
Revisiting subword tokenization: A case study on affixal negation in large
language models

Anonymous ACL submission

Abstract

In this work, we measure the impact of af-001
fixal negation on modern English large lan-002
guage models (LLMs). In affixal negation, the003
negated meaning is expressed through a nega-004
tive morpheme, which is potentially challeng-005
ing for LLMs as their tokenizers are often not006
morphologically plausible. We conduct exten-007
sive experiments using LLMs with different008
subword tokenization methods, which lead to009
several insights on the interaction between tok-010
enization performance and negation sensitivity.011
Despite some interesting mismatches between012
tokenization accuracy and negation detection013
performance, we show that models can, on the014
whole, reliably recognize the meaning of affixal015
negation.016

1 Introduction017

Negation is central to language understanding but018

is not properly captured by modern NLP methods019

(Hossain et al., 2022; Truong et al., 2023, inter020

alia). While state-of-the-art large language models021

(LLMs) have improved negation understanding ca-022

pabilities, challenges remain, such as the ability to023

correctly determine the enclosed scope of negation,024

or when negation interacts with other linguistic con-025

structions like quantifiers (She et al., 2023; Truong026

et al., 2023). Negations in common NLP bench-027

marks are typically marked by separate negation028

cues such as not, no. However, in practice, nega-029

tion can also be expressed through morphemes of030

words, i.e. by negative prefixes or suffixes such as031

in uninteresting or effortless.032

While humans can identify affixal negation by033

leveraging morphological cues, NLP systems only034

rarely consider word-internal structure, beyond nor-035

malizing syntactic variation (Liu et al., 2012). Mod-036

ern NLP methods such as language models employ037

subword tokenization, in which words are broken038

down into smaller units. This has an advantage039

of reducing vocabulary size, as well as learning040

The word inconclusive contains
negation. True or False? Answer:

GPT-4: True {in, con, clusive}

LLaMa-2: False {incon, clusive}

Flan-T5: True {in, con, clu, s, ive}

The word inhibited contains
negation. True or False? Answer:

GPT-4: True {in, hibited}

LLaMa-2: True {in, hib, ited}

Flan-T5: True {inhibit, e, d

Figure 1: Example of our affixal negation prediction
task, with the tokenization output for each model.

shared representation between words with similar 041

subwords. The intent to improve such representa- 042

tion by making tokenization methods more linguis- 043

tically sound has driven the invention of several 044

morphology segmentation methods, such as Mor- 045

fessor (Grönroos et al., 2014). However, these have 046

not been broadly adopted in modern LLMs as they 047

do not scale well. 048

We hypothesize that current subword tokeniza- 049

tion methods could lead to sub-optimal perfor- 050

mance on language understanding tasks involv- 051

ing negation, because they do not correctly break 052

words down morphologically. For instance, Table 1 053

demonstrates how different models employing dif- 054

ferent subword tokenization methods tokenize the 055

word anticlinal. Another known challenge which 056

could affect models is the high false positive rate in 057

detecting affixal negations (Blanco and Moldovan, 058

2011), for example misinterpreting "de" in "de- 059

serve" as a negative affix while the word just coin- 060

cidentally starts with “de" and should not be inter- 061

preted as negating “serve". 062

In this work, we analyze the impact of affixal 063

negations on transformer-based language models, 064

where two main tokenization methods are em- 065
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Model Type Variant Data source Vocab.
size

Output NegMorph

BERT BPE WordPiece books, wiki 30K {anti, clin, al} Correct
RoBERTa BPE Byte-level BPE books, wiki 50K {antic, l, inal} Under-segmented
XLNet ULM SentencePiece book, wiki, web text 32K {anti, clin, al} Correct
AlBERT ULM SentencePiece book, wiki 32K {anti, clin, al} Correct
T5 BPE SentencePiece web text 32K {anti, clin, al} Correct
Llama-2 BPE SentencePiece web text, code, books,

wiki, scientific publica-
tions

32K {ant, ic, l, inal} Over-segmented

GPT-2 BPE Byte-level BPE web text 50K {antic, l, inal} Under-segmented
GPT-4 BPE Byte-level BPE undisclosed 100K {antic, l , inal} Under-segmented

