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Abstract
Significant advancements have been made in
video generative models recently. Unlike im-
age generation, video generation presents greater
challenges, requiring not only generating high-
quality frames but also ensuring temporal consis-
tency across these frames. Despite the impres-
sive progress, research on metrics for evaluat-
ing the quality of generated videos, especially
concerning temporal and motion consistency, re-
mains underexplored. To bridge this research
gap, we propose Fréchet Video Motion Distance
(FVMD) metric, which focuses on evaluating mo-
tion consistency in video generation. Specifically,
we design explicit motion features based on key
point tracking, and then measure the similarity
between these features via the Fréchet distance.
We conduct sensitivity analysis by injecting noise
into real videos to verify the effectiveness of
FVMD. Further, we carry out a large-scale human
study, demonstrating that our metric effectively
detects temporal noise and aligns better with hu-
man perceptions of generated video quality than
existing metrics. Additionally, our motion fea-
tures can consistently improve the performance
of Video Quality Assessment (VQA) models, in-
dicating that our approach is also applicable to
unary video quality evaluation. Code is avail-
able at https://github.com/ljh0v0/
FMD-frechet-motion-distance.

1 Introduction
Recently, diffusion models have demonstrated remark-
able capabilities in high-quality image generation (Sohl-
Dickstein et al., 2015; Song & Ermon, 2019; Ho et al.,
2020). This advancement has been extended to the video
domain, giving rise to text-to-video diffusion models (Ho
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et al., 2022b; Singer et al., 2022; Ho et al., 2022a; Zhou
et al., 2022; He et al., 2022). Compared to prior works,
state-of-the-art diffusion-based video generation models,
such as Sora (Brooks et al., 2024), not only aim to gener-
ate visually impressive videos but also focus on challenges
involving diverse and complex motions, including intricate
human dance videos, thrilling fight scenes in movies and
sophisticated camera movements. In this case, measuring
the motion consistency of these generated videos emerges
as a significant research question.

Despite the rapid development of video generation models,
research on evaluation metrics for video generation remains
insufficient. Currently, FID-VID (Balaji et al., 2019) and
FVD (Unterthiner et al., 2018) are widely used to measure
the quality of generated videos. FID-VID assesses the visual
quality of generated videos by comparing synthesized video
frames to real reference video frames, neglecting the video
motion quality. In contrast, FVD introduces an evaluation
of temporal coherence by extracting video features using a
pre-trained action recognition model, Inflated 3D Convnet
(I3D) (Carreira & Zisserman, 2017). Recently, VBench
provides a comprehensive 16-dimensional evaluation suite
for text-to-video generative models (Huang et al., 2023).
Nevertheless, the evaluation protocols in VBench for tem-
poral consistency, such as temporal flickering and motion
smoothness, tend to award videos with smooth or even static
movement, while overlooking high-quality videos with in-
tensive motion, such as dancing and sports videos. Conse-
quently, there is currently no metric specifically designed to
evaluate the complex motion patterns in generated videos.
This oversight is particularly evident in tasks like motion
guided video generation. In these tasks, FID-VID and FVD
can only measure whether the appearance of the generated
video is consistent with the reference video, but not whether
the motion matches the target motion. For VBench, both
high-quality and low-quality videos are favored in terms
of dynamic degree and penalized for temporal flickering
and motion smoothness. This is because the ground-truth
videos exhibit intense movements, leading to VBench giving
inconsistent assessments compared to human judgement.

To address this research gap, we propose the Fréchet Video
Motion Distance (FVMD), a novel metric that focuses on the
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Metrics Model 1 Model 2 Model 3 Model 4 Model 5 Correlation ↑
(w.r.t human)

FVMD↓ 7765.91/5 3178.80/4 2376.00/3 1677.84/2 926.55/1 0.8469
FVD↓ 405.26/4 468.50/5 247.37/2 358.17/3 147.90/1 0.6708
FID-VID↓ 73.20/3 79.35/4 63.15/2 89.57/5 18.94/1 0.3402
VBench↑ 0.7430/5 0.7556/4 0.7841/2 0.7711/3 0.8244/1 0.7573

Figure 1: Comparison of the fidelity of different video evaluation metrics. Top: we present videos generated by various
models trained on the TikTok dataset (Jafarian & Park, 2022), ranked according to the human ratings in the user study.
Bottom: we show quantitative scores and relative ranking given by our FVMD and other widely-used metrics, including
FVD (Unterthiner et al., 2018), FID-VID (Balaji et al., 2019), and VBench (Huang et al., 2023). The correlations are
computed using the Pearson correlation coefficient with human scores (detailed in Section 4.4). Our FVMD achieves the
best correlation with human judgment among all the metrics and clearly distinguishes video samples of different quality.

motion consistency of video generation. Our main idea is to
measure temporal motion consistency based on the patterns
of velocity and acceleration in video movements, as motions
conforming to real physical laws should not exhibit sudden
changes in acceleration. Specifically, we extract the motion
trajectory of key points in videos using a pre-trained point
tracking model, PIPs++ (Zheng et al., 2023), and compute
the velocity and acceleration for all key points across video
frames. We then obtain the motion features based on the
statistics of the velocity and acceleration vectors. Finally,
we measure the similarity between the motion features of
generated videos and ground-truth videos using Fréchet dis-
tance (Dowson & Landau, 1982). Our key contributions
are as follows: 1) We propose the Fréchet Video Motion
Distance (FVMD), a novel metric for video generation fo-
cusing on motion consistency. 2) We conduct extensive
experiments to evaluate our metric, including sensitivity
analysis and human studies, demonstrating our metric is
effective in capturing temporal noise and aligns better with
human perceptions of video quality than existing metrics. 3)
When applied to the Video Quality Assessment (VQA) task,
our proposed motion feature leads to consistently improved

performances, suggesting the universality of our method
and its potential for generic video evaluation tasks.

