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Abstract

In this work, we measure the impact of af-
fixal negation on modern English large lan-
guage models (LLMs). In affixal negation, the
negated meaning is expressed through a nega-
tive morpheme, which is potentially challeng-
ing for LLMs as their tokenizers are often not
morphologically plausible. We conduct exten-
sive experiments using LLMs with different
subword tokenization methods, which lead to
several insights on the interaction between tok-
enization performance and negation sensitivity.
Despite some interesting mismatches between
tokenization accuracy and negation detection
performance, we show that models can, on the
whole, reliably recognize the meaning of affixal
negation.

1 Introduction

Negation is central to language understanding but
is not properly captured by modern NLP methods
(Hossain et al., 2022; Truong et al., 2023, inter
alia). While state-of-the-art large language models
(LLMs) have improved negation understanding ca-
pabilities, challenges remain, such as the ability to
correctly determine the enclosed scope of negation,
or when negation interacts with other linguistic con-
structions like quantifiers (She et al., 2023; Truong
et al., 2023). Negations in common NLP bench-
marks are typically marked by separate negation
cues such as not, no. However, in practice, nega-
tion can also be expressed through morphemes of
words, i.e. by negative prefixes or suffixes such as
in uninteresting or effortless.

While humans can identify affixal negation by
leveraging morphological cues, NLP systems only
rarely consider word-internal structure, beyond nor-
malizing syntactic variation (Liu et al., 2012). Mod-
ern NLP methods such as language models employ
subword tokenization, in which words are broken
down into smaller units. This has an advantage
of reducing vocabulary size, as well as learning
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Figure 1: Example of our affixal negation prediction
task, with the tokenization output for each model.

shared representation between words with similar
subwords. The intent to improve such representa-
tion by making tokenization methods more linguis-
tically sound has driven the invention of several
morphology segmentation methods, such as Mor-
fessor (Gronroos et al., 2014). However, these have
not been broadly adopted in modern LLLMs as they
do not scale well.

We hypothesize that current subword tokeniza-
tion methods could lead to sub-optimal perfor-
mance on language understanding tasks involv-
ing negation, because they do not correctly break
words down morphologically. For instance, Table 1
demonstrates how different models employing dif-
ferent subword tokenization methods tokenize the
word anticlinal. Another known challenge which
could affect models is the high false positive rate in
detecting affixal negations (Blanco and Moldovan,
2011), for example misinterpreting "de" in "de-
serve" as a negative affix while the word just coin-
cidentally starts with “de" and should not be inter-
preted as negating “serve".

In this work, we analyze the impact of affixal
negations on transformer-based language models,
where two main tokenization methods are em-



Model Type Variant Data source Vocab. Output NegMorph
size

BERT BPE WordPiece books, wiki 30K {anti, clin, al} Correct
RoBERTa BPE Byte-level BPE  books, wiki 50K {antic, 1, inal} Under-segmented
XLNet ULM SentencePiece book, wiki, web text 32K {anti, clin, al} Correct
AIBERT ULM SentencePiece book, wiki 32K {anti, clin, al} Correct
TS BPE SentencePiece web text 32K {anti, clin, al} Correct
Llama-2 BPE SentencePiece web text, code, books, 32K {ant, ic, 1, inal}  Over-segmented

wiki, scientific publica-

tions
GPT-2 BPE Byte-level BPE ~ web text 50K {antic, 1, inal} Under-segmented
GPT-4 BPE Byte-level BPE  undisclosed 100K {antic, I, inal} Under-segmented

Table 1: Summary of different tokenizers used in our experiments. Output are tokenized version of the word
“anticlinal” (model-specific special tokenization characters are removed for clarity purpose). All models are the base

version unless specified otherwise.

ployed including Byte-pair encoding (BPE) (Gage,
1994; Sennrich et al., 2016), and Unigram language
model (Unigram LM) (Kudo, 2018). We consider
three research questions:

RQ1: Are current subword tokenization meth-
ods able to produce morphologically-aligned
tokens? We analyzed the performance of vari-
ous subword tokenization methods used in modern
LMs. We find that most do not effectively produce
morphologically-aligned tokens.

