

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MULTI-MODAL DATA SPECTRUM: MULTI-MODAL DATASETS ARE MULTI-DIMENSIONAL

Anonymous authors

Paper under double-blind review

ABSTRACT

Understanding the interplay between intra-modality dependencies (the contribution of an individual modality to a target task) and inter-modality dependencies (the relationships between modalities and the target task) is fundamental to advancing multi-modal learning. However, the nature of and interaction between these dependencies within current benchmark evaluations remains poorly characterized. In this work, we present a large-scale empirical study to quantify these dependencies across 23 visual question-answering benchmarks using multi-modal large language models (MLLMs) covering domains such as general and expert knowledge reasoning, optical character recognition, and document understanding. Our findings show that the reliance on vision, question (text), and their interaction varies significantly, both across and within benchmarks. We discover that numerous benchmarks intended to mitigate text-only biases have inadvertently amplified image-only dependencies. This characterization persists across model sizes, as larger models often use these intra-modality dependencies to achieve high performance that mask an underlying lack of multi-modal reasoning. We provide a quantitative characterization of multi-modal datasets, enabling a principled approach to multi-modal benchmark design and evaluation.

1 INTRODUCTION

Rapid advancement of MLLMs has been accompanied by a significant increase in the number of evaluation benchmarks. A recent survey (Li et al., 2024) identified over 200 multi-modal benchmarks. However, this growth has not been accompanied by a systematic investigation into what these datasets measure. This means the relationships, redundancies, and unique contributions across and within the benchmarks are not well understood. It is often unclear whether a new dataset improves multi-modal evaluation or is largely redundant with existing benchmarks. This ambiguity makes the principled selection of benchmarks for model evaluation a significant challenge.

For example, datasets such as AI2D (Kembhavi et al., 2016), ChartQA (Masry et al., 2022), BLINK (Fu et al., 2024), RealworldQA (xAI, 2024), V^* Bench (Wu and Xie, 2024), TextVQA (Singh et al., 2019) were included in the Gemini 1.5 evaluation (Team et al., 2024), but were omitted from Gemini 2.5 (Comanici et al., 2025) with little justification for the changes. Such inconsistencies in evaluation protocols are common (xAI, 2024; Cohere, 2025), making it difficult to determine whether the reported gains in performance represent true advances in capability or simply adaptation to a different set of benchmark artifacts.

This lack of understanding has led to an inefficient cycle of benchmark development. New datasets are created to address specific uni-modal dependencies (Agrawal et al., 2018), which in turn are found to have new and unforeseen artifacts (Dancette et al., 2021; Si et al., 2022). This process hinders consistent, long-term model comparison and undermines scientific rigor.

Prior work has analyzed the dependence on individual modalities and their interaction in multi-modal models using techniques such as representation similarity (Kornblith et al., 2019), information-theoretic measures (Tjandrasuwita et al., 2025; Lu, 2023; Madaan et al., 2024), and score-based methods (Gat et al., 2021; Parcalabescu and Frank, 2022; Hu et al., 2022; Wenderoth et al., 2025). While providing valuable insights, these studies were often limited in scope, focusing on synthetic data, smaller-scale benchmarks such as VQA (Agrawal et al., 2018; Goyal et al., 2017), or earlier generations of models.

Figure 1: **Demonstration of intra-modality dependencies in multi-modal models using input permutation.** (Left) The models correctly answers a question about layers of Earth even when the image is replaced by an unrelated diagram of a brain, indicating it is relying on question alone. (Right) The model correctly identifies a symbiotic relationship from the image even when the question is unrelated, showing it is relying on visual cues while ignoring the text. These examples highlight a failure of multi-modal reasoning, where models exploit uni-modal priors with the options to obtain an associated answer.

To address this gap, we conduct a large-scale empirical study to characterize widely-used multi-modal benchmarks. We hypothesize that these benchmarks evaluate distinct combinations of underlying capabilities. To quantify these dependencies, we use intra-modality dependencies (reliance on a single modality for the target task) and inter-modality dependencies (reliance on the interaction between modalities for the target task) based on prior studies (Liang et al., 2023; Madaan et al., 2024). As illustrated in Figure 1, MLLMs often exploit intra-modality dependencies, answering questions correctly even when a relevant input modality is replaced with corrupted or random data. To quantify these effects systematically, we adapt the input permutation technique from the Perceptual Score (Gat et al., 2021), measuring performance degradation on permuting the input modality to assess the reliance of a model on each modality.

Our evaluation spans 23 multiple-choice visual question answering (MCVQA) benchmarks, covering applications such as general visual question answering, knowledge-based reasoning, real-world spatial understanding, optical character recognition (OCR), and document and chart understanding. We evaluate MLLMs at varying scales, including 8B, 13B, and 34B models (Tong et al., 2024a). Our findings confirm our hypothesis, the strength of intra- and inter-modality dependencies vary substantially across and within these benchmarks.

We show that models depend heavily on one input modality while underutilizing the other, rather than using inter-modality dependencies (see Figure 1). We find that many benchmarks designed to mitigate text-only dependencies (Singh et al., 2019; Li et al., 2023a; Tong et al., 2024b; Wu and Xie, 2024; Fu et al., 2024) have inadvertently introduced strong image-only biases, essentially trading one uni-modal shortcut for another rather than evaluating multi-modal reasoning. Furthermore, this issue is not resolved by simply increasing model scale; on the contrary, larger models often become more adept at exploiting these uni-modal artifacts. These results underscore the fundamental limitations of evaluating models with a single aggregate score and highlight the need for a characterization of our evaluation benchmarks based on their strengths of inter- and intra-modality dependencies.

Contributions. We conduct the first large-scale empirical analysis of multi-modal dependencies across 23 popular VQA benchmarks. Our analysis shows that these datasets have different characteristics regarding their reliance on vision, text, and their interaction, and consequently measure different aspects of multi-modal algorithms. We find that these differences vary not only across datasets but also within individual benchmarks. To perform this analysis, we apply a systematic method for characterizing these dependencies. Our results provide a quantitative basis for the design and selection of future multi-modal benchmarks.

