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Abstract

The ensemble average of physical properties of molecules is closely related to the distribution
of molecular conformations, and sampling such distributions is a fundamental challenge in
physics and chemistry. Traditional methods like molecular dynamics (MD) simulations
and Markov chain Monte Carlo (MCMC) sampling are commonly used but can be time-
consuming and costly. Recently, diffusion models have emerged as efficient alternatives
by learning the distribution of training data. Obtaining an unbiased target distribution
is still an expensive task, primarily because it requires satisfying ergodicity. To tackle
these challenges, we propose Potential Score Matching (PSM), an approach that utilizes the
potential energy gradient to guide generative models. PSM does not require exact energy
functions and can debias sample distributions even when trained on limited and biased
data. Our method outperforms existing state-of-the-art (SOTA) models on the Lennard-
Jones (LJ) potential, a commonly used toy model. Furthermore, we extend the evaluation
of PSM to high-dimensional problems using the MD17 and MD22 datasets. The results
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demonstrate that molecular distributions generated by PSM more closely approximate the
Boltzmann distribution compared to traditional diffusion models.

1 Introduction

Physical quantities of interest, such as free energy, are often determined by ensemble averages and are
intrinsically linked to the distribution of molecular conformations Alder & Wainwright (1959); Stoltz et al.
(2010). Traditional techniques for quantifying these physical quantities, notably Markov Chain Monte Carlo
(MCMC) sampling and Molecular Dynamics (MD), are well-established Gelman & Rubin (1996); McCammon
et al. (1977); Noé et al. (2019). However, these methods are computationally intensive, particularly for
systems with high-dimensional molecules.

Unlike the inherently sequential sampling of MD and MCMC, generative models, especially diffusion models,
have emerged as efficient alternatives for generating independent and identically distributed (i.i.d.) samples
Song et al. (2020b); Ho et al. (2020); Song et al. (2020a); Phillips et al. (2024); De Bortoli et al. (2022);
Wu & Li (2023); Xu et al. (2022); Hoogeboom et al. (2022); Woo & Ahn (2024). One such approach is
Denoising Score Matching (DSM) Song et al. (2020b). These models apply a score function to learn the data
distribution, which is particularly useful in molecular systems where the equilibrium distribution adheres to
the Boltzmann distribution. This distribution can be expressed as p(x) ∝ e−E(x)/(kBT ), with kB denoting
the Boltzmann constant, T the temperature, and E(x) the energy function of the system. Constructing a
dataset that follows the Boltzmann distribution remains a challenging task, and failure to provide unbiased
training data can result in DSM overfitting to a biased distribution, leading to inaccurate observables.

Recent advances in generative modeling have sought to incorporate the principles of the Boltzmann distri-
bution for improved molecular sampling Wu et al. (2024); Woo & Ahn (2024); Bortoli et al. (2024); Chen
et al. (2024); Chung et al. (2023). Techniques such as the Denoising Diffusion Sampler (DDS) and the
Path Integral Sampler (PIS) Zhang & Chen (2022); Vargas et al. (2023) have been developed to amortize
the computational expense of traditional MCMC and MD methods, facilitating learning processes that do
not necessitate equilibrium data. These methods typically rely on integration paths derived from ordinary
differential equations (ODEs) and stochastic differential equations (SDEs), which, despite being innovative,
still involve substantial computational time. The Iterated Denoising Energy Matching (iDEM) framework
Akhound-Sadegh et al. (2024) represents another stride forward, employing energy functions for data gen-
eration and introducing energy-guided sampling independent of the initial distribution. The complexity of
its iterative loops and the absence of predefined initial data increase the computational overhead in high
dimensional space, and at larger time scales, iDEM’s sampling efficiency diminishes, demanding a greater
number of samples to obtain precise outcomes. A more recent approach, Target Score Matching (TSM)
Bortoli et al. (2024), integrates energy information with DSM to enable sampling from designated energy
functions under the assumption of data unbiasedness.

Table 1: Comparison of molecular sampling methods and their properties.

Inference
i.i.d.

Samples

Doesn’t Require
Exact Boltzmann
Data for Training

Efficiency
in High Dim.

