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From the Calibration of a Light-Field Camera
to Direct Plenoptic Odometry

Niclas Zeller, Franz Quint, and Uwe Stilla

Abstract—This paper presents a complete framework from the
calibration of a plenoptic camera toward plenoptic camera based
visual odometry. This is achieved by establishing the multiple view
geometry for plenoptic cameras. Based on this novel multiple view
geometry, a calibration approach is developed. The approach op-
timizes all intrinsic parameters of the plenoptic camera model, the
3D coordinates of the calibration points, and all camera poses in
a single bundle adjustment. Our plenoptic camera based visual
odometry algorithm, called direct plenoptic odometry (DPO), is a
direct and semi-dense approach, which takes advantage of the full
sensor resolution. DPO also relies on our multiple view geometry
for plenoptic cameras. Tracking and mapping works directly on
the micro images formed by the micro lens array and, therefore,
has not to deal with aliasing effects in the spatial domain. The algo-
rithm generates a semi-dense depth map based on correspondences
between subsequent light-field frames, while taking differently fo-
cused micro images into account. Up to our knowledge, it is the
first method that performs tracking and mapping for plenoptic
cameras directly on the micro images. DPO outperforms state-of-
the-art direct monocular simultaneous localization and mapping
(SLAM) algorithms and can compete in accuracy with latest stereo
SLAM approaches, while supplying much more detailed point
clouds.

Index Terms—Light-field, plenoptic camera calibration, plenop-
tic multiple view geometry, SLAM, visual odometry.

I. INTRODUCTION

V ISUAL Odometry (VO) and Simultaneous Localization
and Mapping (SLAM) currently are some of the most ad-

dressed tasks in computer vision. Such approaches allow for
tracking and mapping in unknown environments without any
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further infrastructure (e.g., GPS). In the last years VO and
SLAM approaches for monocular and stereo cameras as well
as active RGB-D sensors (e.g., structured light sensors) were
driven forward. Nevertheless, while pure monocular approaches
lack from scale awareness, stereo cameras or RGB-D sensors in
general have large dimensions and therefore are impractical for
certain applications.

During the last decades plenoptic cameras gained more and
more interest [1]. While such cameras have dimensions similar
to monocular cameras they are able to retrieve depth from single
images based on the recorded light-field. Hence, plenoptic cam-
era based VO would combine key features from both monocular
and stereo approaches and closes the gap between the two.

In this article we present the complete workflow for plenop-
tic camera based VO. We introduce a new mathematical model
for micro lens array (MLA) based light-field cameras and de-
fine a plenoptic multiple view geometry based on this model.
This multiple view geometry leads us to a plenoptic camera
calibration approach and builds the foundation for the Direct
Plenoptic Odometry (DPO) algorithm. DPO combines advan-
tages of monocular VO, like a single sensor system or scale
invariance with static stereo and scale awareness at least for
object distances in the range of a few meters. Our algorithm
creates highly detailed, semi-dense point clouds (see Fig. 1) by
working directly on pixel intensities in the micro images of a
plenoptic camera.

A. Related Work

1) Plenoptic Camera Calibration: During the last years dif-
ferent methods were published to calibrate plenoptic cameras.

A method for correcting aberrations of the main lens based
on the recorded 4D light-field inside the camera is presented in
[2]. [3] presents a complete pipeline for the calibration of the
MLA based on the specific case of a Lytro camera.

A complete mathematical model for unfocused plenoptic
cameras is derived for the first time in [4]. To overcome the
problem of feature point detection in the small micro images,
[5] presents a calibration method which makes use of line fea-
tures extracted from the micro images.

There exist several methods to perform calibration of focused
plenoptic cameras [6]–[10]. All these methods model the pro-
jection from the object space to the virtual image space instead
of projecting directly to the micro images. While [6] and [7]
rely on a planar calibration target, [10] estimates the camera
parameters based on a 3D object.
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Fig. 1. Semi-dense point cloud of “parking lot” sequence created by Direct Plenoptic Odometry (DPO). The figure shows the top view of the complete trajectory
and detailed subsections of the point cloud. Keyframe positions are marked in red, while the green dot represents the end of the trajectory.

2) Visual Odometry and SLAM: Feature based SLAM re-
duces the amount of data and therefore the computational ef-
fort by extracting a set of meaningful feature points from the
recorded images. Afterwards, camera orientation and scene
structure are estimated only based on this sparse set of geo-
metric feature points [11]–[15].

Direct methods, like the one presented in [16], perform
tracking and mapping directly on the recorded images. Track-
ing becomes much more robust since all image data is used.
Here, tracking and dense mapping can be performed in one
step, as shown in [17]. The complexity of such algorithms can
be reduced by considering only textured image regions [18],
[19]. These semi-dense, direct methods are capable to run in
real-time on today’s standard CPUs or even on smartphones
[20].

While for monocular approaches camera motion is needed to
obtain scene structure, the SLAM problem significantly simpli-
fies when using stereo or RGB-D cameras. Since in this case
absolute depth is received from a static recording, such ap-
proaches are able to measure the scale of the scene without
using any additional sensors [21]–[24].

There exist few VO methods based on light-field representa-
tion [25], [26]. Anyhow, the cited methods mainly have been
developed for light-fields recorded by camera arrays with large
stereo baselines. In [27] a feature based Structure from Motion
(SfM) approach working on 4D light-field representations is
presented.

B. Contribution of This Work

This article presents a complete framework for plenoptic VO.
We establish the multiple view geometry for MLA based light-
field cameras. By working directly on the recorded micro images
(raw image) we are able to find stereo correspondences using full
sensor resolution instead of low resolution sub-aperture images.
This avoids aliasing effects due to undersampling in the spatial
domain [28] and results in much higher resolved depth maps.

Furthermore, we show that full resolution stereo matching
leads to larger effective stereo baselines in comparison to the
low resolution sub-aperture images.

We present a calibration approach which performs a com-
plete bundle adjustment. Here, all intrinsic camera parameters,
the 3D object coordinates and all camera poses are estimated in
a single optimization task. The calibration is based on a 3D cal-
ibration target, which, as will be shown, significantly improves
the calibration result compared to using a planar calibration
target.

A major contribution is also the semi-dense direct visual
odometry algorithm for MLA based light-field cameras, which
makes use of the introduced multiple view geometry and the es-
timated camera model. We define a focus disparity error which
models the effect of differently focused micro images on the
depth estimation.

To the best of our knowledge, this is the first visual odometry
approach which works directly on the recorded raw data of a
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plenoptic camera and improves the static depth by plenoptic
SfM.

C. Outline

In Section II we give some preliminary definitions used
throughout this paper. Section III gives a brief, theoretical back-
ground on plenoptic cameras. The following methodical part
consists of three main sections. Section IV defines the multi-
ple view geometry for plenoptic cameras. The bundle adjust-
ment based calibration approach is presented in Section V and
Section VI describes the DPO algorithm. Finally, Section VII
presents the evaluation of our methods, while Section VIII sum-
marizes and concludes this work.

II. PRELIMINARIES

Throughout the paper we use several notations, definitions
and symbols. To enhance the readability of the paper, important
notations, definitions and symbols are introduced here.

We denote matrices as bold, capital letters (G), vectors as
bold, lower case letters (x) and scalars as normal letters, ei-
ther capital or lower case (d). We do not differentiate be-
tween homogeneous (x = (x, y, z, 1)T ) and non-homogeneous
(x = (x, y, z)T ) representations. Nevertheless, this should be
clear from the context.

Throughout the paper rigid body transformations are defined
based on Lie-Manifolds. Hence, a rigid body transformation
G ∈ SE(3) is completely defined by the six-dimensional vector
ξ ∈ R6 , which defines an element of the corresponding Lie-
Algebra se(3). For more details on Lie-Manifolds we refer to
[29].

The notation [t]i defines the i-th element of a vector t and
[R]j the j-th row of a matrix R.

The symbol δmn defines a Kronecker delta as given in eq. (1).