108
109

2 THE MULTI-MODAL SPECTRUM

110
111
112
113
This section defines inter- and intra- modality dependencies (Section 2.1) for multi-modal learning.
We argue that the failure to systematically measure these dependencies has led to an iterative cycle
of benchmark design and circumvention (Section 2.2). Existing quantification methods (Section 2.3)
lack the scale to recent datasets and MLLMs, establishing the key gap our work addresses.
114115
116

2.1 PROBLEM SETUP

117
118
119
120
121
122
123
124
In supervised multi-modal learning, given a dataset $\mathcal{D} = \{(\mathbf{x}_1^{(i)}, \mathbf{x}_2^{(i)}, \mathbf{y}^{(i)})\}_{i=1}^N$, the goal is to learn a
mapping to predict the target label \mathbf{y} from two distinct modalities, \mathbf{x}_1 and \mathbf{x}_2 . The target label \mathbf{y} can
be predicted from two distinct dependencies (Liang et al., 2023; Madaan et al., 2024): intra-modality
dependency or uniqueness, where \mathbf{y} is dependent on an individual modality, and inter-modality
dependency or synergy, where modalities provide joint information not present in isolation. For
example, in video-based sentiment analysis, a positive sentiment might be uniquely determined from
strong lexical cues within a text transcript alone. In contrast, detecting sarcasm requires interpreting
the conflict between the literal semantics of the text and audio or visual expressions of the video.125
126
127
Following prior work (Liang et al., 2023; Madaan et al., 2024), we model this distinction by in-
troducing a selection variable \mathbf{v} in the multi-modal data generating process, where $\mathbf{v} = 1$ is a
mechanism to model the dependencies between the modalities and the target task:

128
129
$$p(\mathbf{y}, \mathbf{x}_1, \mathbf{x}_2, \mathbf{v} = 1) = p(\mathbf{y})p(\mathbf{x}_1|\mathbf{y})p(\mathbf{x}_2|\mathbf{y})p(\mathbf{v} = 1|\mathbf{x}_1, \mathbf{x}_2, \mathbf{y}). \quad (1)$$

130
131
132
Although this framework provides a way to separate the effects of individual modalities from their
joint combinations, the actual strength of uniqueness and synergy within popular benchmarks and
MLLMs remains largely unquantified.
133134
135

2.2 CAT-AND- MOUSE GAME OF BENCHMARK DESIGN

136
137
138
139
140
141
142
143
144
145
146
The lack of a principled characterization of these dependencies has resulted in a cat-and-mouse
game of benchmark development and subsequent circumvention. This process occurs across a multi-
modal spectrum of datasets, ranging from those solvable with a single modality, to those that require
inter-modality dependencies. To evaluate the multi-modal capabilities of a model, new benchmarks
are designed to occupy the latter end of this spectrum by deliberately weakening unimodal cues to
necessitate inter-modality dependencies (Goyal et al., 2017; Agrawal et al., 2018; Dancette et al.,
2021; Si et al., 2022; Fu et al., 2024; Tong et al., 2024b; Wu and Xie, 2024). Despite these design
constraints, models frequently achieve high performance by exploiting unforeseen shortcuts. This
reliance on intra-modality dependencies is subsequently framed as an exploitation of uni-modal
artifacts (Liang et al., 2023; Zhang et al., 2024b), a behavior that has been assigned labels such
as model laziness (Zhang et al., 2024a), modality competition (Huang et al., 2022), or modality
greediness (Wu et al., 2022), which prompts further cycles of benchmark revision.147
148
149
150
151
152
153
154
155
156
The history of VQA exemplifies this cycle. The original VQA dataset (Antol et al., 2015) contained
strong language priors, allowing models to achieve high accuracy by guessing common answers
based on the type of questions. To counter this, VQAv2 (Goyal et al., 2017) was introduced, which
balanced the dataset by ensuring each question had two images leading to different answers. The
subsequent VQA-CP benchmark (Agrawal et al., 2018) further intensified this by changing the an-
swer distribution between the training and test sets to penalize models that relied only on question-
based priors. Similarly, the VQA-CE (Dancette et al., 2021) and VQA-VS (Si et al., 2022) datasets
were introduced to highlight the prevalence of multi-modal shortcuts in prior VQA benchmarks.
This iterative pattern of creation and attack continues with recent benchmarks, such as the progres-
sion from MMMU (Yue et al., 2024) to MMMU-Pro (Yue et al., 2025).157
158
159
160
161
Without a systematic way to quantify these dependencies, it is difficult to determine whether the
performance of a multi-modal model stems from multi-modal capabilities or from simply exploiting
dominant uni-modal artifacts. This ambiguity hinders progress, as we continue to develop com-
plex architectures and algorithms (Li et al., 2021; Wu et al., 2022; Zheng et al., 2023; Liu et al.,
2023; Young et al., 2024) without a clear understanding of the spectrum of inter- and intra-modality
dependencies in current models and datasets.

162 2.3 QUANTIFYING THE STRENGTH OF DEPENDENCIES
163164 Several quantitative metrics have been developed to measure the dependence of a model on individual
165 modalities. A straightforward approach is to measure performance degradation after shuffling a
166 modality’s input at test time, where the resulting performance drop is attributed to that modality’s
167 contribution (Gat et al., 2021). More sophisticated methods, such as MM-Shap (Parcalabescu and
168 Frank, 2022), SHAPE (Hu et al., 2022), and InterShap (Wenderoth et al., 2025), use Shapley values
169 to assign importance scores to individual image regions and text tokens, yielding a fine-grained
170 analysis independent of task accuracy.
171172 Despite these advances, no work has systematically positioned recent MLLM evaluation datasets
173 along a continuous multi-modal spectrum defined by their inter- and intra-modality dependencies.
174 In the next section, we adapt a practical methodology based on the perceptual score (Gat et al., 2021)
175 to measure these dependency strengths. We select this method for its simplicity in the two-modality
176 case and its ability to directly compute each modality’s marginal contribution. By characterizing
177 datasets along the spectrum of multi-modal dependencies, we can design more targeted benchmarks.
178 Further, we gain deeper insights into model capabilities, paving the way for more robust
179 and generalizable multi-modal systems.
180181 3 RECIPE FOR FUTURE DATASETS AND MODELS
182183 Given a multi-modal dataset \mathcal{D} consisting of instances $(\mathbf{x}_1, \mathbf{x}_2, \mathbf{y})$, where \mathbf{x}_1 is an image, \mathbf{x}_2 is a
184 text, and \mathbf{y} is the ground truth label, we detail a principled evaluation framework inspired by Gat
185 et al. (2021). This requires a baseline multi-modal model f_θ to evaluate performance, measured by
186 a metric \mathcal{M} , under four different input conditions. The chosen baseline model should ideally be
187 a state-of-the-art multi-modal model that has not been trained on the dataset under analysis, thus
188 preventing data leakage.
189190 The four evaluation conditions are:
191192 1. **Paired modalities (Normal):** The model’s performance is measured on original, paired
193 data points, $\mathcal{M}(f_\theta(\mathbf{x}_1, \mathbf{x}_2), \mathbf{y})$.
194 2. **Unimodal (Image only):** The paired text \mathbf{x}_2 is replaced with a text instance \mathbf{x}'_2 randomly
195 sampled from another data point. Performance on $\mathcal{M}(f_\theta(\mathbf{x}_1, \mathbf{x}'_2), \mathbf{y})$ isolates the informa-
196 tional contribution of the image modality \mathbf{x}_1 .
197 3. **Unimodal (Text only):** Symmetrically, the image \mathbf{x}_1 is replaced with a random image \mathbf{x}'_1 .
198 Performance on $\mathcal{M}(f_\theta(\mathbf{x}'_1, \mathbf{x}_2), \mathbf{y})$ isolates the contribution of the text modality \mathbf{x}_2 .
199 4. **Both modalities shuffled (Random):** Both modalities are replaced with randomly sam-
200 pled, uncorrelated instances $(\mathbf{x}'_1, \mathbf{x}'_2)$. The model’s performance on $\mathcal{M}(f_\theta(\mathbf{x}'_1, \mathbf{x}'_2), \mathbf{y})$ es-
201 tablishes a random baseline.
202203 A dataset that appears balanced at the global level can still contain strong uni-modal biases within
204 specific subsets of its data. It is therefore essential that this procedure be supplemented with a more
205 granular analysis of data subgroups. This involves applying the same diagnostic to data subsets
206 categorized by relevant features, such as question type or object categories.
207208 **Rationale for modality shuffling.** We adopt modality shuffling over the option of zeroing out
209 (e.g., using a blank image or an empty string) or input perturbation as in prior studies (Hu et al.,
210 2022; Tong et al., 2024a). Zeroing out or adding perturbation creates unnatural, out-of-distribution
211 inputs can elicit unpredictable model behavior, confounding the measurement of dependency. In
212 contrast, shuffling preserves the marginal distribution of each modality. The model still receives
213 valid inputs, but the inter-modality dependency is broken. The performance metrics derived from
214 this shuffling procedure, visualized in Section 4, enable a direct quantification of inter- and intra-
215 modality dependencies.
216217 **Model-based analysis.** Multi-modal dependencies are a function of both the data and the model
218 interpreting it. Thus, an analysis based on a single model may be confounded by specific inductive
219 biases of that model. To obtain a robust estimate of intrinsic data dependencies, the effect of any
220 single model must be marginalized out. We achieve this using a majority-vote ensemble (Dietterich,
221 2000) of diverse models to reduce the influence of idiosyncratic model biases.
222

