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ABSTRACT

Understanding the interplay between intra-modality dependencies (the contribu-
tion of an individual modality to a target task) and inter-modality dependencies
(the relationships between modalities and the target task) is fundamental to ad-
vancing multi-modal learning. However, the nature of and interaction between
these dependencies within current benchmark evaluations remains poorly charac-
terized. In this work, we present a large-scale empirical study to quantify these
dependencies across 23 visual question-answering benchmarks using multi-modal
large language models (MLLMs) covering domains such as general and expert
knowledge reasoning, optical character recognition, and document understanding.
Our findings show that the reliance on vision, question (text), and their interac-
tion varies significantly, both across and within benchmarks. We discover that
numerous benchmarks intended to mitigate text-only biases have inadvertently
amplified image-only dependencies. This characterization persists across model
sizes, as larger models often use these intra-modality dependencies to achieve high
performance that mask an underlying lack of multi-modal reasoning. We provide
a quantitative characterization of multi-modal datasets, enabling a principled ap-
proach to multi-modal benchmark design and evaluation.

1 INTRODUCTION

Rapid advancement of MLLMs has been accompanied by a significant increase in the number of
evaluation benchmarks. A recent survey (Li et al., 2024) identified over 200 multi-modal bench-
marks. However, this growth has not been accompanied by a systematic investigation into what
these datasets measure. This means the relationships, redundancies, and unique contributions across
and within the benchmarks are not well understood. It is often unclear whether a new dataset im-
proves multi-modal evaluation or is largely redundant with existing benchmarks. This ambiguity
makes the principled selection of benchmarks for model evaluation a significant challenge.

For example, datasets such as AI2D (Kembhavi et al., 2016), ChartQA (Masry et al.,
2022), BLINK (Fu et al., 2024), RealworldQA (xAI, 2024), V ∗ Bench (Wu and Xie, 2024),
TextVQA (Singh et al., 2019) were included in the Gemini 1.5 evaluation (Team et al., 2024), but
were omitted from Gemini 2.5 (Comanici et al., 2025) with little justification for the changes. Such
inconsistencies in evaluation protocols are common (xAI, 2024; Cohere, 2025), making it difficult to
determine whether the reported gains in performance represent true advances in capability or simply
adaptation to a different set of benchmark artifacts.

This lack of understanding has led to an inefficient cycle of benchmark development. New datasets
are created to address specific uni-modal dependencies (Agrawal et al., 2018), which in turn are
found to have new and unforeseen artifacts (Dancette et al., 2021; Si et al., 2022). This process
hinders consistent, long-term model comparison and undermines scientific rigor.

Prior work has analyzed the dependence on individual modalities and their interaction in
multi-modal models using techniques such as representation similarity (Kornblith et al., 2019),
information-theoretic measures (Tjandrasuwita et al., 2025; Lu, 2023; Madaan et al., 2024), and
score-based methods (Gat et al., 2021; Parcalabescu and Frank, 2022; Hu et al., 2022; Wenderoth
et al., 2025). While providing valuable insights, these studies were often limited in scope, focusing
on synthetic data, smaller-scale benchmarks such as VQA (Agrawal et al., 2018; Goyal et al., 2017),
or earlier generations of models.
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How many layers does
the earth have?
a) 2             b) 5
c) 3             d) 4

Whats the relationship 
between two creatures?
a) Competitive      b) Parasitic
c) Symbiotic         d) Predatory

Where is the giraffe 
located in the picture?
a) Competitive      b) Parasitic
c) Symbiotic         d) Predatory

How many layers does 
the earth have?
a) 2             b) 5
c) 3             d) 4

Permuted Image Permuted Question

d) d) d) d) c) c) c) c)

ScienceQA, MMMU, TextVQA, V*,  BLINK,
GQA, VQA, AI2D, Omni3D, ChartQA 

ScienceQA, MMMU, MMMUPro, TextVQA, 
MMBench, V*, BLINK MMVP, Q-Bench, MM-Star, 

OCRBench, SEED-Bench, VizWiz 

Figure 1: Demonstration of intra-modality dependencies in multi-modal models using input
permutation. (Left) The models correctly answers a question about layers of Earth even when the
image is replaced by an unrelated diagram of a brain, indicating it is relying on question alone.
(Right) The model correctly identifies a symbiotic relationship from the image even when the ques-
tion is unrelated, showing it is relying on visual cues while ignoring the text. These examples
highlight a failure of multi-modal reasoning, where models exploit uni-modal priors with the op-
tions to obtain an associated answer.