Table 1: Summary of different tokenizers used in our experiments. Output are tokenized version of the word
“anticlinal” (model-specific special tokenization characters are removed for clarity purpose). All models are the base
version unless specified otherwise.

ployed including Byte-pair encoding (BPE) (Gage,066

1994; Sennrich et al., 2016), and Unigram language067

model (Unigram LM) (Kudo, 2018). We consider068

three research questions:069

RQ1: Are current subword tokenization meth-070

ods able to produce morphologically-aligned071

tokens? We analyzed the performance of vari-072

ous subword tokenization methods used in modern073

LMs. We find that most do not effectively produce074

morphologically-aligned tokens.075

RQ2: Are modern LMs aware of the presence076

of negation in affixal negations? We design a077

negation prediction task to probe models’ aware-078

ness of affixal negation. We find that despite not079

performing well on the tokenization task, current080

LLMs can reliably infer the negated meaning of081

words with negative affix. For this task, there is082

only a weak positive correlation between tokenizer083

and classifier performance.084

RQ3: What are the impacts of affixal negation085

on downstream tasks? As negation and senti-086

ment are closely related, we measure the impact on087

downstream sentiment analysis task by looking at088

samples containing affixal negations from common089

datasets. Results show that models perform well on090

those samples, implying that the impact of affixal091

negation is minimal. However, there exists a bias in092

predicting negative sentiment for affixal negations.093

2 Related work094

There are two contrasting ways to construct a vo-095

cabulary for LMs using subword tokenization meth-096

ods: BPE, which starts from a base character set,097

then merges those characters based on bigram fre-098

quency to form subword units (bottom-up) and un-099

igram language models, which start from a large 100

subword vocabulary, which is then reduced based 101

on a regularization method (top-down). There are 102

multiple variants of BPE, differing in how the base 103

vocabulary is represented or how merging is done. 104

WordPiece (Schuster and Nakajima, 2012) uses 105

characters to represent the base vocabulary, then 106

selects pairs that maximize the likelihood of train- 107

ing data, Byte-level BPE (Sennrich et al., 2016) 108

uses bytes instead of Unicode to represent the base 109

vocabulary; the merging is done based on the fre- 110

quency count of bigrams. In contrast, the unigram 111

language model (Kudo, 2018) starts from a large 112

base vocabulary and iteratively trims down tokens 113

based on unigram LM perplexity until a target vo- 114

cabulary size is reached. 115

Both methods assume that the input text uses 116

spaces to separate words, which is not true for lan- 117

guages such as Chinese or Vietnamese. Therefore, 118

a word segmentation step must be performed in 119

advance. SentencePiece (Kudo and Richardson, 120

2018) was introduced to solve this problem by con- 121

sidering whitespace as part of words, essentially 122

treating the whole input stream as the smallest unit 123

to perform tokenization on. Then, either BPE or 124

unigram LM can be applied to construct the vocab- 125

ulary. Regardless of methods, they purely rely on 126

statistical information and thus are not expected to 127

produce morphologically-aligned subword tokens. 128

There have been efforts to build linguistically- 129

sound word tokenization methods, most notably 130

the Morfessor and its variants (Grönroos et al., 131

2014, 2020). Building morphology-aligned seg- 132

mentation methods, especially in a multilingual 133

setting, is an active line of research through re- 134

cent SIGMORPHON shared tasks (Batsuren et al., 135

2022). These methods outperform general tokeniz- 136
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Figure 2: Word segmentation performance on the set of affixal negations (van Son et al., 2016).