216

4 EXPERIMENTS

217

218 In this section, we describe the evaluation datasets and models used in [Section 4.1](#). [Section 4.2](#) shows
219 the overall performance metrics and [Section 4.3](#) shows the results in various subcategories across
220 multiple datasets.
221

222

4.1 DATASETS AND MODELS

223

224 To assess the capabilities of MLLMs, we use a comprehensive suite of benchmark datasets. Based
225 on the core evaluation skills, we categorize the benchmarks chronologically to show the progression
226 in each category.
227

228

229 - **General visual question answering.** For general VQA, we focus on benchmarks that test
230 real-world and compositional reasoning. We include VizWiz ([Gurari et al., 2018](#)), which
231 poses questions from visually impaired users about everyday, uncurated scenes. Following
232 this, we use GQA ([Hudson and Manning, 2019](#)) to evaluate visual reasoning and compo-
233 sitional reasoning. To evaluate a wider range of abilities, we incorporate MME ([Fu et al.,
234 2023](#)), which covers 14 perception tasks. SEED-Bench ([Li et al., 2023a](#)) expands on these
235 with a large-scale multiple choice question format. MMBench ([Liu et al., 2024b](#)) further
evaluates 20 ability dimensions, including object localization and social reasoning.
236 - **Expert visual question answering.** To measure performance on tasks requiring special-
237 ized knowledge, we evaluate with multiple benchmarks. This includes ScienceQA ([Lu
238 et al., 2022](#)), which contains questions from the natural sciences, language and social sci-
239 ences. We also use MathVista ([Lu et al., 2023](#)), which tests mathematical reasoning (logi-
240 cal, arithmetic, and statistical) in diverse visual formats such as word problems, geometric
241 shapes, and plots. For expert-level evaluation, we incorporate MMMU ([Yue et al., 2024](#))
242 and MMMU-Pro ([Yue et al., 2025](#)), which consist of college-level problems from exams
243 and textbooks in six core disciplines, probing multi-modal understanding and reasoning.
244 - **Real-world spatial understanding** We use Microsoft COCO dataset ([Lin et al., 2014](#)) for
245 object recognition. To measure and penalize object-level hallucinations, we use the POPE
246 benchmark ([Li et al., 2023b](#)) and measure spatial understanding using RealWorldQA ([xAI,
247 2024](#)). To address the growing importance of temporal reasoning, we include MMVP ([Tong
248 et al., 2024b](#)), which tests comprehension and reasoning about long-form video content.
249 Omni3D ([Brazil et al., 2023](#); [Tong et al., 2024a](#)) contains the task of determining the depth
250 order and relative distance of 3D objects. Q-Bench ([Wu et al., 2024](#)) and BLINK ([Fu et al.,
251 2024](#)) evaluate low-level visual perception and general understanding on numerous com-
252 puter vision tasks. V^* Bench ([Wu and Xie, 2024](#)) specifically focuses on visual grounding
253 in high-resolution images. MM-Star ([Chen et al., 2024](#)) is another vision-centric bench-
254 mark with human-validated samples to test six fundamental multi-modal capabilities.
255 - **Optical character recognition (OCR) and document, chart understanding.** We start
256 by evaluating using TextVQA ([Singh et al., 2019](#)), which requires models not only to read,
257 but also to reason about text embedded in images. We expand the scope of evaluation with
258 OCRBench ([Liu et al., 2024c](#)), which provides a multifaceted assessment that includes text
259 recognition, scene text-centric VQA, document-oriented VQA, key information extraction,
260 and handwritten mathematical expression recognition.

261 For document and chart understanding, we evaluate the model’s ability to comprehend
262 complex layouts and the relationships between visual elements. We start with AI2D ([Kem-
263 bhavi et al., 2016](#)) for understanding schematic diagrams followed by a ChartQA ([Masry
264 et al., 2022](#)), a challenging dataset of human-generated question-answer pairs on various
charts and plots.

265 We use the openly available 8B, 13B, and 34B models from Cambrian-1 ([Tong et al., 2024a](#)). These
266 models are built upon Llama-3 8B ([Liu et al., 2023](#)), Vicuna-1.5 13B ([Chiang et al., 2023](#)), and Nous-
267 Yi 34B ([Young et al., 2024](#)) for language processing. For vision, they incorporate a combination of
268 architectures including ViT from SigLIP ([Zhai et al., 2023](#); [Radford et al., 2021](#)), DINOv2 ([Oquab
269 et al., 2024](#)), and ConvNeXt-XXL ([Liu et al., 2022](#)). Our main results are generated by taking a
majority vote among these three models.

(a) Datasets evaluating visual question answering with (b) Datasets evaluating **spatial understanding** and **general** and **expert** questions.