To address this gap, we conduct a large-scale empirical study to characterize widely-used multi-
modal benchmarks. We hypothesize that these benchmarks evaluate distinct combinations of under-
lying capabilities. To quantify these dependencies, we use intra-modality dependencies (reliance on
a single modality for the target task) and inter-modality dependencies (reliance on the interaction
between modalities for the target task) based on prior studies (Liang et al., 2023; Madaan et al.,
2024). As illustrated in Figure 1, MLLMs often exploit intra-modality dependencies, answering
questions correctly even when a relevant input modality is replaced with corrupted or random data.
To quantify these effects systematically, we adapt the input permutation technique from the Percep-
tual Score (Gat et al., 2021), measuring performance degradation on permuting the input modality
to assess the reliance of a model on each modality.

Our evaluation spans 23 multiple-choice visual question answering (MCVQA) benchmarks, cover-
ing applications such as general visual question answering, knowledge-based reasoning, real-world
spatial understanding, optical character recognition (OCR), and document and chart understanding.
We evaluate MLLMs at varying scales, including 8B, 13B, and 34B models (Tong et al., 2024a).
Our findings confirm our hypothesis, the strength of intra- and inter-modality dependencies vary
substantially across and within these benchmarks.

We show that models depend heavily on one input modality while underutilizing the other, rather
than using inter-modality dependencies (see Figure 1). We find that many benchmarks designed to
mitigate text-only dependencies (Singh et al., 2019; Li et al., 2023a; Tong et al., 2024b; Wu and Xie,
2024; Fu et al., 2024) have inadvertently introduced strong image-only biases, essentially trading one
uni-modal shortcut for another rather than evaluating multi-modal reasoning. Furthermore, this issue
is not resolved by simply increasing model scale; on the contrary, larger models often become more
adept at exploiting these uni-modal artifacts. These results underscore the fundamental limitations
of evaluating models with a single aggregate score and highlight the need for a characterization of
our evaluation benchmarks based on their strengths of inter- and intra-modality dependencies.

Contributions. We conduct the first large-scale empirical analysis of multi-modal dependencies
across 23 popular VQA benchmarks. Our analysis shows that these datasets have different char-
acteristics regarding their reliance on vision, text, and their interaction, and consequently measure
different aspects of multi-modal algorithms. We find that these differences vary not only across
datasets but also within individual benchmarks. To perform this analysis, we apply a systematic
method for characterizing these dependencies. Our results provide a quantitative basis for the de-
sign and selection of future multi-modal benchmarks.
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2 THE MULTI-MODAL SPECTRUM

This section defines inter- and intra- modality dependencies (Section 2.1) for multi-modal learning.
We argue that the failure to systematically measure these dependencies has led to an iterative cycle
of benchmark design and circumvention (Section 2.2). Existing quantification methods (Section 2.3)
lack the scale to recent datasets and MLLMs, establishing the key gap our work addresses.

2.1 PROBLEM SETUP

In supervised multi-modal learning, given a dataset D = {(x(i)
1 ,x

(i)
2 ,y(i))}Ni=1, the goal is to learn a

mapping to predict the target label y from two distinct modalities, x1 and x2. The target label y can
be predicted from two distinct dependencies (Liang et al., 2023; Madaan et al., 2024): intra-modality
dependency or uniqueness, where y is dependent on an individual modality, and inter-modality
dependency or synergy, where modalities provide joint information not present in isolation. For
example, in video-based sentiment analysis, a positive sentiment might be uniquely determined from
strong lexical cues within a text transcript alone. In contrast, detecting sarcasm requires interpreting
the conflict between the literal semantics of the text and audio or visual expressions of the video.

Following prior work (Liang et al., 2023; Madaan et al., 2024), we model this distinction by in-
troducing a selection variable v in the multi-modal data generating process, where v = 1 is a
mechanism to model the dependencies between the modalities and the target task:

p(y,x1,x2,v = 1) = p(y)p(x1|y)p(x2|y)p(v = 1|x1,x2,y). (1)

Although this framework provides a way to separate the effects of individual modalities from their
joint combinations, the actual strength of uniqueness and synergy within popular benchmarks and
MLLMs remains largely unquantified.