ers in producing morphologically-aligned tokens,137

but their benefit on downstream tasks is often neg-138

ligible (Domingo et al., 2019; Saleva and Lignos,139

2021). In this work, we examine if morphologi-140

cally correct tokenization is important for LLMs to141

deal with negation.142

BERT and its variants have been shown to be143

insensitive to negation (Kassner and Schütze, 2020;144

Ettinger, 2020), affecting many downstream NLP145

tasks such as sentiment analysis, NLI, or QA (Hos-146

sain et al., 2020, 2022; Ravichander et al., 2022;147

Truong et al., 2022). Compared to previous mod-148

els, current LLMs have improved negation han-149

dling ability, but still struggle with some unconven-150

tional types of negation and linguistic constructions151

(Truong et al., 2023). Here, we investigate the treat-152

ment of affixal negation in modern LMs, with the153

intuition that subword tokenization methods that154

don’t appropriately reflect this morphology will155

lead to misinterpretation of their semantics.156

3 Experiment settings157

We focus our analysis particularly on how affixal158

negations are represented in modern LLMs, design-159

ing probing tasks to test their awareness of negation,160

and the effect on downstream tasks.161

3.1 A lexicon of affixal negation162

We use the lexicon created in van Son et al. (2016).163

The dataset contains a list of affixal negation and164

their non-negated counterparts (e.g. unintended -165

intended). For each affixal negation, the corre-166

sponding negative affix is also annotated. In total,167

there are 2089 affixal negations, and 2055 non- 168

negated words which are antonyms of the negations. 169

These numbers are not equal because one word can 170

have multiple corresponding negated counterparts, 171

e.g. intrusive - extrusive, unintrusive. 172

3.2 Tokenization methods 173

For each tokenizer type (along with their variants), 174

we consider the most representative models that use 175

them, based on their popularity. Although some 176

models use the exact same tokenizer, it is worth 177

investigating them as the difference in training cor- 178

pora could lead to difference in tokenization results. 179

BPE We consider models using with different 180

flavors of BPE. For WordPiece, we consider BERT 181

(Devlin et al., 2019), ELECTRA (Clark et al., 182

2020); Byte-level BPE: RoBERTa (Liu et al., 2019), 183

and GPT-family models including GPT-2 (Rad- 184

ford et al., 2019) and GPT-4 (OpenAI, 2023). For 185

SentencePiece, we examine Flan-T5 (Chung et al., 186

2022) and Llama-2 (Touvron et al., 2023). 187

Unigram LM Models using unigram LM tok- 188

enization methods considered in this work are al- 189

ways used in combination with SentencePiece: XL- 190

Net (Yang et al., 2019), AlBERT (Lan et al., 2020). 191

3.3 Morphologically-aligned segmentation for 192

affixal negation 193

We consider a segmentation to be aligned with 194

morphology (Correct) only if the negative affix 195

matches with one of the produced tokens (e.g. anti- 196

climatic → anti, clima, tic). Otherwise, it is either 197
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Under-segmented if the negative affix is a sub-198

string of one of the produced tokens (e.g. anticlima,199

tic), or Over-segmented (e.g. ant, i, clima, tic).200

In a formal way, given an affixal negation word w201

having the negative affix a, if w is tokenized into202

Tk = {ti, ti+1, ..., tn} under tokenizer k then we203

define NegMorphk(w) as follows:204

NegMorphk(w) =



Correct if a ∈ Tk.
Under-
segmented

if a is a sub-
string of any
ti ∈ Tk.

Over-
segmented otherwise

205

4 Findings206

4.1 Current subword tokenization methods207

are morphologically suboptimal208

As shown in Figure 2a, models employing the un-209

igram LM method outperform those using BPE210

in producing morphologically correct tokens for211

affixal negations. This is in line with previous212

findings that the unigram LM produces subword213

units that align with morphology better than BPE214

(Bostrom and Durrett, 2020). Moreover, models215

that employ SentencePiece (T5, ALBERT, XL-216

Net, LLaMa) outperform those that don’t (BERT,217

RoBERTa, GPT-2). However, the best performing218

models only produce up to 75% correct NegMorph,219

showing moderate room for improvement. Most220

failed cases relate to under-segmentation.221

An analysis of what types of negative affixes are222

hard to tokenize is provided in Figure 2b, and their223

most frequent incorrect tokenizations are shown224

in Figure 3. Some common affixes that are incor-225

rectly tokenized are il → ill (illicit, illogical), ir226

→ irre (irresolute, irreponsibly, irregular), a → as227

(asymmetric), at (atypically). Overall, we see that228

some affixes can be wrongly tokenized in a wide229

range of ways (represented by the large number230

of substacks), showing that current tokenization231

methods are inefficient. Overcoming this problem232

would greatly reduce the vocabulary size of LLMs,233

as well as improve word representations.234

4.2 Negative affix is a signal for negation, but235

word knowledge is essential236

We design a binary classification task on the lex-237

icon described in Section 3.1 to probe the ability238

of models to understand affixal negation, denoted239

Affix. The prompts are captured below.240
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n none

irrational irre irregular irrelevant

ill illegal illegitimate illicit

Figure 3: Top 10 most frequent affixes in the dataset
and the distribution of tokens that they are wrongly
tokenized into. Yellow bar denotes Under-segmented,
while Red bar denotes Over-segmented.

