), such as the optimal transport

coupling and would not be feasible in practice. Note that when b takes a parametric form, a similar
proof holds.

O

B CONTROL VARIATES

In order to learn the optimal control variate, one may parameterize c(x) as a small additional head
or a standalone network and train it jointly with the velocity field to minimize the Monte Carlo
variance of the ITM estimator. In particular, both objectives (20) and can be used, where now
we minimize these losses with respect to both the parameters of l;t,a+h and c. Jointly optimizing

preserves the minimizer over b, ., since the ITM objectives ensures that the unique minimizer is
bt,a+n for any choice of c¢. By minimizing the loss with respect to the parameters of the ¢ network,
we additionally minimize the variance of the objective.

C EXPERIMENTS

C.1 SAMPLING LENNARD-JONES POTENTIALS

The Lennard-Jones (LJ) potential is a widely used mathematical model that describes the potential
energy between two neutral, non-bonding particles. This energy is calculated as a function of the
distances between particles, capturing the balance between long-range attractive forces and short-
range repulsive forces. It has the form

-3 () - (2))

)
where d;; = ||x; — x;]| is the distance between particles 7 and j, € is the potential well depth, 7,
is the equilibrium distance at which the potential is minimized, and 7 is the system temperature.
We follow Kohler et al.| (2020); ] Akhound-Sadegh et al.|(2025) in adding a harmonic potential to the
energy:

1
E™ (@) = BY(@) + 5 3 Il — 1%, “4)

where Z is the center of mass of the system. We use the same parameters ¢ = 2.0,r,,, = 1 and
7 = 1 as|Akhound-Sadegh et al.| (2025) for our experiments. For the LJ-13 and LJ-55 datasets we
use samples provided by the codebase in|Akhound-Sadegh et al.| (2025) which use the No-U-Turn-
Sampler (NUTS) Hoffman & Gelman|(2011).

In our experiments we use an EGNN |Satorras et al.| (2022)). For LJ-13 we use three layers and 32
hidden dimensions which is approximately 45,000 parameters. For LJ-55 we use five layers and 128
hidden dimensions for a parameter count of approximately 580,000.

To compute the Effective Sample Size (ESS) we evaluate likelihoods p; (z1) under our model by by

1
log (1) = logpolan) — [ Vbt @3)
0
. . _ pria=o(z1)e”@D)
to compute importance weights w(x1) = B e and then compute the ESS as
N )2
Bss — (=1 W) (46)
2
i=1W;
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Figure 5: ESS evolution with alpha for ITM and WFM.

Interatomic distance Energy

=] test data = test data
=1 generated data 0030 1 = generated data

05
04
2z
03 a
&

02

00 0.000 —
1 2 3 4 5 6 -380 -360 -340 -320 -300 -280

Interatomic distance Energy

Figure 6: Histograms of interatomic distance and Energy on LJ55.

For ETM we use the ESS to dynamically update the step size h for transitions from pq o t0 p1,a4n-
If the ESS drops below a given threshold, we decrease the step size to A’ = 0.5h and attempt the
transition from py 4 t0 p1 q4n/. For ITM we use a fixed step size of h = 0.001. We use 800 gradient
steps per anneal update. We use a simple Euler integrator with 100 steps in each case. We use the
linear interpolant I; = (1 — t)xq + tx; for our experiments.

C.2 PLOTS

We include a plot comparing the evolution of the 100 sample ESS for an ITM and WFM run in
Figure[5| For the LjS5 experiement, we also include a histogram of interatomic distances amongst
particles in the system and a histogram of the energy of 10000 samples of the system in Figure 6]
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ESS vs Discretization level
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Figure 7: ITM performance scaling with discretization step size h.

Algorithm 1: Tilt Matching (TM)

Input: Pretrained drift b; o; reward r(x); annealing schedule {ak}kK:O with steps hr = ak4+1—ag;
interpolant I (linear shown); epochs E; batch size B, ETM or ITM.
Output: Tilted drift bs ;.
fork=0,..., K —1do
// Current model is biq,; goal is bt:ak+1
Initialize Z;t < bt,a,
for epoch=1,...,FE do
Draw B samples (zo, z7*) with 1% ~ p1 4, (from model or buffer), ¢ ~ Unif[0, 1].
IR« (1 —t)wo + tal*; I — % —x
if ETM then
L Teapnn, = braay (1) + hi(I7F 7 (25) — be.a (I7*))r(27*)
if /ITM then
| Thagny = braag (I1F) + ("7@1) — 1) (b, (If*) — I7*)
L 5 2P Nbe(I7*) = Trapn|I?
Update the parameters of b by gradient descent to minimize the TM loss.

B Set bt,akJrl — Bt.

return b; ;.
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D EXAMPLE IMAGES FROM FINE-TUNING EXPERIMENTS

In this appendix, we display a random selection of images from the base model and the model
fine-tuned under the Euler Tilt Matching objective. It can be seen that images generated from the
fine-tuned model better adhere to the given text prompt, which aligns with the numerical results in
the main text.

Figure 8: Images generated from the base model with prompt: old man ( long white beard and a hood ) riding
on lions back

Figure 9: Images generated from the Tilt Matching fine-tuned model with prompt: old man ( long white beard
and a hood ) riding on lions back

Figure 10: Images generated from the base model with prompt: astronaut drifting afloat in space, in the
darkness away from anyone else, alone, black background dotted with stars, realistic

Figure 11: Images generated from the Tilt Matching fine-tuned model with prompt: astronaut drifting afloat
in space, in the darkness away from anyone else, alone, black background dotted with stars, realistic

LLM USAGE

In preparing this paper, we used large language models (LLMs) as assistive tools. Specifically,
LLMs were used for (i) editing and polishing the text for clarity and readability, and (ii) formatting
matplotlib code. The authors take full responsibility for the content of this paper.
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