RQ2: Are modern LMs aware of the presence
of negation in affixal negations? We design a
negation prediction task to probe models’ aware-
ness of affixal negation. We find that despite not
performing well on the tokenization task, current
LLMs can reliably infer the negated meaning of
words with negative affix. For this task, there is
only a weak positive correlation between tokenizer
and classifier performance.

RQ3: What are the impacts of affixal negation
on downstream tasks? As negation and senti-
ment are closely related, we measure the impact on
downstream sentiment analysis task by looking at
samples containing affixal negations from common
datasets. Results show that models perform well on
those samples, implying that the impact of affixal
negation is minimal. However, there exists a bias in
predicting negative sentiment for affixal negations.

2 Related work

There are two contrasting ways to construct a vo-
cabulary for LMs using subword tokenization meth-
ods: BPE, which starts from a base character set,
then merges those characters based on bigram fre-
quency to form subword units (bottom-up) and un-

igram language models, which start from a large
subword vocabulary, which is then reduced based
on a regularization method (top-down). There are
multiple variants of BPE, differing in how the base
vocabulary is represented or how merging is done.
WordPiece (Schuster and Nakajima, 2012) uses
characters to represent the base vocabulary, then
selects pairs that maximize the likelihood of train-
ing data, Byte-level BPE (Sennrich et al., 2016)
uses bytes instead of Unicode to represent the base
vocabulary; the merging is done based on the fre-
quency count of bigrams. In contrast, the unigram
language model (Kudo, 2018) starts from a large
base vocabulary and iteratively trims down tokens
based on unigram LM perplexity until a target vo-
cabulary size is reached.

Both methods assume that the input text uses
spaces to separate words, which is not true for lan-
guages such as Chinese or Vietnamese. Therefore,
a word segmentation step must be performed in
advance. SentencePiece (Kudo and Richardson,
2018) was introduced to solve this problem by con-
sidering whitespace as part of words, essentially
treating the whole input stream as the smallest unit
to perform tokenization on. Then, either BPE or
unigram LM can be applied to construct the vocab-
ulary. Regardless of methods, they purely rely on
statistical information and thus are not expected to
produce morphologically-aligned subword tokens.

There have been efforts to build linguistically-
sound word tokenization methods, most notably
the Morfessor and its variants (Gronroos et al.,
2014, 2020). Building morphology-aligned seg-
mentation methods, especially in a multilingual
setting, is an active line of research through re-
cent SIGMORPHON shared tasks (Batsuren et al.,
2022). These methods outperform general tokeniz-
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Figure 2: Word segmentation performance on the set of affixal negations (van Son et al., 2016).

ers in producing morphologically-aligned tokens,
but their benefit on downstream tasks is often neg-
ligible (Domingo et al., 2019; Saleva and Lignos,
2021). In this work, we examine if morphologi-
cally correct tokenization is important for LLMs to
deal with negation.

BERT and its variants have been shown to be
insensitive to negation (Kassner and Schiitze, 2020;
Ettinger, 2020), affecting many downstream NLP
tasks such as sentiment analysis, NLI, or QA (Hos-
sain et al., 2020, 2022; Ravichander et al., 2022;
Truong et al., 2022). Compared to previous mod-
els, current LLMs have improved negation han-
dling ability, but still struggle with some unconven-
tional types of negation and linguistic constructions
(Truong et al., 2023). Here, we investigate the treat-
ment of affixal negation in modern LMs, with the
intuition that subword tokenization methods that
don’t appropriately reflect this morphology will
lead to misinterpretation of their semantics.

3 Experiment settings

We focus our analysis particularly on how affixal
negations are represented in modern LLMs, design-
ing probing tasks to test their awareness of negation,
and the effect on downstream tasks.