Affix (zero-shot)

The word {word} contains negation. True or
False?
Answer:

241

Affix (few-shot)

A word contains negation if it has a negated
meaning, usually expressed through a negative
prefix (such as un, in) or suffix (such as
less).

The word unwell contains negation. True or
False?
Answer: True
Explanation: decentralize is created by
prepending the root word centralize with the
negative prefix de.

The word deserve contains negation. True or
False?
Answer: False
Explanation: deserve just coincidentally starts
with de.

The word {word} contains negation. True or
False?
Answer:

242

For a few-shot prompt, we provide an explicit 243

instruction to explain what negation means in this 244

context, as well as two demonstrating samples, to 245

prevent any ambiguity (such as confusion with neg- 246

ative sentiment). 247

We evaluate three state-of-the-art LLMs in a 248

zero-, and few-shot manner and breakdown the 249

results into two categories: Neg (only affixal nega- 250

tions), Non-neg (only non-negated words). Results 251

are summarized in Figure 5 (full results in Table 3). 252
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Figure 5: Zero- and Few-shot results on the affixal nega-
tion prediction task.

Overall, we find that the performance on Neg is253

much lower compared to Non-neg, where the best254

models achieve near-perfect performance.255

For zero-shot setting, surprisingly, Flan-T5 out-256

performs both Llama-2 and GPT-4 on this pre-257

diction task, despite being smallest in size. Af-258

ter adding more explicit instruction and examples259

(Affix (fewshot)), we observe large increases in260

performance for GPT-4 and Llama-2, and little to261

no difference for Flan-T5. Whereas for the non-262

negated subset, all models have near-perfect perfor-263

mance, with GPT-4 slightly outperforming Flan-T5.264

Llama-2 performance for this task is much lower265

compared to the other two.266

We further breakdown the results based on af-267

fixes. Figure 4 illustrates the percentage of cor-268

rect/incorrect prediction for each affix, divided by269

NegMorph categories. Compared to the relatively 270

high results for Neg in Table 3, we have a clearer 271

view on the actual performance of models. On av- 272

erage, we see that models made errors equally as 273

likely for all affixes (as shown by the last Overall 274

bar, where the percentages of incorrect and cor- 275

rect predictions are roughly 50%). From the fig- 276

ure, we can also observe that the correct/incorrect 277

prediction distribution is similar across models (es- 278

pecially between GPT-4 and Flan-T5), showing 279

that they tend to make the same errors. Moreover, 280

the percentage of correct segmentation is larger 281

in cases where they made correct prediction for 282

the Affix task. However, calculating the Pearson’s 283

coefficient between NegMorph and Accuracy on 284

Neg set did not yield any statistically significant 285

correlation. 286

Hyphenated words To make sure that the nega- 287

tive affixes are not further broken down by tokeniz- 288

ers, we convert words into their “hyphenated” form 289

(e.g. unintended → un-intended). From Figure 6, 290

we see that this greatly increases the performance 291

of different tokenizers on the NegMorph metric (by 292

as much as 32%). Compared to the normal setting, 293

the accuracy of all models also increases on the Af- 294

fix task, suggesting a positive correlation between 295

NegMorph and Accuracy. Llama-2 benefited the 296

most from this setting, having the largest increases 297

in both Accuracy and NegMorph. 298
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Figure 6: Results of Few-shot and Few-shot Hyphen
on the affixal negation prediction task. Bars denote the
accuracy on the prediction task , while Dots denote the
Correct NegMorph scores for the segmentation task.