δmn =

{
1 for m = n,

0 for m �= n.
(1)

For the plenoptic camera we differentiate between image
space and object space. To receive an upright image in im-
age coordinates of an upright object in object coordinates, we
define image coordinates to be mirrored with respect to object
coordinates. Thus, to transform from object to image coordi-
nates one has to take the negative coefficients of the respective
vector.

Table I shows all important symbols used in this paper.

III. THE PLENOPTIC CAMERA

Placing a MLA in front of the image sensor transforms a
regular camera into a plenoptic camera, which is able to record
4D light-field information in a single image. While all plenoptic
cameras rely on this concept, such cameras can be realized in
different configurations depending on the camera parameters.
In general we separate between unfocused plenoptic cameras
(plenoptic camera 1.0) [30], [31] and focused plenoptic cameras
(plenoptic camera 2.0) [32].

TABLE I
LIST OF IMPORTANT SYMBOLS

symbol description

v virtual depth
bL image distance
bL 0 distance main lens to MLA
B distance MLA to sensor
fL main lens focal length
fM micro lens focal length
DM micro lens diameter
cL main lens principal point
cLx main lens principal point x-coord.
cLy main lens principal point y-coord.
cM L micro lens center
pM L projected micro lens center
zC 0 effective object distance offset
zC object distance
z ′C = λ effective object distance
μ pixel disparity
μp projected micro image disparity
xC camera coordinates
x′

C effective camera coordinates
xR raw image coordinates
xM L micro image coordinates
xp projected micro image coordinates
R rotation matrix ∈ SO(3)
t translation vector ∈ R3

t′ effective translation vector ∈ R3

ξ element of the Lie-algebra se(3)
G rigid body transformation ∈ SE(3)
G′ effective rigid body trans. ∈ SE(3)
d inverse effective depth d = λ−1

σ2
d inverse effective depth variance

DM L (xR ) prob. micro image depth map
DV (xV ) prob. virtual image depth map
IM L (xR ) raw image (micro images)
IV (xV ) virtual intensity image
σ2

μ (ξ ,π ) variance of geometric disp. error

σ2
μ (I ) variance of photometric disp. error

σ2
μ (v ,k ,j ) variance of focus disparity error

πM L (·) camera projection on micro images
πV (·) camera projection on virtual image
δm n Kronecker delta

Focused plenoptic cameras produce focused micro images
on the sensor, where each micro image captures a small portion
of the complete scene. Due to the redundancy in the micro
images, stereo correspondences can be found directly in the
micro images using full sensor resolution. Hence, prior to any
metric calibration one is able to estimate a so called virtual
depth v = bL −bL 0

B , which is a measure for the image distance
bL of the virtual main lens image [9] (see Fig. 2). Based on the
virtual depth v one is able to project points from the focused
micro images to the virtual image and thereby reconstruct the
corresponding intensity image. Since this reconstructed image
has a very large depth of field (DOF), we will call it the totally
focused image.

From the recordings of unfocused plenoptic cameras one is
able to extract a set of so called sub-aperture images. All of
these sub-aperture images show the complete recorded scene
from slightly different perspectives. The resolution of a sub-
aperture image is limited by the number of micro lenses in the
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Fig. 2. Projection process of a focused plenoptic camera. MLA in distance
bL 0 to the main lens produces focused micro images of the virtual main lens
image on the sensor.

Fig. 3. Focused plenoptic camera interpreted as an array of very narrow FOV
pinhole cameras at distance |z ′C 0 | to the main lens.

MLA and therefore can not be increased by increasing the sensor
resolution.

IV. MULTIPLE VIEW STEREO FOR PLENOPTIC CAMERAS

We show that a MLA based light-field camera can be inter-
preted as an array of very narrow field of view (FOV) pinhole
cameras observing the scene. From this new interpretation in-
sight into full resolution multiple view epipolar geometry for
plenoptic cameras is obtained. Even though this interpretation
is predestined for focused plenoptic cameras, such full reso-
lution approaches can also be applied to unfocused plenoptic
cameras, which supply partly focused micro images [33].

A. Plenoptic Camera Interpretation

Fig. 2 shows the projection process of a focused plenoptic
camera. In the same way as the object points are projected
through the main lens to corresponding image points, the mi-
cro lens centers can be projected from image space into object
space based on the thin lens equation. Thus, the resulting object
distance z′C 0 of a micro lens center is defined as given in eq. (2).

z′C 0 =
fL · bL0

bL0 − fL
(2)

Here fL is the focal length of the main lens and bL0 the distance
between MLA and main lens plane. Fig. 3 shows the projected
micro lens centers, resulting in a virtual camera array.

From Fig. 3 one can see that for the given setup (fL > bL0)
the micro lenses are projected behind the main lens.

For later use we define zC 0 as the negative value of z′C 0 :

zC 0 := −z′C 0 =
fL · bL0

fL − bL0
(3)

With this definition, z′C given in eq. (4) represents the object
distance with respect to the virtual camera array.

z′C := zC + zC 0 (4)

The x- and y-coordinate of the center of a projected micro
lens is received as the intersection between the projected MLA
plane and the main lens’ central ray through the corresponding
real micro lens. Thus, one receives a projected micro lens center
in camera coordinates pM L from the coordinates of the real
micro lens center cM L as given in eq. (5).

pM L =

⎛
⎝pM Lx

pM Ly

−zC 0

⎞
⎠ = −cM L

zC 0

bL0
= −

⎛
⎝ cM Lx

cM Ly

bL0

⎞
⎠zC 0

bL0

= −cM L
fL

fL − bL0
= cM L

fL

bL0 − fL
(5)

Here, the minus in front of cM L is due to the transformation
from image coordinates to object coordinates.

The projected micro images are defined such that they have a
normalized focal length and are parallel to the x-y-plane at zC =
1 − zC 0 . In this way the central projection from homogeneous
2D to 3D coordinates is just a scaling. A point xp in the projected
micro image is calculated based on a point xM L in the real micro
image as follows:

xp =

⎛
⎝xp

yp

1

⎞
⎠ = xM L

fL − bL0

fL · B +
cM L

fL

=

⎛
⎝xM L

yM L

B

⎞
⎠fL − bL0

fL · B +
cM L

fL
(6)

Beside the regular camera coordinates xC with its origin in
the center of the main lens, we define for each micro lens, i.e.,
for each virtual camera, separate camera coordinates x′

C . This is
necessary since each micro lens has different center coordinates
pM L and thus the respective camera coordinate systems are also
different. In the sequel we will call x′

C effective camera coordi-
nates. The origin of the effective camera coordinates x′

C is the
corresponding projected micro lens center pM L . Therefore, we
receive the following relation:

xC := x′
C + pM L = z′C xp + pM L (7)

Even though Figs. 2 and 3 show only a setup for fL > bL0
the presented projection is valid for almost any setup. The only
setup for which no projection is possible is for fL = bL0 . Here
the micro lenses are projected to infinity. For fL < bL0 it could
even be the case that the MLA is projected behind the recorded
scene and effectively observes it from the backside.
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B. Multiple View Epipolar Geometry

Based on the plenoptic camera interpretation (Section IV-A)
we are able to define a multiple view epipolar geometry for
plenoptic cameras.

Consider a set of images (views) taken with the plenoptic
camera from different locations. Let i and j be two particular
views of this set. Eq. (8) defines the transformation of a 3D
object point with camera coordinates x

(i)
C in the i-th view to

camera coordinates x
(j )
C in the j-th view based on the rigid

body transformation Gij ∈ SE(3).

x
(j )
C = Gij · x(i)

C =
(

Rij tij

0 1

)
· x(i)

C (8)

Similarly to a point in regular camera coordinates, a point
in effective camera coordinates x

′(i,k)
C of the k-th micro lens

in the i-th view can be transformed into the effective camera
coordinates x

′(j,l)
C of the l-th micro lens in the j-th view based

on a rigid body transformation:

x
′(j,l)
C = G

′(kl)
ij · x′(i,k)

C (9)

with G
′(kl)
ij ∈ SE(3) defined as follows:

G
′(kl)
ij =

(
Rij t

′(kl)
ij

0 1

)
(10)

t
′(kl)
ij = tij − p

(l)
M L + Rij · p(k)

M L (11)

Here p
(k)
M L and p

(l)
M L are the coordinates of the respective pro-

jected micro lens centers as defined in eq. (5).
Based on this definition one can further derive the epipolar

geometry between one micro image in the i-th view and another
micro image in the j-th view. From projected image coordinates
x

(i,k)
p (i-th view) and x

(j,l)
p (j-th view) one receives the effective

camera coordinates x
′(i,k)
C and x

′(j,l)
C as follows:

x
′(i,k)
C = λix

(i,k)
p with λi := z

′(i,k)
C (12)

x
′(j,l)
C = λjx

(j,l)
p with λj := z

′(j,l)
C (13)

In order to enhance readability we omit in the follow-
ing all indices which do not lead to ambiguous definitions
(x′(i)

C := x
′(i,k)
C ; x

′(j )
C := x

′(j,l)
C ; R := Rij ; t′ := t

′(kl)
ij ).

