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ABSTRACT

While recent Large Vision-Language Models (LVLMs) have shown remarkable
performance in multi-modal tasks, they are prone to generating hallucinatory text
responses that do not align with the given visual input, which restricts their practical
applicability in real-world scenarios. In this work, inspired by the observation that
the text-to-image generation process is the inverse of image-conditioned response
generation in LVLMs, we explore the potential of leveraging text-to-image
generative models to assist in mitigating hallucinations in LVLMs. We discover that
generative models can offer valuable self-feedback for mitigating hallucinations
at both the response and token levels. Building on this insight, we introduce
self-correcting Decoding with Generative Feedback (DeGF), a novel training-free
algorithm that incorporates feedback from text-to-image generative models into
the decoding process to effectively mitigate hallucinations in LVLMs. Specifically,
DeGF generates an image from the initial response produced by LVLMs, which
acts as an auxiliary visual reference and provides self-feedback to verify and correct
the initial response through complementary or contrastive decoding. Extensive
experimental results validate the effectiveness of our approach in mitigating diverse
types of hallucinations, consistently surpassing state-of-the-art methods across
six benchmarks. Code is available at https://github.com/zhangce01/DeGF.

1 INTRODUCTION

Large Vision-Language Models (LVLMs) have demonstrated remarkable performance across various
multi-modal tasks, such as image captioning and visual question answering, by extending the
capabilities of powerful Large Language Models (LLMs) to incorporate visual inputs (Liu et al.,
2023; Li et al., 2023b; Dai et al., 2023; Bai et al., 2023; Ye et al., 2024). Despite their proficiency
in interpreting both visual and textual modalities, these models often suffer from hallucinations,
where LVLMs erroneously produce responses that are inconsistent with the visual input (Li et al.,
2023d; Gunjal et al., 2024; Yin et al., 2023; Wu et al., 2024). This potential for misinformation
raises significant concerns, limiting the models’ reliability and restricting their broader deployment
in real-world scenarios (Liu et al., 2024b; Bai et al., 2024; Chen et al., 2024b; Zhao et al., 2024).

Recent research has revealed that a major cause of hallucinations in LVLMs is the over-reliance
on language priors due to biased training sets, which can override the visual content in response
generation (Bai et al., 2024; Liu et al., 2024b; Leng et al., 2024). In response, various strategies
have been developed to detect and mitigate these hallucinations by directly introducing additional
training (Chen et al., 2024a; Sun et al., 2023; Jiang et al., 2024; Chen et al., 2023; Zhang et al., 2024),
demonstrating promising results in reducing over-reliance. However, the need for additional data
and costly training processes hinders their deployment in downstream tasks. More recently, a new
paradigm of methods has emerged to tackle the hallucination problem in LVLMs by intervening
in the decoding process (Huang et al., 2024; Deng et al., 2024; Kim et al., 2024). Among these,
recent training-free contrastive decoding-based methods (Li et al., 2023c) have proven effective in
mitigating undesired hallucinations by contrasting token predictions derived from original visual
input with bias-inducing counterparts, such as no/distorted visual input (Favero et al., 2024; Leng
et al., 2024), disturbed instructions (Wang et al., 2024), or premature layers (Chuang et al., 2024).
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Figure 1: Generative models can visualize and help correct various types of hallucinations in
the initial response. In the first query, we provide LLaVA-1.5 (Liu et al., 2023) with the prompt
“Describe this image in detail” to produce captions for two examples from LLaVA-Bench.
Based on the initial response, we utilize Stable Diffusion XL (Podell et al., 2024) to generate a new
image v′, which effectively highlights hallucinations and provides valuable self-feedback. In
the second query, our approach incorporates both the original image v and the generated image v′
into the decoding process, using the feedback to successfully correct various types of hallucinations.

While these contrastive decoding-based methods effectively mitigate hallucinations arising from
language priors, we recognize that hallucinations can also originate beyond language bias, stemming
from visual deficiencies in LVLMs (Tong et al., 2024). For instance, in counting hallucinations, lan-
guage does not imply any count information; instead, miscounts largely arise from visual recognition
errors of LVLMs, as complex scenes include numerous, similar objects at ambiguous positions which
may confuse the LVLMs, leading to incorrect visual understanding and, consequently, hallucinated
answers. Therefore, we argue that current contrastive decoding-based methods may struggle to
generalize effectively across different types of hallucinations.