Figure 2: Radar plot showing the comparison of an ensemble of standard MLLMs with **image only**, **text only** and **random** performance using the **recipe from Section 3**. The dashed line indicates human performance, which is shown partially due to a lack of data for other benchmarks.

4.2 OVERALL RESULTS

Our evaluation in Figure 2 across 23 multi-modal datasets shows most benchmarks contain both intra- and inter-modality dependencies, allowing models to answer questions about an image without looking at both of them. All datasets are classified into three groups based on their modality dependencies: 1) inter-modal only, 2) text-dominant intra-modality dependency, and 3) image-dominant intra-modality dependency

Datasets with inter-modality dependency only. We show that multi-modal datasets with inter-modality dependency only are surprisingly rare. Across all evaluated benchmarks, only five datasets exhibit this characteristic.

For general and expert question answering, MME (Fu et al., 2023) is the only dataset that demonstrates that permuting one modality makes the task impossible for the model. For spatial understanding, POPE (Li et al., 2023b), COCO (Lin et al., 2014; Tong et al., 2024a), and RealWorldQA (xAI, 2024) were designed to contain inter-modality dependencies. No datasets in the OCR and chart understanding categories exhibit inter-modality dependencies only.

The simplest way to curate vision-language inter-modality datasets is to ensure that the answer changes with the change in one modality. This approach has been used in a few binary classification inter-modality datasets (Suhr and Artzi, 2019; Fu et al., 2023; Li et al., 2023b). For instance, POPE and MME contains questions with yes and no answers for the same set of images. This ensures that a model relying on only one modality might correctly answer one question but will fail to correctly answer the corresponding inverse question. This leads to random performance when the inter-modality dependencies are ignored with permutation.

Datasets with text intra-modality dependency. *Models when evaluated on general and expert knowledge show a reliance on text across all datasets.* For example, models with only the correct input question achieve scores well above random chance on GQA (Hudson and Manning, 2019) (+26%), ScienceQA (Lu et al., 2022)(+17.5%), and MMMU (Yue et al., 2024) (+11.35%), demonstrating that visual input is often not considered necessary by the model for these datasets. This even extends to datasets designed specifically to emphasize visual grounding, such as Blink (Fu et al., 2024), Omni3D (Brazil et al., 2023; Tong et al., 2024a), and V* Bench (Wu and Xie, 2024). The same pattern holds for OCR, document and chart understanding datasets such as AI2D (Kembhavi et al., 2016), ChartQA (Masry et al., 2022) and TextVQA (Singh et al., 2019), where using question only surpass random performance by 30.42, 11.69 and 19.96 absolute points, respectively.

Figure 3: **Effect of model scaling on modality contribution.** Performance of various models (8B, 13B, 34B, and a majority-vote ensemble) on four different datasets. The bars represent standard accuracy and attributed contributions from text, image, and random (bars are in the same order).

These results underscore the challenge of designing benchmarks that do not contain any examples without text-only dependencies. While it is challenging to dissect the precise cause for these biases, many studies have conjectured several issues in data curation. These issues include shortcuts between language and corresponding answers (Goyal et al., 2017), IID train-test splits (Agrawal et al., 2018), shifted prior distributions (Gat et al., 2021), models’ limited human-level perception abilities (Fu et al., 2024) and failures to identify visual patterns in the image (Tong et al., 2024b).

Datasets with image intra-modality dependency. Efforts to eliminate textual biases from benchmarks have led to an unintended consequence of introduction of strong visual intra-modality dependencies. We find that these newer datasets often allow models to succeed by relying solely on the image, effectively ignoring the question. This is most illustrated in MMBench (Liu et al., 2024b), where an image-only model outperforms a random baseline by 41%. This issue persists even in benchmarks designed to focus on multi-modal reasoning, including MMMU-Pro (Yue et al., 2024), MMVP (Tong et al., 2024b), Q-Bench (Wu et al., 2024), and MM-Star (Chen et al., 2024), which exhibit image-only performance gains of 1.21%, 8.36%, 11.38%, and 9.87%, respectively.

Instead of requiring multi-modal understanding, many of these evaluation benchmarks swapped a textual dependency with a visual one to obtain the correct answer. This is because their curation primarily focused on mitigating text-only intra-modality dependencies. We recommend that the central goal of a benchmark design should be to measure the intended task using both modalities for question answering, not to encourage or emphasize intra-modality dependencies.

Effect of model scaling. Since our analysis is based on a model-dependent accuracy metric, we investigate how modal dependencies change across models of varying scales and architectures. We selected four datasets with distinct dependencies in Figure 3: POPE (Li et al., 2023b), which is dominated by inter-modality dependencies; MMMU (Yue et al., 2024), which is reliant on the text modality; MMBench (Liu et al., 2024b), dependent on the image modality; and AI2D (Kembhavi et al., 2016), a case where individual models and the ensemble exhibit different behavioral trends.

We find that uni-modal biases are not consistently mitigated by model scale and can even be exacerbated. For instance, on MMMU, scaling to a 34B parameter model increased the overall performance and the reliance on text-only dependencies significantly. Similarly, on MMBench, larger models exhibit an improved performance with a greater dependency on image-only dependencies (Figure 3). Conversely, performance on POPE, a benchmark requiring only inter-modal dependencies, showed no change in performance with increase in model size. The results for AI2D were

Figure 4: **Effect of model type on modality contribution.** Performance comparison between LLaVA-Next (May 2024), Cambrian-1 8b (June 2024), Qwen2.5-VL (April 2025) and Qwen3-VL (October 2025) on four datasets selected for their specific dependencies: GQA (text), MMBench (image), POPE (inter-modality) and MMMU-Pro (both image and text). The bars represent standard accuracy and attributed contributions from text, image, and random (bars are in the same order).

interesting. Individual models showed text contributions worse than random, but the ensemble’s performance showed text intra-modality dependencies. This discrepancy highlights that a single model can be misleading, and evaluating multiple models is crucial for robust conclusions. We provide results with additional datasets in Figure A.8.

Effect of model types. We next compare four different types of instruction-tuned models in Figure 4. Particularly, we compare Cambrian-8b released in June 2024 with LLaMA-3 8B base model (Tong et al., 2024a), LLaVA-Next released in May 2024 with Mistral 7B base model (Liu et al., 2024a), Qwen2.5-VL from April 2025 with Qwen2.5 7B language model (Bai et al., 2025) and Qwen3-VL 8B released recently in October 2025 with Qwen3 language model (Team, 2025).

Despite substantial differences in the evaluated models and their release dates, we consistently observe intra-modality biases (when present) across all of them. For instance, Qwen models improve the performance on MMBench by around ten percent compared to Cambrian-1 while also increasing the image-only performance significantly. For POPE, as expected, all models exhibit near-random performance when using only image or only text inputs. For GQA and MMMU-Pro, we see comparable levels of biases across different models types. Similar results with additional datasets are shown in Figure A.9.

