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ABSTRACT

As large language models (LLMs) advance, their inability to autonomously exe-
cute tasks by directly interacting with external tools remains a critical limitation.
Traditional methods rely on inputting tool descriptions as context, which is con-
strained by context length and requires separate, often inefficient, retrieval mech-
anisms. We introduce ToolGen, a paradigm shift that integrates tool knowledge
directly into the LLM’s parameters by representing each tool as a unique token.
This enables the LLM to generate tool calls and arguments as part of its next token
prediction capabilities, seamlessly blending tool invocation with language gener-
ation. Our framework allows the LLM to access and utilize a vast amount of tools
with no additional retrieval step, significantly enhancing both performance and
scalability. Experimental results with over 47,000 tools show that ToolGen not
only achieves superior results in both tool retrieval and autonomous task comple-
tion but also sets the stage for a new era of AI agents that can adapt to tools across
diverse domains. By fundamentally transforming tool retrieval into a generative
process, ToolGen paves the way for more versatile, efficient, and autonomous
AI systems. ToolGen enables end-to-end tool learning and opens opportunities
for integration with other advanced techniques such as chain-of-thought and rein-
forcement learning, thereby expanding the practical capabilities of LLMs.

1 INTRODUCTION

Large language models (LLMs) have demonstrated impressive capabilities as interactive systems,
adept at processing external inputs, executing actions, and autonomously completing tasks (Gravitas,
2023; Qin et al., 2023; Yao et al., 2023; Shinn et al., 2023; Wu et al., 2024a; Liu et al., 2024). Among
the various methods enabling LLMs to interact with the world, tool calling via APIs has emerged as
one of the most common and effective approaches. However, as the number of tools grows into the
tens of thousands, existing methods for tool retrieval and execution struggle to scale efficiently.

A common approach in real-world scenarios is to combine tool retrieval with tool execution, where
a retrieval model first narrows down the relevant tools before passing them to the LLM for final
selection and execution (Qin et al., 2023; Patil et al., 2023). While this combined method addresses
the challenge of handling vast numbers of tools, it has notable limitations: retrieval models often
rely on small encoders that fail to fully capture the semantics of complex tools and queries, and
separating retrieval from execution introduces inefficiencies and potential misalignment between
stages of task completion.

Moreover, LLMs and their tokenizers are pretrained primarily on natural language data (Brown
et al., 2020; Touvron et al., 2023), leaving them with limited intrinsic knowledge of tool-related
functionalities. This gap in knowledge results in suboptimal performance, especially when the LLM
must rely on retrieved tool descriptions for decision-making.

In this study, we introduce ToolGen, a novel framework that integrates real-world tool knowledge
directly into the LLM’s parameters and transforms tool retrieval and execution into a unified gen-
eration task. Specifically, ToolGen expands the LLM’s vocabulary with tool-specific virtual tokens
and trains the model to generate these tokens within a conversational context, allowing the LLM to
leverage its pre-existing knowledge more effectively for both retrieving and calling tools.

Specifically, each tool is represented as a unique virtual token within the LLM’s vocabulary. Build-
ing upon a pretrained LLM, ToolGen’s training process consists of three stages: tool memorization,
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Figure 1: Comparison between previous retrieval-based methods and our ToolGen. Previous meth-
ods use a retriever to retrieve relevant tools based on similarity matching, which are further put into
prompts for LLMs to select. ToolGen can retrieve tools by generating tool tokens directly. ToolGen
can also complete the task without relying on any external retriever.

retrieval training, and agent training. In the tool memorization stage, the model associates each
virtual tool token with its documentation. During retrieval training, the model learns to generate rel-
evant tool tokens based on user queries. Finally, in end-to-end agent-tuning, the model is trained to
act as an autonomous agent, generating plans and tools, and determining the appropriate parameters
to complete tasks. By calling tools and receiving feedback from external environments, the model
can handle user queries efficiently and integratively. Figure 1 shows comparison between ToolGen
and traditional paradigms.

We demonstrate ToolGen’s superiority in two scenarios: a tool retrieval task, where the model re-
trieves the correct tool for a given query, and an LLM-based agent task, where the model completes
complex tasks involving real-world API calls. Leveraging a dataset of 47,000 real-world tools, Tool-
Gen achieves performance comparable to the leading tool retrieval methods, but with significantly
lower cost and greater efficiency. Additionally, it surpasses traditional tool learning paradigms,
highlighting its potential for advancing more effective tool usage systems.

ToolGen represents a paradigm shift in tool interaction by merging retrieval and generation into a
single, cohesive model. This innovation sets the stage for a new generation of AI agents capable
of adapting to a vast array of tools across diverse domains. Additionally, ToolGen opens new op-
portunities for integrating advanced techniques like chain-of-thought reasoning and reinforcement
learning with the ability to use tools in a unified generation way, expanding the capabilities of LLMs
in real-world applications.

In summary, our contributions are:

• A novel framework, ToolGen, that integrates tool retrieval and execution into the LLM’s
generative process using virtual tokens.

• A three-stage training process that enables efficient and scalable tool retrieval and API
calling within ToolGen.

• Experimental validation demonstrates that ToolGen achieves comparable performance to
current best tool retrieval methods with significantly less cost and higher efficiency and
surpasses traditional tool learning paradigms across large-scale tool repositories.
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2 RELATED WORK

2.1 TOOL RETRIEVAL

Tool retrieval is essential for LLM agents in real-world task execution, where tools are usually
represented by their documentation. Traditional methods like sparse (e.g., BM25 (Robertson et al.,
2009)) and dense retrieval (e.g., DPR (Karpukhin et al., 2020), ANCE (Xiong et al., 2021)) rely on
large document indices and external modules, leading to inefficiencies and difficulty in optimizing
in an end-to-end agent framework. Some work has explored alternative methods. For example,
Chen et al. (2024b) rewrite queries and extract their intent, targeting unsupervised retrieval settings,
though the results are not comparable to supervised approaches. Xu et al. (2024) propose a method
that iteratively refines queries based on tool feedback, improving retrieval accuracy but increasing
latency.

Recently, generative retrieval has emerged as a promising new paradigm, wherein models directly
generate relevant document identifiers rather than relying on traditional retrieval mechanisms (Wang
et al., 2022; Sun et al., 2023b; Kishore et al., 2023b; Mehta et al., 2023b; Chen et al., 2023c).
Motivated by this, ToolGen represents each tool as a unique token, allowing tool retrieval and calling
to be framed as a generation task. Beyond simplifying retrieval, this design integrates smoothly with
other LLM and LLM-based agent features like chain-of-thought reasoning (Wei et al., 2023) and
ReAct (Yao et al., 2023). By consolidating retrieval and task execution into a single LLM agent, it
reduces latency and computational overhead, leading to more efficient and effective task completion.

2.2 LLM-AGENTS WITH TOOL CALLING

LLMs have shown strong potential in mastering tools for various tasks. However, most existing
works focus on a limited set of actions (Chen et al., 2023a; Zeng et al., 2023; Yin et al., 2024; Wang
et al., 2024). For instance, Toolformer (Schick et al., 2023) fine-tunes GPT-J to handle just five tools,
such as calculators. While effective for narrow tasks, this approach struggles in real-world scenarios
with vast action spaces. ToolBench (Qin et al., 2023) expands the scope by introducing over 16,000
tools, highlighting the challenge of tool selection in complex environments.

To perform tool selection, current methods often use a retriever-generator pipeline, where relevant
tools are retrieved and then utilized by the LLM (Patil et al., 2023; Qin et al., 2023). In addition,
TPTU (Ruan et al.) proposes a structured framework for LLM agents and evaluates their task plan-
ning and tool usage abilities. Furthermore, TPTU-v2 (Kong et al.; 2024) builds an LLM Finetuner to
enhance agent performance with curated datasets and a demo selector to select relevant demonstra-
tions. They set a flexible and superior paradigm compared to traditional retrieval-based paradigm.
However, pipelined approaches face two major issues: error propagation from the retrieval step and
the inability of LLMs to fully understand and use tools via simple prompting.

To mitigate these issues, researchers have tried representing actions as tokens, converting action
prediction into a generative task. For example, RT2 (Brohan et al., 2023) generates tokens repre-
senting robot actions, and Self-RAG (Asai et al., 2023) uses special tokens to decide when to retrieve
documents. ToolkenGPT (Hao et al., 2023) introduces tool-specific tokens to trigger tool usage, a
concept closest to our approach.

Our approach differs from ToolkenGPT in several ways. First, we focus on real-world tools that
require flexible parameters for complex tasks (e.g., YouTube channel search), while ToolkenGPT is
limited to simpler tools with fewer inputs (e.g., math functions with two numbers). Additionally,
ToolkenGPT relies on few-shot prompting, whereas ToolGen incorporates tool knowledge directly
into the LLM through full-parameter fine-tuning, enabling the model to retrieve and execute tasks
autonomously. Finally, our experiments involve a much larger tool set—47,000 tools compared to
ToolkenGPT’s 13–300. Detailed comparison and other related work can be found in Section A.