Inserting eq. (12) and (13) into eq. (9) leads to the following
relation:

x
′(j )
C = λjx

(j )
p = λiR · x(i)

p + t′ (14)

where λj can be written as follows:

λj = λi [R]3 · x(i)
p + [t′]3 (15)

After combining eq. (14) and eq. (15) we receive a linear
function in λi , as given in eq. (16).

λi

(
[R]3 · x(i)

p

)
x(j )

p + [t′]3 · x(j )
p = λiR · x(i)

p + t′ (16)

Therefore, a point on the epipolar line in the micro image of the
j-th frame is defined as follows:

x(j )
p =

λiR · x(i)
p + t′

λi [R]3 · x(i)
p + [t′]3

=
λiR · x(i)

p + t − p
(l)
M L + R · p(k)

M L

λi [R]3 · x(i)
p + [t]3 + zC 0 + [R]3 · p(k)

M L

(17)

Using this epipolar geometry we are able to deal with stereo
observations from different micro images of different frames.

C. Effective Object Distances Versus Virtual Depth

For the case that the considered micro lenses are within the
same frame (t = 0 and R = (δmn )m,n∈{1,2,3}) eq. (17) simpli-
fies as follows:

x(j )
p = λ−1

i

(
p

(k)
M L − p

(l)
M L

)
+ x(i)

p (18)

From eq. (18) we receive the disparity in the projected micro
images μp as given in eq. (19).

μp :=
〈x(j )

p − x
(i)
p ,p

(k)
M L − p

(l)
M L 〉

‖p(k)
M L − p

(l)
M L‖

= λ−1
i ‖p(k)

M L − p
(l)
M L‖

(19)

From eq. (19) we see that for in-frame depth estimation the
disparity μp is proportional to the inverse effective object dis-
tance λ−1 = z′−1

C . In another paper [34] we have shown that
the disparity μ in the real micro images is proportional to the
inverse virtual depth v−1 . Since we performed a linear mapping
from μ to μp , this leads us to the conclusion that there has to
be a linear relationship between z′−1

C and v−1 . This is proven in
the following:

z′C = zC + zC 0 =
(

1
fL

− 1
bL

)−1

+ zC 0

=
(

1
fL

− 1
v · B + bL0

)−1

+
fL · bL0

fL − bL0
(20)

Rearranging eq. (20) gives the following definition of z′−1
C with

respect to v−1 :

z′−1
C = − (fL − bL0)

2

B · f 2
L

· v−1 +
fL − bL0

f 2
L

(21)

D. Effective Stereo Baseline—Unfocused Versus Focused

In Section IV-A we showed that a focused plenoptic cam-
era can be interpreted as an array of very narrow FOV virtual
cameras with high resolution (full resolution or plenoptic 2.0
rendering). An unfocused plenoptic camera can be interpreted
as an array of wide FOV virtual cameras with low resolution [35]
(plenoptic 1.0 rendering). Here the resolution of a sub-aperture
image, observing the complete scene, is limited by the number
of micro lenses in the MLA.

Even though the images of both concepts have quite different
characteristics, the camera setups differ only by the focal length
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of the micro lenses. For some cases the plenoptic 1.0 and 2.0
concept can even be applied to the same raw image [33].

In the following we compare the effective stereo baseline for
both concepts and therefore the benefits with respect to 3D scene
reconstruction.

For plenoptic 1.0 rendering the maximum stereo baseline
ΔB1.0 max results from the distance B between MLA and sen-
sor, the micro lens diameter DM , and the main lens focal length
fL [35]:

ΔB1.0 max =
DM · fL

B
(22)

Since the virtual camera array is formed at distance fL in front
of the main lens, the object distance zC can be calculated based
on the pixel disparity μ in the sub-aperture images as given in
eq. (23).

zC =
ΔB1.0 max · fL

DM · μ + fL (23)

Here μ is scaled by the micro lens diameter DM which defines
the size of a pixel in the sub-aperture image. From eq. (23) we
receive the depth accuracy σzC 1.0 for plenoptic 1.0 rendering
given in eq. (24).

σzC 1.0 =
∣∣∣∣∂zC

∂μ

∣∣∣∣ · σμ =
(zC − fL )2

f 2
L

· B · σμ (24)

Using the plenoptic camera interpretation of Section IV-A
we can calculate the effective stereo baseline and therefore the
theoretical depth accuracy for plenoptic 2.0 (full resolution) ren-
dering in a similar way. The effective stereo baseline ΔB2.0(κ)
for a pair of projected micro images is received as follows:

ΔB2.0(κ) = ‖p(k)
M L − p

(l)
M L‖

= ‖c(k)
M L − c

(l)
M L‖

fL

bL0 − fL

= κ · DM · fL

bL0 − fL
(25)

Here κ defines the multiple of DM between the two micro lens
centers. Therefore κ ≥ 1 holds.

The object distance zC is calculated based on the disparity
μp in the projected micro images as given in eq. (26).

zC =
ΔB2.0(κ)

μp
− zC 0 (26)

Again, the depth accuracy σzC 2.0 is received from the standard
deviation σμ of the pixel disparity as follows:

σzC 2.0 =
∣∣∣∣∂zC

∂μp

∣∣∣∣ · σμp
=
∣∣∣∣∂zC

∂μp

∣∣∣∣ ·
∣∣∣∣∂μp

∂μ

∣∣∣∣ · σμ

=
(zC + zC 0)

2 · bL0

κ · DM · zC 0
· fL − bL0

fL · B · spixel · σμ

=
(zC + zC 0)

2

κ · DM
· (fL − bL0)

2

f 2
L · B · spixel · σμ (27)

In eq. (27)
∣∣∣ ∂μp

∂μ

∣∣∣ defines the scaling from the pixel disparity μ

to the disparity μp in the projected micro images. Here spixel

defines the size of a pixel.
Using eq. (24) and eq. (27) we calculate the expected depth

accuracies (standard deviations of the object distance zC ) for
plenoptic 1.0 and 2.0 rendering. Fig. 4 shows the accura-
cies for both concepts, while using the same camera param-
eters (fL = 35 mm, B = 0.35 mm, bL0 = 34.3 mm, DM =
0.1265 mm, spixel = 5.5 μmm). For both rendering methods
we chose σμ = 1 pixel.

From eq. (24) and eq. (27) one can see that both curves are
parabola shaped. Though, for the given setup σzC 1.0 has a much
steeper slope than σzC 2.0 (see Fig. 4), which is due to a shorter
effective stereo baseline.

For the shown setup (bL0 < fL ) the virtual camera array of
the plenoptic 2.0 rendering lies behind the main lens, while the
one for plenoptic 1.0 rendering lies always at distance fL in
front of the main lens. This leads to different minima in the
curves and thus to an intersection of both curves, as can be seen
from Fig. 4(b).

For smaller object distances the plenoptic 2.0 approach can
use further apart micro lenses for stereo matching (κ > 1),
which again leads to an improved accuracy.

Therefore, as can be seen from Fig. 4, the plenoptic 2.0 ap-
proach is always superior to the plenoptic 1.0 approach with
respect to depth estimation. The κ-s shown in Fig. 4 are the first
10 received for a hexagonal arrangement of the MLA (1.00,
1.73, 2.00, 2.65, 3.00, 3.46, 3.61, 4.00, 4.36, 4.58).