This findings raise the question of whether improvements in benchmark performance really reflect progress in multi-modal learning or whether models are simply becoming better at exploiting intra-modality dependencies. We hope that our analysis will encourage reporting not only overall benchmark performance but also image-only, text-only, and random baselines, to enable a more holistic evaluation of multi-modal models.

4.3 CATEGORY ANALYSIS

Aggregate performance metrics on multi-modal benchmarks can be misleading, often obscuring strong unimodal biases at the sub-category level. As shown in Figure 5, benchmarks that appeared to use inter-modality dependencies in Figure 2 also contain intra-modality dependencies when evaluated at a granular level.

Figure 5: **Analysis of sub-categories across datasets showing dependency on individual modalities.** Although benchmarks may be designed for inter-modality reasoning, we show a strong dependence on text for categories such as relative location in ADE and COCO (Lin et al., 2014; Tong et al., 2024a), while a text-only model’s overall performance is only marginally above chance (see Figure 2), it achieves substantial accuracy on the relative location sub-category (Figures 5a and 5b). This phenomenon is amplified in knowledge-intensive benchmarks. In ScienceQA (Lu et al., 2022) (Figure 5d), text-only performance accounts for the majority of the accuracy of questions aimed at grades 10-12. Likewise, many academic subjects within the MMMU and MMMU Pro benchmarks (Yue et al., 2024) (Figures 5e and 5f) contain many instances solvable with a question or an image, respectively, allowing unimodal models to succeed without question or visual information. Conversely, Q-Bench (Wu et al., 2023) (Figure 5c) exhibits the opposite pattern. Individual categories show a dependence on both image and text intra-modality dependencies, yet the aggregate metrics in Figure 2 indicate a notable bias toward the image modality.

This discrepancy is evident across several datasets. In ADE (Zhou et al., 2019) and COCO (Lin et al., 2014; Tong et al., 2024a), while a text-only model’s overall performance is only marginally above chance (see Figure 2), it achieves substantial accuracy on the relative location sub-category (Figures 5a and 5b). This phenomenon is amplified in knowledge-intensive benchmarks. In ScienceQA (Lu et al., 2022) (Figure 5d), text-only performance accounts for the majority of the accuracy of questions aimed at grades 10-12. Likewise, many academic subjects within the MMMU and MMMU Pro benchmarks (Yue et al., 2024) (Figures 5e and 5f) contain many instances solvable with a question or an image, respectively, allowing unimodal models to succeed without question or visual information. Conversely, Q-Bench (Wu et al., 2023) (Figure 5c) exhibits the opposite pattern. Individual categories show a dependence on both image and text intra-modality dependencies, yet the aggregate metrics in Figure 2 indicate a notable bias toward the image modality.

These findings are further corroborated by our analysis of datasets such as MME (Fu et al., 2023) and BLINK (Fu et al., 2024) in Figure A.7. We demonstrate that the degree of modality dependence is often inconsistent within a single benchmark. This highlights the profound difficulty in curating well-balanced multi-modal datasets, as uni-modal dependencies can emerge and vary unpredictably across different sub-populations of the data.

5 LIMITATIONS AND FUTURE WORK

Our analysis is constrained by the field’s reliance on MCVQA benchmarks. This common practice often fails to test for true multi-modal understanding due to two prevalent failure modes (see Figure 6): text-based intra-modality dependencies, where models ignore the image for factual questions; and image-based intra-modality dependencies, where models select visually correlated answers while disregarding the actual question.

To more holistically evaluate multi-modal capabilities, we propose several crucial future directions. First, we should progress towards building benchmarks that focus on open-ended answer generation and evaluation (Rei et al., 2020; Balepur et al., 2025). Evaluating free-form responses presents

503 **Figure 6: MLLM failure modes in MCVQA.** Visualization from GPT-5 and Gemini 2.5 Pro showing
 504 failure modes in MCVQA, such as relying only on text for factual questions while ignoring the
 505 image, or conversely, choosing visually correlated answers while ignoring the question. In all cases,
 506 the models were prompted to select one choice and provide a confidence score between 0 and 1.
 507
 508
 509

510 significant challenges. The same meaning can be expressed in many ways, making automated eval-
 511 uation difficult. This often requires human evaluation, which is slow and expensive. We believe
 512 progress in this direction is essential for measuring the necessary multi-modal capabilities.

513 **Second, both benchmarks and models must support the the ability to abstain from answering when**
 514 **presented with ambiguous or irrelevant inputs (Whitehead et al., 2022; Feng et al., 2024; Stengel-**
 515 **Eskin et al., 2024).** We conduct a preliminary experiment with OpenAI GPT-5 and Google Gemini
 516 2.5 Pro, showing cases where the image or the question was irrelevant to the answer in Figure 6.
 517 Despite facilitating abstention by augmenting the instruction set with a “None of the above” option,
 518 this approach is largely insufficient to overcome the dependence on uni-modal dependencies for
 519 both GPT-5 and Gemini 2.5 Pro models. This highlights that models have a tendency to generate
 520 a plausible-sounding but incorrect response over acknowledging ambiguity or lack of information
 521 with confidence. Future work should prioritize methods to encourage meaningful abstention.

522 **Lastly, we encourage both future benchmarks and models to report not only aggregated performance**
 523 **but also modality-specific and random baselines to better measure progress.** From a benchmark
 524 perspective, this helps the community understand how a new dataset compares to existing ones in
 525 the inherent biases. From a model perspective, it clarifies where performance gains actually come
 526 from and guides meaningful future improvements.

527 528 529 6 CONCLUSION

530 Our work critically dissects the intra- and inter-modality dependencies of MLLMs on 24 bench-
 531 marks. We show that each dataset probes multiple dimensions of multi-modal learning, and the
 532 strength of these dependencies varies substantially, both across benchmarks and across categories
 533 within the same benchmark. We also find that efforts to mitigate text-based dependencies have often
 534 introduced new image-based dependencies, perpetuating a cycle of superficial fixes. This suggests
 535 that meaningful progress cannot be achieved simply by developing more benchmarks or chasing
 536 leaderboard metrics. Instead, we must critically assess existing evaluation methods. This includes
 537 moving beyond standard multiple-choice formats, incorporating scenarios where models should ab-
 538 stain when they are uncertain, and examining how a model arrives at an answer rather than only
 539 what answer it produces.