Nonce words Nonce words are words that look299

and sound like real words, but are created for a300

single-purpose use and not recognized as words301

within a language (e.g. roagly). To measure the302

effect of negative affixes on word semantics, we303

construct a list of “affixal nonce words” by prepend-304

ing or appending negative affixes to a list of nonce305

words. We collect a list of adjective nonce words306

from Cremers (2022) . For affixes, we used the307

list of 40 negative affixes provided in van Son308

et al. (2016) and collected 40 non-negative affixes309

(e.g. auto-, bi-, -ism, -ful).1 For each nonce word,310

we prepend (or append) the affixes to form “af-311

fixal nonce word”. In total, the set consists of 11312

nonce words × 80 affixes = 880 samples, evenly313

distributed between negated (e.g. dis-roagly) and314

non-negated (e.g. auto-roagly). We adopt the Affix315

(few-shot) prompt and add an instruction to prevent316

models from refusing to answer the questions be-317

cause of invalid words (full prompt in Appendix B).318

Similarly, we also report the results of two subsets319

of negative affixes (Neg) and non-negative affixes320

(Non-neg) in Figure 7. For the Neg set, we find that321

for the performance of all models is relatively low,322

despite them being able to correctly tokenize the323

negative affixes. Whereas for the Non-neg set, per-324

formances are near-perfect for all models, similar325

to the previous Affix-Hyphen task. Looking at the326

results, however, we found that most errors made327

by the models are when the negative affixes are328

ambiguous, i.e. their meaning depends on which329

words they are attached to (e.g. a-, di-, ef-, para-,330

re-). This reveals an important insight that whether331

something is considered to be a negation should be332

1We collected the affixes from https://litinfocus.com/

120-root-words-prefixes-and-suffixes-pdf-list/
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Figure 7: Accuracy on the affixal nonce words predic-
tion task.

judged with context (which is parametric knowl- 333

edge about words in this case). 334

Non-negated words with tokens homonymous 335

with negative affixes To explore the false pos- 336

itive problem raised in Blanco and Moldovan 337

(2011), we collect words from the Non-neg sub- 338

set and WordNet (Miller, 1995) which do not have 339

negated meaning, but have negative prefix/suffix as 340

the first/last subword token. We tokenize WordNet 341

using the Flan-T5 tokenizer and select all words 342

that start/end with the negative prefixes/suffixes, 343

then subtract all words in the list of affixal nega- 344

tions. We manually go through the extracted list 345

again to remove errors, resulting in a set of 330 346

words2. Following the same affixal negation pre- 347

diction task, we find that Flan-T5 has very good 348

performance (0.958 accuracy), showing that it can 349

synthesize information from all subword tokens in- 350

stead of only relying on the negative affixes. Most 351

errors come from the “uni-” cases, where model 352

tokenized them into “un-” (e.g. unidirectional, uni- 353

valent). 354

4.3 Impact on downstream tasks 355

One main drawback of our probing task is that 356

the words lack context. Negation is a context- 357

dependant concept, that is, what is considered a 358

negation could differ depending on the context of 359

use. Investigating the impact of affixal negation on 360

downstream tasks is essential. 361

2We didn’t consider other models as the list of words would
be different between models.
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4.3.1 Sentiment analysis362

Previous works have shown that negation is a363

strong indicator for negative sentiment (Wiegand364

et al., 2010). Furthermore, the fact that sentiment365

analysis is part of many NLP benchmarks could366

create a bias in models which leads to negation be-367

ing conflated with negative sentiment. For instance,368

the word incredible is constructed by prepending369

the root word credible with the negative affix in-,370

meaning “not credible” but is used to express a371

positive meaning. This inspired us to extend our372

analysis to the downstream sentiment analysis task.373

We evaluate LLMs few-shot performance in two374

settings of word- and sentence-level sentiment anal-375

ysis (full prompts in Appendix C).376

Word-level sentiment Using SentiWordNet 3.0377

(Baccianella et al., 2010), we map the sentiment to378

the affixal negation lexicon from Section 3.1. After379

that, two graduate researchers went over the list to380

determine the final labels (positive, negative, neu-381

tral). In general, we find that GPT-4 outperforms382

Flan-T5 and Llama-2 on this word-level task. All383

models have almost perfect performance on pre-384

dicting negative words, but struggle with the other385

two classes. In particular, we find Flan-T5 and386

Llama-2 overpredict Negative for Neutral words,387

while GPT-4 often mistakes Positive for Neutral.388

Sentence-level sentiment For this task, we389

look at common sentence-level sentiment analy-390

sis datasets including SST-2 (Socher et al., 2013),391

and Rotten Tomatoes (RT) (Pang and Lee, 2005).392

One drawback of this evaluation is that samples393

tend to contain many sentiment signals, making it394

hard to gauge the effect of affixal negations.395

We consider 3 settings, (1) Affix: only samples396

containing affixal negation; (2) Non affix: only397

samples without affixal negation; (3) Replace affix:398
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Figure 9: Accuracy on sentence-level sentiment analysis
task. Results are average across 3 models.