3 TOOLGEN

In this section, we first introduce the notations used throughout the paper. Then we detail the specific
methods of ToolGen, including tool virtualization, tool memorization, retrieval training, and end-to-
end agent tuning, as illustrated in Figure 2. Lastly, we describe our inference approach.
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ToolGen: 

Document: {name: ...}
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<token Game_Search>

<token Game_Search>

        Game_Search

        Get_Weather

        Game_Hall_of_Fame

        Top_Movies

...

...

    LLM

Figure 2: An illustration of ToolGen framework. In tool virtualization, tools are mapped into virtual
tokens. In the following three-stage training, ToolGen first memorizes tools by predicting tool tokens
based on their documentations. Then it learns to retrieve tools by predicting tool tokens from queries.
Finally, pipeline data, i.e., trajectories, are used to finetune the retriever model from the last stage,
resulting in the ToolGen Agent model.

3.1 PRELIMINARIES

Given a user query q, tool learning aims to resolve q using tools from a large tool set D =
{d1, d2, . . . , dN}, where |D| = N is a large number, making it impractical to include all tools in D
in the LLM context. Therefore, current research typically uses a retriever R to retrieve k relevant
tools from D, denoted as Dk,R = {dr1 , dr2 , . . . , drk} = R(q, k,D), where |Dk,R| ≪ N . The final
prompt is then the concatenation of q and Dk,R, denoted as Prompt = [q,Dk,R]. To complete a
task (query), an LLM-based agent usually adopts a four-stage paradigm (Qu et al., 2024) iteratively:
generates a plan pi, selects a tool dsi, determines tool parameters ci, and collects feedback from the
tool(s) fi. We denote these steps for the i-th iteration as pi, dsi , ci, fi. The model continues iterating
through these steps until the task is completed, at which point the final answer a is generated. The
entire trajectory can be represented as Traj = [Prompt, (p1, ds1 , c1, f1), . . . , (pt, dst , ct, ft), a] =
[q,R(q,D), (p1, ds1 , c1, f1), . . . , (pt, dst , ct, ft), a]. This iterative approach allows the model to dy-
namically adjust and refine its actions at each step based on the feedback received, improving its
performance in completing complex tasks.

3.2 TOOL VIRTUALIZATION

In ToolGen, we virtualize tools by mapping each tool to a unique new token through a method
we call atomic indexing. In this approach, each tool is assigned a unique token by expanding the
LLM’s vocabulary. The embedding for each tool token is initialized as the average embedding of its
corresponding tool name, ensuring a semantically meaningful starting point for each tool.

Formally, the token set is defined as T = Index(d) | ∀d ∈ D, where Index is the function mapping
tools to tokens. We demonstrate that atomic indexing is more efficient and can mitigate halluci-
nation compared to other indexing methods, such as semantic and numeric mappings, discussed in
Section 4.3 and 5.4.
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3.3 TOOL MEMORIZATION

After assigning tokens to tools, the LLM still lacks any knowledge of the tools. To address this,
we inject tool information by fine-tuning it with tool descriptions as inputs and their corresponding
tokens as outputs, which we call tool memorization. We use the following loss function:

Ltool =
∑
d∈D

− log pθ(Index(d)|ddoc)

where θ denotes the LLM parameters, and ddoc represents the tool description. This step equips the
LLM with basic knowledge of the tools and their associated actions.

3.4 RETRIEVAL TRAINING

We then train the LLMs to link the hidden space of virtual tool token (and its documentation), to the
user query space, so that LLM can generate correct tool based on a user’s query. To achieve this, we
fine-tune the LLM with user queries as inputs and corresponding tool tokens as outputs:

Lretrieval =
∑
q∈Q

∑
d∈Dq

− log pθ′(Index(d)|q)

where θ′ represents the LLM parameters after tool memorization, Q is the set of user queries, and Dq

is the set of tools relevant to each query. This results in the ToolGen Retriever, which can generate
the appropriate tool token given a user query.

3.5 END-TO-END AGENT-TUNING

After retrieval training, the LLM is capable of generating tool tokens from queries. In the final
stage, we fine-tune the model with agent task completion trajectories. We adopt a similar inference
strategy as Agent-Flan (Chen et al., 2024c), in instead of generating Thought, Action, and Argu-
ments together as ReAct. Our pipeline follows an iterative process, where the LLM first generates
a Thought, and the corresponding Action token. This token is used to fetch the tool documentation,
which the LLM uses to generate the necessary arguments. The process continues iteratively until
the model generates a “finish” token or the maximum number of turns is reached. The generated
trajectory is represented as Traj = [q, (p1, Index(ds1), c1, f1), . . . , (pt, Index(dst), ct, ft), a]. In
this structure, relevant tools are no longer required.

3.6 INFERENCE

During inference, the LLM may generate action tokens outside the predefined tool token set. To
prevent this, we designed a constrained beam search generation that restricts the output tokens to
the tool token set. We applied this constrained beam search for both tool retrieval, where the model
selects tools based on queries, and the end-to-end agent system, significantly reducing hallucination
during the action generation step. A detailed analysis can be found in Section 5.4. The implementa-
tion details can be found in Appendix E.

4 TOOL RETRIEVAL EVALUATION

4.1 EXPERIMENTAL SETUP

We use pretrained Llama-3-8B (Dubey et al., 2024) as our foundation model, with a vocabulary size
of 128,256. Using the atomic indexing approach, we expand the vocabulary by an additional 46,985
tokens following the tool virtualization process, resulting in a final vocabulary size of 175,241. We
fine-tune the model using the Llama-3 chat template with a cosine learning rate scheduler, applying
a 3% warm-up steps. The maximum learning is 4× 10−5. All models are trained using Deepspeed
ZeRO 3 (Rajbhandari et al., 2020) across 4×A100 GPUs. We train 8 epochs for tool memorization
and 1 epoch for retrieval training.
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Dataset Our experiments are based on ToolBench, a real-world tool benchmark containing more
16k tool collections, each containing several APIs, resulting in a total of 47k unique APIs. Each
API is documented with a dictionary, containing the name, description, and parameters for calling
the API. A real example is shown in Appendix C. We take each API as an action and map it to
a token. Our retrieval and end-to-end agent-tuning data are converted from the original data in
ToolBench. Details can be found in Appendix K. Although each tool may consist of multiple APIs,
for simplicity, we refer to each API as a tool in this paper.

We follow the data split of Qin et al. (2023), where 200k (query, relevant API) pairs are divided
into three categories: I1 (single-tool queries), I2 (intra-category multi-tool queries), and I3 (intra-
collection multi-tool instructions), containing 87,413, 84,815, and 25,251 instances, respectively.

Baselines We compare ToolGen with the following baselines:

• BM25: A classical unsupervised retrieval method based on TF-IDF, which retrieves docu-
ments based on term similarity with the query.

• Long-Context LLMs: We concatenate tools into a long prompt to gpt-4o, and prompt it
to choose from the pool. Limit by context length, we cannot input all 47k tools, so we use
2k tools with ground truth tools included.

• Embedding Similarity (EmbSim): Sentence embeddings generated using OpenAI’s sen-
tence embedding model; specifically text-embedding-3-large in our experiences.

• Re-Invoke (Chen et al., 2024b): An unsupervised retrieval method with query rewriting
and document expansion.

• IterFeedback (Xu et al., 2024): BERT-based retriever with gpt-3.5-turbo-0125 as a
feedback model with iterative feedback for up to 10 rounds.

• ToolRetriever (Qin et al., 2023): A BERT-based retriever trained via contrastive learning.

Settings We conduct experiments under two settings. In the first, In-Domain Retrieval, the re-
trieval search space is restricted to tools within the same domain. For example, when evaluating
queries from domain I1, the search is limited to I1 tools. This aligns with ToolBench settings.
The second, Multi-Domain Retrieval, is more complex, with the search space expanded to include
tools from all three domains. In this case, models are trained on combined data, increasing both the
search space and task complexity. Unlike ToolBench, this multi-domain setting reflects real-world
scenarios where retrieval tasks may involve overlapping or mixed domains. This setup evaluates the
model’s ability to generalize across domains and handle more diverse, complex retrieval cases.

Metrics We evaluate retrieval performance using Normalized Discounted Cumulative Gain
(NDCG) (Järvelin & Kekäläinen, 2002), a widely used metric in ranking tasks, including tool re-
trieval. NDCG accounts for both the relevance and ranking position of retrieved tools.

4.2 RESULTS

Table 1 presents the tool retrieval results. As expected, all trained models significantly outperform
the untrained baselines (BM25, EmbSim, and Re-Invoke) across all metrics, demonstrating the ben-
efit of training on tool retrieval data.

