
Tabular Data Generation: Can We Fool XGBoost ?

El-Hacen Zein
hacen3064@gmail.com

Tanguy Urvoy
tanguy.urvoy@orange.com

Abstract

If by ’realistic’ we mean indistinguishable from (fresh) real data, generating realistic
synthetic tabular data is far from being a trivial task. We present here a series of
experiments showing that strong classifiers like XGBoost are able to distinguish
state-of-the-art synthetic data from fresh real data almost perfectly on several
tabular datasets. By studying the important features of these classifiers, we remark
that mixed-type (continuous/discrete) and ill-distributed numerical columns are the
ones which are the less faithfully reconstituted. We hence propose and experiment
a series of automated reversible column-wise encoders which improve the realism
of the generators.

1 Introduction

Tabular data is the most common form of data in industry. It is ubiquitous in many key applications
such as medical diagnosis, anomaly detection, predictive analytic, click-through rate prediction,
user recommendation, or customer churn prediction [36, 5, 9]. In all these domains, the ability to
generate realistic data has several applications such as privacy [52], testing [50], data imputation [13],
oversampling [19] or explainability [26]. The flexibility of neural networks and their potential ability
to ’understand’ tabular data through the pre-training/fine-tuning paradigm are appealing research
avenues with several applications [21, 4, 17]. However, despite recent efforts to design adapted
architectures [3, 28], tabular data still poses a huge challenge for neural networks on predictive tasks
where boosted decision trees like XGBoost [15] remain the best option both for performances and
training time (see [23, 9, 49, 25, 20]).

A key difficulty of tabular data is the heterogeneity of features. A table mostly contains categorical
features (sex, occupation,...) which are reputed unordered and discrete, and numerical features (age,
capital-gain...) which are frequently assumed to be ordered and continuous. But things are often
more complex: Categorical values can exhibit some ordering or semantic structure, they are often
highly unbalanced with scarce, missing, or even erroneous values. Numerical values can behave like
mixtures of discrete, truncated or continuous distributions. They are often ill-distributed with long
tails, extreme outliers, and various scales. All these numerical oddities, well described in [56] and
[11], can have a deleterious effect on the models that are trained with gradient descent.

Despite recent efforts to deploy adapted neural architectures [5, 9], a practitioner willing nowadays
to work with neural networks and tabular data is bound to handcraft a problem-specific encod-
ing/decoding procedure for each table column [49]. Recent works on tabular data suggest that
proper encoding methods rather than architecture innovations can significantly boost performances of
discriminative and generative models [9, 24, 55].

Most of these issues are shared between predictive and generative models. But generative tasks also
induce additional difficulties. Contrary to purely predictive models, the encoding procedures for
generative models also have to be reversible. Another difficulty is evaluation. Evaluating generative
models is known to be a delicate issue in general [54], but for tabular data, unlike in computer vision
where a visual sanity check can be performed, the visual checking of a single generated tabular row,
when not meaningless, requires a deep knowledge of the problem.

36th Table Representation Learning workshop (NeurIPS 2022).

Figure 1: An illustrative example showing that single-target ML-efficacy is not a sufficient measure.
On the left hand side the original ’two-moons’ dataset with the score map of a Random-Forest
classifier that obtains a perfect test AUC of 99.9%. On the right-hand side a very unrealistic dataset
that frames the decision boundary. A new classifier trained on this ’framing’ data obtains a perfect
test AUC as well: decision framing is the simplest way to maximize ML-efficacy.

Our contributions are as follows: In section 2 we first highlight with a toy example that single-
target ML-efficacy, a popular metric in the literature on deep tabular data generation, is not robust to
inconsistencies between real and fake samples. We hence argue, following [37], that the Classifier
Two-Sample Test (C2ST) is more relevant, and way more challenging than ML-efficacy to assess the
realism of synthetic tabular data.

We then show in Section3 that strong classifiers are able to distinguish state-of-the-art synthetic data
from real data almost perfectly on several tabular datasets. We highlight with a post-hoc analysis
of these classifiers that the poor performances of the generative models we tested are mainly dues
to mixed-type and ill-distributed numerical features. In sections 4 and 5 we finally propose three –
data-driven – encoding schemes for numerical features and show that some of them allow models to
generate fake samples with consistently improved C2ST scores.

2 Classifier two-sample test as a realism measure for tabular data

Several measures can be employed to evaluate the performance of generative models for tabular data
[46]. A classical sanity check consists of visually comparing the histograms for each column [16, 45,
14]. This comparison can also be automated by using two-sample statistics like Kolmogorov-Smirnov
[6, 37], but averaging single-column metrics does not take into account the inter-dependencies
between features. Other metrics proposed in [46] average multi-columns aggregates to circumvent
this problem, but the aggregate’s choice is rather arbitrary.

A popular metric that takes the dependencies into account is machine learning efficacy (ML-efficacy).
Driven by privacy applications, this metric relates to the (test) performance gap between predictive
models trained respectively on real and artificial data [16, 12, 6, 45, 55, 56, 34]. This metric can be
single-target or averaged on multiple target columns. Most publications however use single-target
ML-efficacy as it is less costly to compute.