In this work, we explore the potential of leveraging powerful text-to-image generative models (e.g.,
Stable Diffusion (Rombach et al., 2022; Podell et al., 2024)) to mitigate various types of hallucinations
in LVLMs. Our work is based on a simple yet intuitive hypothesis: Given a visual input and a textual
prompt to an LVLM, if the generated response conditioned on the original image is accurate and non-
hallucinatory, a text-to-image generative model should be capable of reversing this process to produce
a similar image from that response. Alternatively, if there is a discrepancy between the original
image and the one generated from the response, this difference can serve as valuable self-feedback,
guiding the decoding process to correct potential hallucinations in the initial response. To verify this
hypothesis, we conduct an empirical study (in Section 3.2), demonstrating that generative models can
provide valuable self-feedback for mitigating hallucinations at both the response and token levels.

Building on this insight, we introduce self-correcting Decoding with Generative Feedback (DeGF),
a novel training-free decoding algorithm that effectively incorporates feedback from text-to-image
generative models to recursively enhance the accuracy of LVLM responses. Specifically, for each
instance, we generate a new image based on the initial response, which serves as an auxiliary visual
reference to assess and verify the accuracy of the initial output. We propose self-correcting decoding
that either enhances or contrasts predictions from the original and this reference based on the auxiliary
visual reference, confirming or revising the initial LVLM response based on the degree of divergence
between the two predictions. By integrating this additional visual reference and generative feedback,
LVLMs can gain enhanced visual insights and verify the initial response to ensure accurate visual
details in the text outputs. In Figure 1, we demonstrate that incorporating generative feedback in our
approach can reduce various types of hallucinations, including object existence, visual appearance,
counting, etc. To the best of our knowledge, we are the first work to explore the use of text-to-image
generative feedback as a self-correcting mechanism for mitigating hallucinations in LVLMs.

The effectiveness of DeGF is evaluated on LLaVA-1.5, InstructBLIP, and Qwen-VL across six
benchmarks: POPE (Li et al., 2023d), CHAIR (Rohrbach et al., 2018), MME-Hallucination (Fu et al.,
2023), MMBench (Liu et al., 2024d), MMVP (Tong et al., 2024), and LLaVA-Bench. Extensive
experimental results validate the effectiveness of our DeGF in mitigating various types of halluci-
nations in LVLMs. Qualitative case studies and GPT-4V-aided evaluation on LLaVA-Bench further
demonstrate that our approach enhances both the accuracy and detailedness of the LVLM responses.
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The contributions of this paper are summarized as follows:

• We investigate the potential of text-to-image generative models in mitigating hallucinations in
LVLMs and demonstrate that text-to-image generative models can provide valuable self-feedback
for mitigating hallucinations at both the response and token levels.

• We propose self-correcting Decoding with Generative Feedback (DeGF), a novel training-free
decoding algorithm for LVLMs that recursively enhances the accuracy of responses by integrating
feedback from text-to-image generative models with complementary/contrastive decoding.

• Extensive experimental evaluations across six benchmarks demonstrate that our DeGF consistently
outperforms state-of-the-art approaches in effectively mitigating hallucinations in LVLMs.

2 RELATED WORK

Hallucination in LVLMs . With advances of autoregressive LLMs (Touvron et al., 2023; Chowdhery
et al., 2023; Chiang et al., 2023), researchers have extended these powerful models to process visual
inputs, leading to the development of LVLMs (Liu et al., 2023; Dai et al., 2023; Bai et al., 2023;
Ye et al., 2024). These models typically train a modality alignment module to project visual tokens
into the textual embedding space of the LLM, demonstrating impressive performance in various
multi-modal tasks such as visual question answering and image captioning (Liu et al., 2024b; Bai
et al., 2024). However, LVLMs are prone to hallucinations, where contradictions arise between the
visual content and the generated textual response (Li et al., 2023d; Liu et al., 2024b; Bai et al., 2024).