2.2 CAT-AND-MOUSE GAME OF BENCHMARK DESIGN

The lack of a principled characterization of these dependencies has resulted in a cat-and-mouse
game of benchmark development and subsequent circumvention. This process occurs across a multi-
modal spectrum of datasets, ranging from those solvable with a single modality, to those that require
inter-modality dependencies. To evaluate the multi-modal capabilities of a model, new benchmarks
are designed to occupy the latter end of this spectrum by deliberately weakening unimodal cues to
necessitate inter-modality dependencies (Goyal et al., 2017; Agrawal et al., 2018; Dancette et al.,
2021; Si et al., 2022; Fu et al., 2024; Tong et al., 2024b; Wu and Xie, 2024). Despite these design
constraints, models frequently achieve high performance by exploiting unforeseen shortcuts. This
reliance on intra-modality dependencies is subsequently framed as an exploitation of uni-modal
artifacts (Liang et al., 2023; Zhang et al., 2024b), a behavior that has been assigned labels such
as model laziness (Zhang et al., 2024a), modality competition (Huang et al., 2022), or modality
greediness (Wu et al., 2022), which prompts further cycles of benchmark revision.

The history of VQA exemplifies this cycle. The original VQA dataset (Antol et al., 2015) contained
strong language priors, allowing models to achieve high accuracy by guessing common answers
based on the type of questions. To counter this, VQAv2 (Goyal et al., 2017) was introduced, which
balanced the dataset by ensuring each question had two images leading to different answers. The
subsequent VQA-CP benchmark (Agrawal et al., 2018) further intensified this by changing the an-
swer distribution between the training and test sets to penalize models that relied only on question-
based priors. Similarly, the VQA-CE (Dancette et al., 2021) and VQA-VS (Si et al., 2022) datasets
were introduced to highlight the prevalence of multi-modal shortcuts in prior VQA benchmarks.
This iterative pattern of creation and attack continues with recent benchmarks, such as the progres-
sion from MMMU (Yue et al., 2024) to MMMU-Pro (Yue et al., 2025).

Without a systematic way to quantify these dependencies, it is difficult to determine whether the
performance of a multi-modal model stems from multi-modal capabilities or from simply exploiting
dominant uni-modal artifacts. This ambiguity hinders progress, as we continue to develop com-
plex architectures and algorithms (Li et al., 2021; Wu et al., 2022; Zheng et al., 2023; Liu et al.,
2023; Young et al., 2024) without a clear understanding of the spectrum of inter- and intra-modality
dependencies in current models and datasets.
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2.3 QUANTIFYING THE STRENGTH OF DEPENDENCIES

Several quantitative metrics have been developed to measure the dependence of a model on individ-
ual modalities. A straightforward approach is to measure performance degradation after shuffling a
modality’s input at test time, where the resulting performance drop is attributed to that modality’s
contribution (Gat et al., 2021). More sophisticated methods, such as MM-Shap (Parcalabescu and
Frank, 2022), SHAPE (Hu et al., 2022), and InterShap (Wenderoth et al., 2025), use Shapley val-
ues to assign importance scores to individual image regions and text tokens, yielding a fine-grained
analysis independent of task accuracy.

Despite these advances, no work has systematically positioned recent MLLM evaluation datasets
along a continuous multi-modal spectrum defined by their inter- and intra-modality dependencies.
In the next section, we adapt a practical methodology based on the perceptual score (Gat et al., 2021)
to measure these dependency strengths. We select this method for its simplicity in the two-modality
case and its ability to directly compute each modality’s marginal contribution. By characterizing
datasets along the spectrum of multi-modal dependencies, we can design more targeted bench-
marks. Further, we gain deeper insights into model capabilities, paving the way for more robust
and generalizable multi-modal systems.

3 RECIPE FOR FUTURE DATASETS AND MODELS

Given a multi-modal dataset D consisting of instances (x1,x2,y), where x1 is an image, x2 is a
text, and y is the ground truth label, we detail a principled evaluation framework inspired by Gat
et al. (2021). This requires a baseline multi-modal model fθ to evaluate performance, measured by
a metric M, under four different input conditions. The chosen baseline model should ideally be
a state-of-the-art multi-modal model that has not been trained on the dataset under analysis, thus
preventing data leakage.