But, as a matter of fact, the best way to maximize ML-efficacy is not to generate realistic data. It is
sufficient to train a classifier on original data and generate samples that properly frame its decision
boundaries. We illustrate this fact with a toy example in Figure 1.

We propose to evaluate the tabular generative models with a less frequently used metric called
Classifier 2-sample test (C2ST) or Detection test in SDV [46]. This metric, well studied in [37],
consists in quantifying the ability of a binary classifier to discriminate fresh real data from fake data.
The C2ST methodology proceeds as follow: We first split the original dataset into a train set Dtrain

and a test set Dtest. We train the generative model on Dtrain and use it to generate an artificial test set
Dsyn with |Dsyn| = |Dtest|. We then construct the labeled dataset T = Dtest×{real} ⊔Dsyn×{fake}
that we randomly split into a train set Ttrain and a test set Ttest. We finally train a ’discriminant’
classifier on Ttrain to estimates the probability for an instance to be fake. The performance of this
discriminant classifier on Ttest is our C2ST statistic.

In our experiments we assess this performance with the Area Under the ROC Curve (AUC): an AUC
of 0.5 means that synthetic data is indistinguishable from real data, while an AUC of 1 means that
synthetic instances are easily spotted by the classifier. Note that, contrary to the discriminator model

2

in Generative Adversarial Networks (GANs) [22], the discriminant classifier we use is trained and
tested from scratch on fresh data. We can experience overfitted GANs with poor C2ST scores, but
where the internal discriminator is fooled by its generator. As developed in the next section, we found
through extensive experiments that recent GAN-based or VAE-based generative models that could
reach high ML-efficacy scores were easily discriminated from the real data through an XGBoost-based
two sample test.

3 Synthetic tabular data is easily spotted by XGBoost

Most of the numerous proposed approaches for tabular data generation provide both architecture
innovations and encoding/decoding innovations. Among the non-neural methods, copulas [33, 43,
48, 46] are popular because they allows us to model the marginals and the features inter-dependencies
separately. There have also been some recent attempts to combine copulas with graphical models
[41, 7], and neural networks [53, 30, 32, 1, 46].

Among the deep generative models, several variants of GANs have been tested and adapted in order to
cope with tabular data [2, 16, 12, 42, 45, 31, 14]. A Few Variational Auto-Encoders (VAE) have been
tested as well [55, 38, 26], and some recent works also applied normalizing FLOWS on tabular data
[32, 35]. Among the proposed models, conditional generators like CTGAN and TVAE [55], CWGAN
[19], and CTAB-GAN [56] are the most flexible for data imputation or oversampling, and their ability
to learn-by-sampling is an efficient counter-measure against categorical imbalance training issues.

3.1 Classifier-based two-sample test experiment

As a first experiment, we evaluate the realism of three representative tabular data generators in terms
of C2ST. We chose to test CTGAN, TVAE, and GAUSSIAN COPULAS generators because these
models are known to achieve state-of-the-art performance in term of ML-efficiency and because they
are publicly available with – automated – features encoding/decoding schemes as part of the SDV
project [48, 46]. Another interesting improvement proposed with CTGAN and TVAE is the use of
Gaussian mixtures (GM) for mode-specific normalization of numerical features. Some interesting
improvements have also been proposed in [56], but the proposed solutions mostly rely on handcrafted
features engineering.

For this experiment we used eight real world datasets from the benchmark provided in [55]. We
added to this benchmark, a few artificial datasets provided in scikit-learn [47]. We modified the
SDV evaluation procedure in order to add C2ST score with stronger classifiers1: Gradient Boosting,
Random Forest, Multi-Layer Perceptron (MLP) from Scikit-learn [47] and XGboost [15]. Each
generative model was trained on a 70% split using default hyper-parameters. The C2ST’s classifiers
were trained and evaluated using a 3-fold cross validation with their default hyper-parameters.

The results are summarized in Figure 2. We found that all models: CTGAN, TVAE and GAUSSIAN
COPULAS obtain poor C2ST scores, especially on real-world datasets where all classifiers are able to
discern fake data from real data with an AUC that is greater than 0.80. Moreover, as expected, the
XGboost classifier is outperforming the other classifiers, detecting fake data with an AUC greater than
0.92 for all real datasets.

Our first experiments revealed two interesting result: (i) Although better than the ones generated
by GAUSSIAN COPULAS, the fake examples generated by CTGAN and TVAE still contain patterns
that allowed all classifiers to discriminate them from real examples. (ii) Achieving high ML-efficacy
scores is not sufficient to affirm that the fake samples follow the same distribution as the real data.

3.2 Post-hoc analysis of the discriminating classifiers

In order to explain the poor scores obtained on Figure 2, we retrieve two standard feature-importance
measures from the discriminating classifiers [44]: the impurity-based importance and the permutation-
based importance. In Figure 3, we compare, for three datasets, the importance of numerical features
against categorical (multi-class and binary) features, revealing that numerical features have a much
higher impact than categorical features.