similar to Affix, but we replace all instances of af- 399

fixal negations with equivalent syntactic negations, 400

i.e. not + word (uninteresting → not interesting), 401

and summarize the results in Figure 9. Note that the 402

numbers of samples in Non affix are much larger 403

than Affix for both datasets. Overall, we can con- 404

clude that affixal negation is a strong signal to guide 405

models’ prediction. We observe good performance 406

for Affix in both datasets, where the accuracy are 407

comparable to Non Affix in SST-2 and higher in 408

RT. Attempting to replace affixal negations would 409

slightly decrease the performance of models in both 410

datasets. This suggests that affixal negation is actu- 411

ally a stronger sentiment cue compared to syntactic 412

negation. We further report class-wise performance 413

of the Affix set in Figure 10. Accuracy on samples 414

having Negative sentiment is higher than Positive, 415

once again showing that affixal negation is a strong 416

cue for predicting negative sentiment. 417

5 A look into token attribution 418

We perform an interpretation analysis to give in- 419

sight into what drives models’ predictions. For this 420

analysis, we chose the Flan-T5-xxl model as GPT- 421
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Figure 10: Accuracy of Neg/Pos class of the Affix set.
Results are average across 3 models.

4 predictions are not interpretable. We calculate422

the attribution for each token corresponding to the423

predictions using the Integrated Gradient method424

(Sundararajan et al., 2017), with probability as the425

scoring function, implemented in Inseq (Sarti et al.,426

2023). Overall, we observe high attribution scores427

from relevant tokens, such as the subword tokens of428

the target words, showing that models know where429

to pay attention to when making inference.430

Figure 11: Token attribution of selected samples on
word-level sentiment prediction task. Only parts of the
prompts are shown for clarity purpose.

Negative affixes have flipping sentiment effect431

In Section 4.3.1, we showed that models tend to432

overpredict negative sentiment on the list of affixal433

negations. Through the saliency heatmap in Fig-434

ure 11, we can see high token attributions of the435

negative affixes that changed the sentiment of the436

root words (either positive or neutral) into negative.437

This is in-line with previous finding that negation 438

flips sentiment direction (Tigges et al., 2023). This 439

effect could be the main cause for the low perfor- 440

mance on Neutral class observed in our word-level 441

sentiment analysis task. When applying to the nega- 442

tion prediction task, however, we did not observe a 443

similar effect and did not see any clear pattern for 444

token attributions. 445

Correct tokenization is not essential for nega- 446

tion awareness Through many experiments, we 447

have shown that overall, correct tokenization leads 448

to better awareness of models to the presence of 449

negation. This effect, however is not significant. 450

By comparing token attributions between 3 cases 451

of NegMorph (Figure 12), we saw that models are 452

able to combine information from relevant subword 453

tokens corresponding to a word to make the correct 454

inference. 455

Figure 12: Token attribution of selected sample samples
on negation prediction task. Three subplots correspond
to Correct, Under-segmented, and Over-segmented case
respectively. Only parts of the prompts are shown for
clarity purpose.