The four evaluation conditions are:

1. Paired modalities (Normal): The model’s performance is measured on original, paired
data points, M(fθ(x1,x2),y).

2. Unimodal (Image only): The paired text x2 is replaced with a text instance x′
2 randomly

sampled from another data point. Performance on M(fθ(x1,x
′
2),y) isolates the informa-

tional contribution of the image modality x1.
3. Unimodal (Text only): Symmetrically, the image x1 is replaced with a random image x1

′.
Performance on M(fθ(x

′
1,x2),y) isolates the contribution of the text modality x2.

4. Both modalities shuffled (Random): Both modalities are replaced with randomly sam-
pled, uncorrelated instances (x′

1,x
′
2). The model’s performance on M(fθ(x

′
1,x

′
2),y) es-

tablishes a random baseline.

A dataset that appears balanced at the global level can still contain strong uni-modal biases within
specific subsets of its data. It is therefore essential that this procedure be supplemented with a more
granular analysis of data subgroups. This involves applying the same diagnostic to data subsets
categorized by relevant features, such as question type or object categories.

Rationale for modality shuffling. We adopt modality shuffling over the option of zeroing out
(e.g., using a blank image or an empty string) or input perturbation as in prior studies (Hu et al.,
2022; Tong et al., 2024a). Zeroing out or adding perturbation creates unnatural, out-of-distribution
inputs can elicit unpredictable model behavior, confounding the measurement of dependency. In
contrast, shuffling preserves the marginal distribution of each modality. The model still receives
valid inputs, but the inter-modality dependency is broken. The performance metrics derived from
this shuffling procedure, visualized in Section 4, enable a direct quantification of inter- and intra-
modality dependencies.

Model-based analysis. Multi-modal dependencies are a function of both the data and the model
interpreting it. Thus, an analysis based on a single model may be confounded by specific inductive
biases of that model. To obtain a robust estimate of intrinsic data dependencies, the effect of any
single model must be marginalized out. We achieve this using a majority-vote ensemble (Dietterich,
2000) of diverse models to reduce the influence of idiosyncratic model biases.
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4 EXPERIMENTS

In this section, we describe the evaluation datasets and models used in Section 4.1. Section 4.2 shows
the overall performance metrics and Section 4.3 shows the results in various subcategories across
multiple datasets.

4.1 DATASETS AND MODELS

To assess the capabilities of MLLMs, we use a comprehensive suite of benchmark datasets. Based
on the core evaluation skills, we categorize the benchmarks chronologically to show the progression
in each category.

• General visual question answering. For general VQA, we focus on benchmarks that test
real-world and compositional reasoning. We include VizWiz (Gurari et al., 2018), which
poses questions from visually impaired users about everyday, uncurated scenes. Following
this, we use GQA (Hudson and Manning, 2019) to evaluate visual reasoning and compo-
sitional reasoning. To evaluate a wider range of abilities, we incorporate MME (Fu et al.,
2023), which covers 14 perception tasks. SEED-Bench (Li et al., 2023a) expands on these
with a large-scale multiple choice question format. MMBench (Liu et al., 2024b) further
evaluates 20 ability dimensions, including object localization and social reasoning.

• Expert visual question answering. To measure performance on tasks requiring special-
ized knowledge, we evaluate with multiple benchmarks. This includes ScienceQA (Lu
et al., 2022), which contains questions from the natural sciences, language and social sci-
ences. We also use MathVista (Lu et al., 2023), which tests mathematical reasoning (logi-
cal, arithmetic, and statistical) in diverse visual formats such as word problems, geometric
shapes, and plots. For expert-level evaluation, we incorporate MMMU (Yue et al., 2024)
and MMMU-Pro (Yue et al., 2025), which consist of college-level problems from exams
and textbooks in six core disciplines, probing multi-modal understanding and reasoning.

• Real-world spatial understanding We use Microsoft COCO dataset (Lin et al., 2014) for
object recognition. To measure and penalize object-level hallucinations, we use the POPE
benchmark (Li et al., 2023b) and measure spatial understanding using RealWorldQA (xAI,
2024). To address the growing importance of temporal reasoning, we include MMVP (Tong
et al., 2024b), which tests comprehension and reasoning about long-form video content.
Omni3D (Brazil et al., 2023; Tong et al., 2024a) contains the task of determining the depth
order and relative distance of 3D objects. Q-Bench (Wu et al., 2024) and BLINK (Fu et al.,
2024) evaluate low-level visual perception and general understanding on numerous com-
puter vision tasks. V ∗ Bench (Wu and Xie, 2024) specifically focuses on visual grounding
in high-resolution images. MM-Star (Chen et al., 2024) is another vision-centric bench-
mark with human-validated samples to test six fundamental multi-modal capabilities.