1See SDMetrics patch on github.com/sdv-dev/SDMetrics/pull/235

3

https://github.com/sdv-dev/SDMetrics/pull/235

C
T
G
A
N

C
o
p
u
la
s

T
V
A
E

C
2

S
T
 (

A
U

C
)

C
T
G
A
N

C
o
p
u
la
s

T
V
A
E

Figure 2: C2ST scores using respectively CTGAN (first row); TVAE (second row); and GAUSSIAN
COPULAS generators (last row) with their original hyper-parameters and encodings on several datasets.
We tested different classifiers: scikitlearn’s gradient boosting in blue, scikitlearn’s random forest in
orange, Multi-Layers Perceptron (MLP) with 100 hidden neurons in green, and XGBoost in yellow.
Recall that an AUC of 1.0 means that the classifier detects all fake instances while an AUC of 0.5
means perfect indistinguishability.

Our results show that the conditional generative models are doing well with the sparsity of categorical
features, but still fail at efficiently capturing the complexity of multivariate numerical values. As
mentioned in the introduction, the behaviour of numerical features are often complex with multiple
scales, multiple modes, long-tails, and mixed-types with continuous distributions, discrete events and
truncation effects. These numerical oddities are illustrated in Figure 4.

4 Improving numerical encoders

As we have seen previously, the samples generated by CTGAN and TVAE can perfectly be distin-
guished from real data (Figure 2), and we believe that this is mainly due to the lack of a proper
numerical feature representation. Our goal in this work is not to propose another network architecture,
but rather to explore new approaches for numerical features encoding and study their impact on the
realism of the generated samples.

We use one-hot encoding for categorical features. The – derivable – reverse transform for this
encoding is to return the Gumbel-softmax [29]. Various strategies such as hierarchy, embeddings or
hashing, have been proposed to deal with large dimensions (see [27] for a survey), but several were
designed for input data and are not reversible, hence not suitable for data generation.

For numerical features the most basic transform is normalization. But, as pointed-out in [51], in
presence of multi-modal distributions, normalization does not prevent a GAN to collapse into a
single mode (even on a 2D dataset). Our baseline will be the approach of [55], called mode-specific
normalization, which consists in fitting a Variational Gaussian Mixture model [8] on each numeric
feature. We will call this encoder VGM encoder. We categorize the encodings we propose in two
types: feature binning and marginal-density estimation.

4

Figure 3: A scatter plot with two feature importance metrics retrieved from a classifier trained to
discriminate samples generated by CTGAN from real data. The y-axis shows the impurity-based
feature importance. The x-axis shows the ∆AUC permutation importance. Each dot is a table column
with numerical columns in blue, multiClass columns in orange and binary columns in green.

Figure 4: Examples of ill-distributed numerical features with Diracs, long-tails and semi-discrete
behaviours (with log-scale). On the left-hand side Hillshade_3pm (from covtype) with a heavy
peak in zero meaning "no-measure". In the middle capital-gain with an extreme outlier peak
meaning "more than 100000", and on the right-hand side hours-per-week with several isolated
peaks, one for each work contract.

4.1 Feature binning

Feature binning is a long-existing discretization technique where the value range is partitioned into
disjoint intervals called bins, and where every scalar value is represented by its corresponding bin
index. This lossy encoding is known to improve Naive Bayes classifiers [18, 10]. Recently, [24]
studied the effect of binning on predictive neural networks and proposed a lossless binning encoder,
called Piecewise Linear Encoding (PLE), where the edges of the bins are used to construct piece-wise
linear representations of the original scalar values. We propose here two adaptations of feature
binning for generative models.

Let X be a numerical feature, and let b0, b1, . . . , bm be its bin edges determined trough equal-
frequency or another method. Given a value x ∈ X , the bin index ix is the index verifying
bix ≤ x < bix+1. We propose two encoding schemes:

Piecewise Linear Encoding (PLE) This method, directly inspired from [24], takes an input value
x ∈ X and returns the concatenation of a one-hot vector v = (v0, . . . , vm) for the bin index ix and a
scalar value α representing the min-max normalization of x inside its bin. Formally, ple(x) = v ⊕ α

with vi = 1bi≤x<bi+1
and α =

x−bix
bix+1−bix

.

The scalar α being in the interval [0, 1], it can be generated using a sigmoid function. The one-hot
representation v is generated with a Gumbel-softmax [29]. The inverse transform is obtained by
x = (1− α) · bix + α · bix+1.

5

Figure 5: Contrary to the standard deterministic quantile transform which preserves the discrete
behaviours, the randomized CDF "dequantizes" the original distribution into a smooth uniform.
Although randomized, this transformation does not lose information.