We did not evaluate the functions for object distances closer
than 0.5 m since here the images of both concepts can not be
considered to be in focus anymore and thus the real accuracy
will deviate from the curves. Anyway, in VO we are interested
in larger object distances.

The only way to improve the depth accuracy of plenoptic 1.0
with respect to plenoptic 2.0 rendering is to reduce B. Though,
this seems to be unfeasible due to the thickness of the MLA and
the resulting impractical small F-number of the main lens (see
F-number matching in [36]).

V. PLENOPTIC CAMERA CALIBRATION

We present a plenoptic camera calibration approach which is
based on the multiple view geometry introduced in Section IV-B.
For calibration a complete bundle adjustment is performed,
which optimizes the parameters of the plenoptic camera model,
the 3D object coordinates and all camera poses at the same
time. This is done based on recorded marker points, which are
detected in the micro images of the camera.

Since we perform a complete bundle adjustment, we do not
rely on any prior knowledge about the calibration target, like
calibration points lying on a planar, regular checkerboard grid
for instance. Furthermore, due to the 3D structure of our cal-
ibration target the optimization problem is better conditioned
than those which are based on a planar target.

The calibration process determines the intrinsic parameters
of the plenoptic camera, which are presented in Section IV-A,
and additional distortion parameters. Our distortion model is
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Fig. 4. Depth accuracy of plenoptic cameras based on plenoptic 1.0 and 2.0 rendering. Plenoptic 2.0 (full resolution) rendering results in a much larger stereo
baseline and therefore better depth accuracy compared to plenoptic 1.0 approaches. (a) Depth accuracy. (b) Zoomed subsection of (a).

presented in Section V-A2. We do not consider the, in gen-
eral marginal, effect of sensor tilting to preserve the planar
arrangement of projected micro lens centers pM L (as shown
in Fig. 3). In Section V-B we present how to receive an ini-
tial solution for the bundle adjustment. The bundle adjust-
ment, as we apply it to the calibration task, is presented in
Section V-C.

A. Plenoptic Camera Model

1) Intrinsic Parameters: The plenoptic camera model con-
sists of the following intrinsic parameters:

1) fL – focal length of the main lens
2) bL0 – distance between MLA and main lens
3) B – distance between MLA and image sensor
4) cL – principal point (intersection of the optical axis of the

main lens with the image sensor)
5) c

(k)
M L – micro lens centers (k ∈ {1, 2, 3, . . .})

For the definition of these parameters we refer the reader to
Section IV-B and Fig. 2.

To receive all intrinsic parameters in millimeters we define
the pixel size, which we receive from the camera specification,
as constraint. However, the correct pixel size is not relevant to
obtain the optimum solution for the overall projection process.

While the micro lens centers c
(k)
M L are also part of the intrinsic

camera parameters, we do not adjust them in the bundle adjust-
ment. They can be easily estimated in advance using a white
image (see [3] for instance). Furthermore, due to the small size
of the micro images, in general we do not have more than one
calibration point per micro image which would make the esti-
mation of the micro lens centers in the bundle adjustment error
prone.

2) Distortion Model: Most of the existing focused plenoptic
camera models (i.e., [6], [7], [10]) define the projection from
object space to virtual image space. Therefore, depth estima-
tion has to be performed in advance using the distorted micro
images and thus will be affected by the distortion of the main
lens.

Since our model defines the projection from object space to
the micro images, we are able to define the distortion model
directly on the sensor before depth estimation. Hence, we do
not have to deal with depth distortion afterwards.

Our distortion model considers radial and tangential distor-
tion and is based on the well known model of Brown [37].

Here the radial distortion term Δrrad is defined by a polyno-
mial of the variable r, as given in eq. (28).

Δrrad = A0r
3 + A1r

5 + A2r
7 + · · · (28)

The variable r is the distance between the principal point and
the point coordinates on the MLA:

r =
√

x2 + y2 (29)

This results in the Cartesian correction terms Δxrad and Δyrad

as given in eq. (30) and (31).

Δxrad = x
Δrrad

r
= x

(
A0r

2 + A1r
4 + A2r

6 + · · · ) (30)

Δyrad = y
Δrrad

r
= y

(
A0r

2 + A1r
4 + A2r

6 + · · · ) (31)

The tangential distortion terms (Δxtan and Δytan ) are defined
as given in eq. (32) and (33).

Δxtan = B0
(
r2 + 2x2)+ 2B1xy (32)

Δytan = B1
(
r2 + 2y2)+ 2B0xy (33)

Based on the correction terms the distorted coordinates x̃ and ỹ
are calculated from the ideal projection as follows:

x̃ = x + Δxrad + Δxtan (34)

ỹ = y + Δyrad + Δytan (35)

This model has the nice property that it consists only of
additive distortion terms which depend on the undistorted coor-
dinates. Due to the small size of a micro image it is sufficient
to consider the distortion to be constant within a single micro
image and therefore we only have to correct the micro image
centers cM L and not the point coordinates xM L in the respective
micro image.

By construction the micro lenses form a regular grid. The
coordinates of their centers, which are estimated cf. [3] are the
distorted micro lens centers c̃M L . Therefore, the micro lens cen-
ters cM L which are corrected during the calibration considering
the lens distortion and which are used for the projection, will
deviate from this regular grid.

B. Initialization of the Calibration Process

While one is able to build a closed form solution for a SfM
problem based on an uncalibrated monocular camera, this is not
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the case for a plenoptic camera. The reason is that for each pair
of micro images from distinct views one obtains a fundamental
matrix. To estimate this one would need multiple corresponding
points in each micro image, which, considering the small size of
the micro images, is not realistic. This makes the initialization of
the optimization problem more difficult. To initialize the bundle
adjustment we consider in a first step that the totally focused
image of the plenoptic camera results from a regular pinhole
camera. In this way we solve the SfM problem using a standard
photogrammetric software. For initialization this approximation
is sufficient since only a rough estimate of all parameters is
needed.

In addition, initial parameters for B and bL0 are received by
solving the physical model defined in [9]. In this way we receive
initial values for all intrinsic and extrinsic camera parameters
as well as the 3D object points. A detailed description of the
initialization can be found in [10].

Beside the initial parameters, the photogrammetric software
provides already the correct correspondences of the recorded
calibration points.

In the following we proof the validity of using the pinhole
camera model for initialization, at least for fL 	 zC , based on
a specific example. The camera setup is as follows:

1) main lens focal length fL = 16 mm
2) size of the totally focused image: 1024 × 1024 pixel
3) principal point in the image center
The calibration target covers a depth range from zC min =

500 mm up to zC max = 1500 mm. Based on the thin lens equa-
tion we are able to calculate the following maximum, minimum
and average image distances:

1) bL max = 16.53 mm
2) bL min = 16.17 mm
3) bL = 16.35 mm
Thus, one receives a maximum projection error between the

plenoptic and pinhole camera model as follows:

Δxmax = xmax ·
(

bL max

bL

− 1
)

= xmax ·
(

1 − bL min

bL

)
= 5.63 pixel (36)

Here the image plane of the pinhole camera model is considered
to be in distance bL to the main lens. The maximum image
coordinate xmax is considered to be at the image boundary and
therefore at xmax = 512 pixel. As can be seen from eq. (36)
the error made for the initialization is only in the range of a few
pixels.

For larger object distances the error further decreases
(i.e., for zC min = 1500 mm and zC max = 2500 mm it follows
Δxmax = 1.11 pixel). The variation in the average image dis-
tance bL results in a small scaling error of the recorded im-
age and therefore a bias in the estimated object distance. For
fL 	 zC it follows bL ≈ fL and therefore the estimated prin-
cipal distance of the pinhole camera model gives a good ini-
tialization for the main lens focal length fL of the plenoptic
camera.