• Optical character recognition (OCR) and document, chart understanding. We start
by evaluating using TextVQA (Singh et al., 2019), which requires models not only to read,
but also to reason about text embedded in images. We expand the scope of evaluation with
OCRBench (Liu et al., 2024c), which provides a multifaceted assessment that includes text
recognition, scene text-centric VQA, document-oriented VQA, key information extraction,
and handwritten mathematical expression recognition.
For document and chart understanding, we evaluate the model’s ability to comprehend
complex layouts and the relationships between visual elements. We start with AI2D (Kem-
bhavi et al., 2016) for understanding schematic diagrams followed by a ChartQA (Masry
et al., 2022), a challenging dataset of human-generated question-answer pairs on various
charts and plots.

We use the openly available 8B, 13B, and 34B models from Cambrian-1 (Tong et al., 2024a). These
models are built upon Llama-3 8B (Liu et al., 2023), Vicuna-1.5 13B (Chiang et al., 2023), and Nous-
Yi 34B (Young et al., 2024) for language processing. For vision, they incorporate a combination of
architectures including ViT from SigLIP (Zhai et al., 2023; Radford et al., 2021), DINOv2 (Oquab
et al., 2024), and ConvNeXt-XXL (Liu et al., 2022). Our main results are generated by taking a
majority vote among these three models.
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(a) Datasets evaluating visual question answering with
general and expert questions.

coco
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realworldqa
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omni

ai2d

chartqa

textvqa
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0%

20%

40%

60%

80%

100%

Normal
Random

Text
Image

(b) Datasets evaluating spatial understanding and
OCR, data and chart understanding .

Figure 2: Radar plot showing the comparison of an ensemble of standard MLLMs with image only,
text only and random performance using the recipe from Section 3. The dashed line indicates human
performance, which is shown partially due to a lack of data for other benchmarks.

4.2 OVERALL RESULTS

Our evaluation in Figure 2 across 23 multi-modal datasets shows most benchmarks contain both
intra- and inter-modality dependencies, allowing models to answer questions about an image without
looking at both of them. All datasets are classified into three groups based on their modality depen-
dencies: 1) inter-modal only, 2) text-dominant intra-modality dependency, and 3) image-dominant
intra-modality dependency

Datasets with inter-modality dependency only. We show that multi-modal datasets with inter-
modality dependency only are surprisingly rare. Across all evaluated benchmarks, only five datasets
exhibit this characteristic.

For general and expert question answering, MME (Fu et al., 2023) is the only dataset that demon-
strates that permuting one modality makes the task impossible for the model. For spatial understand-
ing, POPE (Li et al., 2023b), COCO (Lin et al., 2014; Tong et al., 2024a), and RealWorldQA (xAI,
2024) were designed to contain inter-modality dependencies. No datasets in the OCR and chart
understanding categories exhibit inter-modality dependencies only.

The simplest way to curate vision-language inter-modality datasets is to ensure that the answer
changes with the change in one modality. This approach has been used in a few binary classification
inter-modality datasets (Suhr and Artzi, 2019; Fu et al., 2023; Li et al., 2023b). For instance, POPE
and MME contains questions with yes and no answers for the same set of images. This ensures
that a model relying on only one modality might correctly answer one question but will fail to
correctly answer the corresponding inverse question. This leads to random performance when the
inter-modality dependencies are ignored with permutation.

Datasets with text intra-modality dependency. Models when evaluated on general and expert
knowledge show a reliance on text across all datasets. For example, models with only the cor-
rect input question achieve scores well above random chance on GQA (Hudson and Manning,
2019) (+26%), ScienceQA (Lu et al., 2022)(+17.5%), and MMMU (Yue et al., 2024) (+11.35%),
demonstrating that visual input is often not considered necessary by the model for these datasets.
This even extends to datasets designed specifically to emphasize visual grounding, such as Blink (Fu
et al., 2024), Omni3D (Brazil et al., 2023; Tong et al., 2024a), and V ∗ Bench (Wu and Xie, 2024).
The same pattern holds for OCR, document and chart understanding datasets such as AI2D (Kem-
bhavi et al., 2016), ChartQA (Masry et al., 2022) and TextVQA (Singh et al., 2019), where using
question only surpass random performance by 30.42, 11.69 and 19.96 absolute points, respectively.
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Figure 3: Effect of model scaling on modality contribution. Performance of various models (8B,
13B, 34B, and a majority-vote ensemble) on four different datasets. The bars represent standard
accuracy and attributed contributions from text, image, and random (bars are in the same order).