3.1 A lexicon of affixal negation

We use the lexicon created in van Son et al. (2016).
The dataset contains a list of affixal negation and
their non-negated counterparts (e.g. unintended -
intended). For each affixal negation, the corre-
sponding negative affix is also annotated. In total,

there are 2089 affixal negations, and 2055 non-
negated words which are antonyms of the negations.
These numbers are not equal because one word can
have multiple corresponding negated counterparts,
e.g. intrusive - extrusive, unintrusive.

3.2 Tokenization methods

For each tokenizer type (along with their variants),
we consider the most representative models that use
them, based on their popularity. Although some
models use the exact same tokenizer, it is worth
investigating them as the difference in training cor-
pora could lead to difference in tokenization results.

BPE We consider models using with different
flavors of BPE. For WordPiece, we consider BERT
(Devlin et al., 2019), ELECTRA (Clark et al.,
2020); Byte-level BPE: RoBERTa (Liu et al., 2019),
and GPT-family models including GPT-2 (Rad-
ford et al., 2019) and GPT-4 (OpenAl, 2023). For
SentencePiece, we examine Flan-T5 (Chung et al.,
2022) and Llama-2 (Touvron et al., 2023).

Unigram LM Models using unigram LM tok-
enization methods considered in this work are al-
ways used in combination with SentencePiece: XL-
Net (Yang et al., 2019), AIBERT (Lan et al., 2020).

3.3 Morphologically-aligned segmentation for
affixal negation

We consider a segmentation to be aligned with
morphology (Correct) only if the negative affix
matches with one of the produced tokens (e.g. anti-
climatic — anti, clima, tic). Otherwise, it is either



Under-segmented if the negative affix is a sub-
string of one of the produced tokens (e.g. anticlima,
tic), or Over-segmented (e.g. ant, i, clima, tic).
In a formal way, given an affixal negation word w
having the negative affix a, if w is tokenized into
Ty = {ti,ti+1, ..., t,} under tokenizer k then we
define NegMorph,, (w) as follows:

[ Correct if a € Tj,.
Under- if a is a sub-
NegMorph,, (w) = < segmented string of any
t; € Tj.
Over- .
otherwise
segmented

4 Findings

4.1 Current subword tokenization methods
are morphologically suboptimal

As shown in Figure 2a, models employing the un-
igram LM method outperform those using BPE
in producing morphologically correct tokens for
affixal negations. This is in line with previous
findings that the unigram LM produces subword
units that align with morphology better than BPE
(Bostrom and Durrett, 2020). Moreover, models
that employ SentencePiece (TS5, ALBERT, XL-
Net, LLaMa) outperform those that don’t (BERT,
RoBERTa, GPT-2). However, the best performing
models only produce up to 75% correct NegMorph,
showing moderate room for improvement. Most
failed cases relate to under-segmentation.

An analysis of what types of negative affixes are
hard to tokenize is provided in Figure 2b, and their
most frequent incorrect tokenizations are shown
in Figure 3. Some common affixes that are incor-
rectly tokenized are il — ill (illicit, illogical), ir
— irre (irresolute, irreponsibly, irregular), a — as
(asymmetric), at (atypically). Overall, we see that
some affixes can be wrongly tokenized in a wide
range of ways (represented by the large number
of substacks), showing that current tokenization
methods are inefficient. Overcoming this problem
would greatly reduce the vocabulary size of LLMs,
as well as improve word representations.

4.2 Negative affix is a signal for negation, but
word knowledge is essential

We design a binary classification task on the lex-
icon described in Section 3.1 to probe the ability
of models to understand affixal negation, denoted
Affix. The prompts are captured below.

il ‘ ‘ illegal il

Iegitimat% illicit ‘

ir}eleva\\t

1L O AN

J-mil = = W
impe{

‘ = ‘ ‘ H‘ ‘ H H - HH -

" ‘HH m ‘ " ‘ “H |I:|:|ﬂ:|mml - ‘H H‘ - H mﬂﬂumﬂ:ﬂ:ﬂmm“ - |I:|]:|Iﬂ:|:|:m:|:|:|:|:|[|

‘ HHHH o ‘ Im -
2

0.4 0
Percentage

irlrrational

irre ‘ irregular

a H ac ach

E]

def dem den

a
)

=

disc

dish

un{ una

unc

0.0 0.. .6 0.8 1.0

Figure 3: Top 10 most frequent affixes in the dataset
and the distribution of tokens that they are wrongly
tokenized into. denotes Under-segmented,
while Red bar denotes Over-segmented.