2 Related Work
Video Generation. Video generation has long been a chal-
lenging and essential area of research. Previous studies have
explored various model architectures to tackle this task,
such as recurrent neural networks (RNNs) (Babaeizadeh
et al., 2017; Castrejon et al., 2019; Denton & Fergus, 2018;
Franceschi et al., 2020; Lee et al., 2018), autoregressive
transformers (Yan et al., 2021; Wu et al., 2022a; Hong et al.,
2022; Ge et al., 2022; Villegas et al., 2022), normalizing
flows (Blattmann et al., 2021; Dorkenwald et al., 2021), and
generative adversarial networks (GANs) (Vondrick et al.,
2016; Saito et al., 2017; Wang et al., 2019; Skorokhodov
et al., 2022; Voleti et al., 2022).

Recently, diffusion models have proven to be powerful tools
for image generation tasks and have since been applied
to the video field, starting with unconditional generation.
VDM (Ho et al., 2022b) presents the first results on video
generation based on diffusion models by inserting additional
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temporal attention blocks into the original 2D U-Net model.
Make-A-Video (Singer et al., 2022) and Imagen Video (Ho
et al., 2022a) both propose cascaded spatial-temporal up-
sampling pipelines to generate long videos with high reso-
lution. LVDM (He et al., 2022) follows the latent diffusion
paradigm, lightening and accelerating the video diffusion
model by adapting it to the low-dimensional 3D latent space.

Beyond unconditional video generation, significant advance-
ments have been made in video generation conditioned on
other modalities, inspired by the success of conditional mod-
els like ControlNet in the image domain (Zhang et al., 2023).
One notable area is pose-guided video generation, where
the goal is to generate videos that adhere to a specified pose
sequence, providing control over the motion in the video.
Disco (Wang et al., 2023) leverages ControlNet and pro-
poses a novel model architecture with disentangled control
to improve the compositionality of human dance synthesis.
Animate Anyone (Hu et al., 2023) and Magic Animate (Xu
et al., 2023) improve on Disco by adding a motion module
to maintain temporal consistency.

Video Evaluation Metrics. Quantitative evaluation metrics
can be categorized into frame-level and video-level met-
rics. Commonly employed frame-level metrics include the
Fréchet Inception Distance (FID-VID) (Balaji et al., 2019),
Peak Signal-to-Noise Ratio (PSNR) (Wang et al., 2004),
Structural Similarity Index Measure (SSIM) (Wang et al.,
2004), and CLIP similarity (Radford et al., 2021). FID-VID
assesses the generated frames by extracting image features
using a pre-trained image classification model, Inception
v3 (Szegedy et al., 2016), fitting a Gaussian distribution,
and measuring the Fréchet Distance with the ground-truth
frames. PSNR is a coefficient representing the ratio between
the peak signal and Mean Squared Error (MSE). SSIM is a
pixel-level metric that evaluates the luminance, contrast, and
structure between generated and reference frames. CLIP
similarity measures the alignment between image and text
features obtained by the pre-trained CLIP model.

Compared to frame-level metrics, which focus solely on
the quality of individual frames, video-level metrics cap-
ture both the temporal coherence of a video and the quality
of each frame. The Fréchet Video Distance (FVD) (Un-
terthiner et al., 2018) is a widely used video-level metric.
It follows the assumptions of FID and replaces the image
classification model with a pre-trained Inflated 3D Convnet
(I3D) (Carreira & Zisserman, 2017). Similar to FVD, Kernel
Video Distance (KVD) (Unterthiner et al., 2018) employs
the same I3D model but utilizes the Maximum Mean Dis-
crepancy (MMD) to measure similarity. Video Inception
Score (IS) (Saito et al., 2020) calculates an inception score
based on 3D ConvNets (C3D) (Tran et al., 2015).

Recently, VBench (Huang et al., 2023) has been proposed
to provide a comprehensive benchmark suite that dissects

video quality into hierarchical dimensions, each with tai-
lored prompts and evaluation protocols. The motion-related
metrics include temporal flickering, motion smoothness, and
dynamic degree. Temporal flickering detects video inconsis-
tency by computing the Mean Absolute Error (MAE) across
frames. Motion smoothness evaluates the MAE between
the generated frames and synthetic frames using frame in-
terpolation. Since the first two dimensions tend to favor
static videos, dynamic degree, which measures the extent
of motion in the video, is proposed to counter this effect.
However, VBench has considerable limitations, particularly
for videos involving intensive motion. For instance, in the
task of generating TikTok dancing videos, VBench does
not clearly distinguish between high-quality and low-quality
samples (see Section 4.4 for details). This is because both
types of videos exhibit a high degree of dynamics and large
differences between adjacent frames due to the large am-
plitude of movements. In contrast, even in the presence of
intensive motion, our FVMD prefers high-quality videos
over low-quality ones, resulting in more accurate scoring.