Prototype Encoding (PTP) The prototype encoding method takes inspiration from prototypical
networks [40]. The idea consists of viewing the input value x ∈ X as a weighted average of the
edges/prototypes values b0, . . . , bm. The input value x is hence encoded into a vector of positive
weights ptp(x) = (w0, . . . , wm) such that

∑m
i=0 wi · bi = x. This representation is not unique. In

order to keep the weights as sparse as possible we define the forward encoding by:

wi =

{
1− α when i = ix,
α when i = ix + 1,
0 otherwise

Where ix and α are defined as for the PLE encoder. The PTP representation of a scalar can be generated
with a softmax function. The inverse transform is a simple scalar product: ptp(x) · (b0, . . . , bm).

4.2 Marginal-density estimation

Following the same approach as with copulas, we fit for each numerical feature a model that maps
its distribution to a uniform one, hence leaving only for the generative model to learn the joint
distribution between the uniform marginals. This approach has been already explored, for example in
[38] using marginal VAEs and in [32] using univariate normalizing flows. However, fitting and tuning
a neural network for each feature is computationally expensive, especially with high-dimensional
datasets. We propose here the cumulative-distribution-function (CDF) encoder, which relies directly
on the raw empirical CDF to perform a smooth encoding.

Formally let fx = {x1, . . . xn} be the train values of a numerical feature. We define the two following
functions:

F (x) =
1

n

n∑
i=1

1xi<x and D(x) =
1

n

n∑
i=1

1xi=x

Note that F (x) (resp. D(x)) is an approximation of P(X < x) (resp. P(X = x)). The forward
encoding of a value x ∈ R is F (x) or a uniform sample from [F (x), F (x) +D(x)] if x ∈ fx. As
described on Figure 5, this encoding transforms any peaked numerical feature into a "dequantized"
continuous representation that is guaranteed to be uniformly distributed in [0, 1]. It hence differs from
the deterministic QuantileTransformer from scikitlearn which always returns F (x). The reverse
transform is F−1(u) = max{x | F (x) ≤ u}.

4.3 Hybrid encoder

We have seen throughout our experiments that both the binning-based encoders and the density-based
encoder achieve competitive results compared to the VGM encoder (Figure 6). The CDF encoder
makes it extremely easy to capture the marginal distribution but misses the redundant encoding
that the binning method provides. To take advantage of both methods we designed PLE_CDF: an
hybridization of the CDF encoder and the PLE encoder. It consists of first, applying a CDF encoder
to transform a numerical feature into a uniform distribution, then applying the PLE encoder on the
resulting transformation.

6

Figure 6: Behavior of a CTGAN model in presence of mixed-type distributions (first row) and
multi-modal distributions (second row). On the far left side is the target distribution. The other
three figures show the histograms of CTGAN-generated samples using respectively a VGM encoder,
a PTP encoder, and a CDF encoder. The task in the first row is to generate a mix of three uniform
distributions and three Dirac impulses. Erroneous samples are highlighted in orange. Note the
inability of Gaussian mixtures and prototypes to model Diracs impulses. In the second row the real
data correspond to the hours-per-week in adult dataset. To facilitate the comparison between the
models we computed a univariate C2ST score, which shows that the samples synthesized using the
CDF encoder and the PTP encoder are harder to discriminate from real data.

5 Experiment

In this section we empirically evaluate the impact of the techniques discussed in section 4 on CTGAN
and TVAE, and compare them with the VGM encoder [55].

We use C2ST as detailed in Section2. To make the task harder we use the strongest classifier
in our preliminary experiments, i.e, The XGBoost classifier. We also use ML-efficacy and two
additional metrics for privacy and overfitting: Distance to Closest Records (DCR) and Nearest
Neighbor Distance Ratio (NNDR) [39]. These two metrics are here to prevent from a generative
model that would just sample rows from training data, even if, as mentioned in [37], a sufficiently
large set of generated samples would reveal such memorization to the two-sample test. All reported
measures are the averaged results of a 3-fold cross validation. For the ML-efficacy scores we report
the average measure (AUC for binary classification and Accuracy for multiclass classification) of all
used classifiers.

For each model (CTGAN and TVAE) and each dataset we compared the performances using the
baseline Gaussian mode-specific normalisation (denoted VGM) against its performance using the
techniques introduced in section 4 (PLE, PTP, CDF and PLE_CDF). Each model was trained for 300
epochs using the default hyperparameters in the original paper [55].

The results for four real-world datasets are summarized in Tables 1, 2, 3 and 4. The first row, named
Identity, gives the performance of a perfect generator, i.e., a model that would generate exactly the
test set. The main takeaways of this experiment are:

• For 3 out of the 4 datasets we used, our encoders achieved, on each model, significant
improvement in terms of C2ST scores over the existing VGM encoder, with the PLE_CDF
encoder consistently achieving the best scores.

• All models passed the over-fitting DCR test (only one occurrence of p-value lower than 0.1)
• All models have an NNDR higher than the test set (Identity).
• Our encoders do not seem to have any significant impact on the ML-efficacy. We can safely

say that all encoders have similar ML-efficacy scores.