Affix (zero-shot)

The word {word} contains negation. True or
False?
Answer:

Affix (few-shot)

A word contains negation if it has a negated
meaning, usually expressed through a negative
prefix (such as un, in) or suffix (such as
less) .

The word unwell contains negation. True or
False?

Answer: True

Explanation: decentralize is created by
prepending the root word centralize with the
negative prefix de.

The word deserve contains negation. True or
False?

Answer: False

Explanation: deserve just coincidentally starts
with de.

The word {word} contains negation. True or
False?
Answer:

For a few-shot prompt, we provide an explicit
instruction to explain what negation means in this
context, as well as two demonstrating samples, to
prevent any ambiguity (such as confusion with neg-
ative sentiment).

We evaluate three state-of-the-art LLMs in a
zero-, and few-shot manner and breakdown the
results into two categories: Neg (only affixal nega-
tions), Non-neg (only non-negated words). Results
are summarized in Figure 5 (full results in Table 3).
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Figure 4: Fraction of correct/incorrect prediction on the Affix (fewshot) task, breakdown by affixes. The left
greyed-out side of each subplot corresponds to wrong predictions.
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Figure 5: Zero- and Few-shot results on the affixal nega-
tion prediction task.

Overall, we find that the performance on Neg is
much lower compared to Non-neg, where the best
models achieve near-perfect performance.

For zero-shot setting, surprisingly, Flan-T5 out-
performs both Llama-2 and GPT-4 on this pre-
diction task, despite being smallest in size. Af-
ter adding more explicit instruction and examples
(Affix (fewshot)), we observe large increases in
performance for GPT-4 and Llama-2, and little to
no difference for Flan-T5. Whereas for the non-
negated subset, all models have near-perfect perfor-
mance, with GPT-4 slightly outperforming Flan-TS5.
Llama-2 performance for this task is much lower
compared to the other two.

We further breakdown the results based on af-
fixes. Figure 4 illustrates the percentage of cor-
rect/incorrect prediction for each affix, divided by

NegMorph categories. Compared to the relatively
high results for Neg in Table 3, we have a clearer
view on the actual performance of models. On av-
erage, we see that models made errors equally as
likely for all affixes (as shown by the last Overall
bar, where the percentages of incorrect and cor-
rect predictions are roughly 50%). From the fig-
ure, we can also observe that the correct/incorrect
prediction distribution is similar across models (es-
pecially between GPT-4 and Flan-T5), showing
that they tend to make the same errors. Moreover,
the percentage of correct segmentation is larger
in cases where they made correct prediction for
the Affix task. However, calculating the Pearson’s
coefficient between NegMorph and Accuracy on
Neg set did not yield any statistically significant
correlation.

Hyphenated words To make sure that the nega-
tive affixes are not further broken down by tokeniz-
ers, we convert words into their “hyphenated” form
(e.g. unintended — un-intended). From Figure 6,
we see that this greatly increases the performance
of different tokenizers on the NegMorph metric (by
as much as 32%). Compared to the normal setting,
the accuracy of all models also increases on the Af-
fix task, suggesting a positive correlation between
NegMorph and Accuracy. Llama-2 benefited the
most from this setting, having the largest increases
in both Accuracy and NegMorph.
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Figure 6: Results of Few-shot and Few-shot Hyphen
on the affixal negation prediction task. Bars denote the
accuracy on the prediction task , while Dots denote the
Correct NegMorph scores for the segmentation task.