C. Plenoptic Bundle Adjustment

To estimate the exact camera parameters we formulate the
following non-linear optimization problem:

E(Π,Ξ, P ) =
N∑

i=1

M∑
j=1

L∑
k=1

∥∥r(i,j,k)
∥∥2 · θ(i,j,k) (37)

Here, Π is the set of all camera parameters (intrinsic and dis-
tortion parameters), Ξ is the set of all camera poses (Ξ :=
{ξ1 , . . . , ξM }) and P the set of all object point coordinates
(P := {x(1)

W , . . . ,x
(N )
W }). Each calibration point in a micro im-

age results in a 2D residual vector r(i,j,k) . θ(i,j,k) is a masking
function which is 1 if the i-th object point is visible in the k-th
micro image of the j-th view and zero otherwise.

The residual vector for the calibration point with coordinates
xM L , corresponding to the i-th object point which is seen in the
k-th micro image of the j-th camera view, is defined as follows:

r(i,j,k) = πM L

(
G(ξj )x

(i)
W , c

(k)
M L,Π

)
− xM L (38)

The function πM L (·) defines the projection from camera to
micro image coordinates of the k-th micro image. In eq. (37)
the sum over i is the sum over all object points, the sum over j is
the sum over all camera poses and the sum over k is the sum over
all micro images. To become robust against outliers, θ(i,j,k) can
also be extended with any robust loss function. The vector ξj ∈
se(3) defines the rigid body transformation G(ξj ) ∈ SE(3)
from world coordinates to camera coordinates of the j-th view.

The optimal parameters (Π̂, Ξ̂, P̂ ) are the one which minimize
the cost function E(Π,Ξ, P ):

{Π̂, Ξ̂, P̂} = arg min E(Π,Ξ, P ) (39)

We solve this highly nonlinear optimization problem using
the Levenberg-Marquardt algorithm. The initialization of Π, Ξ
and P has to guarantee that the optimization starts in the convex
region around the optimum solution of E(Π,Ξ, P ).

The scaling of the object is received based on known dis-
tances between certain object points. Those distances are used
as additional constraints in the optimization problem.

Our implementation of the plenoptic camera calibration is
based on the Ceres Solver Library [38].

VI. DIRECT PLENOPTIC ODOMETRY

Our DPO algorithm performs direct image alignment and
semi-dense mapping directly on the micro images recorded by
a plenoptic camera. It makes use of the geometric camera in-
terpretation defined in Section IV. The geometric camera inter-
pretation relies on known intrinsic camera parameters, as well
as distortion corrected images. Therefore, in advance to run
DPO, the plenoptic camera has to be calibrated as described in
Section V.

A. Overview
Algorithm 1 shows the complete workflow. We give here

a short overview and focus on the single steps in the fol-
lowing subsections (Sections VI-B–VI-F). A new recorded
light-field frame is tracked based on a keyframe. Keyframes
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are selected light-field frames in respect to which tracking
and mapping of all recorded frames takes place. In addition
to the light-field (raw image), for each keyframe two depth
maps (micro image depth map and virtual image depth map)
are established and a totally focused intensity image is syn-
thesized. After successful tracking of a light-field frame the
current keyframe is updated, i.e., the depth maps are refined
based on the tracked frame and the totally focused image is
recalculated.

During progress of the DPO algorithm, the pose of newly
recorded frames differs more and more from the one of the
initially established keyframe. Based on a score we check for
each new frame whether the old keyframe is still valid or whether
the new frame has to be set as a new keyframe. For a new
keyframe, in-frame depth estimation is performed based on its
recorded light-field. The in-frame depth map is merged with the
one propagated from the last keyframe. Hence only the depth
maps of the current keyframe will be kept.

B. Depth Map Representation

For a plenoptic camera, the observed inverse virtual depth
v−1 can be considers to result from a Gaussian process [34].
Therefore, due to eq. (21) the observed inverse effective depth
λ−1 = z′−1

C has to result form a Gaussian process, too. Sim-
ilar to [18] we define for each image point with an absolute
gradient above a certain threshold a probabilistic depth hy-
pothesis. We model the inverse effective depth as a Gaussian
process:

N (
d, σ2

d

)
(40)

Here, d = z′−1
C defines the mean, while σ2

d is the corresponding
variance.

1) Micro image Depth Map and Virtual Image Depth Map:
Using the probabilistic depth model (eq. (40)) two different
depth maps (DM L (xR ) and DV (xV )) are defined for each
keyframe (Fig. 5(b) and (c)).
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Fig. 5. Keyframe depth maps and intensity images. (a) Micro images IM L (xR ) (raw image recorded by the plenoptic camera). (b) Micro image depth map
DM L (xR ). (c) Virtual image depth map DV (xV ). (d) Totally focused intensity image IV (xV ). For the pixels marked in red no depth value and hence no
intensity was calculated.

Fig. 6. Focus disparity error εf for two different positions (x1 and x2 ) on an
edge along the epipolar line.

DM L (xR ) is defined on raw image coordinates xR . Here
a point in the i-th micro image, with micro image coordi-
nates xM L has the raw image coordinates xR = xM L + c

(i)
M L .

DV (xV ) as well as a totally focused intensity image IV (xV )
(Fig. 5(d)) are defined on virtual image coordinates xV [34],
where micro image points observing the same object point are
merged (see Section VI-D).

We consider the two distinct depth maps because in the raw
image one object point is projected to multiple image points,
while there is a one to one mapping from object space to the
virtual image.

Depth estimation is performed on DM L (xR ), while the depth
map DV (xV ) is used for tracking new frames.

C. Estimating Depth Hypotheses

For each keyframe we perform in-frame depth estimation
based on stereo matching in its own micro images as well
as inter-frame depth estimation based on micro images of
subsequent frames using the epipolar gemometry defined in
Section IV-B. For both in-frame and inter-frame depth estima-
tion stereo matches are found by optimizing the sum of squared
intensity difference (SSID) over a one-dimensional pixel patch
along the epipolar line. Prior estimates are used to narrow the
search range to d ± 2σd .

1) Observation Uncertainty: Similar to [18] we derive the
observation uncertainty, which results in the variance σ2

d of the
inverse effective depth d, based on uncertainty propagation. In
addition to a geometric and a photometric disparity error, a
focus disparity error, which regards unfocused micro images, is
defined.

a) Geometric disparity error: Due to inaccuracies in the cam-
era model and uncertainties in the frame pose one can expect a
misalignment of the epipolar line. Due to the very short search
range, we consider, similar to [18], only the absolute epipolar
line position l0 to be effected by isotropic Gaussian noise εl

and we can neglect any rotational error. Since for plenoptic
cameras the search range is always limited by the micro lens
dimension, the assumption of a short search range holds even
better than for the monocular case. Thus, the variance σ2

μ(ξ ,π )
of the geometric disparity error can be defined as follows [18]:

σ2
μ(ξ ,π ) =

σ2
l

〈g, l〉2 (41)

Here, g is the normalized image gradient, l the normalized
epipolar line direction, and σ2

l the variance of εl .
b) Photometric disparity error: The photometric disparity

error describes the effect of sensor noise εn on the estimated
disparity. It results in an error on the estimated disparity with
variance σ2

μ(I ) , defined as follows [18]:

σ2
μ(I ) =

2 · σ2
n

g2
I

(42)

Here σ2
n is the variance of εn and gI the intensity gradient along

the epipolar line.
c) Focus disparity error: Different to regular cameras, which

in general are focused to infinity, the micro images of the plenop-
tic camera can not be considered to be in focus for the complete
operating range, especially not for a multi-focus plenoptic cam-
era [36]. Hence, the focusing itself also affects the stereo obser-
vation (Fig. 6). In the following we derive the variance σ2

μ(v ,k ,j )
of the focus disparity error.

Let k be the index of the micro image for which mapping is
performed, while j is the one of the stereo reference. To model
the focus disparity error we consider the real edge Ireal(x)
which is observed in the micro images as a perfect Heaviside-
step-function h(x) with amplitude A and offset B along the
epipolar line:

Ireal(x) = A · h(x) + B (43)

The variable x is the position on the respective epipolar line
relative to the step position μ0i (i ∈ {k, j}):

x = μk − μ0k = μj · γ − μ0j (44)
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Therefore, the correct disparity is defined by μ∗ = μ0j − μ0k .