540 REFERENCES
541

542 A. Agrawal, D. Batra, D. Parikh, and A. Kembhavi. Don't just assume; look and answer: Overcom-
543 ing priors for visual question answering. In *Proceedings of the IEEE International Conference on*
544 *Computer Vision and Pattern Recognition (CVPR)*, 2018. 1, 3, 7

545 S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L. Zitnick, and D. Parikh. Vqa: Visual
546 question answering. In *Proceedings of the International Conference on Computer Vision (ICCV)*,
547 2015. 3

548 S. Bai, K. Chen, X. Liu, J. Wang, W. Ge, S. Song, K. Dang, P. Wang, S. Wang, J. Tang, et al. Qwen2.
549 5-vl technical report. *arXiv preprint arXiv:2502.13923*, 2025. 8

550 N. Balepur, R. Rudinger, and J. L. Boyd-Graber. Which of these best describes multiple choice
551 evaluation with llms? a) forced b) flawed c) fixable d) all of the above. *arXiv preprint*
552 *arXiv:2502.14127*, 2025. 9

553 G. Brazil, A. Kumar, J. Straub, N. Ravi, J. Johnson, and G. Gkioxari. Omni3d: A large bench-
554 mark and model for 3d object detection in the wild. In *Proceedings of the IEEE International*
555 *Conference on Computer Vision and Pattern Recognition (CVPR)*, 2023. 5, 6, 15

556 L. Chen, J. Li, X. Dong, P. Zhang, Y. Zang, Z. Chen, H. Duan, J. Wang, Y. Qiao, D. Lin, et al. Are we
557 on the right way for evaluating large vision-language models? *Advances in Neural Information*
558 *Processing Systems (NeurIPS)*, 2024. 5, 7, 15

559 W.-L. Chiang, Z. Li, Z. Lin, Y. Sheng, Z. Wu, H. Zhang, L. Zheng, S. Zhuang, Y. Zhuang, J. E.
560 Gonzalez, I. Stoica, and E. P. Xing. Vicuna: An open-source chatbot impressing gpt-4 with 90%*
561 chatgpt quality, 2023. 5

562 Cohere. Introducing command a vision: Multimodal ai built for business, 2025. URL <https://cohere.com/blog/command-a-vision>. 1

563 G. Comanici, E. Bieber, M. Schaekermann, I. Pasupat, N. Sachdeva, I. Dhillon, M. Blistein, O. Ram,
564 D. Zhang, E. Rosen, et al. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodal-
565 ity, long context, and next generation agentic capabilities. *arXiv preprint arXiv:2507.06261*, 2025.
566 1

567 C. Dancette, R. Cadene, D. Teney, and M. Cord. Beyond question-based biases: Assessing multi-
568 modal shortcut learning in visual question answering. In *Proceedings of the International Con-*
569 *ference on Computer Vision (ICCV)*, 2021. 1, 3

570 T. G. Dietterich. Ensemble methods in machine learning. In *International workshop on multiple*
571 *classifier systems*, 2000. 4

572 S. Feng, W. Shi, Y. Wang, W. Ding, O. Ahia, S. S. Li, V. Balachandran, S. Sitaram, and Y. Tsvetkov.
573 Teaching llms to abstain across languages via multilingual feedback. In *Proceedings of the Con-*
574 *ference on Empirical Methods in Natural Language Processing (EMNLP)*, 2024. 10

575 C. Fu, P. Chen, Y. Shen, Y. Qin, M. Zhang, X. Lin, J. Yang, X. Zheng, K. Li, X. Sun, et al. Mme:
576 A comprehensive evaluation benchmark for multimodal large language models. *arXiv preprint*
577 *arXiv:2306.13394*, 2023. 5, 6, 9, 15

578 X. Fu, Y. Hu, B. Li, Y. Feng, H. Wang, X. Lin, D. Roth, N. A. Smith, W.-C. Ma, and R. Krishna.
579 Blink: Multimodal large language models can see but not perceive. In *Proceedings of the Euro-*
580 *pean Conference on Computer Vision (ECCV)*, 2024. 1, 2, 3, 5, 6, 7, 9, 15

581 I. Gat, I. Schwartz, and A. Schwing. Perceptual score: What data modalities does your model
582 perceive? *Advances in Neural Information Processing Systems (NeurIPS)*, 2021. 1, 2, 4, 7

583 Y. Goyal, T. Khot, D. Summers-Stay, D. Batra, and D. Parikh. Making the v in vqa matter: Ele-
584 vating the role of image understanding in visual question answering. In *Proceedings of the IEEE*
585 *International Conference on Computer Vision and Pattern Recognition (CVPR)*, 2017. 1, 3, 7

594 D. Gurari, Q. Li, A. J. Stangl, A. Guo, C. Lin, K. Grauman, J. Luo, and J. P. Bigham. Vizwiz
 595 grand challenge: Answering visual questions from blind people. In *Proceedings of the IEEE*
 596 *International Conference on Computer Vision and Pattern Recognition (CVPR)*, 2018. 5, 15
 597

598 P. Hu, X. Li, and Y. Zhou. Shape: An unified approach to evaluate the contribution and cooperation
 599 of individual modalities. *arXiv preprint arXiv:2205.00302*, 2022. 1, 4

600 Y. Huang, J. Lin, C. Zhou, H. Yang, and L. Huang. Modality competition: What makes joint training
 601 of multi-modal network fail in deep learning?(provably). In *Proceedings of the International*
 602 *Conference on Machine Learning (ICML)*, 2022. 3

603

604 D. A. Hudson and C. D. Manning. Gqa: A new dataset for real-world visual reasoning and compo-
 605 sitional question answering. In *Proceedings of the IEEE International Conference on Computer*
 606 *Vision and Pattern Recognition (CVPR)*, 2019. 5, 6, 15

607 A. Kembhavi, M. Salvato, E. Kolve, M. Seo, H. Hajishirzi, and A. Farhadi. A diagram is worth a
 608 dozen images. In *Proceedings of the European Conference on Computer Vision (ECCV)*, 2016.
 609 1, 5, 6, 7, 15

610

611 S. Kornblith, M. Norouzi, H. Lee, and G. Hinton. Similarity of neural network representations
 612 revisited. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2019. 1

613

614 B. Li, R. Wang, G. Wang, Y. Ge, Y. Ge, and Y. Shan. Seed-bench: Benchmarking multimodal llms
 615 with generative comprehension. *arXiv preprint arXiv:2307.16125*, 2023a. 2, 5, 15

616 J. Li, R. Selvaraju, A. Gotmare, S. Joty, C. Xiong, and S. C. H. Hoi. Align before fuse: Vision and
 617 language representation learning with momentum distillation. *Advances in Neural Information*
 618 *Processing Systems (NeurIPS)*, 2021. 3

619

620 L. Li, G. Chen, H. Shi, J. Xiao, and L. Chen. A survey on multimodal benchmarks: In the era of
 621 large ai models. *arXiv preprint arXiv:2409.18142*, 2024. 1