7

C2ST↓ DCR↑ NNDR↑ ML-efficacy↑
Identity 0.51±0.00 1.00±0.00 0.33±0.00 0.79±0.01

TVAE

VGM 0.97±0.00 0.18±0.20 0.38±0.03 0.77±0.02
PLE 0.97±0.00 0.09±0.04 0.47±0.01 0.76±0.02
CDF 0.82±0.01 0.30±0.26 0.37±0.00 0.76±0.03
PLE_CDF 0.91±0.02 0.09±0.08 0.37±0.02 0.72±0.03

CTGAN

VGM 0.99±0.00 0.17±0.03 0.47±0.01 0.76±0.03
PTP 0.90±0.01 0.29±0.13 0.48±0.00 0.77±0.03
PLE 0.81±0.01 0.22±0.05 0.46±0.01 0.78±0.01
CDF 0.85±0.01 0.29±0.05 0.52±0.02 0.76±0.03
PLE_CDF 0.76±0.01 0.31±0.15 0.48±0.00 0.77±0.02

Table 1: Results on Adult dataset.

C2ST↓ DCR↑ NNDR↑ ML-efficacy↑
Identity 0.50±0.00 1.00±0.00 0.15±0.02 0.71±0.07

TVAE

VGM 0.91±0.01 0.64±0.11 0.29±0.04 0.66±0.05
PLE 0.93±0.00 0.53±0.23 0.33±0.02 0.65±0.06
CDF 0.89±0.01 0.62±0.23 0.33±0.02 0.63±0.10
PLE_CDF 0.86±0.01 0.51±0.18 0.31±0.03 0.68±0.07

CTGAN

VGM 0.99±0.00 0.46±0.13 0.56±0.01 0.72±0.06
PTP 0.88±0.00 0.36±0.07 0.54±0.04 0.70±0.07
PLE 0.89±0.01 0.38±0.04 0.53±0.03 0.70±0.07
CDF 0.94±0.00 0.59±0.15 0.58±0.04 0.73±0.05
PLE_CDF 0.85±0.01 0.46±0.07 0.56±0.03 0.72±0.07

Table 2: Results on Census dataset.

C2ST↓ DCR↑ NNDR↑ ML-efficacy↑
Identity 0.50±0.00 1.00±0.00 0.38±0.00 0.90±0.05

TVAE

VGM 0.97±0.00 0.40±0.03 0.69±0.02 0.72±0.04
PLE 0.99±0.00 0.57±0.24 0.76±0.01 0.70±0.01
CDF 0.91±0.00 0.51±0.15 0.71±0.00 0.72±0.05
PLE_CDF 0.94±0.02 0.37±0.20 0.71±0.01 0.71±0.03

CTGAN

VGM 0.98±0.00 0.65±0.24 0.71±0.01 0.67±0.08
PTP 0.95±0.00 0.70±0.13 0.69±0.01 0.67±0.08
PLE 0.98±0.01 0.43±0.21 0.68±0.00 0.66±0.08
CDF 0.95±0.00 0.59±0.26 0.67±0.00 0.68±0.08
PLE_CDF 0.93±0.01 0.61±0.17 0.69±0.00 0.67±0.08

Table 3: Results on covtype dataset.

C2ST↓ DCR↑ NNDR↑ ML-efficacy↑
Identity 0.50±0.00 1.00±0.00 0.00±0.00 0.87±0.02

TVAE

VGM 0.91±0.01 0.40±0.13 0.09±0.00 0.50±0.00
PLE 0.94±0.01 0.48±0.20 0.08±0.02 0.56±0.02
CDF 0.97±0.00 0.49±0.07 0.77±0.02 0.70±0.12
PLE_CDF 0.98±0.01 0.60±0.17 0.03±0.03 0.60±0.05

CTGAN

VGM 0.85±0.01 0.53±0.13 0.35±0.02 0.92±0.01
PTP 0.93±0.00 0.36±0.07 0.10±0.02 0.92±0.01
PLE 0.91±0.01 0.58±0.12 0.23±0.03 0.93±0.01
CDF 0.94±0.00 0.26±0.24 0.68±0.01 0.92±0.03
PLE_CDF 0.88±0.01 0.44±0.18 0.47±0.04 0.93±0.01

Table 4: Results on credit dataset.

8

6 Conclusion

We showed that on tabular data, a strong classifier like XGBoost is perfectly able to distinguish
the real samples from the fake ones synthesized by state-of-the-art generative models. We also
highlighted that ill-distributed numerical columns are the less faithfully reconstituted. We proposed
three new automatic encoding schemes that can transform ill-distributed numerical features into
regular representations that are suitable for neural networks. We empirically showed that these
methods improve the synthetic samples quality without deteriorating the ML-efficacy and the privacy
metrics. Furthermore theses encodings are simple, computationally efficient and easily adaptable to
any neural network model (predictive or generative). However despite this improvement, with AUC
scores higher than 0.80, our synthesized samples are still easily spotted by XGBoost. Developing
models and encodings able to lower this score a step further is an exciting challenge.

7 Acknowledgement

We would like to thank the TRL reviewers for their constructive feedback. This work was performed
using HPC/AI resources from GENCI-IDRIS (Grant 2022-AD011012220R1).