3 Method
We propose the Fréchet Video Motion Distance (FVMD), a
new video generation metric that measures the discrepancy
in motion features between generated videos and ground-
truth videos. The overall pipeline is illustrated in Figure 2.

3.1 Motion Feature Extraction

Video Key Point Tracking. To construct video motion fea-
tures, we first track key point trajectories across the video
sequence. We utilize the PIPs++ model (Zheng et al., 2023),
a state-of-the-art key point tracking approach built upon
the particle video method (Sand & Teller, 2008), for this
purpose. The selection of PIPs++ is motivated by two key
benefits: 1) PIPs++ predicts plausible positions for missing
objects in the presence of occlusions, out-of-bounds move-
ments, or difficult lighting conditions. This capability is
essential for obtaining a consistent and robust motion tra-
jectory, especially in generated videos where objects may
become distorted, blurred, or abruptly vanish. 2) PIPs++ es-
timates the trajectory of every tracking target independently,
allowing computation to be shared between particles within
a video, which enhances the speed of inference.

For a set of m generated videos, denoted as {X(i)}mi=1,
the tracking process starts by truncating longer videos into
segments of F frames with an overlap stride of s. Subse-
quently, we query N target points in a grid shape on the
initial frames. PIPs++ is then engaged to estimate N tra-
jectories, denoted as Ŷ ∈ RF×N×2, for these key points,
where each trajectory has a coordinate dimension of 2.

Key Point Velocity and Acceleration Fields. To obtain
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Figure 2: The overall pipeline of our proposed Fréchet Video Motion Distance (FVMD). Our pipeline first tracks video
key point trajectories using the pre-trained PIPs++ (Zheng et al., 2023) model and computes the velocity and acceleration
fields for each frame. The motion features are then derived from the histograms of the quantized velocity and acceleration.
FVMD is eventually given by the Fréchet distance between the motion features of generated and ground-truth videos.

representations of motion patterns, we compute the velocity
field and acceleration field for each frame within the videos.
The temporal inconsistencies in generated videos, such as
unnatural changes in object position or posture, sudden de-
formations or blurring of objects, and jerky movements, can
be reflected in disordered key point trajectories, resulting
in abrupt changes in the velocity and acceleration of key
points. Therefore, the patterns of velocity and acceleration
changes over time can effectively indicate whether a video
is temporally consistent.

The velocity field V̂ ∈ RF×N×2 measures the first-order
difference in key point positions between consecutive
frames. To have the same shape as the trajectories Ŷ , we
pad the initial frames in V̂ with a zero-frame. The velocity
field V̂ for a F -frames video segmentation is computed by:

V̂ = concat(0N×2, Ŷ2:F − Ŷ1:F−1) ∈ RF×N×2, (1)

where 0N×2 is the zero-padding frame whose subscript
indicates its shape. We use Ŷi:j (or V̂i:j) to denote the range
of frames from the i-th to the j-th inclusively.

Similarly, the acceleration field Â ∈ RF×N×2 can be calcu-
lated by the first-order difference between the velocity fields
in two consecutive frames. Likewise, we pad the first frame
of Â to maintain the same shape as the input:

Â = concat(0N×2, V̂2:F − V̂1:F−1) ∈ RF×N×2, (2)

where the subscripts align with those in Equation (1).

Motion Feature. To obtain compact motion features, we
further process the velocity and acceleration fields into spa-
tial and temporal statistical histograms. First, we compute
the magnitude and angle for each key point in the velocity
and acceleration vector fields respectively. Let ρ(U) and
ϕ(U) denote the magnitude and angle of a vector field U ,
where U ∈ RF×N×2 and U can be either V̂ or Â. For
each frame indexed by i ∈ [F ] and each point indexed by
j ∈ [N ], we calculate the magnitude using the l2 norm and
the angle using the inverse hyperbolic tangent tanh−1. The

equations are defined as follows:

ρ(U)i,j =
√
U2
i,j,1 + U2

i,j,2,∀i ∈ [F ], j ∈ [N ], (3)

ϕ(U)i,j =

∣∣∣∣tanh−1

(
Ui,j,1

Ui,j,2

)∣∣∣∣ ,∀i ∈ [F ], j ∈ [N ]. (4)

Next, the magnitudes ρ are clipped to a range of [0, 255].
Given that most vector fields have small magnitudes, a base-
2 logarithmic transformation is applied for normalization.
The magnitudes are then quantized to the nearest integer,
resulting in nine discrete bins in range of [0, 8]. We also
quantize the angle representations ϕ into 8 bins, with each
bin encompassing an angle range of 45 degrees.

We employ two methods for calculating statistical his-
tograms of the quantized magnitudes and angles. The first
utilizes a quantized 2D histogram. We divide the F -frame
video segments into smaller volumes of size f×k×k, where
f is the number of frames and k the spatial dimensions of
each volume. In each volume, we aggregate all vectors
to form a 2D histogram, with x and y coordinates corre-
sponding to magnitudes and angles, respectively. These 2D
histograms are then concatenated and flattened into a vec-
tor, forming the motion feature for the respective video
segment. The shape of the quantized 2D histogram is
F
f ×

√
N
k ×

√
N
k × 72, where the number 72 is derived

from 8 discrete bins for angle and 9 bins for magnitude.