Our proposed ToolGen model consistently achieves the best performance across both settings. In the
In-Domain setting, ToolGen delivers highly competitive results, achieving comparable performance
to the IterFeedback system, which uses multiple models and a feedback mechanism. ToolGen, as a
single model, outperforms ToolRetriever by a significant margin in all metrics and even surpasses
IterFeedback in several cases, such as NDCG@5 for domain I1 and NDCG@1,@3,@5 for I2.

In the Multi-Domain setting, where the search space is larger and performance generally drops,
ToolGen remains robust, outperforming ToolRetriever and maintaining superiority over other base-
lines. This demonstrates that ToolGen, despite being a single model, is capable of competing with
complex retrieval systems like IterFeedback, showcasing its ability to handle complex real-world
retrieval tasks where domain boundaries are less defined.
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Table 1: Tool retrieval evaluation across two settings: (1) In-Domain, where models are trained and
evaluated within the same domain; and (2) Multi-Domain, where models are trained on all domains
and evaluated with the full set of tools across all domains. BM25, EmbSim, and Re-Invoke are
unsupervised baselines without training. IterFeedback is retrieval system with multiple models and
feedback mechanism. ToolRetriever is trained using contrastive learning, while ToolGen is trained
with next-token prediction. Results marked with * were not implemented by us and are copied from
their original paper, and hence only in the In-Domain setting. For ToolGen in the In-Domain setting,
we allow the generation space to include all tokens, which is a more challenging scenario compared
to other models. Best results in each category are bolded.

Model I1 I2 I3
NDCG1 NDCG3 NDCG5 NDCG1 NDCG3 NDCG5 NDCG1 NDCG3 NDCG5

In-Domain
BM25 29.46 31.12 33.27 24.13 25.29 27.65 32.00 25.88 29.78
Long-Context LLM* 32.22 42.87 52.14 25.39 33.91 46.07 25.11 32.57 44.03
EmbSim 63.67 61.03 65.37 49.11 42.27 46.56 53.00 46.40 52.73
Re-Invoke* 69.47 – 61.10 54.56 – 53.79 59.65 – 59.55
IterFeedback* 90.70 90.95 92.47 89.01 85.46 87.10 91.74 87.94 90.20
ToolRetriever 80.50 79.55 84.39 71.18 64.81 70.35 70.00 60.44 64.70
ToolGen 89.17 90.85 92.67 91.45 88.79 91.13 87.00 85.59 90.16

Multi-Domain
BM25 22.77 22.64 25.61 18.29 20.74 22.18 10.00 10.08 12.33
EmbSim 54.00 50.82 55.86 40.84 36.67 39.55 18.00 17.77 20.70
ToolRetriever 72.31 70.30 74.99 64.54 57.91 63.61 52.00 39.89 42.92
ToolGen 87.67 88.84 91.54 83.46 86.24 88.84 79.00 79.80 84.79

4.3 INDEXING METHOD COMPARISON

While ToolGen uses atomic indexing for tool virtualization, we explore several alternative generative
retrieval approaches. In this section, we compare it with the following three methods:

• Numeric: Map each tool to a unique number. The resulting token is purely numeric, offering
no inherent semantic information, but providing a distinct identifier for each tool.

• Hierarchical: This method clusters tools into non-overlapping groups and recursively parti-
tions these clusters, forming a hierarchical structure. The index from the root to the leaf in this
tree-like structure represents each tool, similarly to Brown clustering techniques.

• Semantic: In this approach, each tool is mapped to its name, using the semantic content of the
tool names to guide the LLM. The tool’s name provides a meaningful representation directly
related to its function.

Atomic Semantic Numeric Hierarchical
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Figure 3: The distribution of the number of
subtokens per tool varies across different index-
ing methods. Atomic indexing ensures that each
tool is a single token, while numeric indexing
encodes tools into N tokens for tools numbered
in (10N−1, 10N ]. In contrast, both semantic in-
dexing and hierarchical indexing produce a vari-
able number of subtokens, with semantic indexing
having more outliers with significantly longer se-
quences.

The implementation details are described in
Appendix D.

First, we conducted an analysis of the number
of subtokens required to represent each tool for
the different methods, as shown in Figure 3.
The figure highlights the superiority of atomic
indexing, where each tool is represented by a
single token, whereas other methods require
multiple tokens. This efficiency allows Tool-
Gen to reduce the number of generation to-
kens and inference time in both the retrieval and
agent scenarios.

Next, we examined the effectiveness of differ-
ent indexing methods. As shown in Table 2, se-
mantic indexing demonstrates the best retrieval
performance across various metrics and scenar-
ios, while atomic indexing closely follows in
many cases. We attribute this to the fact that se-
mantic indexing aligns better with the pretrain-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Retrieval evaluation for different indexing methods in Multi-Domain setting. Best results
are bolded and second best results are underlined.

Model I1 I2 I3
NDCG1 NDCG3 NDCG5 NDCG1 NDCG3 NDCG5 NDCG1 NDCG3 NDCG5

Numetric 83.17 84.99 88.73 79.20 79.23 83.88 71.00 74.81 82.95
Hierarchical 85.67 87.38 90.26 82.22 82.70 86.63 78.50 79.47 84.15
Semantic 89.17 91.29 93.29 83.71 84.51 88.22 82.00 78.86 85.43
Atomic 87.67 88.84 91.54 83.46 86.24 88.84 79.00 79.80 84.79

Table 3: Ablation study for tool retrieval. We assess the impact of removing retrieval training, tool
memorization, and constrained beam search on ToolGen’s performance, respectively.

Model I1 I2 I3
NDCG1 NDCG3 NDCG5 NDCG1 NDCG3 NDCG5 NDCG1 NDCG3 NDCG5

ToolGen 87.67 88.84 91.54 83.46 86.24 88.84 79.00 79.80 84.79
−memorization 84.00 86.77 89.35 82.21 83.20 86.78 77.00 77.71 84.37
−retrieval training 10.17 12.31 13.89 5.52 7.01 7.81 3.00 4.00 4.43
−constraining 87.67 88.79 91.45 83.46 86.24 88.83 79.00 79.93 84.92

ing data of LLMs. However, this advantage di-
minishes as the training data and type increase. For example, in Section 5.3, we show that atomic
indexing achieves better end-to-end results. We also show that combining constrained beam search
with semantic indexing will cause biased tool usage, which is detailed in Section E.2.

Taking all these factors into account, we choose atomic indexing for ToolGen tool virtualization.

4.4 ABLATION

We perform an ablation study to assess the impact of different training stages of ToolGen, as shown
in Table 3. The results indicate that retrieval training is the crucial factor for tool retrieval per-
formance, as it directly aligns with the retrieval task where inputs are queries and outputs are tool
tokens. Removing tool memorization leads to a minor performance drop although it plays a role in
improving generalization, which we will discuss further in Appendix J. Similarly, constrained beam
search, while not a major contributor to retrieval task, helps prevent hallucinations, making it useful
for end-to-end agent tasks, see Section 5.4.

5 END-TO-END EVALUATION

5.1 EXPERIMENTAL SETUP

We make several modifications to the trajectory data from ToolBench to fit it into ToolGen frame-
work. For example, as ToolGen does not require explicit selection of related tools as input, we
remove this information in the system prompt. Further details are provided in Appendix K. Fol-
lowing this, we fine-tune the retrieval model using the reformatted data, resulting in an end-to-end
ToolGen agent.

Baselines GPT-3.5: We use gpt-3.5-turbo-0613 as one of our baselines. The implemen-
tation is the same as used in StableToolBench (Guo et al., 2024), where the tool calling capability
of GPT-3.5 is used to form a tool agent. ToolLlama-2: Qin et al. (2023) introduced ToolLlama-2
by fine-tuning Llama-2 (Touvron et al., 2023) model on ToolBench data. ToolLlama-3: To ensure
a fair comparison, we fine-tuned Llama-3, the same base model used in ToolGen, on the ToolBench
dataset, creating the ToolLlama-3 baseline. In the rest of this paper, we refer to ToolLlama-3 as
ToolLlama to distinguish it from ToolLlama-2.

Settings w/ Ground Truth Tools (G.T.) Following Qin et al. (2023), we define ground truth tools
for a query as those selected by ChatGPT. For ToolLlama, we directly input the ground truth tools in
the prompt, consistent with its training data format. For ToolGen, which is not trained on data with
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Table 4: End-to-end evaluation performance on unseen instructions under two settings. For R.
setting, GPT3.5 and ToolLlama use ToolRetriever, while ToolGen does not use external retriever.
For all results, SoPR and SoWR are evaluated three time and reported with mean values.