Nonce words Nonce words are words that look
and sound like real words, but are created for a
single-purpose use and not recognized as words
within a language (e.g. roagly). To measure the
effect of negative affixes on word semantics, we
construct a list of “affixal nonce words” by prepend-
ing or appending negative affixes to a list of nonce
words. We collect a list of adjective nonce words
from Cremers (2022) . For affixes, we used the
list of 40 negative affixes provided in van Son
et al. (2016) and collected 40 non-negative affixes
(e.g. auto-, bi-, -ism, -ful)." For each nonce word,
we prepend (or append) the affixes to form “af-
fixal nonce word”. In total, the set consists of 11
nonce words x 80 affixes = 880 samples, evenly
distributed between negated (e.g. dis-roagly) and
non-negated (e.g. auto-roagly). We adopt the Affix
(few-shot) prompt and add an instruction to prevent
models from refusing to answer the questions be-
cause of invalid words (full prompt in Appendix B).
Similarly, we also report the results of two subsets
of negative affixes (Neg) and non-negative affixes
(Non-neg) in Figure 7. For the Neg set, we find that
for the performance of all models is relatively low,
despite them being able to correctly tokenize the
negative affixes. Whereas for the Non-neg set, per-
formances are near-perfect for all models, similar
to the previous Affix-Hyphen task. Looking at the
results, however, we found that most errors made
by the models are when the negative affixes are
ambiguous, i.e. their meaning depends on which
words they are attached to (e.g. a-, di-, ef-, para-,
re-). This reveals an important insight that whether
something is considered to be a negation should be

'We collected the affixes from https://litinfocus.com/

120-root-words-prefixes—and-suffixes-pdf-list/
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Figure 7: Accuracy on the affixal nonce words predic-
tion task.

judged with context (which is parametric knowl-
edge about words in this case).

Non-negated words with tokens homonymous
with negative affixes To explore the false pos-
itive problem raised in Blanco and Moldovan
(2011), we collect words from the Non-neg sub-
set and WordNet (Miller, 1995) which do not have
negated meaning, but have negative prefix/suffix as
the first/last subword token. We tokenize WordNet
using the Flan-T5 tokenizer and select all words
that start/end with the negative prefixes/suffixes,
then subtract all words in the list of affixal nega-
tions. We manually go through the extracted list
again to remove errors, resulting in a set of 330
words”. Following the same affixal negation pre-
diction task, we find that Flan-T5 has very good
performance (0.958 accuracy), showing that it can
synthesize information from all subword tokens in-
stead of only relying on the negative affixes. Most
errors come from the “uni-" cases, where model
tokenized them into “un-" (e.g. unidirectional, uni-
valent).

4.3 Impact on downstream tasks

One main drawback of our probing task is that
the words lack context. Negation is a context-
dependant concept, that is, what is considered a
negation could differ depending on the context of
use. Investigating the impact of affixal negation on
downstream tasks is essential.

2We didn’t consider other models as the list of words would
be different between models.
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4.3.1 Sentiment analysis

Previous works have shown that negation is a
strong indicator for negative sentiment (Wiegand
et al., 2010). Furthermore, the fact that sentiment
analysis is part of many NLP benchmarks could
create a bias in models which leads to negation be-
ing conflated with negative sentiment. For instance,
the word incredible is constructed by prepending
the root word credible with the negative affix in-,
meaning “not credible” but is used to express a
positive meaning. This inspired us to extend our
analysis to the downstream sentiment analysis task.
We evaluate LLMs few-shot performance in two
settings of word- and sentence-level sentiment anal-
ysis (full prompts in Appendix C).

Word-level sentiment Using SentiWordNet 3.0
(Baccianella et al., 2010), we map the sentiment to
the affixal negation lexicon from Section 3.1. After
that, two graduate researchers went over the list to
determine the final labels (positive, negative, neu-
tral). In general, we find that GPT-4 outperforms
Flan-T5 and Llama-2 on this word-level task. All
models have almost perfect performance on pre-
dicting negative words, but struggle with the other
two classes. In particular, we find Flan-T5 and
Llama-2 overpredict Negative for Neutral words,
while GPT-4 often mistakes Positive for Neutral.