6 Conclusion 456

In this work, we conduct an in-depth analysis on 457

how well modern LLMs handle affixal negation, 458

a type of negation where morphology is essential 459

to understanding word semantics. We have shown 460

that there is significant room to improve current to- 461

kenization methods in producing morphologically- 462

aligned tokens. Despite that, the effect of mor- 463

phologically incorrect tokenization on the ability 464

of models to understand word meaning in down- 465

stream tasks including sentiment analysis is min- 466

imal. Regardless, designing better subword tok- 467

enization methods may have many immediate ben- 468

efits such as reducing vocabulary size, learning 469

better word representations, and improving models’ 470

interpretability. 471

8



7 Limitations472

Prompting As this work involves experiments473

using LLMs, there is always a possibility that the474

prompts we used are not optimal (and also, the475

problem of reproducibility). We attempted to reuse476

prompts templates from existing works where pos-477

sible and strove to design prompts that are intuitive478

and specific otherwise.479

Multilinguality Morphology is a language-480

dependent problem. We recognize that the lack481

of investigation in other languages other than En-482

glish is a drawback of this work.483

Broader impact Given that our focus is on pre-484

senting and analysing the problem of poor treat-485

ment of affixal negation in LLMs, we did not pro-486

pose any immediate solutions to improve the status487

quo. The finding on the impact on downstream488

tasks could be limited by the lack of samples (both489

in size and meaningful patterns) in the test data.490
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A Models endpoints727

• GPT-4: We access GPT-4 through the offical728

API with the name gpt-4. Note that this is729

different from the GPT-4 turbo model with the730

name gpt-4-1106-preview.731

• Llama-2-13B: We used the official instruc-732

tion fine-tuned Llama-2-13B available733

on the HuggingFace hub with the name:734

meta-llama/Llama-2-13b-chat-hf.735

• Flan-T5-xxl: We used the official xxl ver-736

sion (11.3B) of the Flan-T5 model avail-737

able on the HuggingFace hub with the name:738

google/flan-t5-xxl.739

B Details of Affixal Nonce word740

prediction task741

List of nonce words roagly, vibble, drok, scrop,742

plard, hif, tepable, plawic, bluth, sprat, flurf743

List of non-negative affixes Prefix: ambi-, aqu-,744

ast-, aud-, auto-, bi-, bio-, cent-, circum-, co-, cred-,745

cycl-, dec-, dia-, equ-, geo-, grad-, hydro-, inter-,746

medi-, mega-, min-, micro-, pan-, semi-, tele-, uni-,747

tri-. Suffix: -able, -al, -ance, -ful, -ian, -ic, -tic, -ile,748

-ism, -ist, -junct, -ly749

Nonce

A nonce word is a word ocurcring, invented,
or used just for a particular occasion, or a
word with a special meaning used for a special
occasion. Infer whether the given nonce word
contains negation or not.

A word contains negation if it has a negated
meaning, usually expressed through a negative
prefix (such as un, in) or suffix (such as
less).

The word unwell contains negation. True or
False?
Answer: True
Explanation: decentralize is created by
prepending the root word centralize with the
negative prefix de.

The word deserve contains negation. True or
False?
Answer: False
Explanation: deserve just coincidentally starts
with de.

The word {word} contains negation. True or
False?
Answer:

750

C Prompts for sentiment analysis 751

Word-level sentiment

{Few-shot samples}

The sentiment of the word {word} is positive,
negative, or neutral.

Answer:

752

Sentence-level sentiment

{Few-shot samples}

{sentence}
Question: Is this sentence positive or
negative?

Answer:

753

D Full results 754

Model Neg.
Nonce

Non-neg.
Nonce

All

GPT-4 0.434 1 0.717
Llama-2-13B 0.575 0.991 0.783
Flan-T5-xxl 0.627 0.964 0.795

Table 2: Affixal nonce words prediction task
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Model Accuracy NegMorph
Neg Non-neg All Correct

Affix (zero-shot)

GPT-4 0.783 0.994 0.888 0.671
Llama-2-13B 0.707 0.770 0.738 0.658

Flan-T5-xxl 0.867 0.976 0.921 0.751

Affix (fewshot)

GPT-4 0.890 (+0.107) 0.997 (+0.003) 0.943 (+0.055) 0.670
Llama-2-13B 0.767 (+0.060) 0.938 (+0.168) 0.852 (+0.114) 0.658

Flan-T5-xxl 0.855 (-0.012) 0.993 (+0.017) 0.924 (+0.003) 0.750

Affix (fewshot)-Hyphen

GPT-4 0.916 (+0.133) - - 0.929 (+0.258)
Llama-2-13B 0.956 (+0.249) - - 0.984 (+0.326)

Flan-T5-xxl 0.948 (+0.081) - - 0.968 (+0.217)

Table 3: Results of our affixal negation prediction task. (+/- denote the change compared to the Affix (zero-shot)
setting
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