These results underscore the challenge of designing benchmarks that do not contain any examples
without text-only dependencies. While it is challenging to dissect the precise cause for these bi-
ases, many studies have conjectured several issues in data curation. These issues include shortcuts
between language and corresponding answers (Goyal et al., 2017), IID train-test splits (Agrawal
et al., 2018), shifted prior distributions (Gat et al., 2021), models’ limited human-level perception
abilities (Fu et al., 2024) and failures to identify visual patterns in the image (Tong et al., 2024b).

Datasets with image intra-modality dependency. Efforts to eliminate textual biases from bench-
marks have led to an unintended consequence of introduction of strong visual intra-modality depen-
dencies. We find that these newer datasets often allow models to succeed by relying solely on the
image, effectively ignoring the question. This is most illustrated in MMBench (Liu et al., 2024b),
where an image-only model outperforms a random baseline by 41%. This issue persists even in
benchmarks designed to focus on multi-modal reasoning, including MMMU-Pro (Yue et al., 2024),
MMVP (Tong et al., 2024b), Q-Bench (Wu et al., 2024), and MM-Star (Chen et al., 2024), which
exhibit image-only performance gains of 1.21%, 8.36%, 11.38%, and 9.87%, respectively.

Instead of requiring multi-modal understanding, many of these evaluation benchmarks swapped a
textual dependency with a visual one to obtain the correct answer. This is because their curation
primarily focused on mitigating text-only intra-modality dependencies. We recommend that the
central goal of a benchmark design should be to measure the intended task using both modalities for
question answering, not to encourage or emphasize intra-modality dependencies.

Effect of model scaling. Since our analysis is based on a model-dependent accuracy metric, we
investigate how modal dependencies change across models of varying scales and architectures. We
selected four datasets with distinct dependencies in Figure 3: POPE (Li et al., 2023b), which is
dominated by inter-modality dependencies; MMMU (Yue et al., 2024), which is reliant on the text
modality; MMBench (Liu et al., 2024b), dependent on the image modality; and AI2D (Kembhavi
et al., 2016), a case where individual models and the ensemble exhibit different behavioral trends.

We find that uni-modal biases are not consistently mitigated by model scale and can even be ex-
acerbated. For instance, on MMMU, scaling to a 34B parameter model increased the overall per-
formance and the reliance on text-only dependencies significantly. Similarly, on MMBench, larger
models exhibit an improved performance with a greater dependency on image-only dependencies
(Figure 3). Conversely, performance on POPE, a benchmark requiring only inter-modal dependen-
cies, showed no change in performance with increase in model size. The results for AI2D were
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Figure 4: Effect of model type on modality contribution. Performance comparison between
LLava-Next (May 2024), Cambrian-1 8b (June 2024), Qwen2.5-VL (April 2025) and Qwen3-VL
(October 2025) on four datasets selected for their specific dependencies: GQA (text), MMBench
(image), POPE (inter-modality) and MMMU-Pro (both image and text). The bars represent stan-
dard accuracy and attributed contributions from text, image, and random (bars are in the same order).

interesting. Individual models showed text contributions worse than random, but the ensemble’s
performance showed text intra-modality dependencies. This discrepancy highlights that a single
model can be misleading, and evaluating multiple models is crucial for robust conclusions. We
provide results with additional datasets in Figure A.8.

Effect of model types. We next compare four different types of instruction-tuned models in Fig-
ure 4. Particularly, we compare Cambrian-8b released in June 2024 with LLama-3 8B base model
(Tong et al., 2024a), LLaVA-Next released in May 2024 with Mistral 7B base model (Liu et al.,
2024a), Qwen2.5-VL from April 2025 with Qwen2.5 7B language model (Bai et al., 2025) and
Qwen3-VL 8B released recently in October 2025 with Qwen3 language model (Team, 2025).

Despite substantial differences in the evaluated models and their release dates, we consistently ob-
serve intra-modality biases (when present) across all of them. For instance, Qwen models improve
the performance on MMBench by around ten percent compared to Cambrian-1 while also increasing
the image-only performance significantly. For POPE, as expected, all models exhibit near-random
performance when using only image or only text inputs. For GQA and MMMU-Pro, we see com-
parable levels of biases across different models types. Similar results with additional datasets are
shown in Figure A.9.