Model SoPR SoWR
I1 I2 I3 Avg. I1 I2 I3 Avg

w/ Ground Truth Tools (G.T.)
GPT-3.5 56.60 47.80 54.64 50.91 - - - -
ToolLlama-2 53.37 41.98 46.45 48.43 47.27 59.43 27.87 47.58
ToolLlama 55.93 48.27 52.19 52.78 50.31 53.77 31.15 47.88
ToolGen 61.35 49.53 43.17 54.19 51.53 57.55 31.15 49.70

w/ Retriever (R.)
GPT-3.5 51.43 41.19 34.43 45.00 53.37 53.77 37.70 50.60
ToolLlama-2 56.13 49.21 34.70 49.95 50.92 53.77 21.31 46.36
ToolLlama 54.60 49.96 51.37 51.55 49.08 61.32 31.15 49.70
ToolGen 56.13 52.20 47.54 53.28 50.92 62.26 34.42 51.51

pre-selected tools, we add a prefix during the planning phase: I am using the following
tools: [tool tokens], where [tool tokens] are virtual tokens corresponding to the
ground-truth tools. w/ Retriever In the end-to-end experiments, we use a retrieval-based setting.
For baselines, we use the tools retrieved by ToolRetriever as the relevant tools. In contrast, ToolGen
generates tool tokens directly, so no retriever is used.

All models are finetuned using a cosine scheduler with maximum learning rate set to 4 × 10−5.
Context length is truncated to 6,144. The total batch size is set to 512. We further use Flash-
Attention (Dao et al., 2022; Dao, 2024) and Deepspeed ZeRO 3 (Rajbhandari et al., 2020) to save
memory.

ToolGen and ToolLlama follow different paradigms to complete tasks. ToolLlama generates
Thought, Action, and Parameters in a single round, while ToolGen separates these steps. For Tool-
Gen, we set a maximum of 16 turns, which allows for 5 rounds of actions and 1 final round for
providing the answer. We compare this to ToolLlama, which operates with a 6-turn limit.

Additionally, we introduce a retry mechanism for all models to prevent early termination, the details
are introduced in Section G. Specifically, if a model generates a response containing give up or I’m
sorry, we prompt the model to regenerate the response with a higher temperature.

Metrics For end-to-end evaluation, we use StableToolBench (Guo et al., 2024), a stabilized tool
evaluation benchmark that selects solvable queries from ToolBench and uses GPT-4 (OpenAI, 2024)
to simulate outputs for failed tools. We employ two metrics to assess performance: Solvable Pass
Rate (SoPR), which is the percentage of queries successfully solved, and Solvable Win Rate
(SoWR), which indicates the percentage of answers outperforming those generated by a reference
model (GPT-3.5 in this study). Additionally, we provide micro-average scores for each category.

5.2 RESULTS

Table 4 presents the end-to-end evaluation performance of various models in two settings: using
Ground Truth Tools (G.T.) and a Retriever (R.). In the G.T. setting, ToolGen achieves the best
average SoPR score of 54.19, outperforming GPT-3.5 and ToolLlama, with SoWR also highest for
ToolGen at 49.70. In the Retriever setting, ToolGen maintains its lead with an average SoPR of
53.28 and SoWR of 51.51. ToolLlama shows competitive performance, surpassing ToolGen on
some individual instances. An ablation study of end-to-end ToolGen is provided in Appendix K

5.3 INDEXING METHOD COMPARISON

Similar to indexing method comparison for retrieval task (Section 4.3), Table 5 presents a compari-
son of different indexing methods for the end-to-end agent task. In this setting, constrained decoding
is removed, allowing the agent to freely generate Thought, Action, and Parameters. From the re-
sults, we observe that the Atomic method achieves the best performance among the four indexing

9
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Table 5: End-to-end evaluation for different indexing methods.

Indexing SoPR SoWR
I1 I2 I3 Avg. I1 I2 I3 Avg

Numeric 34.76 29.87 46.99 35.45 25.77 33.02 29.51 28.79
Hierarchical 50.20 45.60 32.79 45.50 38.04 43.40 29.51 38.18
Semantic 58.79 45.28 44.81 51.87 49.69 57.55 26.23 47.88
Atomic 58.08 56.13 44.81 55.00 47.85 57.55 29.51 47.58

methods. We attribute this to the higher hallucination rates in the other methods, as discussed in
Section 5.4.

5.4 HALLUCINATION
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Figure 4: The hallucination rates of generat-
ing nonexistent tools across different models are
shown. ToolGen does not generate any nonexis-
tent tools when using constrained decoding. How-
ever, without this constraint, ToolGen generates
7% non-tool tokens during the Action generation
stage with atomic indexing, and even more with
semantic indexing. For ToolLlama and GPT-3.5,
despite being provided with five ground truth tools
in the prompt, hallucinations still occur. Without
any tools specified in the prompt, ToolLlama gen-
erates over 50% nonexistent tool names.

We evaluate model hallucination in tool gener-
ation within an end-to-end agent scenario. To
do this, we input a query in the format the mod-
els were trained on. Specifically, for ToolGen,
we input a query directly and prompt the model
to respond using the ToolGen agent paradigm
(i.e., sequentially generating Thought, Tool,
and Parameters). We tested Actions decoding
without the beam search constraints described
in Section 3.6. For ToolLlama and GPT-3.5,
we input the query along with 5 ground truth
tools. In all settings, we report the propor-
tion of generated tools that do not exist in the
dataset out of all tool generation actions. Fig-
ure 4 shows the hallucination rates of nonexis-
tent tools for different models. From the fig-
ure, we observe that, despite being provided
with only five ground truth tools, ToolLlama
and GPT-3.5 may still generate nonexistent tool
names. In contrast, ToolGen, with constrained
decoding, does not hallucinate at all due to its
design.

6 CONCLUSIONS

In this paper, we introduced ToolGen, a framework that unifies tool retrieval and execution in large
language models (LLMs) by embedding tool-specific virtual tokens into the model’s vocabulary,
transforming tool interaction into a generative task. By incorporating a three-stage training process,
ToolGen equips LLMs with the ability to efficiently retrieve and execute tools in real-world sce-
narios. This unified approach sets a new benchmark for scalable and efficient AI agents capable
of handling vast tool repositories. Looking ahead, ToolGen opens doors for integrating advanced
techniques like chain-of-thought reasoning, reinforcement learning, and ReAct, further enhancing
the autonomy and versatility of LLMs in real-world applications.
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A MORE RELATED WORK

Previous work include Toolformer and ToolkenGPT, already employed vocabulary expansion for
tool learning. The main difference between our work and the others is: previous studies primarily
demonstrate that through SFT (in Toolformer) or adding new tool tokens with pre-computed embed-
dings (in ToolKenGPT), LLMs can learn to use a very small number of tools. However, in real-world
tool-calling (agent) scenarios, previous methods require listing available tools in the prompt, which
greatly limits their practical use. Examples can be seen in Figure 5.

Other studies, such as ToolPlanner (Wu et al., 2024b) and AutoACT (Qiao et al., 2024), have used
reinforcement learning or developed multi-agent systems to enhance tool learning or task completion
(Qiao et al., 2024; Liu et al., 2023; Shen et al., 2024; Chen et al., 2024a). We do not compare our
model with these approaches for two reasons: (1) Most of these works rely on feedback mechanisms,
either through Reflection (Shinn et al., 2023) or a reward model, which is similar to ToolBench’s
evaluation design, where an LLM serves as an evaluator without access to ground truth answers.
However, this is not the focus of our study, and our end-to-end experiment does not rely on such
feedback mechanisms. (2) Our method is not in conflict with these approaches; instead, they can be
integrated. Exploring this integration is left for future work.

ToolkenGPT

Example 1:
Answer the following questions with <add>, <subtract>, <multiply>, <divide>, <power>, <sqrt>, <log>, <lcm>, <gcd>,
<ln>, <choose>, <remainder>, and <permutate>:
Question: A coin is tossed 8 times, what is the probability of getting exactly 7 heads?

Example 2:
I am a household robot and I can take actions from ’[FIND]’, ’[SIT]’, ’[SWITCHON]’, ’[TURNTO]’, ’[LOOKAT]’,
’[TYPE]’, ’[WALK]’, ’[LIE]’, ’[GRAB]’, ’[READ]’, ’[WATCH]’, ’[POINTAT]’, ’[TOUCH]’, ’[SWITCHOFF]’,
’[OPEN]’, ’[PUSH]’, ’[PUTOBJBACK]’, ’[CLOSE]’, ’[DRINK]’, ...

Toolformer

Your task is to complete a given piece of text by using a Machine Translation API.
You can do so by writing "[MT(text)]" where text is the text to be translated into English.
Here are some examples:
Input: He has published one book: O homem suprimido (“The Supressed Man”)
Output: He has published one book: O homem suprimido [MT(O homem suprimido)]
(“The Supressed Man”)

ToolGen

Example 4 (ours, the same example is provided in the paper appendix)
You are an AutoGPT, capable of utilizing numerous tools and functions to complete the given task.
1.First, I will provide you with the task description, and your task will commence.
2.At each step, you need to determine the next course of action by generating an action.
... (no specific tool or API mentioned in instruction)
Could you please fetch the addresses for the postcode 'PL11DN'? I would like to know the number of items found, the
district, ward, county, country, and geocode details (eastings, northings, latitude, and longitude).