Sentence-level sentiment For this task, we
look at common sentence-level sentiment analy-
sis datasets including SST-2 (Socher et al., 2013),
and Rotten Tomatoes (RT) (Pang and Lee, 2005).
One drawback of this evaluation is that samples
tend to contain many sentiment signals, making it
hard to gauge the effect of affixal negations.

We consider 3 settings, (1) Affix: only samples
containing affixal negation; (2) Non affix: only
samples without affixal negation; (3) Replace affix:
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Figure 9: Accuracy on sentence-level sentiment analysis
task. Results are average across 3 models.

similar to Affix, but we replace all instances of af-
fixal negations with equivalent syntactic negations,
i.e. not + word (uninteresting — not interesting),
and summarize the results in Figure 9. Note that the
numbers of samples in Non affix are much larger
than Affix for both datasets. Overall, we can con-
clude that affixal negation is a strong signal to guide
models’ prediction. We observe good performance
for Affix in both datasets, where the accuracy are
comparable to Non Affix in SST-2 and higher in
RT. Attempting to replace affixal negations would
slightly decrease the performance of models in both
datasets. This suggests that affixal negation is actu-
ally a stronger sentiment cue compared to syntactic
negation. We further report class-wise performance
of the Affix set in Figure 10. Accuracy on samples
having Negative sentiment is higher than Positive,
once again showing that affixal negation is a strong
cue for predicting negative sentiment.

5 A look into token attribution

We perform an interpretation analysis to give in-
sight into what drives models’ predictions. For this
analysis, we chose the Flan-T5-xx1 model as GPT-
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4 predictions are not interpretable. We calculate
the attribution for each token corresponding to the
predictions using the Integrated Gradient method
(Sundararajan et al., 2017), with probability as the
scoring function, implemented in Inseq (Sarti et al.,
2023). Overall, we observe high attribution scores
from relevant tokens, such as the subword tokens of
the target words, showing that models know where
to pay attention to when making inference.
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Figure 11: Token attribution of selected samples on
word-level sentiment prediction task. Only parts of the
prompts are shown for clarity purpose.

Negative affixes have flipping sentiment effect
In Section 4.3.1, we showed that models tend to
overpredict negative sentiment on the list of affixal
negations. Through the saliency heatmap in Fig-
ure 11, we can see high token attributions of the
negative affixes that changed the sentiment of the
root words (either positive or neutral) into negative.

This is in-line with previous finding that negation
flips sentiment direction (Tigges et al., 2023). This
effect could be the main cause for the low perfor-
mance on Neutral class observed in our word-level
sentiment analysis task. When applying to the nega-
tion prediction task, however, we did not observe a
similar effect and did not see any clear pattern for
token attributions.

Correct tokenization is not essential for nega-
tion awareness Through many experiments, we
have shown that overall, correct tokenization leads
to better awareness of models to the presence of
negation. This effect, however is not significant.
By comparing token attributions between 3 cases
of NegMorph (Figure 12), we saw that models are
able to combine information from relevant subword
tokens corresponding to a word to make the correct
inference.
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Figure 12: Token attribution of selected sample samples
on negation prediction task. Three subplots correspond
to Correct, Under-segmented, and Over-segmented case
respectively. Only parts of the prompts are shown for
clarity purpose.

6 Conclusion

In this work, we conduct an in-depth analysis on
how well modern LLMs handle affixal negation,
a type of negation where morphology is essential
to understanding word semantics. We have shown
that there is significant room to improve current to-
kenization methods in producing morphologically-
aligned tokens. Despite that, the effect of mor-
phologically incorrect tokenization on the ability
of models to understand word meaning in down-
stream tasks including sentiment analysis is min-
imal. Regardless, designing better subword tok-
enization methods may have many immediate ben-
efits such as reducing vocabulary size, learning
better word representations, and improving models’
interpretability.



7 Limitations

Prompting As this work involves experiments
using LLMs, there is always a possibility that the
prompts we used are not optimal (and also, the
problem of reproducibility). We attempted to reuse
prompts templates from existing works where pos-
sible and strove to design prompts that are intuitive
and specific otherwise.