This findings raise the question of whether improvements in benchmark performance really reflect
progress in multi-modal learning or whether models are simply becoming better at exploiting intra-
modality dependencies. We hope that our analysis will encourage reporting not only overall bench-
mark performance but also image-only, text-only, and random baselines, to enable a more holistic
evaluation of multi-modal models.

4.3 CATEGORY ANALYSIS

Aggregate performance metrics on multi-modal benchmarks can be misleading, often obscuring
strong unimodal biases at the sub-category level. As shown in Figure 5, benchmarks that appeared
to use inter-modality dependencies in Figure 2 also contain intra-modality dependencies when eval-
uated at a granular level.
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Figure 5: Analysis of sub-categories across datasets showing dependency on individual modal-
ities. Although benchmarks may be designed for inter-modality reasoning, we show a strong depen-
dence on text for categories such as relative location in ADE and COCO, or higher-grade questions
in ScienceQA and multiple categories in MMMU and MMMUPro. This highlights how aggregate
metrics can obscure that many instances may not require multi-modal reasoning. We show standard
accuracy in yellow and contributions from text in blue, image in green, and random in orange.

This discrepancy is evident across several datasets. In ADE (Zhou et al., 2019) and COCO (Lin
et al., 2014; Tong et al., 2024a), while a text-only model’s overall performance is only marginally
above chance (see Figure 2), it achieves substantial accuracy on the relative location sub-category
(Figures 5a and 5b). This phenomenon is amplified in knowledge-intensive benchmarks. In Sci-
enceQA (Lu et al., 2022) (Figure 5d), text-only performance accounts for the majority of the ac-
curacy of questions aimed at grades 10-12. Likewise, many academic subjects within the MMMU
and MMMU Pro benchmarks (Yue et al., 2024) (Figures 5e and 5f) contain many instances solvable
with a question or an image, respectively, allowing unimodal models to succeed without question or
visual information. Conversely, Q-Bench (Wu et al., 2023) (Figure 5c) exhibits the opposite pattern.
Individual categories show a dependence on both image and text intra-modality dependencies, yet
the aggregate metrics in Figure 2 indicate a notable bias toward the image modality.

These findings are further corroborated by our analysis of datasets such as MME (Fu et al., 2023)
and BLINK (Fu et al., 2024) in Figure A.7. We demonstrate that the degree of modality dependence
is often inconsistent within a single benchmark. This highlights the profound difficulty in curating
well-balanced multi-modal datasets, as uni-modal dependencies can emerge and vary unpredictably
across different sub-populations of the data.

5 LIMITATIONS AND FUTURE WORK

Our analysis is constrained by the field’s reliance on MCVQA benchmarks. This common prac-
tice often fails to test for true multi-modal understanding due to two prevalent failure modes (see
Figure 6): text-based intra-modality dependencies, where models ignore the image for factual ques-
tions; and image-based intra-modality dependencies, where models select visually correlated an-
swers while disregarding the actual question.

To more holistically evaluate multi-modal capabilities, we propose several crucial future directions.
First, we should progress towards building benchmarks that focus on open-ended answer genera-
tion and evaluation (Rei et al., 2020; Balepur et al., 2025). Evaluating free-form responses presents

9
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The correct answer is b) Leaf
Confidence: 1.0

What is the temperature of the 
air on a cold, rainy day? 
a) Salty        b) Sour    
c) Sweet     d) None

The answer is b) sour
The question about the

temperature is a distraction.
Confidence: 1.0

How does water 
become vapor?
a) Evaporation  b) Infilteration
c) Transpiration d) Runoff
e) None

a) Water becomes vapor 
through a process called

evaporation. 
Confidence: 1.0

None of the choices are a
country

The correct answer is 
d) None

Confidence: 1.0

Which country is
highlighted? 
a) Seeds   b) Leaves
c) Fruit.      d) None

Carbon Dioxide is absorbed
through?
a) Root         b) Leaf
c) Flower      d) Stem
e) None

Correct answer is b) Leaf
Confidence: 1.0

Question is mixing taste with
temperature, but given the
images correct answer is b)

Confidence: 0.95

Image shows mint, which is
used for its leaves.

Correct answer is b) 
Confidence: 1.0

Water becomes vapor through
the process of evaporation.