To mitigate hallucinations in LVLMs, early works have introduced various approaches, including
reinforcement learning from human feedback (RLHF) (Gunjal et al., 2024; Sun et al., 2023), applying
auxiliary supervision (Jiang et al., 2024; Chen et al., 2023), incorporating negative (Liu et al., 2024a)
or noisy data (Yue et al., 2024), and training post-hoc revisors for correction (Zhou et al., 2024; Yin
et al., 2023). Despite promising results, these methods often lack practicality due to their reliance on
additional data and costly training processes. To address this, another line of work focuses on training-
free methods that can be seamlessly integrated into existing LVLMs. Such methods encompass
contrastive decoding (Leng et al., 2024; Favero et al., 2024) and guided decoding with auxiliary
information (Chen et al., 2024d; Deng et al., 2024; Woo et al., 2024). In this work, we present a novel
training-free approach that recursively enhances the accuracy of the LVLM response by incorporating
text-to-image generative feedback. To the best of our knowledge, we are the �rst work to effectively
utilize feedback from text-to-image generative models to mitigate hallucinations in LVLMs.

Text-to-Image Synthesis. Text-to-image synthesis aims to create realistic images from textual
descriptions (Zhu et al., 2019; Ge et al., 2023). In recent years, signi�cant progress has been achieved
in this area, largely due to the advent of deep generative models (Zhan et al., 2023; Goodfellow
et al., 2014). These advances include Generative Adversarial Networks (GAN) (Sauer et al., 2023;
Kang et al., 2023), autoregressive models (Chang et al., 2023; Yu et al., 2022), and diffusion
models (Ho et al., 2020; Karras et al., 2022; Nichol et al., 2022; Saharia et al., 2022; Rombach
et al., 2022). Among these, diffusion-based methods have been particularly distinguished due to
their ability to generate high-quality, detailed images with �ne-grained control over the synthesis
process (Yang et al., 2023; Croitoru et al., 2023). Pre-trained on large-scale text-image datasets
such as LAION (Schuhmann et al., 2022), diffusion-based methods have demonstrated strong vision-
language alignment, making them valuable for downstream tasks such as classi�cation (Li et al.,
2023a) and semantic segmentation (Amit et al., 2021; Wolleb et al., 2022).

More recently, Jiao et al. (2024) incorporate text-to-image generative models to enhance �ne-grained
image recognition in LVLMs by introducing the Img-Diff dataset, which generates pairs of similar
images using Stable Diffusion XL (Podell et al., 2024). Their results demonstrate that �ne-tuning
LVLMs with this additional data leads to improved performance on several VQA tasks. In contrast,
in this work, we directly leverage a pre-trained diffusion model to provide valuable self-feedback
for re�ning the generated responses of LVLMs in the decoding process, dynamically improving the
accuracy and consistency of the model's response without modifying the underlying LVLMs.

3 METHOD

In this work, we present DeGF, a novel training-free algorithm that recursively improves the accuracy
of LVLM responses using text-to-image generative feedback, as illustrated in Figure 2.
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Figure 2: Overview of our proposed DeGF. Our method follows a two-step process: �rst, a
generative model produces a high-quality image based on the initial response; second, this image acts
as an auxiliary visual reference, providing feedback to re�ne the next-token predictions. Additionally,
we introduce self-correcting decoding, which either enhances or contrasts the next-token predictions
conditioned on the original and generated images to mitigate hallucinations in the LVLM response.

3.1 PRELIMINARY : DECODING OFLVLM S

We consider an LVLM parameterized by� , which processes an input imagev and a textual query
x, aiming to autoregressively generate a �uent sequence of textual responsesy . The visual inputv is
�rst processed by a vision encoder and then projected into visual tokens within the textual input space
using a vision-language alignment module (e.g., Q-Former (Li et al., 2023b) or linear projection (Liu
et al., 2023)). These visual tokens, along with the textual query tokens, are then fed into the language
encoder for conditioned autoregressive generation. We denote the autoregressive generation process as

yt � p� (yt jv; x ; y<t ) / expf � (yt jv; x ; y<t ); (1)

whereyt represents the token at time stept, y<t , [y0; : : : ; yt � 1] denotes the sequence of tokens
generated before time stept, and f � is the logit distribution (unnormalized log-probabilities)
produced by the LVLM over a vocabulary of textual tokensV. At each stept 2 [0; : : : ; T ], the
response tokenyt is sampled from the probability distributionp� (yt jv; x ; y<t ), and this generative
process continues iteratively until the response sequencey , [y0; : : : ; yT ] is complete.