Figure 5: Real examples from ToolkenGPT, Toolformer, and ToolGen (ours). Both ToolkenGPT
and Toolformer describe tools available in the prompt, while ToolGen does not require tools been
mentioned in its prompt.
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B TOOL EXTENSION AND MAINTENANCE

In ToolGen and other generative retrieval systems, tools or documents are embedded into the model’s
parameters. Therefore, how to add and maintenance new tools/documents become challenging. For
ToolGen, it not only generates the proper tool, but also fetches the documentation for that tool. If
there are minor changes that the tool usage scenarios keep the same (e.g. small parameter changes),
it can still generate the tool and rely on the fetched documentation to do further tasks.

For vast changes that the usage scenarios are different or adding totally new tools, we admit that
ToolGen is not able to utilize these tools. However, this inefficiency exists and is persistent for
generative retrieval systems Sun et al. (2023a); Chen et al. (2023b); Mehta et al. (2023a). Current
methods to adapt these changes include continual training and constrained optimization (Mehta
et al., 2023a; Kishore et al., 2023a), which we believe could also be applied to ToolGen to alleviate
the above challenges.

Despite that ToolGen is inefficient of adopting to new tools, its unified design lead to unique advan-
tages such as easy integration with Chain-of-Thought (Wei et al., 2023), Reinforcement Learning
with Human Feedback (Ouyang et al., 2022), and inference time scaling (Brown et al., 2024; Snell
et al., 2024; Wu et al.). We leave the problem of maintaining and adding tools to future work.

C REAL TOOL EXAMPLE

Figure 6 shows a real tool example. Each tool is a collection of several APIs. In our experiments,
the following fields are used: "tool name" is the name of the tool. "tool description"
describes tool related information such as the functionality of the tool. In each API, "name" is
the name of the API. "description" describes API related information. "method" is the http
method for calling the API. "required parameters" are parameters that must be filled when
calling the API. Optionally, "optional parameters" can be set for extra parameters.

{
    "tool_name":"YouTube Hub",
    "tool_description":"Fetch all details about single video likes, views, title, thumbnail etc.",
    "home_url":"https://rapidapi.com/itsrohitofficial-XBPdXttOUQ/api/youtube-hub/",
    "host":"youtube-hub.p.rapidapi.com",
    "api_list":[
        {
            "name":"Get Video Details",
            "url":"https://youtube-hub.p.rapidapi.com/",
            "description":"Fetch all basic information about video",
            "method":"GET",
            "required_parameters":[
                {
                    "name":"id",
                    "type":"STRING",
                    "description":"",
                    "default":"fD6SzYIRr4c"
                }
            ],
            "optional_parameters":[],
        }
    ]
}

Figure 6: A real tool example. The tool contains one API. We have removed unnecessary fields for
simplicity.
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D TOOL VIRTUALIZATION IMPLEMENTATION

ToolGen adopts a single and unique token to represent a tool, which shows its superiority for tool
retrieval and tool calling. We also introduced other methods to index a tool, including semantic,
numeric, and hierarchical. The following is a detailed implementation of how we implement each
indexing.

Atomic indexing is the method we use in ToolGen. Compared to other methods, it takes a sin-
gle token as a tool and does not hallucinate to nonexistent tools. We use <<tool name&&api
name>> to combine the tool name and api name to form a single token. For example, for the
example in Appendix C, the resulting token is <<Youtube Hub&&Get Video Details>>.

Semantic indexing maps each tool to the name used in ToolBench, which is also a combination
between tool name and API name. However, the name can be tokenized into multiple tokens so that
the model can perceive its semantic meanings. For the example in Appendix C, the resulted mapping
is get video details for youtube hub.

Numeric indexing maps each tool to a unique number. We first get a list of all tools, with a length
about 47,000. For all tools, we use a five digit number separated by space to represent the tool. If
the example in Appendix C is the 128th element in the list, we use 0 0 0 1 2 8 to represent the
tool. Since Llama-3 tokenizer encodes each number

Hierarchical also maps each tool into a number. Different from Numeric indexing, we inject
structure information into the tool representation by iterative clustering. During each iteration, we
cluster tools into ten clusters, where each cluster is assigned a number from 0 to 9. For each cluster,
we repeat this clustering process until there is only one tool in the cluster. These steps form a
clustering tree. We take the number from root to the leaf as the representation to the tool in that leaf.
The example in Appendix C may be assigned a number longer than five digits, such as 0 1 2 2
3 3 3.

E CONSTRAINED BEAM SEARCH

E.1 IMPLEMENTATION

During retrieval and completing end-to-end agent tasks, we use constrained beam search to limit the
generated actions to be valid tool tokens. The detailed steps are shown in Algorithm 1. The basic
idea is to limit the searching space during beam search step. To achieve this, we need to first build
a disjunctive trie, where each node represents a tool token id. Children of the node are all feasible
ids following the current id. Using this tree, we can determine all possible next token ids based
on current searched ids. During beam search step, we mask out all other unfeasible tokens’ logits,
forcing possible ids to be sampled or searched.

For retrieval, this can be directly applied during generation. For end-to-end agent tasks, since we
have decomposed a inference step into three conversational turns, we can easily detect when Tool-
Gen needs to generate an action, therefore apply the constraint. Figure 7 shows an end-to-end infer-
ence example of ToolGen, where there is no relevant tools for ToolGen to choose. It can generate
the tool token directly and complete the task.

E.2 BIAS ANALYSIS

For semantic indexing, the prevalent constrained beam search introduces bias toward tools with more
subtokens after tokenization. Traditionally, beam search retrieves the top-k decoding sequences
at each step, and the sequence probability is computed by multiplying the probabilities of each
token (given previous tokens) in the sequence and then averaging by the token count. Consider the
following example with two tools:

• ToolA: get music from us→ [get, music, from, usa]

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Algorithm 1 Constrained Beam Search

1: 1. Build Disjunctive Trie
2: Input: Set of tool token ids {Ids1, Ids2, . . . , Idsn}
3: Initialize Root← {}
4: for each sequence Ids in the set do
5: Level← Root
6: for each token id in Ids do
7: if id /∈ Level then
8: Level[id]← {}
9: end if

10: Level← Level[id]
11: end for
12: end for
13: Trie← Root
14: 2. Constrained Beam Search
15: Inputs: Initial InputIds; Beam width k; Language model LM
16: Output: Searched Beams
17: Initialize Beams← [(InputIds, root of T)]
18: while Beams is not empty do
19: Initialize NewBeams← [ ]
20: beam scores← [ ]
21: for each (beam, node) in Beams do
22: if beam ends with eos token id then
23: Output beam and remove beam from beams
24: Continue
25: end if
26: score← LM(beam)
27: feasible ids← children of node in T
28: Mask out ids not in feasible ids from score
29: beam scores← beam score + [score]
30: end for
31: TopIds, Groups← Top k token ids and their groups from beam scores
32: for each id, group in zip(TopIds, Groups) do
33: NewBeam← beams[group] + [id]
34: NewNode← node.child(id)
35: Append (NewBeam,NewNode) to NewBeams
36: end for
37: Beams← NewBeams
38: end while

• ToolB: get music from spain black singer... (a long-tail name) → [get,
music, from, spain, black, singer, ...]

After tokenization, the first three tokens are identical. For the fourth token, suppose usa has a
probability of 0.7, and spain has a probability of 0.3. However, after spain, ToolB has a long
tail of tokens with no alternatives, resulting in all subsequent tokens having a probability of 1.

How should the best tool for decoding be determined in this scenario? Using the traditional method,
ToolB’s sequence probability increases as its unique number of tokens grows with each time step.
This results in that tools with more unique tokens will have a higher probability to be retrieved.

As shown above, semantic tool name encoding tends to produce many long-name tools, and hence
such bias becomes severe. However, there is no common solution to this type of bias. Note that this
problem also exists in constrained natural language decoding. Still, because language candidates
are typically very large, and constraints are usually associated with ban list of tokens or words, this
issue is not usually considered.

Based on the above observations, we made the hallucination comparison in paper, with a setting
of non constrained beam search (to avoid length bias) for other encoding methods. For atomic
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System: You are an AutoGPT, capable of utilizing numerous tools and functions to complete the given task.
1.First, I will provide you with the task description, and your task will commence.
2.At each step, you need to determine the next course of action by generating an action token.
3.Following the token, you will receive the documentation of the action corresponding to the token. You need to
generate the input of the action, transitioning you to a new state. Subsequently, you will make decisions about the next
steps, and repeat this process.
4.After several iterations of generating actions and inputs, you will ultimately complete the task and provide your final
answer.
... ...