Inspired by the HOG (Histogram of Oriented Gradients)
approach (Dalal & Triggs, 2005), which counts occurrences
of gradient orientation in localized portions of an image, we
compile a 2D histogram into a dense 1D histogram focused
on the angle dimension. Similarly, we divide each video
segmentation into small f × k × k volumes. Our goal is to
create a 1D histogram with 8 bins, each corresponding to a
range of quantized angles. Within each volume, magnitudes
are summed directly into the appropriate angle bin, resulting
in an 8-point histogram per volume. By combining these
histograms from all volumes, we create the final motion
feature, shaped as F

f ×
√
N
k ×

√
N
k × 8.
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Figure 3: Sanity check experiments. We use dense 1D histograms based on velocity, acceleration, and their concatenated
combination to construct FVMD metrics. As sample size increases, same-dataset discrepancies (BAIR vs BAIR) converge
to zero, while cross-dataset discrepancies (TIKTOK vs BAIR) remain large, verifying the soundness of our FVMD metric.

We apply these two histogram counting methods to sepa-
rately build the motion features for both velocity and acceler-
ation fields. Additionally, we explore concatenating features
from these fields to form a combined motion feature, which
can then be used to compute similarity.

3.2 Fréchet Video Motion Distance

After extracting motion features from video segments of
generated and ground-truth video sets, we measure their
similarity using the Fréchet distance (Dowson & Landau,
1982), which we have named the Fréchet Video Motion
Distance (FVMD):

dF (Pdata, Pgen) =
(
infγ∈Γ(Pdata,Pgen)

∫
∥x− y∥22dγ(x, y)

) 1
2 , (5)

where the Pgen denotes the distribution of motion features
for generated videos, Pdata denotes the distribution of motion
features for ground-truth videos, and Γ(Pdata, Pgen) is the set
of all couplings of Pgen and Pdata. However, Pdata and Pgen
are normally intractable and there is no analytic expression
for the Fréchet distance between two arbitrary distributions.
Hence, we follow FID (Balaji et al., 2019) to approximate
the distributions with multivariate Gaussians. In this case,
the Fréchet distance has a closed-form solution:

dF = ∥µdata − µgen∥22 + tr
(
Σdata +Σgen − 2(ΣdataΣgen)

1
2

)
, (6)

where the µdata and µgen are the means, and Σdata and Σgen
are the variances. In practice, we use empirical mean and
covariance estimations to compute the FVMD.

4 Experiments
In Section 4.2, we conduct a sanity check to verify the
soundness of our proposed motion features. In Section 4.3,
we conduct sensitivity analysis to demonstrate that our met-
ric is capable of capturing temporal noise. In Section 4.4,
we carry out large-scale human studies to show that our
FVMD is better aligned with human judgment than the ex-
isting metrics. Further, in Section 4.5, we show that our
motion features consistently enhance the performance of
Video Quality Assessment (VQA) models, suggesting their
potential for unary evaluation tasks.

4.1 Implementation Details

We truncate the whole video into segments of F = 16
frames using a stride of s = 1 and reshape the spatial
size of each frame to 256 × 256. We set the number of
tracking points to be N = 400 in all experiments. For the
motion feature, we set the small volume shape as 4× 5× 5
(f = 4, k = 5), so that the quantized 2D histogram feature
dimension will be 4×4×4×72. Similarly, the shape of the
dense 1D histogram feature is 4×4×4×8. We empirically
identify the velocity-acceleration combined motion feature
with a dense 1D histogram as the optimal configuration for
our FVMD metric, and thus, it is used as the default.

4.2 Sanity Check

To verify the efficacy of the extracted motion features in
representing the motion pattern across a set of videos, we
perform a sanity check. We sample two non-overlapping
subsets of videos, randomly drawn from the BAIR video
pushing dataset (Ebert et al., 2017), with different sample
sizes. We then evaluate our metrics on these two subsets. As
claimed in the previous work (Unterthiner et al., 2018), the
larger the sample size, the better these estimations will be,
and the better Fréchet distance reflects the true underlying
distance between the distributions. As shown in Figure 3,
our metrics converge to zero as the sample size increases,
verifying the hypothesis that the underlying motion distribu-
tion within the same dataset should remain consistent.

Furthermore, we extract two subsets of equal sample sizes
from two distinct datasets, BAIR video pushing and TikTok
dancing (Jafarian & Park, 2022). Our FVMD on these
two subsets decreases with the increasing sample size, yet
remains higher than the FVMD on two subsets within the
same dataset. This observation is in accordance with the
assumption that the underlying motion distributions of two
different datasets should have a larger gap than the ones
within the same dataset. Refer to Appendix B.1 for more
sanity check results of FVMD with 2D histogram.
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Figure 4: Sensitivity analysis. We present the FVMD results in the presence of various temporal noises. FVMD based on
combined velocity and acceleration features shows the most reliable performance in distinguishing temporal inconsistencies.

4.3 Sensitivity Analysis

Following the setting of Unterthiner et al., 2018, we validate
whether our metrics are sensitive to the temporary incon-
sistency by adding temporal noise to the TikTok dancing
dataset (Jafarian & Park, 2022). We consider four types of
temporary noises: 1) local swap: swapping a fraction of
consecutive frames in the video sequence, 2) global swap:
swapping a fraction of frames in the video sequence with
randomly chosen frames, 3) interleaving: weaving the se-
quence of frames corresponding to multiple different videos
to obtain new videos, 4) switching: jumping from one video
to another video. As shown in Figure 4, our metrics show a
strong capability in differentiating various types of injected
noise. In particular, the FVMD based on velocity and accel-
eration combined features has the best performance. Refer
to Appendix B.1 for more results.