References
[1] CopulaGAN Model — SDV 0.16.0 documentation, 2022. URL https://sdv.dev/SDV/

user_guides/single_table/copulagan.html.

[2] M. Alzantot, S. Chakraborty, and M. Srivastava. Sensegen: A deep learning architecture
for synthetic sensor data generation. In 2017 IEEE International Conference on Pervasive
Computing and Communications Workshops (PerCom Workshops), pages 188–193. IEEE, 2017.

[3] S. O. Arik and T. Pfister. Tabnet: Attentive interpretable tabular learning, 2019. URL https:
//arxiv.org/abs/1908.07442.

[4] S. Ö. Arik and T. Pfister. Tabnet: Attentive interpretable tabular learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35, pages 6679–6687, 2021.

[5] I. Ashrapov. Review of GANs for tabular data, June 2020. URL https://
towardsdatascience.com/review-of-gans-for-tabular-data-a30a2199342.

[6] M. K. Baowaly, C.-C. Lin, C.-L. Liu, and K.-T. Chen. Synthesizing electronic health records
using improved generative adversarial networks. Journal of the American Medical Informatics
Association : JAMIA, 26(3):228—241, March 2019. ISSN 1067-5027. doi: 10.1093/jamia/
ocy142. URL https://europepmc.org/articles/PMC7647178.

[7] F. Benali, D. Bodénès, N. Labroche, and C. de Runz. Mtcopula: Synthetic complex data
generation using copula. In 23rd International Workshop on Design, Optimization, Languages
and Analytical Processing of Big Data (DOLAP), pages 51–60, 2021.

[8] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[9] V. Borisov, T. Leemann, K. Seßler, J. Haug, M. Pawelczyk, and G. Kasneci. Deep Neural
Networks and Tabular Data: A Survey. Technical Report arXiv:2110.01889, arXiv, Feb. 2022.
URL http://arxiv.org/abs/2110.01889. arXiv:2110.01889 [cs] type: article.

[10] M. Boullé. Modl: a bayes optimal discretization method for continuous attributes. Machine
learning, 65(1):131–165, 2006.

[11] M. Boullé and V. Zelaia. Floating-point histograms for exploratory analysis of large scale
real-world data sets. Technical report, Orange-labs, 2022.

[12] R. Camino, C. Hammerschmidt, and R. State. Generating multi-categorical samples with
generative adversarial networks. 2018. doi: 10.48550/ARXIV.1807.01202. URL https:
//arxiv.org/abs/1807.01202.

9

https://sdv.dev/SDV/user_guides/single_table/copulagan.html
https://sdv.dev/SDV/user_guides/single_table/copulagan.html
https://arxiv.org/abs/1908.07442
https://arxiv.org/abs/1908.07442
https://towardsdatascience.com/review-of-gans-for-tabular-data-a30a2199342
https://towardsdatascience.com/review-of-gans-for-tabular-data-a30a2199342
https://europepmc.org/articles/PMC7647178
http://arxiv.org/abs/2110.01889
https://arxiv.org/abs/1807.01202
https://arxiv.org/abs/1807.01202

[13] R. Camino, C. Hammerschmidt, and R. State. Working with deep generative models and tabular
data imputation. In ICML Workshop on the Art of Learning with Missing Values (Artemiss),
2020. URL https://openreview.net/forum?id=R4w3PTkCD4.

[14] H. Chen, S. Jajodia, J. Liu, N. Park, V. Sokolov, and V. S. Subrahmanian. Faketables: Using gans
to generate functional dependency preserving tables with bounded real data. In Proceedings of
the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, pages
2074–2080. International Joint Conferences on Artificial Intelligence Organization, 7 2019. doi:
10.24963/ijcai.2019/287. URL https://doi.org/10.24963/ijcai.2019/287.

[15] T. Chen and C. Guestrin. XGBoost: A Scalable Tree Boosting System. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
785–794, San Francisco California USA, Aug. 2016. ACM. ISBN 978-1-4503-4232-2. doi:
10.1145/2939672.2939785. URL https://dl.acm.org/doi/10.1145/2939672.2939785.

[16] E. Choi, S. Biswal, B. Malin, J. Duke, W. F. Stewart, and J. Sun. Generating multi-label
discrete patient records using generative adversarial networks. In F. Doshi-Velez, J. Fackler,
D. Kale, R. Ranganath, B. Wallace, and J. Wiens, editors, Proceedings of the 2nd Machine
Learning for Healthcare Conference, volume 68 of Proceedings of Machine Learning Research,
pages 286–305. PMLR, 18–19 Aug 2017. URL https://proceedings.mlr.press/v68/
choi17a.html.

[17] X. Deng, H. Sun, A. Lees, Y. Wu, and C. Yu. TURL: table understanding through representation
learning. Proc. VLDB Endow., 14(3):307–319, Nov. 2020. ISSN 2150-8097. doi: 10.14778/
3430915.3430921. URL https://dl.acm.org/doi/10.14778/3430915.3430921.