Doesn’t Require
Energy Function

(Only Energy Labels)
MD/MCMC × ✓ × ×
DSM ✓ × ✓ ✓
DDS/PIS ✓ × × ×
iDEM ✓ ✓ × ×
TSM ✓ × ✓ ✓
PSM (ours) ✓ ✓ ✓ ✓

In this work, we introduce the Potential Score Matching (PSM) method, which incorporates potential energy
derivatives into generative models to more closely align the sample distribution with the Boltzmann distri-
bution. Furthermore, PSM requires only force labels for the reference structures and obviates the need for an
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explicit energy function. PSM leverages the characteristics of DSM to facilitate the generation of i.i.d. sam-
ples, offering a computationally efficient alternative to MD simulations. We provide a comparative analysis
of PSM with related methodologies in Table 1. We also present a series of theoretical proofs demonstrating
that PSM provides a more accurate estimation of the score function in the vicinity of t = 0 when training
data is biased and results in reduced variance near t = 0. The performance of PSM is validated on both
simple toy models, such as Lennard-Jones (LJ) potentials, and more complex, high-dimensional physical
datasets, including MD17 and MD22. Our experimental results consistently indicate that PSM outperforms
baseline models.

2 Preliminaries

2.1 Score-Based Generative Modeling

Diffusion models operate through a two-step process Ho et al. (2020); Song et al. (2020a): (1) a forward
diffusion process that incrementally adds noise to the data x0 until it converges to a Gaussian distribution
at time T , and (2) a reverse denoising process that reconstructs samples using a learned score function. The
forward process is defined by xt = αtx0+σtϵ, where αt and σt are noise schedule coefficients, and ϵ represents
standard Gaussian noise. Two widely used frameworks are the variance-preserving (VP-SDE) and variance-
exploding (VE-SDE) diffusion processes Song et al. (2020b). In VE-SDE, αt = 1 and σt = σmin(σmax/σmin)t,

while in VP-SDE, αt = e
− 1

2

∫ t

0
βsds and σt =

√
1− e−

∫ t

0
βsds. Both VP and VE can be abstracted as

dxt = f(xt, t) dt+ g(t) dWt. Following this, the reverse process, solves the reverse SDE from T back to 0 is

dxt =
(
f(xt, t)− g2(t)∇xt

log qt (xt)
)

dt+ g(t) dWt . (1)

The term ∇xt
log qt(·), referred to as the “score function" at time t, is unknown and is approximated by

training a neural network sθ parameterized by θ, using the objective function ∥sθ −∇xt
log qt(·)∥2

2. How-
ever, since the marginal distribution qt(xt) is intractable Vincent (2011), later works propose a simplified
and equivalent loss function based on the conditional distribution ∥sθ −∇xt log qt(xt | xt−1)∥2

2, where the
conditional distribution is modeled as a Gaussian transition kernel. In this case, we can leverage the identity
∇xt

log qt(xt | xt−1) = − ϵ
σt

to instead train a network to predict the noise ϵ directly. This leads to the
commonly used loss function:

min
θ

Et,xt,ϵ

[
λ(t) ∥ϵθ (xt, t) + σt∇xt log qt (xt)∥2

2

]
⇔ min

θ
Et,xt,ϵ

[
λ(t) ∥ϵθ (xt, t)− ϵ∥2

2

]
, (2)

where the expectation E is taken over time t, sampled from a uniform distribution U([0, 1]), the noised
data points xt, sampled from the distribution q(xt|x0), and the noise ϵ, sampled from a standard Gaussian
distribution. The function λ(t) represents a weighting function that adjusts the importance of different time
steps during the optimization process. In molecular systems, xt often denotes atomic positions or, in some
contexts, discrete atomic types. Diffusion models have become increasingly prevalent in the generation of
molecular structures and the prediction of their properties De Bortoli et al. (2022).