4.4 Human Study

An effective video evaluation metric must align with hu-
man perceptions. We conduct large-scale human studies
to validate our proposed FVMD metric. First, we train a
number of conditional video generative models on the Tik-
Tok dataset (Jafarian & Park, 2022) and draw video samples
from their checkpoints. We then ask users to compare sam-
ples from each pair of models to form a ground-truth user
score. Subsequently, we calculate the correlation between
the score given by each metric and the ground-truth score.

Specifically, we train three different human pose-guided
generative models: DisCo (Wang et al., 2023), Animate
Anyone (Hu et al., 2023), and Magic Animate (Xu et al.,

2023). We fine-tune these models with distinct architec-
tures and hyper-parameters settings, obtaining over 300
checkpoints with different sample qualities. We evaluate all
checkpoints using our FVMD metric and compare the re-
sults with FID-VID (Balaji et al., 2019), FVD (Unterthiner
et al., 2018), SSIM (Wang et al., 2004), PSNR (Wang et al.,
2004), and VBench (Huang et al., 2023), which are the most
commonly used video evaluation metrics (Melnik et al.,
2024). For VBench, we evaluate five dimensions related
to video quality: subject consistency, temporal flickering,
motion smoothness, dynamic degree, and imaging quality.
Background consistency and aesthetic quality are discarded
as they do not support custom videos, and other text prompt-
based evaluation dimensions are excluded as inapplicable.
We follow the official VBench protocol to calculate an aver-
age score for the selected dimensions.

Model Selection. Following the model selection strategy
in Unterthiner et al., 2018, we design two settings for the
human studies. The first setup is One Metric Equal. In
this approach, we identify a group of models that have
nearly identical scores based on a selected metric. We then
investigate whether the other metrics and human raters can
effectively differentiate between these models. Based on the
results of the i-th metric, we select three groups of model
checkpoints corresponding to the quartile points (i.e., top
25%, 50%, and 75%) of its overall distribution, denoted as
{Gi,0, Gi,1, Gi,2}, respectively. Each group contains four
models with similar scores for the given metric: Gi,j =

{g(0)i,j , g
(1)
i,j , g

(2)
i,j , g

(3)
i,j }, j ∈ {0, 1, 2}. Each model generates

a number of videos, forming groups of video sets denoted
as Si,j = {S(0)

i,j , S
(1)
i,j , S

(2)
i,j , S

(3)
i,j }. We then create six pairs
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Metrics Eql. FVD Eql. FID-VID Eql. SSIM Eql. PSNR Eql. VBench-AVG Eql. FVMD

FVD - 0.3596 0.0772 -0.1812 -0.1898 -0.7151
FVD-VID -0.1164 - 0.3061 -0.0944 -0.5226 -0.6956
SSIM -0.5926 -0.7853 - -0.8130 -0.7973 0.0527
PSNR -0.4267 -0.6096 0.1204 - -0.7973 0.3031

VBench-subject consistency -0.2823 -0.0386 0.262 -0.2135 -0.601 -0.8691
VBench-temporal flickering -0.5803 -0.2081 0.2413 -0.128 -0.4198 -0.5938
VBench-motion smoothness -0.4708 -0.1561 0.2698 -0.0818 -0.3844 -0.5448
VBench-dynamic degree 0.5411 0.238 -0.4063 0.0338 0.2823 0.3894
VBench-imaging quality 0.5684 0.4093 0.7160 0.8859 0.7062 0.0383
VBench-AVG 0.5112 0.8835 0.341 0.2097 - -0.5769

FVMD 0.9170 0.9184 0.7191 0.4790 0.7348 -
Combine FVMD & FVD 0.9173 0.8441 0.2886 0.0383 0.4860 -

Agreement rate (human raters) 0.6773 0.8196 0.7653 0.7184 0.7980 0.7461

Table 1: Pearson correlation for One Metric Equal experiments. This table shows the Pearson correlation between
metrics scores and human perceptions when one selected metric is almost equal, i.e., one can not distinguish these videos
relying on the given metric alone. The correlation ranges from 1 to −1, with values closer to 1 (−1) indicating stronger
positive (negative) correlation. We also report the agreement rate among raters as a percentage from 0 to 1. Overall, our
FVMD demonstrates the strongest capability to distinguish videos when the other metrics fall short.

of video sets from any two video sets1 for human studies.

The second setting, One Metric Diverse, evaluates the
agreement among different metrics when a single metric
provides a clear ranking of the performances of the con-
sidered video generative models. Specifically, we select
model checkpoints whose samples can be clearly differenti-
ated according to the given metric and test the consistency
between this metric and other metrics as well as human
raters. Similar to the above setups, we select three groups of
models, each comprising four checkpoints with significantly
different scores for the given metric. We then draw video
samples and construct pairs among them for human studies.

Human Rating. We ask over 200 individuals to evaluate
videos produced by the selected models to study how well
the evaluation metrics align with human judgment. For
every video set pair, we randomly extract three generated
videos. Raters are asked to rate all three video pairs across
all model pairs and the most frequently selected option is
recorded as the final decision. Following this, we aggregate
and determine the user scores for each group by calculating
the Borda count (Borda, 1781) across all user answers. For
more implementation details, please refer to Appendix A.1.