[18] J. Dougherty, R. Kohavi, and M. Sahami. Supervised and unsupervised discretization of
continuous features. In A. Prieditis and S. J. Russell, editors, ICML, pages 194–202. Morgan
Kaufmann, 1995. ISBN 1-55860-377-8. URL http://dblp.uni-trier.de/db/conf/
icml/icml1995.html#DoughertyKS95.

[19] J. Engelmann and S. Lessmann. Conditional wasserstein gan-based oversampling of tabular
data for imbalanced learning. Expert Systems with Applications, 174:114582, 2021.

[20] S. A. Fayaz, M. Zaman, S. Kaul, and M. A. Butt. Is deep learning on tabular data enough?
an assessment. International Journal of Advanced Computer Science and Applications, 13(4),
2022.

[21] Y. Ganin and V. Lempitsky. Unsupervised domain adaptation by backpropagation. In Proceed-
ings of the 32nd International Conference on International Conference on Machine Learning -
Volume 37, ICML’15, pages 1180–1189, Lille, France, July 2015. JMLR.org.

[22] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence,
and K. Weinberger, editors, Advances in Neural Information Processing Systems, volume 27.
Curran Associates, Inc., 2014. URL https://proceedings.neurips.cc/paper/2014/
file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.

[23] Y. Gorishniy, I. Rubachev, V. Khrulkov, and A. Babenko. Revisiting deep learning models for
tabular data. Advances in Neural Information Processing Systems, 34:18932–18943, 2021.

[24] Y. Gorishniy, I. Rubachev, and A. Babenko. On Embeddings for Numerical Features in Tabular
Deep Learning. arXiv e-prints, art. arXiv:2203.05556, Mar. 2022.

[25] L. Grinsztajn, E. Oyallon, and G. Varoquaux. Why do tree-based models still outperform deep
learning on tabular data? arXiv preprint arXiv:2207.08815, 2022.

[26] V. Guyomard, F. Fessant, T. Bouadi, and T. Guyet. Post-hoc counterfactual generation with su-
pervised autoencoder. In M. e. a. Kamp, editor, Machine Learning and Principles and Practice
of Knowledge Discovery in Databases, pages 105–114, Cham, 2021. Springer International
Publishing. ISBN 978-3-030-93736-2.

[27] J. Hancock and T. Khoshgoftaar. Survey on categorical data for neural networks. Journal of
Big Data, 7, 04 2020. doi: 10.1186/s40537-020-00305-w.

10

https://openreview.net/forum?id=R4w3PTkCD4
https://doi.org/10.24963/ijcai.2019/287
https://dl.acm.org/doi/10.1145/2939672.2939785
https://proceedings.mlr.press/v68/choi17a.html
https://proceedings.mlr.press/v68/choi17a.html
https://dl.acm.org/doi/10.14778/3430915.3430921
http://dblp.uni-trier.de/db/conf/icml/icml1995.html#DoughertyKS95
http://dblp.uni-trier.de/db/conf/icml/icml1995.html#DoughertyKS95
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

[28] X. Huang, A. Khetan, M. Cvitkovic, and Z. Karnin. Tabtransformer: Tabular data modeling
using contextual embeddings. arXiv e-prints, pages arXiv–2012, 2020.

[29] E. Jang, S. Gu, and B. Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

[30] T. Janke, M. Ghanmi, and F. Steinke. Implicit generative copulas. Advances in Neural
Information Processing Systems, 34:26028–26039, 2021.

[31] J. Jordon, J. Yoon, and M. Van Der Schaar. Pate-gan: Generating synthetic data with differential
privacy guarantees. In International conference on learning representations, 2018.

[32] S. Kamthe, S. Assefa, and M. Deisenroth. Copula flows for synthetic data generation. arXiv
preprint arXiv:2101.00598, 2021.

[33] D. Koller and N. Friedman. Probabilistic graphical models: principles and techniques. MIT
press, 2009.

[34] J. Lee, J. Hyeong, J. Jeon, N. Park, and J. Cho. Invertible tabular gans: Killing two birds with
one stone for tabular data synthesis. Advances in Neural Information Processing Systems, 34:
4263–4273, 2021.

[35] J. Lee, M. Kim, Y. Jeong, and Y. Ro. Differentially private normalizing flows for synthetic
tabular data generation. Proceedings of the AAAI Conference on Artificial Intelligence, 36
(7):7345–7353, Jun. 2022. doi: 10.1609/aaai.v36i7.20697. URL https://ojs.aaai.org/
index.php/AAAI/article/view/20697.

[36] D. Libes, D. Lechevalier, and S. Jain. Issues in synthetic data generation for advanced manu-
facturing. In 2017 IEEE International Conference on Big Data (Big Data), pages 1746–1754.
IEEE, 2017.

[37] D. Lopez-Paz and M. Oquab. Revisiting classifier two-sample tests. In International Conference
on Learning Representations, page 14, Vancouver, 2017.

[38] C. Ma, S. Tschiatschek, R. Turner, J. M. Hernández-Lobato, and C. Zhang. Vaem: a deep gen-
erative model for heterogeneous mixed type data. Advances in Neural Information Processing
Systems, 33:11237–11247, 2020.