3.2 VISUAL REFERENCEGENERATION

In our method, we incorporate generative feedback from diffusion models to guide the decoding
process. Speci�cally, given a visual inputv and a textual queryx, we �rst prompt the LVLMs to
generate an initial response� , which includes relevant descriptions of the visual input with potential
hallucinations. Subsequently, we leverage a pre-trained diffusion modelGto generate a new imagev0

based on the initial response:

v0 = G(� ; xT ); wherexT � N (0; I ): (2)

Here,xT denotes a sample from the standard Gaussian distribution, which serves as the initial
noisy input to the diffusion model. Starting from this pure noise imagexT , the diffusion modelG
iteratively appliesT steps of the denoising process to obtainxT ; xT � 1; : : : ; x0, where the �nal output
x0 corresponds to the �nal generated imagev0. Through this diffusion process, the generative model
visualizes the initial response, providing a visual reference that helps mitigate potential hallucinations
and produce a more accurate and consistent output.

Effectiveness of Text-to-Image Generative Models in Re�ecting Hallucinations. We validate the
effectiveness of generative models in re�ecting hallucinations through an empirical study, as shown
in Figure 3.1 The experimental results demonstrate thattext-to-image generative models can provide
valuable self-feedback for mitigating hallucinationsat both the response and token levels.

1For Figure 3, we evaluate 1,000 CHAIR samples (Left) and 3,000 POPE samples (Right).
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Figure 3:Text-to-image generative models can provide
feedback for re�ecting hallucinations. (Left) Bar plot of
averageCHAIRI scores binned by CLIP similarity (scaled
by 100) on the CHAIR benchmark; (Right) Density plots
of token-level JS divergence for both hallucinatory and non-
hallucinatory tokens on the POPE benchmark.

We conduct the following two exper-
iments: (1) We generate an imagev0

using diffusion model based on the
initial caption provided by LLaVA-
1.5 and compute the CLIP image sim-
ilarities between the original image
v and the generated imagev0 using
OpenCLIP (Cherti et al., 2023) ViT-
H/14 backbone. Following prior work,
we use the CHAIR (Rohrbach et al.,
2018) benchmark, a rule-based metric
on MS-COCO (Lin et al., 2014) for
evaluating object hallucination from
generated captions. We report the
average per-instance metricCHAIRI
within each bin of CLIP similarity,
which evaluates the object hallucina-
tion rates in the entire initial response.
As shown in Figure 3 (Left), a clear negative correlation between hallucination rates and CLIP sim-
ilarities is observed (with a correlation coef�cient of� = � 0:63). This indicates thatlower similarity
between the original image and generated image corresponds to higher rates of hallucinations at the
response level. (2) Similarly, we generate an imagev0 based on the initial response given by LLaVA-
1.5 for each instance on the POPE (Li et al., 2023d) benchmark. In Figure 3 (Right), we present the
density plot of Jensen-Shannon (JS) divergence between the predicted probabilities for both images,
i.e., p� (yt jv; x ; y<t ) andp� (yt jv0; x ; y<t ), for hallucinatory and non-hallucinatory tokens.2 The re-
sults show that the density of JS divergence follows a long-tail distribution, with hallucinatory tokens
exhibiting signi�cantly longer tails and higher JS divergence. This showsJS divergence between prob-
abilities derived from the original and the generated image corresponds well to hallucinations at the
token level.These observations provide insights into the effectiveness of generative models in re�ect-
ing hallucinations, and motivate us to incorporate the generative feedback during the decoding process.

3.3 SELF-CORRECTINGDECODING WITH GENERATIVE FEEDBACK

In this section, we focus on effectively utilizing generative feedback during the decoding process to
mitigate potential hallucinations. Speci�cally, we propose a self-correcting decoding approach that
leverages generative feedback tocon�rm or revisethe initial response by selectively enhancing or
contrasting the logits for each generated token based on the measured divergence between the two
predicted probability distributions.