Evaluation Metrics. For each group, we compute the Pear-
son correlation coefficient between raw scores given by
different metrics and the ground-truth human score. Subse-
quently, the average value across the three groups is com-
puted to represent the final correlation between the metrics
and human scores. The higher the value, the better the
metric aligns with human judgment.

1The pairs are (S
(0)
i,j , S

(1)
i,j ), (S

(0)
i,j , S

(2)
i,j ), (S

(0)
i,j , S

(3)
i,j ),

(S
(1)
i,j , S

(2)
i,j ), (S

(1)
i,j , S

(3)
i,j ), and (S

(2)
i,j , S

(3)
i,j ).

Results. We compare FVMD based on combined velocity-
acceleration features and dense 1D histograms with existing
metrics, as shown in Table 1 and Table 2. Additionally, we
explore combining the FVMD with FVD using the F1 score.
Evidently, our FVMD shows consistently positive and signif-
icantly higher correlation coefficients than the other metrics
in both the One Metric Equal and One Metric Diverse
settings. The quantitative results imply that FVMD is more
trustworthy than the baseline metrics. For more ablation
results, please refer to Appendix B.2. We also report the
agreement rate among human raters, which is calculated as
the fraction of answers consistent with aggregated answer.
The high agreement among raters indicates their confidence
in the survey, enhancing the human study credibility.

In general, the experimental results indicate that our FVMD
aligns more closely with human perception across nearly all
experimental settings. In the experiments of One Metric
Equal, we observe that FVMD significantly outperforms
the other metrics, suggesting that in scenarios where the
other metrics fail to evaluate video quality, FVMD can serve
as an effective metric to help distinguish videos. On the
other hand, from the equivalent FVMD column, it is evi-
dent that no other metrics can reliably distinguish between
models when FVMD results are equal. Moreover, in the
experiments of One Metric Diverse, FVMD demonstrates
generally higher Pearson correlation than the other metrics.
Despite some dimensions of VBench aligning more closely
with human perception in certain settings, the overall aver-
age score provided by VBench still does not surpass FVMD.
Therefore, FVMD is more capable of providing a compre-
hensive assessment of video quality compared to VBench.
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Metrics Diverse Diverse Diverse Diverse Diverse Diverse
FVD FID-VID SSIM PSNR VBench-AVG FVMD

FVD 0.1007 0.1952 0.2149 0.5662 -0.1935 0.0561
FVD-VID -0.2080 -0.2002 0.0201 0.3987 -0.4441 -0.0268
SSIM -0.8617 -0.5556 -0.7600 -0.5515 -0.6404 -0.6832
PSNR -0.6764 -0.7377 -0.6812 -0.6538 -0.5326 -0.5842

VBench-subject consistency -0.0102 -0.3691 - 0.0452 0.1914 -0.2321 0.1819
VBench-temporal flickering -0.5898 0.0755 -0.0870 0.5233 -0.7701 -0.5315
VBench-motion smoothness -0.4563 0.1822 0.1276 0.5936 -0.6547 -0.2125
VBench-dynamic degree 0.8285 -0.3992 0.2223 -0.5731 0.6866 0.7047
VBench-imaging quality 0.5064 0.4593 0.8505 0.3655 0.6657 0.7404
VBench-AVG 0.7163 0.1720 0.5694 0.4479 0.3031 0.4688

FVMD 0.7321 0.8561 0.6921 0.9677 0.7928 0.6808
Combine FVMD & FVD 0.5940 0.5621 0.5624 0.8192 0.5245 0.4901

Agreement rate (human raters) 0.8282 0.7336 0.7529 0.7836 0.8132 0.7665

Table 2: Pearson correlation for One Metric Diverse experiments. This table shows the Pearson correlation between
metrics scores and human perceptions when one metric is diverse, i.e., one can distinguish these videos relying on the give
metric alone. We also report the agreement rate among raters, which is a percentage ranging from 0 to 1.

Method Vanilla Ours

PLCC ↑ SROCC ↑ PLCC ↑ SROCC ↑
VSFA 0.765 0.762 0.779 0.770
FastVQA 0.834 0.832 0.841 0.838
SimpleVQA 0.847 0.840 0.870 0.861

Table 3: Unary video quality assessment. Our motion
features consistently boost VQA method performance.

4.5 Unary Evaluation

FVMD is a pair-wise metric that provides a robust assess-
ment score when a ground-truth video set is available. How-
ever, when access to a ground-truth video set is not possi-
ble, unary video quality assessment methods become neces-
sary (Liu et al., 2024). Therefore, we extend the application
of our explicit motion features to the Video Quality Assess-
ment (VQA) tasks. We adapt open-source state-of-the-art
VQA backbones, including SimpleVQA (Sun et al., 2022),
FastVQA (Wu et al., 2022b) and VSFA (Li et al., 2019),
to incorporate our motion feature. We compare their em-
pirical performance on the KVQ dataset (Lu et al., 2024),
which is a large-scale VQA benchmark dataset with over
4,000 user-created video clips. We compare our predicted
Mean Opinion Score (MOS) score with the ground-truth
score using Pearson linear correlation coefficient (PLCC)
and Spearman rank-order correlation coefficients (SROCC).
The results are shown in Table 3. The performances of VQA
models are clearly enhanced by our explicit motion features.