Multilinguality Morphology is a language-
dependent problem. We recognize that the lack
of investigation in other languages other than En-
glish is a drawback of this work.

Broader impact Given that our focus is on pre-
senting and analysing the problem of poor treat-
ment of affixal negation in LL.Ms, we did not pro-
pose any immediate solutions to improve the status
quo. The finding on the impact on downstream
tasks could be limited by the lack of samples (both
in size and meaningful patterns) in the test data.
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A Models endpoints

* GPT-4: We access GPT-4 through the offical
API with the name gpt—4. Note that this is
different from the GPT-4 turbo model with the
name gpt-4-1106-preview.

e Llama-2-13B: We used the official instruc-
tion fine-tuned Llama-2-13B available
on the HuggingFace hub with the name:
meta-llama/Llama—-2-13b-chat-hf.

e Flan-T5-xx1: We used the official xx1 ver-
sion (11.3B) of the Flan-T5 model avail-
able on the HuggingFace hub with the name:
google/flan-t5-xx1.

B Details of Affixal Nonce word
prediction task

List of nonce words roagly, vibble, drok, scrop,
plard, hif, tepable, plawic, bluth, sprat, flurf

List of non-negative affixes
ast-, aud-, auto-, bi-, bio-, cent-, circum-, co-, cred-,
cycl-, dec-, dia-, equ-, geo-, grad-, hydro-, inter-,
medi-, mega-, min-, micro-, pan-, semi-, tele-, uni-,
tri-. Suffix: -able, -al, -ance, -ful, -ian, -ic, -tic, -ile,

Prefix: ambi-, aqu-,

-ism, -ist, -junct, -ly

Nonce

A nonce word is a word ocurcring, invented,

or used just for a particular occasion, or a
word with a special meaning used for a special
occasion. Infer whether the given nonce word
contains negation or not.

A word contains negation if it has a negated
meaning, usually expressed through a negative

prefix (such as un, in) or suffix (such as
less) .

The word unwell contains negation. True or
False?

Answer: True

Explanation: decentralize is created by
prepending the root word centralize with the
negative prefix de.

The word deserve contains negation. True or
False?
Answer: False
Explanation: deserve just coincidentally starts
with de.
The word {word} contains negation. True or
False?
Answer:

~ 7
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C Prompts for sentiment analysis

Word-level sentiment

{Few-shot samples}

The sentiment of the word
negative, or neutral.

{word} is positive,

Answer:

Sentence-level sentiment

{Few—-shot samples}

{sentence}
Question:
negative?

Is this sentence positive or

Answer:

D Full results

Model Neg. Non-neg. All
Nonce Nonce
GPT-4 0.434 1 0.717
Llama-2-13B 0.575 0.991 0.783
Flan-T5-xx1 0.627 0.964 0.795

Table 2: Affixal nonce words prediction task



Model Accuracy NegMorph

Neg Non-neg All |  Correct
Affix (zero-shot)
GPT-4 0.783 0.994 0.888 0.671
Llama-2-13B 0.707 0.770 0.738 0.658
Flan-T5-xxlI 0.867 0.976 0.921 0.751
Affix (fewshor)
GPT-4  0.890 (+0.107)  0.997 (+0.003)  0.943 (+0.055) 0.670
Llama-2-13B  0.767 (+0.060)  0.938 (+0.168)  0.852 (+0.114) 0.658
Flan-T5-xxI ~ 0.855 (-0.012)  0.993 (+0.017)  0.924 (+0.003) 0.750
Affix (fewshot)-Hyphen
GPT-4 0.916 (+0.133) - - 0.929 (+0.258)
Llama-2-13B  0.956 (+0.249) - - 0.984 (+0.326)
Flan-T5-xxI ~ 0.948 (+0.081) - - 0.968 (+0.217)

Table 3: Results of our affixal negation prediction task. (+/- denote the change compared to the Affix (zero-shot)
setting
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