The parameters γ = z
′( j )
C

z
′(k )
C

defines the scaling factor between the

micro images. During the imaging process the edge Ireal(x) is
filtered by a Gaussian filter with variance σ2

i which depends on
the virtual depth v, the micro lens type and the sampling rate
(pixel pitch).

Thus, on the sensor we receive the following intensity func-
tions along the epipolar line:

Ii(x) = B +
A

2

(
1 + erf

(
x

σi

√
2

))
i ∈ {k, j} (45)

The estimated disparity μ̂ = μ∗ + εf is the one for which
both intensities have the same value and therefore, the following
condition is fulfilled:

Ik (x) != Ij (x − εf ) (46)

erf

(
x

σk

√
2

)
!= erf

(
x − εf

σj

√
2

)
(47)

Since the error function (erf(·)) can not be solved analytically,
we linearize eq. (47) and receive, after a rearrangement, the
following relationship between the focus disparity error εf and
the position on the edge x:

εf = x ·
(

1 − σj

σk

)
(48)

Fig. 6 visualizes the focus disparity error εf exemplary for
two different positions (x1 and x2) on an edge along the epipolar
line. Here, the red and blue curves represent the intensity along
the epipolar line in two different micro images with different
blur radii. For a certain position x on the edge the estimated
disparity μ̂ will be the one for which both curves have the same
value and therefore will be shifted by εf with respect to the real
disparity μ∗ as given in eq. (46). For the case that both images
have the same blur radius, both curves are perfectly overlaid and
therefore εf = 0 will hold for any position x.

Considering the position with respect to the real edge x as a
random variable with variance σ2

x , the variance σ2
μ(v ,k ,j ) of the

focus disparity error is as follows:

σ2
μ(v ,k ,j ) = σ2

x ·
(

1 − σj

σk

)2

(49)

The standard deviation σi (i ∈ {k, j}) depends on the blur
diameter si of the respective micro image, which is calculated
based on the virtual depth v and the micro lens parameters (DM ,
fM , B) using the thin lens equation:

si = DM ·
∣∣∣∣ 1vi

+
B

fM i
− 1
∣∣∣∣ (50)

Since the minimum blur radius is limited by the pixel pitch and
the overall optical system, the blur radius has a lower boundary
s0 . Thus the following variances σ2

k and σ2
j result:

σ2
k = β2 · min{s2

k , s2
0}, σ2

j = β2γ2 · min{s2
j , s

2
0} (51)

The constant parameter β models the scaling from blur diameter
to the standard deviation of the Gaussian filter.

Considering all three error sources as independent random
variables, the overall observation uncertainty is received as
follows:

σ2
d = α2 ·

(
σ2

μ(ξ ,π ) + σ2
μ(I ) + σ2

μ(v ,k ,j )

)
(52)

where α defines the derivative of d with respect to the disparity μ.

2) Estimating In-Frame Depth

In-frame depth estimation is performed similarly to the proce-
dure we have described previously in [34]. The only difference
is that here we directly estimate the inverse effective depth z′−1

C

instead of the inverse virtual depth v−1 . Nevertheless, since there
is a linear connection, the overall procedure stays the same.

3) Estimating Inter-frame Depth

While for in-frame depth estimation the stereo baseline is
limited by the camera dimensions, we are able to improve the
depth accuracy based on inter-frame depth observations. Inter-
frame depth estimation is performed from the current keyframe
to newly tracked frames. Therefore, we consider the relative
orientation between the frames ξ ∈ se(3) to be known.

For each micro image point in the keyframe stereo observa-
tions are obtained from all possible micro images in the new
frame.

a) Defining epipolar lines: One is able to define the epipo-
lar geometry between the micro images of two different frames
as given in Section IV-B. Due to the linear relation between
projected micro image coordinates xp and real micro image co-
ordinates on the sensor xM L (or xR ), the epipolar lines defined
in the projected micro images can be directly mapped on the sen-
sor. Therefore, stereo matching for inter-frame depth estimation
can be performed directly on the recorded raw images.

4) Regularizing Depth Maps

Each time the depth maps are updated a regularization step
on DM L (xR ) and DV (xV ) is performed. Here, outliers are re-
moved and estimates are smoothed based on probabilistic met-
rics, similar to [39]. Since it is much easier to detect outliers
in DV (xV ) the corresponding points in DM L (xR ) are marked
as outliers, too. The depth hypotheses in DM L (xR ) itself are
not updated based on DV (xV ) to avoid loops in the filtering
process. After updating DV (xR ), the totally focused intensity
image IV (xR ) is recalculated, too.

D. MERGING DEPTH HYPOTHESES

Probabilistic depth values are updated in a Kalman-like fash-
ion, similar to [18]. However, in contrast to [18] we limit the
variance of the merged depth hypothesis to the variance of the
best observation. By this we do not consider the observations
to be uncorrelated, which in the limit case would lead to zero
variance. Thus, the following merging routine is defined:

N
(∑

i∈O di ·
(
σ2

di

)−1∑
i∈O (σ2

di)
−1 ,min

(
σ2

di

))
(53)
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where O is the set of depth observations. This algorithm avoids
that points in the background which are observed in numerous
frames receive low variances.

E. TRACKING

Newly recorded frames are tracked based on direct image
alignment. As tracking reference we use the current keyframe
(DV (xV ) and IV (xV )).

Tracking is performed in two steps. Initial tracking is per-
formed based on a coarse-to-fine approach using the totally
focused image of the new frame. Final tracking is performed
directly on the micro images.

1) Initial Tracking on Pyramid Levels

To obtain the totally focused image of the new frame without
performing in-frame depth estimation, the virtual image depth
map of the current keyframe is propagated to the new frame
based on the pose of the last tracked frame. With this depth
information the totally focused image can be synthesized.

For initial tracking we perform direct image alignment based
on a coarse-to-fine approach as proposed in [40] to increases
the radius of convergence. With the Levenberg-Marquardt al-
gorithm we optimize the variance-normalized intensity error
EV (ξkj ):

EV (ξkj ) =
∑

i

∥∥∥∥∥∥
(

r
(i)
V

σ
(i)
r

)2
∥∥∥∥∥∥

δ

(54)

r
(i)
V := IV k

(
x

(i)
V

)
− IV j

(
πV

(
G(ξkj )π

−1
V (x(i)

V )
))

(55)

Here πV (·) defines the projection from camera to virtual image
coordinates, while π−1

V (·) is the inverse projection. ‖ · ‖δ is the
robust Huber norm [41].

2) Tracking on Micro Images

The result from the initial tracking is used to initialize the
micro image based tracking. Here, each point in the tracking
reference (frame k) x

(i)
C is projected to all micro images in the

new frame (frame j) which observe this point. This results in the
following optimization function which is solved with respect to
ξkj :

E(ξkj ) =
∑

i

∑
l

∥∥∥∥∥∥
(

r
(i,l)
M L

σ
(i,l)
r

)2
∥∥∥∥∥∥

δ

(56)

r
(i,l)
M L := IV k

(
x

(i)
V

)
− IM Lj

(
πM L

(
G(ξkj )π

−1
V (x(i)

V ), c(l)
M L

))
(57)

Here πM L (·) defines the projection from camera to micro im-
age coordinates. By the projection of the reference points to
multiple micro images in the new frame we are able to implic-
itly incorporate the in-frame disparities of the new frame into

the optimization problem. In this way we are able to avoid ac-
cumulated scale drifts as they in general occur for monocular
tracking.

3) Variance of Tracking Residual

For both initial and final tracking the residual variance σ2
r

is received based on uncertainty propagation. Therefore, σ2
r

consists of a photometric component, which results from noise
on the intensities and a geometric component which results from
noise on the depth estimate.

σ2
r := σ2

n

(
1

Nk
+

1
Nj

)
+
∣∣∣∣∂r(xV , ξkj )

∂d(xV )

∣∣∣∣
2

σ2
d (xV ) (58)

We consider the noise on the intensities in the different micro
images to be uncorrelated. Therefore, the variance of an intensity
value is estimated by the variance of the sensor noise σ2

n divided
by the number of micro image points used to calculate the
intensity value:(

σ
(i)
I

)2
=

σ2
n

Ni
with i ∈ {k, j} (59)

Here Ni (i ∈ {k, j}) is the number of micro image points used
for calculation. Hence, for the tracking on the micro images it
follows Nj = 1.