Speci�cally, to predict a speci�c tokenyt , we utilize LVLMs to generate two output distributions,
each conditioned on either the original imagev or the synthesized visual referencev0, expressed as:

p� (yt jv; x ; y<t )= Softmax[f � (yt jv; x ; y<t )]; p� (yt jv0; x ; y<t )= Softmax[f � (yt jv0; x ; y<t )] :
(3)

We de�ne and compute the following distance metric based on Jensen-Shannon (JS) divergence at
each timestept to quantify the discrepancy between two next-token probability distributions:

dt (v; v0) = DJS (p� (yt jv; x ; y<t ) k p� (yt jv0; x ; y<t )) ;

whereDJS(P k Q) =
1
2

DKL (P k M ) +
1
2

DKL (Q k M ); andM =
1
2

(P + Q): (4)

Here, DKL represents the Kullback-Leibler (KL) divergence. Note thatdt (v; v0) 2 [0; 1] is a
symmetric metric, providing a �ne-grained measure of how closely the two distributions align as the
model predicts each subsequent token.

We consider two scenarios based on the token-level generative feedback: (1) If the two predictions
are aligned and both images agree on a speci�c token prediction, wecon�rm the original prediction
as correct, and the auxiliary prediction from the generated image can be combined with the original

2Note that POPE benchmark contains yes-or-no questions about object existence. In this experiment, we
evaluate only the �rst response token (i.e., yes or no) to determine the presence of hallucinations.
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prediction for enhancement (complementary decoding (Woo et al., 2024)). (2) Conversely, if there
is a signi�cant discrepancy between the predictions, indicating that the original prediction is likely
hallucinatory, werevisethe original response by using the generated visual input as a contrasting
reference to re�ne the initial next-token prediction (contrastive decoding (Leng et al., 2024)). To
implement this, we introduce a distance threshold
 and develop two corresponding decoding
approaches as follows:

yt � p� (yt ) =

(
Softmax [f � (yt jv; x ; y<t ) + � 1 f � (yt jv0; x ; y<t )] ; if dt (v; v0) < 
 ;

Softmax [(1 + � 2) f � (yt jv; x ; y<t ) � � 2 f � (yt jv0; x ; y<t )] ; if dt (v; v0) � 
;
(5)

where� 1 and� 2 are hyperparameters that control the in�uence of the generated visual reference in
the �nal prediction. Note that setting� 1 = 0 or � 2 = 0 degrades this process to regular decoding.
The �nal generated tokenyt is sampled from the multinomial distribution with probabilitiesp� (yt ).

4 EXPERIMENTS

In this section, we evaluate the effectiveness of our method in mitigating hallucinations in LVLMs
across a range of benchmarking scenarios, comparing it with existing state-of-the-art approaches.

4.1 EXPERIMENTAL SETTINGS

Evaluated LVLMs . We evaluate the effectiveness of our method on three state-of-the-art open-source
LVLMs: LLaVA-1.5 (Liu et al., 2024c), InstructBLIP (Dai et al., 2023), and Qwen-VL (Bai et al.,
2023). Both LLaVA-1.5 and InstructBLIP utilize Vicuna-7B (Chiang et al., 2023) as the language
encoder, which is instruction-tuned from LLaMA (Touvron et al., 2023). In contrast, Qwen-VL (Bai
et al., 2023) is based on the Qwen 7B backbone. Speci�cally, we implement our approach using
weights of the Qwen-VL-Chat model.

Benchmarks. We conduct extensive experiments on six benchmarks: (1)POPE (Li et al., 2023d)is
a widely used benchmark for assessing object hallucinations in LVLMs, which tests the models with
yes-or-no questions regarding the presence of speci�c objects, such as, “Is there a {object} in
the image?” (2) CHAIR (Rohrbach et al., 2018)evaluates object hallucinations in open-ended
captioning tasks. It prompts the LVLMs to describe speci�c images selected from a random sample
of 500 images from the MSCOCO validation set; (3)MME-Hallucination (Fu et al., 2023) is a
comprehensive benchmark for LVLMs consisting of four subsets:existenceandcountfor object-level
hallucinations, andpositionandcolor for attribute-level hallucinations; (4)MMBench (Liu et al.,
2024d)serves as a comprehensive benchmark designed to assess the multi-modal understanding
capabilities of LVLMs across 20 dimensions; (5)MMVP (Tong et al., 2024)collects CLIP-blind
pairs and evaluates the �ne-grained visual recognition capabilities of LVLMs. It consists of 150
image pairs, each accompanied by a binary-option question; (6)LLaVA-Bench provides 24 images
featuring complex scenes, memes, paintings, and sketches, along with 60 challenging questions.