4.6 Efficiency

We report the inference time for each stage of the FVMD
pipeline in Table 4. We test the runtime on two subsets of
the Tiktok dataset consisting of 1024 16-frame 256× 256
videos. The majority of the runtime is consumed by the

Stage Avg. runtime (sec. per video)

Video tracking 1.220
Compute vector fields 0.060
Build 1D histogram 0.018
Compute Fréchet distance 0.002

Overall 1.325

Table 4: Inference time. Most of the runtime is due to video
tracking, while other components are light in computation.

video tracking stage due to the PIPs++ model.

5 Conclusion
In this work, we propose a novel metric, Fréchet Video Mo-
tion Distance (FVMD), to evaluate sample quality for video
generative models with a focus on temporal coherence. We
design an explicit motion representation based on the pat-
terns of velocity and acceleration in video movements. Our
metric compares the discrepancies of these motion features
between the generated and ground-truth video sets, mea-
sured by the Fréchet distance. We conduct both sensitivity
analysis and human studies to evaluate the effectiveness of
our proposed metric. Our proposed FVMD outperforms
existing metrics in many aspects, such as better alignment
with human judgment and a stronger capability to distin-
guish videos of different quality. Moreover, we validate the
promising potential of our motion features for unary video
quality assessment through experiments on VQA tasks.

For future directions, we aim to explore a more compre-
hensive motion representation that conforms to the physical
laws of object movement in the real world. This will help
detect physically implausible motions and interactions in
AI-generated videos, such as abnormal human movements
or object trajectories that defy common sense.

8



FVMD: A Metric for Evaluating Motion Consistency in Videos

Acknowledgements
This work was funded, in part, by NSERC DG Grants (No.
RGPIN-2022-04636 and No. RGPIN-2019-05448), the
NSERC Collaborative Research and Development Grant
(No. CRDPJ 543676-19), the Vector Institute for AI, Canada
CIFAR AI Chair, and Oracle Cloud credits. Resources used
in preparing this research were provided, in part, by the
Province of Ontario, the Government of Canada through
the Digital Research Alliance of Canada alliance.can.
ca, and companies sponsoring the Vector Institute www.
vectorinstitute.ai/#partners, Advanced Re-
search Computing at the University of British Columbia,
and the Oracle for Research program. Additional hardware
support was provided by John R. Evans Leaders Fund CFI
grant and the Digital Research Alliance of Canada under
the Resource Allocation Competition award.

References
Babaeizadeh, M., Finn, C., Erhan, D., Campbell, R. H., and

Levine, S. Stochastic variational video prediction. arXiv
preprint arXiv:1710.11252, 2017.

Balaji, Y., Min, M. R., Bai, B., Chellappa, R., and Graf, H. P.
Conditional gan with discriminative filter generation for
text-to-video synthesis. In IJCAI, volume 1, pp. 2, 2019.

Blattmann, A., Milbich, T., Dorkenwald, M., and Ommer, B.
ipoke: Poking a still image for controlled stochastic video
synthesis. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 14707–14717, 2021.

Borda, J. d. M’emoire sur les’ elections au scrutin. Histoire
de l’Acad’emie Royale des Sciences, 1781.

Brooks, T., Peebles, B., Holmes, C., DePue, W., Guo, Y.,
Jing, L., Schnurr, D., Taylor, J., Luhman, T., Luhman,
E., Ng, C., Wang, R., and Ramesh, A. Video generation
models as world simulators. preprint, 2024.

Carreira, J. and Zisserman, A. Quo vadis, action recogni-
tion? a new model and the kinetics dataset. In proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 6299–6308, 2017.

Castrejon, L., Ballas, N., and Courville, A. Improved condi-
tional vrnns for video prediction. In Proceedings of the
IEEE/CVF international conference on computer vision,
pp. 7608–7617, 2019.

Dalal, N. and Triggs, B. Histograms of oriented gradients
for human detection. In 2005 IEEE computer society
conference on computer vision and pattern recognition
(CVPR’05), volume 1, pp. 886–893. Ieee, 2005.

Denton, E. and Fergus, R. Stochastic video generation with
a learned prior. In International conference on machine
learning, pp. 1174–1183. PMLR, 2018.

Dorkenwald, M., Milbich, T., Blattmann, A., Rombach,
R., Derpanis, K. G., and Ommer, B. Stochastic image-
to-video synthesis using cinns. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 3742–3753, 2021.

Dowson, D. and Landau, B. The fréchet distance between
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A More Implementation Details

A.1 Human study

For each model group Gi,j = {g(0)i,j , g
(1)
i,j , g

(2)
i,j , g

(3)
i,j } and its corresponding video sets group Si,j = {S(0)

i,j , S
(1)
i,j , S

(2)
i,j , S

(3)
i,j },

we ask the rater to compare all six generated pairs. For example, the pair (S(0)
i,j , S

(1)
i,j ), where S(0)

i,j and S
(1)
i,j are sets of videos

generated by model g(0)i,j and model g(1)i,j respectively, we randomly select three video pairs that have the same content from

them. The rater needs to compare all these three video pairs. If the rater chooses the video generated by model g(0)i,j for two

or more of the pairs, then we consider that the rater prefers model g(0)i,j . In this case, model g(0)i,j score 1, and model g(1)i,j

score 0.

When all raters have completed scoring the six video set pairs, we will sum the scores obtained by models
{g(0)i,j , g

(1)
i,j , g

(2)
i,j , g

(3)
i,j } respectively to determine the final user score for each model and rank them accordingly

B Addition Experiments Results

B.1 FVMD with 2D histogram
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Figure 5: Sanity check. We visualize the curve for FVMD with quantized 2D histogram versus the number of samples.