The geometric term is received based on uncertainty propaga-
tion from the variance σ2

d of the corresponding depth hypothesis.

F. SELECTING KEYFRAMES

A new keyframe has to be selected when the view of a new
frame differs too much from the one of the current keyframe.
Therefore, we define a score based on the translation between
the two frames as well as on the percentage of good points
during tracking.

When a frame is selected to be the new keyframe, in-frame
depth estimation is performed in the new frame. Afterwards, the
micro image depth map of the last keyframe is projected into the
new one and the depth hypotheses are merged. Here, projected
depths which are divergent from the in-frame depth are rejected
and not merged.

VII. EVALUATION

A. Plenoptic Camera Calibration

In this section the evaluation of the calibration approach for
the plenoptic camera is presented. We compare the calibration
results for different main lenses. Besides, we compare our ap-
proach to a state-of-the-art calibration algorithm [5] for MLA
based light-field cameras.

All experiments were performed with a Raytrix R5 camera
(sensor size: 11,264 × 11,264 mm, image size: 2048 × 2048
pixel, diameter of micro lenses: ∼23 pixel, aperture: f/2.4).

Due to the reason that it is quite difficult to detect marker
points directly in the micro images of the plenoptic camera,
we detect them in our approach in the totally focused image
and project them back to the micro images. Anyway, the totally
focused image has to be calculated in advance to initialize the
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Fig. 7. 3D target used for plenoptic camera calibration. (a) Single marker point
projected to multiple micro images. Detected marker coordinates are visualized
by red crosses. (b) Complete 3D calibration target. Consists of (unique) coded
and uncoded markers. Six defined distances between pairs of coded markers
are used to retrieve the scale of the calibration object. (a) Marker point. (b)
Calibration target.

TABLE II
ESTIMATED INTRINSIC CAMERA PARAMETERS AND REPROJECTION ERRORS

FOR THREE DIFFERENT MAIN LENS FOCAL LENGTHS

Lens fL [mm] bL 0
[mm]

B [mm] cLx

[pixel]
cLy

[pixel]
sx

[pixel]
sy

[pixel]

12.5 mm 12.616 11.789 0.353 1003.3 1043.9 0.213 0.220
16mm 16.273 15.482 0.357 1015.7 1056.3 0.123 0.126
35mm 34.868 33.993 0.367 1024.0 1042.4 0.063 0.067

bundle adjustment. Fig. 7(a) shows an example for the detected
marker points in the micro images, while Fig. 7(b) shows the
complete calibration target. In contrast, the method presented by
Bok et al. [5] detects line features from a checkerboard pattern
directly in the micro images.

1) Calibration With Different Main Lenses: We use three
different main lenses with different focal lengths (fL =
12, 5 mm, fL = 16 mm, fL = 35 mm) to evaluate our calibra-
tion approach.

For each lens we estimate the camera parameters and we
evaluate the reprojection error as well as the accuracy of the
3D points estimated during the bundle adjustment. This allows
us to assess the validity of our model and the robustness of the
calibration approach.

Table II shows the estimated intrinsic parameters for all three
lenses and the corresponding reprojection errors. Here, sx and
sy are the root mean square (RMS) values of the reprojection
error in the x- and y-coordinate respectively.

From Table II one can see that for all three main lenses
the reprojection errors are much smaller than one pixel. This
confirms the validity of the complete projection model. Here it
seems that the reprojection error is correlated with the main lens
focal length fL . Another indication for the validity of the defined
projection model is that the estimated main lens focal length fL

is quite close to the nominal focal length of the respective lens.
In addition, the estimated parameter B is similar for all three
lenses. The parameter B is a constant of the plenoptic sensor
and therefore does not depend on the main lens.

TABLE III
ACCURACY OF 3-D OBJECT COORDINATES ESTIMATED DURING

THE BUNDLE ADJUSTMENT

Lens 12,5 mm 16 mm 35 mm

RMSE 0.289 mm 0.301 mm 0.332 mm
MAE 2.124 mm 2.352 mm 2.411 mm

TABLE IV
ROBUSTNESS OF THE ESTIMATED INTRINSIC CAMERA PARAMETERS USING A

MAIN LENS FOCAL LENGTH OF fL = 16 MM

Calibration Our Method Bok et al. [5]

Method mean st. dev. rel. std. mean std. dev. rel. std [%]

fL [mm] 16.28 0.003 0.020% – – –
bL 0 [mm] 15.53 0.018 0.118% – – –
B [mm] 0.36 0.007 1.975% – – –
cLx [pixel] 1015.07 0.705 0.069% 1000.09 13.651 1.365%
cLy [pixel] 1046.89 0.390 0.037% 1048.73 11.051 1.054%
fx [pixel] 2888.97 2.072 0.072% 2963.39 6.406 0.216%
fy [pixel] 2888.97 2.072 0.072% 2963.01 6.577 0.222%
K1 2.04 0.007 0.319% 1.93 0.094 4.907%
K2 689.49 14.917 2.164% 767.41 20.988 2.735%

To evaluate the accuracy of the estimated 3D object coor-
dinates, we register the point clouds received from the bundle
adjustment for all three main lenses with a reference point cloud
using ICP (iterative closest point). The reference point cloud is
received based on SfM using a standard monocular camera.
For this we used a professional photogrammetric measurement
software to estimate a highly accurate reference point cloud.
Table III shows the root mean square error (RMSE) and the
maximum absolute error (MAE) between the point clouds re-
ceived from the plenoptic camera based bundle adjustment and
the reference point cloud. For all three main lenses we measure a
RMSE of the point cloud of less than 1mm and thereby confirm
the validity of the defined multiple view geometry. The MAE is
less than 2.5 mm for all three lenses although also the outliers
are considered.

A point cloud accuracy of less than 1mm is way less than the
measurement accuracy of the plenoptic camera and therefore
sufficient for a precise calibration of the camera.

2) Comparison to State of the Art: We compare our cali-
bration approach to the one presented by Bok et al. [5]. Both
methods define the complete projection from object space to the
recorded micro images on the sensor. While the overall projec-
tion from object space to the micro images is quite similar for
both models we mainly want to demonstrate that the robustness
of the calibration significantly benefits from the 3D calibration
target in comparison to the planar checkerboard used in [5].

To compare the methods, we recorded for both targets 64
images from different perspectives using the main lens with
fL = 16 mm.

To evaluate the robustness of the calibration approach we
performed the calibration for each method 10 times by picking
randomly a set of 20 images out of the complete collection of



ZELLER et al.: FROM THE CALIBRATION OF A LIGHT-FIELD CAMERA TO DIRECT PLENOPTIC ODOMETRY 1017

TABLE V
TRACKING DRIFTS OVER THE COMPLETE SEQUENCE MEASURED BY LOOP CLOSURES

Sequence ORB-SLAM2 [24] (stereo) LSD-SLAM [19] DPO

scale rot. [◦] pos. [%] scale rot. [◦] pos. [%] scale rot. [◦] pos. [%]

park. lot 1.02−1 10.44 1.96 12.56−1 10.01 33.83 1.07−1 1.55 0.33
foodcourt 1.01−1 3.77 0.75 2.60−1 4.73 9.17 1.08 2.20 0.96
office – – – 1.36−1 7.86 4.67 1.16−1 3.31 1.15

The table shows scale factor, rotational drift, and absolute position error from the beginning to the end of the sequences. The position error is given in percentage of
the sequence length.

Fig. 8. Point cloud subsections created by DPO. Keyframe positions are marked in red. top: “foodcourt” sequence. bottom: “office” sequence. Homer figure
(bottom, right) has a height of about 5cm.

64 images. The mean and the standard deviations of all intrinsic
parameters are given for both methods in Table IV.

The parameters fx , fy , K1 and K2 need not to be calculated
in our calibration approach. However, for comparison purposes
we calculated these parameters (numbers in italic font) on the
basis of our calibration results using the definitions given in [5].