Baselines. As a simple baseline, we include results from regular decoding, where the next token
is sampled directly from the post-softmax probability distribution. Additionally, we compare the
performance of our method with three state-of-the-art decoding approaches: VCD (Leng et al., 2024),
M3ID (Favero et al., 2024), and RITUAL (Woo et al., 2024). For evaluations on the CHAIR (Rohrbach
et al., 2018) and MME-Hallucination (Fu et al., 2023) benchmark, we further include comparisons
with Woodpecker (Yin et al., 2023), HALC (Chen et al., 2024d), DoLa (Chuang et al., 2024)
and OPERA (Huang et al., 2024). We report the performance of these baselines based on our
re-implementation using their released code bases.

Implementation Details. In our experiments, we adhere to the default query format for the input data
used in both LLaVA-1.5 (Liu et al., 2024c) and InstructBLIP (Dai et al., 2023). Additionally, we set
� 1 = 3 , � 2 = 1 , and
 = 0 :1 by default in our decoding process. We follow VCD (Leng et al., 2024)
to implement adaptive plausibility constraints (Li et al., 2023c), where we set� = 0 :1 in open-ended
CHAIR benchmark and� = 0 :25 for other tasks. To ensure the reliability of our results, we conduct
MME experiments three times with different initialization seeds and report the mean accuracy along
with the standard deviation. All experiments are conducted on a single 48GB NVIDIA RTX 6000
Ada GPU. More implementation details are provided in Section B of the Appendix.
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Table 1:Results on POPE (Li et al., 2023d) benchmark. Higher (" ) accuracy, precision, recall, and
F1 indicate better performance. The best results arebolded, and the second-best are underlined.

Setup Method
LLaVA-1.5 InstructBLIP Qwen-VL

Acc. " Prec." F1 " Acc. " Prec." F1 " Acc. " Prec." F1 "

M
S

-C
O

C
O

Random

Regular 83.13 81.94 83.44 83.07 83.02 83.08 87.43 93.56 86.48
VCD 87.00 86.13 87.15 86.23 88.14 85.88 88.80 93.89 88.11
M3ID 87.50 87.38 87.52 86.67 88.09 86.41 89.83 95.44 89.17
RITUAL 88.87 89.23 88.81 88.83 90.48 88.60 89.47 96.32 88.62
Ours 89.03 91.20 88.74 88.83 93.73 87.71 89.73 93.19 89.31

Popular

Regular 81.17 78.28 82.08 77.00 73.82 78.44 84.70 88.24 83.96
VCD 83.10 79.96 83.94 80.07 77.67 80.89 85.13 87.27 84.69
M3ID 84.30 81.58 84.95 80.97 77.93 81.85 86.27 89.19 85.73
RITUAL 85.83 84.17 86.17 81.97 78.90 82.87 84.57 84.09 84.67
Ours 86.63 87.75 86.28 82.73 84.02 82.10 86.50 89.87 85.71

Adversarial

Regular 77.43 73.31 79.26 74.60 71.26 76.45 79.83 80.13 79.73
VCD 77.17 72.18 79.47 77.20 74.29 78.49 81.33 80.60 81.55
M3ID 78.23 73.51 80.22 77.47 73.68 79.14 82.03 81.47 82.19
RITUAL 78.80 74.43 80.54 78.73 74.57 80.39 82.80 83.15 82.71
Ours 81.63 80.59 81.94 80.30 80.90 80.11 83.47 84.49 82.98

A
-O

K
V

Q
A

Random

Regular 81.90 76.63 83.53 80.63 76.82 81.92 86.27 90.66 85.48
VCD 83.83 78.05 85.34 84.20 80.90 85.00 87.87 90.06 87.53
M3ID 84.67 79.25 85.97 85.43 81.77 86.23 88.13 92.06 87.55
RITUAL 85.17 79.79 86.40 87.13 83.92 87.71 87.73 92.49 87.01
Ours 86.93 84.28 87.42 87.40 87.67 87.26 87.90 89.16 87.58