622

623 Y. Li, Y. Du, K. Zhou, J. Wang, W. X. Zhao, and J.-R. Wen. Evaluating object hallucination in large
 624 vision-language models. In *Proceedings of the Conference on Empirical Methods in Natural*
 625 *Language Processing (EMNLP)*, 2023b. 5, 6, 7, 15

626

627 P. P. Liang, Y. Cheng, X. Fan, C. K. Ling, S. Nie, R. Chen, Z. Deng, N. Allen, R. Auerbach, F. Mah-
 628 mood, et al. Quantifying & modeling multimodal interactions: An information decomposition
 629 framework. *Advances in Neural Information Processing Systems (NeurIPS)*, 2023. 2, 3

630

631 T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick.
 Microsoft coco: Common objects in context. In *Proceedings of the European Conference on*
 632 *Computer Vision (ECCV)*, 2014. 5, 6, 9, 15

633

634 H. Liu, C. Li, Q. Wu, and Y. J. Lee. Visual instruction tuning. *Advances in Neural Information*
 635 *Processing Systems (NeurIPS)*, 2023. 3, 5

636

637 H. Liu, C. Li, Y. Li, B. Li, Y. Zhang, S. Shen, and Y. J. Lee. Llava-next: Improved reasoning, ocr,
 638 and world knowledge, January 2024a. URL <https://llava-v1.github.io/blog/2024-01-30-llava-next/>. 8

639

640 Y. Liu, H. Duan, Y. Zhang, B. Li, S. Zhang, W. Zhao, Y. Yuan, J. Wang, C. He, Z. Liu, et al.
 Mmbench: Is your multi-modal model an all-around player? In *Proceedings of the European*
 641 *Conference on Computer Vision (ECCV)*, 2024b. 5, 7, 15

642

643 Y. Liu, Z. Li, M. Huang, B. Yang, W. Yu, C. Li, X.-C. Yin, C.-L. Liu, L. Jin, and X. Bai. Ocrbench:
 644 on the hidden mystery of ocr in large multimodal models. *Science China Information Sciences*,
 645 2024c. 5, 15

646

647 Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie. A convnet for the 2020s.
 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages
 11976–11986, 2022. 5

648 P. Lu, S. Mishra, T. Xia, L. Qiu, K.-W. Chang, S.-C. Zhu, O. Tafjord, P. Clark, and A. Kalyan. Learn
 649 to explain: Multimodal reasoning via thought chains for science question answering. *Advances*
 650 in *Neural Information Processing Systems (NeurIPS)*, 2022. 5, 6, 9, 15

651

652 P. Lu, H. Bansal, T. Xia, J. Liu, C. Li, H. Hajishirzi, H. Cheng, K.-W. Chang, M. Galley, and J. Gao.
 653 Mathvista: Evaluating mathematical reasoning of foundation models in visual contexts. *arXiv*
 654 *preprint arXiv:2310.02255*, 2023. 5, 15

655 Z. Lu. A theory of multimodal learning. *Advances in Neural Information Processing Systems*
 656 (*NeurIPS*), 2023. 1

657

658 D. Madaan, T. Makino, S. Chopra, and K. Cho. Jointly modeling inter- & intra-modality dependen-
 659 cies for multi-modal learning. In *Advances in Neural Information Processing Systems (NeurIPS)*,
 660 2024. 1, 2, 3

661 A. Masry, D. X. Long, J. Q. Tan, S. Joty, and E. Hoque. Chartqa: A benchmark for question
 662 answering about charts with visual and logical reasoning. *arXiv preprint arXiv:2203.10244*, 2022.
 663 1, 5, 6, 15

664 M. Oquab, T. Darce, T. Moutakanni, H. V. Vo, M. Szafraniec, V. Khalidov, P. Fernandez, D. HAZ-
 665 IZA, F. Massa, A. El-Nouby, et al. Dinov2: Learning robust visual features without supervision.
 666 *Transactions on Machine Learning Research*, 2024. 5

667

668 L. Parcalabescu and A. Frank. Mm-shap: A performance-agnostic metric for measuring multimodal
 669 contributions in vision and language models & tasks. *arXiv preprint arXiv:2212.08158*, 2022. 1,
 670 4

671 A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,
 672 J. Clark, et al. Learning transferable visual models from natural language supervision. In *Pro-
 673 ceedings of the International Conference on Machine Learning (ICML)*. PMLR, 2021. 5

674

675 R. Rei, C. Stewart, A. C. Farinha, and A. Lavie. Comet: A neural framework for mt evaluation. In
 676 *Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP)*,
 677 2020. 9

678 Q. Si, F. Meng, M. Zheng, Z. Lin, Y. Liu, P. Fu, Y. Cao, W. Wang, and J. Zhou. Language prior is not
 679 the only shortcut: A benchmark for shortcut learning in vqa. In *Proceedings of the Conference on*
 680 *Empirical Methods in Natural Language Processing (EMNLP)*, 2022. 1, 3

681 A. Singh, V. Natarajan, M. Shah, Y. Jiang, X. Chen, D. Batra, D. Parikh, and M. Rohrbach. Towards
 682 vqa models that can read. In *Proceedings of the IEEE International Conference on Computer*
 683 *Vision and Pattern Recognition (CVPR)*, 2019. 1, 2, 5, 6, 15

684

685 E. Stengel-Eskin, P. Hase, and M. Bansal. Lacie: Listener-aware finetuning for calibration in large
 686 language models. *Advances in Neural Information Processing Systems (NeurIPS)*, 2024. 10

687

688 A. Suhr and Y. Artzi. Nlvr2 visual bias analysis. *arXiv preprint arXiv:1909.10411*, 2019. 6

689

690 G. Team, P. Georgiev, V. I. Lei, R. Burnell, L. Bai, A. Gulati, G. Tanzer, D. Vincent, Z. Pan, S. Wang,
 691 et al. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context.
 692 *arXiv preprint arXiv:2403.05530*, 2024. 1

693

694 Q. Team. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>. 8

695

696 M. Tjandrasuwita, C. Ekbote, L. Ziyin, and P. P. Liang. Understanding the emergence of multimodal
 697 representation alignment. *arXiv preprint arXiv:2502.16282*, 2025. 1

698

699 P. Tong, E. Brown, P. Wu, S. Woo, A. J. V. IYER, S. C. Akula, S. Yang, J. Yang, M. Middepogu,
 700 Z. Wang, et al. Cambrian-1: A fully open, vision-centric exploration of multimodal llms. *Ad-
 701 vances in Neural Information Processing Systems (NeurIPS)*, 2024a. 2, 4, 5, 6, 8, 9, 15