As one can see from Table IV, the intrinsic parameters esti-
mated with our calibration approach are an order of magnitude
more robust than those of the method [5]. All estimates result
in a relative standard deviation weigh less than one percent, ex-
cept for the estimate of B. Probably the robustness of B could
be improved by having more variation in the distance to the
calibration target for the recorded images. A similar scattering
as for B is received for K2 since both parameters are highly
correlated (see [5] for definition).

There is a somewhat large difference of the estimates of the
intrinsic parameters fx , fy , K1 and K2 considering the two
investigated methods. Our method estimates fx and fy to have
the same value since we consider the pixels to be square. This
is confirmed by the estimates of the method [5]. Since we do
not have any absolute reference values we can not make any
statement about the correctness of these values.

Both methods resulted in similar mean reprojection error, of
0.159 pixel for the method of Bok et al. [5] and 0.186 pixel for
our method. This confirms the validity of both models.

B. Direct Plenoptic Odometry

Since there are no comparable plenoptic VO algorithms
available we compare our method to state-of-the-art visual
SLAM approaches: the monocular LSD-SLAM [19] and the
stereo ORB-SLAM2 [24]. We ran our approach using the
same camera as used for calibration (Section VII-A). The main
focal length was chosen to fL = 16 mm to achieve a suitable
trade-off between FOV and scale awareness.

To compare the approaches, we mounted the plenoptic camera
together with a stereo camera pair (image size: 1530× 742 pixel,
focal length: 705 pixel, baseline: 120 mm) on the same platform.
We ran both camera systems with the same frame rate (15 fps)
but without synchronization.

We present results for three different trajectories which
were performed indoor as well as outdoor. For LSD-
SLAM we reduced the image size to 640 × 480 pixel for
which the implementation is optimized. For all sequences
LSD-SLAM was initialized by the stereo depth map of
the first frame, providing good starting conditions for this
algorithm.

1) Quantitative Results: Since the frames of the sequences
are not synchronized and we do not have a ground truth for
the camera trajectory, we measure the overall drift based on a
large loop closure. While we receive the loop closure data for
the stereo camera sequences from the loop closure detection of
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Fig. 9. Trajectory of “office” sequence estimated from ORB-SLAM2 (stereo)
and DPO. The trajectory starts at coordinates (0,0,0), from there the cameras
where moved on a U-shaped path around a group of tables and on a similar path
back to the starting position.

ORB-SLAM2, we performed for DPO a 3D similarity transfor-
mation (Sim(3)) based direct image alignment, as implemented
in [19], between a representative keyframe at the beginning and
the end of the sequence. The obtained co-registration from the
beginning to the end of the sequences is used as ground truth
data in the evaluation.

To obtain a fair comparison of all algorithms, for the evalu-
ation large scale loop closure detection was disabled for ORB-
SLAM2 and LSD-SLAM for all three sequences.

Table V presents the results for the three sequences. The
table shows the scale factor, the rotational drift, and the absolute
position error from the beginning to the end of the sequence.

For the “office” sequences ORB-SLAM2 results in a globally
optimized trajectory since in the sequence a similar path was
walked forward and backward (see Fig. 9). Therefore no drift
could be measured. To avoid loop closures for LSD-SLAM on
the “office” sequence we allowed map optimization only based
on a neighborhood of ±10 keyframes.

For the two large scale sequences (“parking lot” and “food-
court”) LSD-SLAM basically fails (scale drift > 100%). Our
DPO shows tracking accuracies comparable to ORB-SLAM2
(stereo) even though DPO performs only frame by frame track-
ing without any further optimization. DPO is only outperformed
with respect to the scale drift, which is due to the much smaller
static stereo baseline.

For all sequences ORB-SLAM2 (stereo) occasionally per-
formed relocalization which means that tracking was lost tem-
porarily and regained.

For the office sequence it might be that LSD-SLAM run-
ning on higher image resolution would result in less drifts.
Nevertheless, for the two outdoor sequences (“parking lot” and
“foodcourt”) tracking of LSD-SLAM completely failed, which
is not a result of the lower image resolution. The reason why
LSD-SLAM fails is more because the camera is mainly mov-
ing towards viewing direction, which results in a biased Sim(3)
estimation between consecutive keyframes and therefore in a
continuously decreasing scale.

For both ORB-SLAM2 and LSD-SLAM we did not enforce
real-time operation to obtain best possible results. Nevertheless,
when rating the results given above, one has to consider that
both algorithms are designed and implemented to run in real-
time at the cost of poorer tracking and mapping performance.
Our DPO in contrast currently exists only in a pure sequential,

unoptimized implementation, which takes around 3 seconds to
process a single frame. However, we showed already in previous
publications [42] that depth estimation as a main part of DPO
can run on frame rates > 30 fps on standard GPUs. Furthermore,
direct image alignment on monocular images was also shown
to be real-time capable [40]. Therefore, we are convinced that a
real-time implementation of DPO, with similar performance as
presented here, is feasible.

2) Qualitative Results: While on the outdoor trajectories
(“parking lot” and “foodcourt”) DPO has quite large absolute
scale differences with respect to the stereo approach, on small
scale it is able to estimate the scale from the light-field cor-
rectly. This is shown in Fig. 9, where the trajectories of DPO
and ORB-SLAM2 (stereo) are shown for the “office” sequence.

Figs. 1 and 8 show subsections of the point clouds received
from all three trajectories. Even though motion was performed
mainly along the line of vision, DPO is still able to estimate
accurate and detailed point clouds.

In close range DPO is able to estimate highly detailed point
clouds with millimeter accuracy as can be seen from the sil-
houette of the Homer figure (Fig. 8, bottom, right), which was
standing on the table in the “office” sequence and was recorded
only from the front.

VIII. SUMMARY AND CONCLUSION

In this article we presented a complete framework to perform
plenoptic camera based odometry. We developed a multiple
view geometry for plenoptic cameras which enables tracking
and mapping directly on the micro images at full sensor reso-
lution. Based on this multiple view geometry we developed a
calibration approach for plenoptic cameras which defines the
projection from object space directly to the micro images on
the sensor. By performing calibration based on a 3D calibra-
tion target, the resulting optimization problem is much better
conditioned than in already existing methods. Our calibration
method supplies a more robust estimate of the intrinsic cam-
era model than a state-of-the-art calibration approach for MLA
based light-field cameras.

The Direct Plenoptic Odometry (DPO) algorithm developed
by us outperforms state-of-the-art monocular SLAM algorithms
and is competitive to stereo approaches.

Although we do not have yet a real-time implementation of
our DPO, we are convinced that an optimized implementation is
able to run with high frame rates. Parts of the algorithm (depth
estimation [42], direct image alignment [40]) have been shown
to run at high frame rates.

Since there are no other plenoptic SLAM algorithms and
respective datasets available yet, a direct comparison is not pos-
sible. Hence, this demands for a plenoptic odometry benchmark
to compare future algorithms.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
and editors for their helpful comments.



ZELLER et al.: FROM THE CALIBRATION OF A LIGHT-FIELD CAMERA TO DIRECT PLENOPTIC ODOMETRY 1019

REFERENCES

[1] G. Wu et al., “Light field image processing: An overview,” IEEE J. Sel.
Topics Signal Process., vol. 11, no. 7, pp. 926–954, Oct. 2017.

[2] R. Ng and P. Hanrahan, “Digital correction of lens aberrations in light
field photography,” Proc. SPIE, vol. 6342, 2006, Art. no. 63421E.

[3] D. Cho, M. Lee, S. Kim, and Y.-W. Tai, “Modeling the calibration pipeline
of the Lytro camera for high quality light-field image reconstruction,” in
Proc. IEEE Int. Conf. Comput. Vision, 2013, pp. 3280–3287.

[4] D. Dansereau, O. Pizarro, and S. Williams, “Decoding, calibration and
rectification for lenselet-based plenoptic cameras,” in Proc. IEEE Conf.
Comput. Vision Pattern Recognit., 2013, pp. 1027–1034.

[5] Y. Bok, H. G. Jeon, and I. S. Kweon, “Geometric calibration of micro-
lens-based light field cameras using line features,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, no. 2, pp. 287–300, Feb. 2017.
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