Popular

Regular 75.07 68.58 78.77 75.17 70.15 77.91 84.60 87.99 83.88
VCD 76.63 69.59 80.19 78.63 73.53 80.72 86.23 87.30 86.03
M3ID 77.80 70.98 80.91 78.80 73.38 81.00 86.50 89.59 85.95
RITUAL 78.83 71.99 81.68 78.73 72.83 81.17 86.36 88.73 86.20
Ours 80.90 75.68 82.66 81.47 78.61 82.35 86.43 90.74 86.52

Adversarial

Regular 67.23 61.56 73.70 69.87 64.54 74.54 76.90 75.59 77.48
VCD 67.40 61.39 74.21 71.00 65.41 75.45 79.13 76.04 80.30
M3ID 68.60 62.22 75.11 70.10 64.28 75.16 79.50 77.54 80.21
RITUAL 68.57 62.26 74.99 70.27 64.15 75.55 80.20 79.08 80.58
Ours 72.70 66.70 76.86 73.93 69.36 76.67 80.75 80.37 80.46

G
Q

A

Random

Regular 82.23 76.32 84.03 79.67 76.05 80.99 84.90 89.51 83.96
VCD 83.23 76.73 85.05 82.83 80.16 83.56 85.21 92.05 84.21
M3ID 84.20 78.00 85.77 83.07 80.06 83.87 85.69 93.11 84.67
RITUAL 86.10 80.30 87.31 84.87 82.52 85.39 86.13 93.78 84.81
Ours 87.40 83.51 88.09 85.40 85.64 85.12 85.95 94.22 85.08

Popular

Regular 73.47 66.83 77.84 73.33 68.72 76.26 81.33 83.38 80.74
VCD 72.37 65.27 77.58 76.13 71.10 78.68 81.97 82.82 81.73
M3ID 73.87 66.70 78.49 75.17 69.94 78.04 82.13 84.58 81.48
RITUAL 74.80 67.50 79.15 74.50 69.17 77.61 81.13 85.48 81.03
Ours 78.10 71.56 80.98 76.90 73.89 78.27 82.10 86.39 81.85

Adversarial

Regular 68.60 62.43 74.84 68.60 63.94 73.10 79.03 80.43 78.54
VCD 68.83 62.26 75.43 71.00 65.75 75.14 80.87 81.07 80.80
M3ID 68.67 62.16 75.28 71.17 65.79 75.36 81.03 82.93 80.94
RITUAL 68.23 61.75 75.10 70.17 64.76 74.78 81.07 83.29 80.41
Ours 74.07 67.42 78.22 73.63 70.08 75.11 81.13 84.18 80.57

4.2 RESULTS AND DISCUSSIONS

Results on POPE. In Table 1, we compare the performance of our method against other baselines on
the POPE benchmark under three different negative sampling settings, across three datasets. As shown
in the table, our method consistently outperforms other decoding methods on three LVLMs, achieving
state-of-the-art accuracies across all settings, with improvements of up to 5.24% in accuracy, 6.33%
in precision, and 2.79% in F1 score compared to the second-best approach. This suggests that incorpo-
rating a generative reference enables the LVLMs to perceive more �ne-grained visual details, thereby
effectively addressing object hallucinations. Moreover, while most decoding methods tend to be
overcon�dent in their responses, the self-correcting decoding mechanism in our method makes it more
conservative in respondingYes, as evidenced by signi�cantly higher precision across all settings. This
highlights its enhanced performance in �ltering out false positives and suppressing misinformation.
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Table 2:Results on CHAIR (Rohrbach et al., 2018) benchmark.We limit the maximum number
of new tokens to 64. Lower (#) CHAIRS , CHAIRI and higher (" ) recall and length indicate better
performance. The best results in each setting arebolded, and the second-best are underlined.

Method
LLaVA-1.5 InstructBLIP

CHAIRS # CHAIRI # Recall" Length" CHAIRS # CHAIRI # Recall" Length"

Regular 26.2 9.4 58.5 53.4 31.2 11.1 59.0 53.6
VCD 24.4 7.9 63.3 54.2 30.0 10.1 61.8 54.2
M3ID 21.4 6.3 64.4 53.5 30.8 10.4 62.6 53.4
RITUAL 22.4 6.9 63.0 54.9 26.6 8.9 63.4 55.3
Woodpecker 24.9 7.5 60.8 49.7 31.2 10.8 62.3 51.3
HALC 21.7 7.1 63.4 53.4 24.5 8.0 63.8 55.1
Ours 18.4 6.1 62.7 54.1 24.0 7.7 67.2 55.5

Table 3: Results on MME-Hallucination (Fu et al., 2023) and MMBench (Liu et al., 2024d)
benchmark. We report the average MME scores along with the standard deviation across three
random seeds for each subset. We also report the overall accuracy achieved by the different methods
on the MMBench benchmark in the �nal column. Higher scores (" ) indicate better performance.
The best results arebolded, and the second-best are underlined.