702

703 S. Tong, Z. Liu, Y. Zhai, Y. Ma, Y. LeCun, and S. Xie. Eyes wide shut? exploring the visual short-
 704 comings of multimodal llms. In *Proceedings of the IEEE International Conference on Computer*
 705 *Vision and Pattern Recognition (CVPR)*, 2024b. 2, 3, 5, 7, 15

702 L. Wenderoth, K. Hemker, N. Simidjievski, and M. Jamnik. Measuring cross-modal interactions in
 703 multimodal models. In *Proceedings of the AAAI National Conference on Artificial Intelligence
 704 (AAAI)*, 2025. 1, 4

705 S. Whitehead, S. Petryk, V. Shakib, J. Gonzalez, T. Darrell, A. Rohrbach, and M. Rohrbach. Re-
 706 liable visual question answering: Abstain rather than answer incorrectly. In *Proceedings of the
 707 European Conference on Computer Vision (ECCV)*. Springer, 2022. 10

708 H. Wu, Z. Zhang, E. Zhang, C. Chen, L. Liao, A. Wang, C. Li, W. Sun, Q. Yan, G. Zhai, et al. Q-
 709 bench: A benchmark for general-purpose foundation models on low-level vision. *arXiv preprint
 710 arXiv:2309.14181*, 2023. 9

711 H. Wu, Z. Zhang, E. Zhang, C. Chen, L. Liao, A. Wang, C. Li, W. Sun, Q. Yan, G. Zhai, and
 712 W. Lin. Q-bench: A benchmark for general-purpose foundation models on low-level vision. In
 713 *Proceedings of the International Conference on Learning Representations (ICLR)*, 2024. 5, 7, 15

714 N. Wu, S. Jastrzebski, K. Cho, and K. J. Geras. Characterizing and overcoming the greedy nature
 715 of learning in multi-modal deep neural networks. In *Proceedings of the International Conference
 716 on Machine Learning (ICML)*, 2022. 3

717 P. Wu and S. Xie. V*: Guided visual search as a core mechanism in multimodal llms. In *Proceedings
 718 of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR)*, 2024.
 719 1, 2, 3, 5, 6, 15

720 xAI. Grok-1.5 vision preview, 2024. URL <https://x.ai/blog/grok-1.5v>. 1, 5, 6, 15

721 A. Young, B. Chen, C. Li, C. Huang, G. Zhang, G. Zhang, G. Wang, H. Li, J. Zhu, J. Chen, et al.
 722 Yi: Open foundation models by 01. ai. *arXiv preprint arXiv:2403.04652*, 2024. 3, 5

723 X. Yue, Y. Ni, K. Zhang, T. Zheng, R. Liu, G. Zhang, S. Stevens, D. Jiang, W. Ren, Y. Sun, et al.
 724 Mmmu: A massive multi-discipline multimodal understanding and reasoning benchmark for ex-
 725 pert agi. In *Proceedings of the IEEE International Conference on Computer Vision and Pattern
 726 Recognition (CVPR)*, 2024. 3, 5, 6, 7, 9, 15

727 X. Yue, T. Zheng, Y. Ni, Y. Wang, K. Zhang, S. Tong, Y. Sun, B. Yu, G. Zhang, H. Sun, Y. Su,
 728 W. Chen, and G. Neubig. MMMU-pro: A more robust multi-discipline multimodal understanding
 729 benchmark, 2025. 3, 5

730 X. Zhai, B. Mustafa, A. Kolesnikov, and L. Beyer. Sigmoid loss for language image pre-training. In
 731 *Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition
 732 (CVPR)*, 2023. 5

733 X. Zhang, J. Yoon, M. Bansal, and H. Yao. Multimodal representation learning by alternating
 734 unimodal adaptation. In *Proceedings of the IEEE International Conference on Computer Vision
 735 and Pattern Recognition (CVPR)*, 2024a. 3

736 Y. Zhang, P. E. Latham, and A. M. Saxe. Understanding unimodal bias in multimodal deep linear
 737 networks. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2024b.
 738 3

739 L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li, D. Li, E. Xing,
 740 et al. Judging llm-as-a-judge with mt-bench and chatbot arena. *Advances in Neural Information
 741 Processing Systems (NeurIPS)*, 2023. 3

742 B. Zhou, H. Zhao, X. Puig, T. Xiao, S. Fidler, A. Barriuso, and A. Torralba. Semantic understanding
 743 of scenes through the ade20k dataset. *International Journal of Computer Vision*, 2019. 9

744

745

746

747

748

749

750

751

752

753

754

755

756 A SUPPLEMENTARY MATERIAL
757758 **Organization.** In the supplementary material, we provide the implementation details in [Appendix A.1](#) and additional results in [Appendix A.2](#).
759
760761 A.1 EXPERIMENTAL DETAILS
762763 **Implementations.** We use the Cambrian-1 ([Tong et al., 2024a](#)) open-sourced codebase for all the
764 experiments. We use their publicly released models for evaluation. Datasets like AI2D ([Kemb-
765 havi et al., 2016](#)), ChartQA ([Masry et al., 2022](#)), MMBench ([Liu et al., 2024b](#)), MME ([Fu et al.,
766 2023](#)), MMMU ([Yue et al., 2024](#)), MMVet, POPE ([Li et al., 2023b](#)), RealWorldQA ([xAI, 2024](#)),
767 SEED ([Li et al., 2023a](#)), TextVQA ([Singh et al., 2019](#)), and VizWiz ([Gurari et al., 2018](#)) were
768 sourced from LMMS-eval, while others such as ADE, Blink ([Fu et al., 2024](#)), COCO ([Lin et al.,
769 2014](#)), GQA ([Hudson and Manning, 2019](#)), MathVista ([Lu et al., 2023](#)), MMMUPro ([Yue et al.,
770 2024](#)), MMStar ([Chen et al., 2024](#)), MMVP ([Tong et al., 2024b](#)), OCRBench ([Liu et al., 2024c](#)),
771 Omni3D ([Brazil et al., 2023](#); [Tong et al., 2024a](#)), QBench ([Wu et al., 2024](#)), ScienceQA ([Lu et al.,
772 2022](#)), and V*Bench ([Wu and Xie, 2024](#)) were used from their respective sources. We did not use
773 the datasets that required external submissions such as DocVQA and InfoVQA.
774775 A.2 ADDITIONAL RESULTS
776777 We show the effect of model size on additional datasets in [Figure A.8](#) and results on categories for
778 MME and BLINK in [Figure A.7](#).
779795 Figure A.7: Analysis of sub-categories for MME and BLINK dataset.
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Figure A.8: **Effect of model size on additional datasets.** Performance of various models (8B, 13B, 34B, and a majority-vote ensemble).

Figure A.9: **Effect of model types on additional datasets.** Performance comparison between various models such as LLaVA-Next (May 2024), Cambrian-1 8b (June 2024), Qwen2.5-VL (April 2025) and Qwen3-VL (October 2025).