       : I recently visited Viva City and I was impressed by the menu. I would like to know more about the menu items at
venue 5a76c927bb5d660001e09731. Can you provide me with the menu category, price, availability, rules, items in
set, and other relevant details? Please use the language 'zh-hans' for the menu details.

       : I need to call the "<<Viva City Documentation&&MenuDetails>>" function to retrieve the menu details for
venue 5a76c927bb5d660001e09731. The reason for calling this function is to provide the user with the menu category,
price, availability, rules, items in set, and other relevant details. The function is called with the arguments "lang" set to
"zh-hans" and "is_id" set to "5a76c927bb5d660001e09731" to ensure that the menu details are provided in the desired
language and for the specific venue.

       : Generate the action.
       
       : <<Viva City Documentation&&MenuDetails>>

       : Please give the input. Here is the documentation: {'name': '<<Viva City Documentation&&VenueDetails>>',
'description': 'Get venue details using KV (need resync to get latest data) and filter dynamic multi language data based
on query params.', 'required': [{'name': 'id', 'type': 'STRING', 'description': '', 'default': '56c467cb7b0d464811a42017'},
{'name': 'lang', 'type': 'STRING', 'description': '', 'default': 'zh-hans'}], 'optional': []}

       : {\n  "is_id": "5a76c927bb5d660001e09731",\n  "lang": "zh-hans"\n}

       : {'error': '', 'response': {'menu_id': '5a76c927bb5d660001e09731', 'language': 'zh-hans', 'menu_details': {'sections':
[{'section_name': '开胃菜', 'items': [{'item_name': '春卷', 'description': '脆皮春卷，搭配特制酱汁', 'price': 12.99},
{'item_name': '鸡肉串', 'description': '香辣鸡肉串，外焦里嫩', 'price': 15.99}]}, {'section_name': '主菜', 'items':
[{'item_name': '宫保鸡丁', 'description': '经典川菜，麻辣鲜香', 'price': 18.99}, {'item_name': '清蒸鲈鱼',
'description': '清新淡雅，营养健康', 'price': 22.99}]}], 'special_notes': '本菜单提供纯素选项，请告知服务员。'}}

       : The menu details for venue 5a76c927bb5d660001e09731 are as follows:\n- Menu category: Chinese cuisine\n-
Price: \n  - Item 1: 12.99 RMB\n  - Item 2: 15.99 RMB\n  - Item 3: 18.99 RMB\n  - Item 4: 22.99 RMB\n-
Availability: \n  - Item 1: Available\n  - Item 2: Available\n  - Item 3: Available\n  - Item 4: Available\n- Rules: \n  -
Item 1: No specific rules mentioned\n  - Item 2: No specific rules mentioned\n  - Item 3: No specific rules
mentioned\n  - Item 4: No specific rules mentioned\n- Items in set: \n  - Item 1: Set of 2\n  - Item 2: Set of 2\n  - Item
3: Set of 2\n  - Item 4: Set of 2\n- Other relevant details: \n  - Special notes: The menu is subject to change and the
prices are subject to change. Please check with the venue for the most up-to-date information.\n\nPlease let me know
if there's anything else I can assist you with!

      : Generate the action.

       : <<Finish>>

       : Please give the input. Here is the documentation: {'required': [], 'optional': [{'name': 'give_answer', 'description':
'Output the answer', 'type': 'string'}, {'name': 'give_up_and_restart', 'description': 'Unable to handle the task from this
step', 'type': 'string'}]}

       : {"return_type": "give_answer",  "final_answer": "The menu details for venue 5a76c927bb5d660001e09731 are
as follows:\n- Menu category: Chinese cuisine\n- Price:\n  - Item 1: 12.99 RMB\n  - Item 2: 15.99 RMB\n  - Item 3:
18.99 RMB\n  - Item 4: 22.99 RMB\n- Availability:\n  - Item 1: Available\n  - Item 2: Available\n  - Item 3:
Available\n  - Item 4: Available\n- Rules:\n  - Item 1: No specific rules mentioned\n  - Item 2: No specific rules
mentioned\n  - Item 3: No specific rules mentioned\n  - Item 4: No specific rules mentioned\n- Items in set:\n  - Item 1:
Set of 2\n  - Item 2: Set of 2\n  - Item 3: Set of 2\n  - Item 4: Set of 2\n- Other relevant details:\n  - Special notes: The
menu is subject to change and the prices are subject to change. Please check with the venue for the most up-to-date
information."}

Figure 7: An inference example of ToolGen. A system prompt is given first with no relevant tools.
Then user gives the task query. ToolGen generates the Thought, we then use user role to hint
the model to generate the action. After generating the action, we use user again to give the tool
documentation. The model will generate tool inputs based on this documentation.

encoding, hallucination and bias do not exist even with constrained decoding (not beam search)
because each tool is represented by a single token, ensuring unbiased and deterministic decoding.
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F INTEGRATE INSTRUCTION-FOLLOWING DATA

To ensure the model’s general ability is not lost after tool-specific task training, we incorporated
general instruction-following data OpenHermes-2.5 into each training stage of ToolGen.1 We used
a 50:50 ratio of our tool data and instruction-following data, resulting in a model called ToolGen-
Instruct, indicating its capability to follow general instructions.

We evaluate the models general ability using 6 widely used LLM evaluation benchmarks, including
ARC-easy, ARC-challenge, Commonsense QA, Hellaswag, Winograde, and GSM8K, all with 3-
shot in-context examples. Results are shown in Table 6.

Table 6: 3-shot evaluation results across different NLP benchmark tasks, including ARC Challenge,
ARC Easy, Commonsense QA, Hellaswag, Winograde, and GSM8K. The average performance
(AVG.) is calculated as the mean across all tasks.

Method ARC-C ARC-E CSQA Hellaswag Winograde GSM8K AVG.
Llama-3 50.34 80.09 69.37 60.13 73.32 49.28 63.76
Llama-3-Inst 57.16 85.31 78.05 58.69 76.24 74.45 71.65
ToolGen 20.14 33.88 19.66 31.61 54.62 1.74 26.94
ToolGen-Inst 51.62 82.49 78.79 56.33 73.16 62.02 67.40

From the table, we can see that ToolGen’s general capability is limited. The original Llama 3 got
an average score of 63.76, while ToolGen obtained almost random results with a score of 26.94,
showing a significant gap. However, ToolGen-Instruct shows significant improvement, resulting in
a 67.4 average score.

To check ToolGen-Instruct’s tool learning results, we conduct the end-to-end evaluation, see Table 7.
Surprisingly, we find that its average performance improved by 3-5 percentage points compared to
ToolGen. We did a manual comparison and found that ToolGen-Instruct performs better on final
output summarization and provides more positive responses to the user after tool calling. From
this observation, we conclude that general-purpose training can help ToolGen provide more helpful
responses. We leave further exploration to future work.

Table 7: End-to-end agent evaluation of ToolGen and ToolGen-Instruct

Method SoPR SoWR
I1 Inst. I2 Inst. I3 Inst. AVG. I1 Inst. I2 Inst. I3 Inst. AVG.

ToolGen 56.13 52.20 47.54 53.28 50.92 62.26 34.42 51.54
ToolGen-Inst 63.09 55.03 54.10 58.84 51.53 60.38 50.81 54.24

G RETRY MECHANISM

For reproducibility, we have adopted several techniques such as fixing random seeds and setting
temperatures to zero for decoding. However, we find this results in some problems for the whole
task inference. Models tend to give up early while not trying enough for possible tools. And they are
likely to say sorry when giving the final answer, which affects the end-to-end evaluation. Since our
goal is to evaluate the tool usage capability, we want to mitigate this negative impact that is more
related to summary ability. We use a retry mechanism, which simply regenerates the turn when
models try to give up or say sorry.

1https://huggingface.co/datasets/teknium/OpenHermes-2.5
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H TOOLGEN FOR DIFFERENT SIZES OF LLMS

We also investigate how ToolGen’s performance changes as the sizes of base models change. Llama-
3 series of models are not suitable as we can only use the 8B model and the 70B is too large for
us. Therefore, we select Qwen2.5 (Team, 2024) with sizes of 1.5B, 3B, 7B, and 14B. As shown
in Figure 8, models with larger sizes achieve better performance in tool retrieval and agent tasks.
When the model size reaches 7B, the performance tends to plateau. And scaling it to 14B does
not necessarily improve performance. While for generalization, larger models do not show better
generalization capability.

1.5B 3B 7B 14B
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Figure 8: Performance and generalization of ToolGen with different sizes of LLMs as the base
model. For tool retrieval, the performance is calculated as the average score of I1, I2, and I3 domains.
For end-to-end and generalization evaluation, it is based on the average score of unseen instructions
and tools respectively.