Method
Object-level Attribute-level

MME Score " MMBench "
Existence" Count" Position" Color "

Regular 173.75(� 4:79) 121.67(� 12:47) 117.92(� 3:69) 149.17(� 7:51) 562.50(� 3:96) 64.1
DoLa 176.67(� 2:89) 113.33(� 10:41) 90.55(� 8:22) 141.67(� 7:64) 522.22(� 16:78) 63.8
OPERA 183.33(� 6:45) 137.22(� 6:31) 122.78(� 2:55) 155.00(� 5:00) 598.33(� 10:41) 64.4
VCD 186.67(� 5:77) 125.56(� 3:47) 128.89(� 6:73) 139.45(� 12:51) 580.56(� 15:13) 64.6
M3ID 186.67(� 5:77) 128.33(� 10:41) 131.67(� 5:00) 151.67(� 20:88) 598.11(� 20:35) 64.4
RITUAL 187.50(� 2:89) 139.58(� 7:64) 125.00(� 10:27) 164.17(� 6:87) 616.25(� 20:38) 63.8
Woodpecker 187.50(� 2:89) 125.00(� 0:00) 126.66(� 2:89) 149.17(� 17:34) 588.33(� 10:00) 64.0
HALC 183.33(� 0:00) 133.33(� 5:77) 107.92(� 3:69) 155.00(� 5:00) 579.58(� 9:07) 64.2
Ours 188.33(� 2:89) 150.00(� 7:64) 133.89(� 3:85) 172.22(� 3:47) 644.44(� 9:18) 65.5

Another notable �nding is that our method shows signi�cantly improved performance in thepopular
and adversarialsettings, which are more challenging than therandomsetting. In thepopular
andadversarialsettings, non-existent negative objects frequently appear and co-occur with other
objects (Li et al., 2023d), making them more susceptible to hallucination by LVLMs, as evidenced by
the varying degrees of performance degradation across all baselines. However, our method exhibits a
lower performance drop compared to other baselines, demonstrating its effectiveness in addressing
hallucinations arising from object co-occurrence.

Results on CHAIR. We also compare the performance of our methods and other state-of-the-art
methods in the open-ended captioning task and report the CHAIR scores, recall, and the average
length of responses in Table 2, Table C1, and Table C2. The results, evaluated across two different
LVLMs, consistently demonstrate performance improvements achieved by our method over the
compared approaches. Speci�cally, our method outperforms the second-best approach by 3.0% and
2.6% on the CHAIRS metric, while also enhancing the detailedness of generated responses compared
to regular decoding, as indicated by the higher recall and increased response length. These results
demonstrate that by incorporating generative feedback into the decoding process of LVLMs, our
method effectively mitigates object hallucinations in open-ended captioning tasks.

Results on MME-Hallucination and MMBench. Beyond object hallucinations, we further com-
pare the performance of our method with other approaches using the more comprehensive MME-
Hallucination benchmark, which includes both object-level and attribute-level hallucinations. The
results in Table 3 and Table C3 demonstrate that our method signi�cantly outperforms the compared
methods, with substantial margins in the total score metric (e.g., +18.19 on LLaVA-1.5 and +21.11 on
InstructBLIP) and consistently superior performance across various evaluation settings, achieving the
best results in 6 out of 8 settings. Moreover, our method shows notable improvements on the attribute-
level color subset, which is particularly challenging as it requires models to accurately capture subtle
attribute information. This further illustrates the effectiveness of our approach in addressing a wide
range of hallucinations, both at the object existence level and in �ner-grained attribute recognition.
Additionally, our proposed DeGF enhances the general multi-modal understanding capabilities of
LVLMs, as evidenced by its superior performance on the MMBench benchmark.
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