Noise type Hyperparameter Int. 1 Int. 2 Int. 3 Int. 4 Int. 5

Local Swap The proportion of frames swapped 10% 20% 40% 60% 80%
Global Swap The proportion of frames swapped 10% 20% 30% 40% 50%
Interleaving The number of videos interleaved 2 3 4 5 6
Switching The number of videos switched 2 3 4 5 6

Table 5: Hyperparameter design of the noise study.

Sanity Check. Similar to the sanity check experiments conducted for FVMD with a 1D dense histogram, we also performed
a sanity check for the 2D histogram setting. The results, shown in Figure 5, demonstrate that the 2D histogram feature
also supports our hypothesis: the underlying motion distribution within the same dataset remains consistent, while the
distribution between two different datasets exhibits a larger gap.

Sensitivity Analysis. We conduct the sensitivity analysis on a subset with a fixed 1024 video clips of the TikTok
dataset (Jafarian & Park, 2022). In our sensitivity analysis, the hyperparameter design for the intensity of different types of
noise is as shown in Table 5. Figure 6 illustrates the behavior of the FVMD with a 2D histogram when various types of
static noise are added to the temporal dimension of videos. It is observable that the values of all implementations of FVMD
increase with the escalation of added noise.
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Figure 6: Sensitivity analysis. Behaviors of FVMD with 2D histogram when adding various types of static noise to the
temporal dimension of videos.
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Configuration eql. FVD eql. FID-VID eql. SSIM eql. PSNR eql. VBench-overall score
motion representation statistics stride s

velocity 2D 16 0.9314 0.8469 0.4263 0.0448 0.0117
acceleration 2D 16 0.9316 0.8453 0.4216 0.0362 -0.0063

combine 2D 16 0.9315 0.8464 0.4241 0.0423 0.0039

velocity 1D 16 0.8773 0.9210 0.4934 0.2007 0.5642
acceleration 1D 16 0.8601 0.8985 0.5104 0.1993 0.5510

combine 1D 16 0.8612 0.9091 0.4925 0.1894 0.5414

velocity 2D 1 0.8555 0.8106 0.3903 0.0080 -0.7144
acceleration 2D 1 0.8627 0.8136 0.3913 0.0115 -0.1101

combine 2D 1 0.8569 0.8115 0.3916 0.0109 -0.1144

velocity 1D 1 0.9172 0.9253 0.7128 0.4920 0.7359
acceleration 1D 1 0.9276 0.9112 0.7162 0.4851 0.7354

combine 1D 1 0.9170 0.9184 0.7191 0.479 0.7348

Table 6: Ablation study on One Metric Equal setting. The experimental setup is consistent with that described in Table 1.
The eql. FMD column has been omitted.

Configuration divers. FVD divers. FID-VID divers. SSIM divers. PSNR divers. VBench-overall score divers. FVMD
motion representation statistics stride s

velocity 2D 16 0.5851 0.2831 0.6209 0.6977 0.3275 0.3985
acceleration 2D 16 0.5791 0.2893 0.6136 0.7013 0.3169 0.3936

combine 2D 16 0.5838 0.2880 0.6189 0.7008 0.3232 0.3963

velocity 1D 16 0.6365 0.6920 0.6126 0.8866 0.6835 0.5768
acceleration 1D 16 0.6282 0.7016 0.6100 0.8929 0.6854 0.5750

combine 1D 16 0.6269 0.6910 0.6085 0.8866 0.6781 0.5699

velocity 2D 1 0.5075 0.2714 0.4803 0.7162 0.3358 0.3942
acceleration 2D 1 0.5076 0.2776 0.4820 0.7196 0.3424 0.3946

combine 2D 1 0.5082 0.2772 0.4823 0.7193 0.3399 0.3945

velocity 1D 1 0.7388 0.8588 0.6959 0.9685 0.7951 0.6836
acceleration 1D 1 0.7311 0.8582 0.6905 0.9665 0.7952 0.6835

combine 1D 1 0.7321 0.8561 0.6921 0.9677 0.7928 0.6808

Table 7: Ablation study on One Metric Diverse setting The experimental setup is consistent with that described in Table 2.

B.2 Ablation Study

To determine the optimal configuration for our FVMD, we conduct ablation experiments under the same experimental
setup as used in the human study. We explore alternative designs for the motion features, including: 1) different motion
representations, including computing only velocity fields, only acceleration fields, and combining velocity and acceleration;
2) different methods for statistically characterizing vector fields, including quantized 2D histograms and dense 1D histograms;
3) the degree of overlap when extracting 16-frame segments from the entire video, ranging from no overlap (stride=16) to
maximum overlap (stride=1). The results of the ablation study are presented in Table 6 and Table 7.

It is evident that different motion representations do not significantly impact the performance of our metric. Additionally,
the performance of FVMD with a dense 1D histogram surpasses that of FVMD with a quantized 2D histogram. For FVMD
with a dense 1D histogram, the maximum overlap strategy when extracting video clips outperforms the non-overlap strategy
across all experimental setups. Overall, FVMD utilizing a combined motion representation with a dense 1D histogram
and maximum overlap video segments aligns more closely with human perception. Therefore, we select this as the default
configuration for our FVMD metric.
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