I ABLATION

Table 8 shows the ablation results for end-to-end evaluation. For unseen instructions, ToolGen Agent
shows a slightly better performance without tool memorization or retrieval training. However, for
unseen tools, training without the first two stages causes a drop in both SoPR and SoWR. This
demonstrates that the first two stage training plays a role in generalization capability of ToolGen,
and retrieval training is more significant compared to tool memorization.

Table 8: Ablation results for ToolGen end-to-end evaluation. Here Inst. represents unseen queries
(instructions) and Tool. and Cat. mean unseen tools during training.

Model SoPR SoWR
I1-Inst. I2-Inst. I3-Inst. Avg. I1-Inst. I2-Inst. I3-Inst. Avg.

ToolGen 54.60 52.36 43.44 51.82 50.31 54.72 26.23 47.28
w/o retrieval training 56.95 46.70 50.27 52.42 49.69 50.94 34.43 47.27
w/o memorization 56.03 47.96 57.38 53.69 49.08 59.43 34.43 49.70

I1-Tool. I1-Cat. I2 Cat. Avg. I1-Tool I1-Cat. I2 Cat. Avg.
ToolGen 56.54 49.46 51.96 52.66 40.51 39.87 37.90 39.53
w/o retrieval training 49.47 40.31 37.90 42.84 36.71 30.07 36.29 34.18
w/o memorization 58.86 46.19 49.87 51.70 37.34 38.56 42.74 39.32
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J GENERALIZATION

In our three-stage training process, the data in the tool memorization stage encompasses all tools.
However, the training data in the second and third stages has limited tool coverage. This reflects a
practical scenario where we may have access to the names and documents of more tools, but less
coverage of the use cases of these tools in iterative training data.

We measure the model’s generalization, in this case, refers to the ability to correctly retrieve or use
tools that were not included in the training data for stage 2 or 3. We believe that stage 1 plays a
crucial role in achieving this, as without it, the retrieval or tool-using capabilities learned in later
stages may not generalize to these unseen tools.

First, for ToolGen Agent, we measure the performance on queries requiring tools that the model
hasn’t been trained on. Table 9 shows the end-to-end evaluation of models on unseen tools. ToolGen
Agent underperforms ToolLlama, indicating a weaker generalization capability in completing tasks.

Tool Memorization for Generalization It can been seen in Table 8 that tool memorization stage
plays a role in generalization, which is validated by the drop on performance of unseen tools after
removing this stage. However, this drop is relatively small. We noticed that the retrieval training
dataset contains approximately 500k samples, and the end-to-end training consists of 183k samples
— significantly more than the total number of tools (47k). This could result in most tools being seen
during other training stages, which may affect the investigation of how memorization contributes to
generalization.

To validate how the memorization stage influences the generalization abilities of ToolGen, we first
train ToolGen on a domain of retrieval data, and testing on another domain. Table 10 shows the
tool retrieval results of ToolGen, which is trained on I1 domain retrieval data and test on I2 and I3
domain. The table demonstrates that tool memorization also plays an important role, without which
will lead to a poor generalization in tool retrieval.

We then train ToolGen on fewer retrieval data, and test its end-to-end performance on unseen tools.
Table 11 shows the results of ToolGen on unseen tools with volume of 10%, 50%, and 100% retrieval
data. As the volume of retrieval data decreases, the importance of tool memorization increases.

Table 9: Generalization results of ToolGen. We test and compare the performance of ToolGen with
other models on queries require unseen tools during training.

Model Setting SoPR SoWR
I1-Tool. I1-Cat. I2 Cat. Avg. I1-Tool I1-Cat. I2 Cat. Avg

GPT-3.5 GT. 58.90 60.70 54.60 58.07 - - - -
ToolLlama GT. 57.38 58.61 56.85 57.68 43.04 50.31 54.84 49.04
ToolGen GT. 52.32 40.46 39.65 47.67 39.24 38.56 40.32 39.30

GPT-3.5 Retrieval 57.59 53.05 46.51 52.78 46.20 54.25 54.81 51.58
ToolLlama Retrieval 57.70 61.76 45.43 54.96 48.73 50.98 44.35 48.30
ToolGen 56.54 49.46 51.96 52.66 40.51 39.87 37.90 39.53

Table 10: Performance of ToolGen trained on I1 domain retrieval data and tested on I2 and I3
domain.

Setting I2 I3

NDCG1 NDCG3 NDCG5 NDCG1 NDCG3 NDCG5

w/o memorization 11.28 16.72 19.37 12.00 15.07 18.15
w/ memorization 40.86 50.37 55.38 33.00 40.98 49.97
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Table 11: Performance of ToolGen on unseen tools trained with 10%, 50%, and 100% retrieval data
respectively.

Setting SoPR SoWR

10% 50% 100% 10% 50% 100%

w/o memorization 36.60 48.67 51.70 26.68 37.32 39.32
w/ memorization 40.99(+4.38) 49.07(+0.40) 52.66(+0.96) 34.23(+7.55) 37.60(+0.28) 39.53(+0.21)

K ADAPT TOOLBENCH DATA TO TOOLGEN

Our ToolGen data are adapted and converted from ToolBench data. Specifically, we adopt the tool
documentations as the data for tool memorization training, where the input is tool document and the
output is the corresponding tokens.

For retrieval training, we use the data in ToolBench that are annotated for tool retrieval, where a
query was annotated with several relevant tools. We take the query as input, and convert relevant
tools into virtual tokens. These tokens are then used as outputs for retrieval training.

For end-to-end agent-tuning, we use the interaction trajectories as the sources and make the follow-
ing conversions: (1) Each trajectory contains available tools in system prompt for solving the query.
When completing the task, ToolLlama relies on the retrieved tools in system prompt to solve the
task, while ToolGen can generate tools directly. Therefore, we remove the tools in system prompt.
(2) We replace all tool names in the trajectory to corresponding virtual tool tokens. (3) In orig-
inal trajectories, agent model generates Thought, Action, Action Input sequentially (also referred
ReAct). We decompose the whole ReAct into three conversational turns. During the first turn,
the agent model generates a Thought, and we use a user to prompt the model to generate an action.
In second turn, the model generates the action, which are virtual tool tokens. We then fetch the
document corresponding to those tokens, so the model knows which parameters to specify. In third
turn, the model generates parameters for the tool.

The number of samples in each dataset is shown in Table 12. Samples of tool memorization and
retrieval training are shown in Figure 9. A sample of end-to-end agent-tuning is shown in Figure 10.

Table 12: Dataset statistics for the three-stage training. For tool memorization, there are some
repeated tools, resulting the number of samples slightly larger than the tools we used.

Dataset Tool Memorization Retrieval Training End-to-End Agent-TuningI1 I2 I3 All

#num 49,936 194,086 222,783 72,833 489,702 183,336
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Tool Memorization

User: Tool Name: Thai Drivers License OCR. Tool Description: Extract the information on a Thai driver's license and
return text results such as driver's license number and personal information. Api Name: Driver's  License Api
Description: Extract the information on a Thai driver's license and return text results such as driver's license number and
personal information.

Assistant: <<Thai Drivers License OCRDriver's  License>>

Retrieval Training

User: My friends and I are organizing a hackathon on 'web development' and 'mobile app development'. We need some
inspiration and guidance. Can you fetch the top stories on these topics from Medium.com?

Assistant: <<Medium&&/search/topics>>

End-to-End Agent-Tuning

You are an AutoGPT, capable of utilizing numerous tools and functions to complete the given task.
1.First, I will provide you with the task description, and your task will commence.
2.At each step, you need to determine the next course of action by generating an action token.
3.Following the token, you will receive the documentation of the action corresponding to the token. You need to generate
the input of the action, transitioning you to a new state. Subsequently, you will make decisions about the next steps, and
repeat this process.
4.After several iterations of generating actions and inputs, you will ultimately complete the task and provide your final
answer.
Remember:
1.The state changes are irreversible, and you cannot return to a previous state.
2.Keep your actions concise, limiting them to best suits the current query.
3.You can make multiple attempts. If you plan to try different conditions continuously, perform one condition per try.
4.If you believe you have gathered enough information, generate the action "<<Finish>> with argument give_answer" to
provide your answer for the task.
5.If you feel unable to handle the task from this step, generate the action "<<Finish>> with argument give_up_and_restart".
Let's Begin!
Task description: You should use actions to help handle the real time user querys. Remember:
1.ALWAYS generate "<<Finish>>" at the end of the task. And the final answer should contain enough information to show
to the user. If you can't handle the task, or you find that actions always fail(the function is not valid now), use action
<<Finish>> with give_up_and_restart.
2.Only generate actions and inputs.

System: 

Could you please fetch the addresses for the postcode 'PL11DN'? I would like to know the number of items found, the
district, ward, county, country, and geocode details (eastings, northings, latitude, and longitude).
Begin!