[39] J. M. Mateo-Sanz, F. Sebé, and J. Domingo-Ferrer. Outlier protection in continuous microdata
masking. In International Workshop on Privacy in Statistical Databases, pages 201–215.
Springer, 2004.

[40] P. Mettes, E. van der Pol, and C. Snoek. Hyperspherical prototype networks. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 32. Curran As-
sociates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
02a32ad2669e6fe298e607fe7cc0e1a0-Paper.pdf.

[41] D. Meyer, T. Nagler, and R. J. Hogan. Copula-based synthetic data augmentation for machine-
learning emulators. Geoscientific Model Development, 14(8):5205–5215, 2021.

[42] A. Mottini, A. Lheritier, and R. Acuna-Agost. Airline passenger name record generation using
generative adversarial networks. CoRR, abs/1807.06657, 2018. URL http://arxiv.org/
abs/1807.06657.

[43] R. B. Nelsen. An introduction to copulas. Springer Science & Business Media, 2007.

[44] S. Nembrini, I. R. König, and M. N. Wright. The revival of the Gini importance? Bioinformatics,
34(21):3711–3718, 05 2018. ISSN 1367-4803. doi: 10.1093/bioinformatics/bty373. URL
https://doi.org/10.1093/bioinformatics/bty373.

[45] N. Park, M. Mohammadi, K. Gorde, S. Jajodia, H. Park, and Y. Kim. Data synthesis based on
generative adversarial networks. Proceedings of the VLDB Endowment, 11(10):1071–1083, jun
2018. doi: 10.14778/3231751.3231757. URL https://doi.org/10.14778%2F3231751.
3231757.

11

https://ojs.aaai.org/index.php/AAAI/article/view/20697
https://ojs.aaai.org/index.php/AAAI/article/view/20697
https://proceedings.neurips.cc/paper/2019/file/02a32ad2669e6fe298e607fe7cc0e1a0-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/02a32ad2669e6fe298e607fe7cc0e1a0-Paper.pdf
http://arxiv.org/abs/1807.06657
http://arxiv.org/abs/1807.06657
https://doi.org/10.1093/bioinformatics/bty373
https://doi.org/10.14778%2F3231751.3231757
https://doi.org/10.14778%2F3231751.3231757

[46] N. Patki, R. Wedge, and K. Veeramachaneni. The synthetic data vault. In 2016 IEEE Interna-
tional Conference on Data Science and Advanced Analytics (DSAA), pages 399–410, 2016. doi:
10.1109/DSAA.2016.49.

[47] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[48] C. Sala, M. A. Campo, J. D. P. Cañellas, and K. Xiao. The Synthetic Data Vault. Put synthetic
data to work!, 2021. URL https://sdv.dev/.

[49] R. Shwartz-Ziv and A. Armon. Tabular data: Deep learning is not all you need. Information
Fusion, 81:84–90, May 2022. ISSN 15662535. doi: 10.1016/j.inffus.2021.11.011. URL
https://linkinghub.elsevier.com/retrieve/pii/S1566253521002360.

[50] G. Soltana, M. Sabetzadeh, and L. C. Briand. Synthetic data generation for statistical testing. In
2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE),
pages 872–882. IEEE, 2017.

[51] A. Srivastava, L. Valkov, C. Russell, M. U. Gutmann, and C. Sutton. Veegan: Reducing mode
collapse in gans using implicit variational learning. Advances in neural information processing
systems, 30, 2017.

[52] T. Stadler, B. Oprisanu, and C. Troncoso. Synthetic data–anonymisation groundhog day. In
31st USENIX Security Symposium (USENIX Security 22), pages 1451–1468, 2022.

[53] N. Tagasovska, D. Ackerer, and T. Vatter. Copulas as high-dimensional generative models: Vine
copula autoencoders. Advances in neural information processing systems, 32, 2019.

[54] L. Theis, A. van den Oord, and M. Bethge. A note on the evaluation of generative models. In
International Conference on Learning Representations, Apr 2016. URL http://arxiv.org/
abs/1511.01844.

[55] L. Xu, M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni. Modeling Tabular data
using Conditional GAN. Advances in Neural Information Processing Systems, page 11, 2019.

[56] Z. Zhao, A. Kunar, R. Birke, and L. Y. Chen. CTAB-GAN: Effective Table Data Synthesizing.
Asian Conference on Machine Learning, page 16, 2021.

12

https://sdv.dev/
https://linkinghub.elsevier.com/retrieve/pii/S1566253521002360
http://arxiv.org/abs/1511.01844
http://arxiv.org/abs/1511.01844

	Introduction
	Classifier two-sample test as a realism measure for tabular data
	Synthetic tabular data is easily spotted by XGBoost
	Classifier-based two-sample test experiment
	Post-hoc analysis of the discriminating classifiers

	Improving numerical encoders
	Feature binning
	Marginal-density estimation
	Hybrid encoder

	Experiment
	Conclusion
	Acknowledgement