Correct answer is a). 
  Confidence: 1.0

Figure 6: MLLM failure modes in MCVQA. Visualization from GPT-5 and Gemini 2.5 Pro show-
ing failure modes in MCVQA, such as relying only on text for factual questions while ignoring the
image, or conversely, choosing visually correlated answers while ignoring the question. In all cases,
the models were prompted to select one choice and provide a confidence score between 0 and 1.

significant challenges. The same meaning can be expressed in many ways, making automated eval-
uation difficult. This often requires human evaluation, which is slow and expensive. We believe
progress in this direction is essential for measuring the necessary multi-modal capabilities.

Second, both benchmarks and models must support the the ability to abstain from answering when
presented with ambiguous or irrelevant inputs (Whitehead et al., 2022; Feng et al., 2024; Stengel-
Eskin et al., 2024). We conduct a preliminary experiment with OpenAI GPT-5 and Google Gemini
2.5 Pro, showing cases where the image or the question was irrelevant to the answer in Figure 6.
Despite facilitating abstention by augmenting the instruction set with a “None of the above” option,
this approach is largely insufficient to overcome the dependence on uni-modal dependencies for
both GPT-5 and Gemini 2.5 Pro models. This highlights that models have a tendency to generate
a plausible-sounding but incorrect response over acknowledging ambiguity or lack of information
with confidence. Future work should prioritize methods to encourage meaningful abstention.

Lastly, we encourage both future benchmarks and models to report not only aggregated performance
but also modality-specific and random baselines to better measure progress. From a benchmark
perspective, this helps the community understand how a new dataset compares to existing ones in
the inherent biases. From a model perspective, it clarifies where performance gains actually come
from and guides meaningful future improvements.

6 CONCLUSION

Our work critically dissects the intra- and inter-modality dependencies of MLLMs on 24 bench-
marks. We show that each dataset probes multiple dimensions of multi-modal learning, and the
strength of these dependencies varies substantially, both across benchmarks and across categories
within the same benchmark. We also find that efforts to mitigate text-based dependencies have often
introduced new image-based dependencies, perpetuating a cycle of superficial fixes. This suggests
that meaningful progress cannot be achieved simply by developing more benchmarks or chasing
leaderboard metrics. Instead, we must critically assess existing evaluation methods. This includes
moving beyond standard multiple-choice formats, incorporating scenarios where models should ab-
stain when they are uncertain, and examining how a model arrives at an answer rather than only
what answer it produces.
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A SUPPLEMENTARY MATERIAL

Organization. In the supplementary material, we provide the implementation details in Ap-
pendix A.1 and additional results in Appendix A.2.

A.1 EXPERIMENTAL DETAILS

Implementations. We use the Cambrian-1 (Tong et al., 2024a) open-sourced codebase for all the
experiments. We use their publicly released models for evaluation. Datasets like AI2D (Kemb-
havi et al., 2016), ChartQA (Masry et al., 2022), MMBench (Liu et al., 2024b), MME (Fu et al.,
2023), MMMU (Yue et al., 2024), MMVet, POPE (Li et al., 2023b), RealWorldQA (xAI, 2024),
SEED (Li et al., 2023a), TextVQA (Singh et al., 2019), and VizWiz (Gurari et al., 2018) were
sourced from LMMS-eval, while others such as ADE, Blink (Fu et al., 2024), COCO (Lin et al.,
2014), GQA (Hudson and Manning, 2019), MathVista (Lu et al., 2023), MMMUPro (Yue et al.,
2024), MMStar (Chen et al., 2024), MMVP (Tong et al., 2024b), OCRBench (Liu et al., 2024c),
Omni3D (Brazil et al., 2023; Tong et al., 2024a), QBench (Wu et al., 2024), ScienceQA (Lu et al.,
2022), and V ∗Bench (Wu and Xie, 2024) were used from their respective sources. We did not use
the datasets that required external submissions such as DocVQA and InfoVQA.

A.2 ADDITIONAL RESULTS

We show the effect of model size on additional datasets in Figure A.8 and results on categories for
MME and BLINK in Figure A.7.
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Figure A.7: Analysis of sub-categories for MME and BLINK dataset.
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Figure A.8: Effect of model size on additional datasets. Performance of various models (8B, 13B,
34B, and a majority-vote ensemble).
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Figure A.9: Effect of model types on additional datasets. Performance comparison between
various models such as LLava-Next (May 2024), Cambrian-1 8b (June 2024), Qwen2.5-VL (April
2025) and Qwen3-VL (October 2025).
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