User:

Based on the user's query, they want to fetch addresses for the postcode 'PL11DN' and retrieve specific details like the
number of items found, district, ward, county, country, and geocode details. The current API call is for the function
'find_by_postcode' with the argument 'postcode' set to 'PL11DN'. This API is useful because it can provide addresses based
on a given UK postcode. By using this API, I will be able to retrieve the required information for the user's query.

Assistant:

Generate the action.User:
<<Find By PostCode&&Find By PostCode>>Assistant:
Please give the input. Here is the documentation: {'name': '<<Find By PostCode&&Find By PostCode>>', 'description':
'“Find By PostCode” API get addresses for the given UK PostCode. This API provides a JSON interface to search UK
addresses for a postcode.', 'required': [{'name': 'postcode', 'type': 'string', 'description': '', 'default': 'PL11DN'}], 'optional': []}

User:

{
"postcode": "PL11DN"
}

Assistant:

{"error": "", "response": "{'status': 200, 'message': 'Success', 'noOfItems': 37, 'result': {'postcode': 'PL1 1DN', 'district':
'Plymouth', 'ward': 'St Peter and the Waterfront', 'county': 'Devon', 'country': 'England', 'geocode': {'eastings': '248025',
'northings': '0054420', 'lattitude': '50.370001', 'longitude': '-4.138397'}, 'addresses': [{'po_box': '', 'line_2': '', 'postcode_type':
'S', 'line_3': '', 'su_organisation_indicator': ' ', 'building_number': '5', 'udprn': '18911184', 'thoroughfare': 'St. Andrews Cross',
'line_1': '5 St. Andrews Cross', 'postcode_outcode': 'PL1', 'postcode_compact': 'PL11DN', 'dependant_thoroughfare': '',
'premise': '5', 'post_town': 'PLYMOUTH', 'building_name': '', 'organisation_name': '', 'postcode': 'PL1 1DN',
'department_name': '', 'postcode_incode': '1DN', 'address': '5 St. Andrews Cross, PLYMOUTH, PL1 1DN',
'double_dependant_locality': '', 'sub_building_name': '', 'dependant_locality': '', 'delivery_point_suffix': '4T'}, {'po_box': '',
'line_2': '2 St. Andrews Cross', 'p...

Tool:

Generate the action.User:
<<Finish>>Assistant:
Please give the input. Here is the documentation: {'required': [], 'optional': [{'name': 'give_answer', 'description': 'Output the
answer', 'type': 'string'}, {'name': 'give_up_and_restart', 'description': 'Unable to handle the task from this step', 'type':
'string'}]}

User:

{
"return_type": "give_answer",
"final_answer": "The number of items found: 37\nDistrict: Plymouth\nWard: St Peter and the Waterfront\nCounty:
Devon\nCountry: England\nGeocode details:\n- Eastings: 248025\n- Northings: 0054420\n- Latitude: 50.370001\n-
Longitude: -4.138397"
}

Assistant:

Figure 9: Datasets examples for tool memorization and retrieval training. We use user role to repre-
sent inputs and assistant role to represent outputs.
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Tool Memorization

User: Tool Name: Thai Drivers License OCR. Tool Description: Extract the information on a Thai driver's license and
return text results such as driver's license number and personal information. Api Name: Driver's  License Api
Description: Extract the information on a Thai driver's license and return text results such as driver's license number and
personal information.

Assistant: <<Thai Drivers License OCRDriver's  License>>

Retrieval Training

User: My friends and I are organizing a hackathon on 'web development' and 'mobile app development'. We need some
inspiration and guidance. Can you fetch the top stories on these topics from Medium.com?

Assistant: <<Medium&&/search/topics>>

End-to-End Agent-Tuning

You are an AutoGPT, capable of utilizing numerous tools and functions to complete the given task.
1.First, I will provide you with the task description, and your task will commence.
2.At each step, you need to determine the next course of action by generating an action token.
3.Following the token, you will receive the documentation of the action corresponding to the token. You need to generate
the input of the action, transitioning you to a new state. Subsequently, you will make decisions about the next steps, and
repeat this process.
4.After several iterations of generating actions and inputs, you will ultimately complete the task and provide your final
answer.
Remember:
1.The state changes are irreversible, and you cannot return to a previous state.
2.Keep your actions concise, limiting them to best suits the current query.
3.You can make multiple attempts. If you plan to try different conditions continuously, perform one condition per try.
4.If you believe you have gathered enough information, generate the action "<<Finish>> with argument give_answer" to
provide your answer for the task.
5.If you feel unable to handle the task from this step, generate the action "<<Finish>> with argument give_up_and_restart".
Let's Begin!
Task description: You should use actions to help handle the real time user querys. Remember:
1.ALWAYS generate "<<Finish>>" at the end of the task. And the final answer should contain enough information to show
to the user. If you can't handle the task, or you find that actions always fail(the function is not valid now), use action
<<Finish>> with give_up_and_restart.
2.Only generate actions and inputs.

System: 

Could you please fetch the addresses for the postcode 'PL11DN'? I would like to know the number of items found, the
district, ward, county, country, and geocode details (eastings, northings, latitude, and longitude).
Begin!

User:

Based on the user's query, they want to fetch addresses for the postcode 'PL11DN' and retrieve specific details like the
number of items found, district, ward, county, country, and geocode details. The current API call is for the function
'find_by_postcode' with the argument 'postcode' set to 'PL11DN'. This API is useful because it can provide addresses based
on a given UK postcode. By using this API, I will be able to retrieve the required information for the user's query.

Assistant:

Generate the action.User:
<<Find By PostCode&&Find By PostCode>>Assistant:
Please give the input. Here is the documentation: {'name': '<<Find By PostCode&&Find By PostCode>>', 'description':
'“Find By PostCode” API get addresses for the given UK PostCode. This API provides a JSON interface to search UK
addresses for a postcode.', 'required': [{'name': 'postcode', 'type': 'string', 'description': '', 'default': 'PL11DN'}], 'optional': []}

User:

{
"postcode": "PL11DN"
}

Assistant:

{"error": "", "response": "{'status': 200, 'message': 'Success', 'noOfItems': 37, 'result': {'postcode': 'PL1 1DN', 'district':
'Plymouth', 'ward': 'St Peter and the Waterfront', 'county': 'Devon', 'country': 'England', 'geocode': {'eastings': '248025',
'northings': '0054420', 'lattitude': '50.370001', 'longitude': '-4.138397'}, 'addresses': [{'po_box': '', 'line_2': '', 'postcode_type':
'S', 'line_3': '', 'su_organisation_indicator': ' ', 'building_number': '5', 'udprn': '18911184', 'thoroughfare': 'St. Andrews Cross',
'line_1': '5 St. Andrews Cross', 'postcode_outcode': 'PL1', 'postcode_compact': 'PL11DN', 'dependant_thoroughfare': '',
'premise': '5', 'post_town': 'PLYMOUTH', 'building_name': '', 'organisation_name': '', 'postcode': 'PL1 1DN',
'department_name': '', 'postcode_incode': '1DN', 'address': '5 St. Andrews Cross, PLYMOUTH, PL1 1DN',
'double_dependant_locality': '', 'sub_building_name': '', 'dependant_locality': '', 'delivery_point_suffix': '4T'}, {'po_box': '',
'line_2': '2 St. Andrews Cross', 'p...

Tool:

Generate the action.User:
<<Finish>>Assistant:
Please give the input. Here is the documentation: {'required': [], 'optional': [{'name': 'give_answer', 'description': 'Output the
answer', 'type': 'string'}, {'name': 'give_up_and_restart', 'description': 'Unable to handle the task from this step', 'type':
'string'}]}

User:

{
"return_type": "give_answer",
"final_answer": "The number of items found: 37\nDistrict: Plymouth\nWard: St Peter and the Waterfront\nCounty:
Devon\nCountry: England\nGeocode details:\n- Eastings: 248025\n- Northings: 0054420\n- Latitude: 50.370001\n-
Longitude: -4.138397"
}

Assistant:

Figure 10: An example for end-to-end agent-tuning.

25


	Introduction
	Related Work
	Tool Retrieval
	LLM-Agents with Tool Calling

	ToolGen
	Preliminaries
	Tool Virtualization
	Tool Memorization
	Retrieval Training
	End-to-End Agent-Tuning
	Inference

	Tool Retrieval Evaluation
	Experimental Setup
	Results
	Indexing Method Comparison
	Ablation

	End-to-End Evaluation
	Experimental Setup
	Results
	Indexing Method Comparison
	Hallucination

	Conclusions
	More Related Work
	Tool Extension and Maintenance
	Real Tool Example
	Tool Virtualization Implementation
	Constrained Beam Search
	Implementation
	Bias Analysis

	Integrate Instruction-Following Data
	Retry Mechanism
	ToolGen for Different Sizes of LLMs
	Ablation
	Generalization
	Adapt ToolBench Data to ToolGen