2.2 Boltzmann Distribution

Molecular systems at equilibrium are typically characterized by the Boltzmann distribution, with the target
distribution given by p(x0) ∝ e−E(x0)/(kBT ). A profound connection exists between the score function utilized
in diffusion models and the system’s potential energy, as ∇ log p(x0) ∝ −∇E(x0)/(kBT ). Nevertheless, har-
nessing the Boltzmann distribution for generative modeling poses several challenges. For molecular systems
with analytically specified energy functions, the exact distribution is the normalized form of the Boltzmann
factor. The normalization constant, typically expressed as an integral over all possible configurations, is
often intractable and eludes a closed-form expression. Recent research has integrated energy considerations
into score-based model variants to improve molecular predictions. Innovations include the introduction of an
equivariant energy-guided SDE Bao et al. (2022) and novel score functions Janner et al. (2022); Durumeric
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et al. (2024); Phillips et al. (2024); Wang et al. (2024); Akhound-Sadegh et al. (2024). Additionally, attain-
ing equilibrium presupposes ergodicity in the system, which is ensured by simulating molecular trajectories
over extended periods. This requirement poses computational and temporal demands. In our approach, we
address these issues by harnessing the derivatives of energy to facilitate this process.

3 Potential Score Matching in Molecular Systems

In this section, we introduce our Potential Score Matching (PSM) method, which leverages the derivatives
of potential energy to efficiently approximate the Boltzmann distribution. Consider a training sample x0
drawn from the dataset, subjected to a noise injection process defined as xt = αtx0 + σtϵ, where σt is a
time-dependent noise schedule. We formalize the representation of the score function for molecules that
adhere to the Boltzmann distribution as follows:
Theorem 1. In a molecular system where molecules follow the distribution p(x0) ∝ e−E/(kBT ), given xt =
αtx0 + σtϵ, the score function at time t is an expectation of the force,

∇xt
log p(xt) = 1

αt
Ex0|xt

[
−∇x0E
kBT

]
= 1
αt

Ex0|xt

[
F

kBT

]
, (3)

where E and F represent the potential energy and force of x0, respectively. Thus, the PSM loss is defined as

Ls-model = Et∼U(0,1)Ext∼p(xt|x0)Ex0

[
λ(t)

∥∥∥∥sθ(xt, t)−
1
αt

(−∇x0E
kBT

)
∥∥∥∥2
]

= Et∼U(0,1)Ext∼p(xt|x0)Ex0

[
λ(t)

∥∥∥∥sθ(xt, t)−
1
αt

F

kBT

∥∥∥∥2
]
,

(4)

where U(0, 1) denotes a uniform distribution, and p(xt|x0) is the conditional probability distribution of the
noise-injected sample given the x0.

The proof of Theorem 1 is provided in Appendix B.1. The loss function equation 4, also known as the “score
loss”, can be further expressed in terms of the “x0 loss” and “ϵ loss”, as detailed in Luo (2022), and the
relationship among these three losses is explained in Appendix B.2.

Lx0-model = Et∼U(0,1)Ext∼q(xt|x0)Ex0

[
λ(t)

∥∥∥∥Dθ − xt −
σ2

t

αt

∇x0E(x0)
kBT

∥∥∥∥2

2

]
, (5)

Lϵ-model = Et∼U(0,1)Ext∼q(xt|x0)Ex0

[
λ(t)

∥∥∥∥ϵθ(xt, t) + σt

αt

F

kBT

∥∥∥∥2

2

]
, (6)

where Dθ and ϵθ are neural networks designed to approximate the original data point x0 and the noise term
ϵ, respectively. Recall that the formulas for the VESDE forward process that αt = 1, the loss can be written
as L = Et∼U(0,1)Ext∼p(xt|x0)Ex0

[
λ(t)∥sθ(xt, t)− F

kBT ∥
2
]
. For simplicity, we denote kBT = 1 in this section.

Related ideas are explored in Target Score Matching (TSM) Bortoli et al. (2024), which utilizes an explicit
energy function to model the score. Building on this concept, we link energy derivatives to the score function
and present PSM, which embodies the aforementioned score representation. By utilizing force labels as a
proxy to the Boltzmann distribution, our approach reduces computational costs. Our method extends TSM
from toy models with analytically defined energy functions to realistic, high-dimensional molecular systems.
Unlike prior approaches that rely on energy-based MLPs, we incorporate invariance-preserving architectures
with a novel time embedding tailored for molecular data, later introduced in the the experimental section.
Moreover, our theoretical findings assert that PSM remains robust even when trained on data that does not
adhere to the Boltzmann distribution, thereby correcting biases in the training dataset and yielding samples
that more closely resemble the true distribution.

Now we denote that p(x0) is the Boltzmann distribution and q(x0) is the data distribution. Ideally, p(x0)
should coincide with q(x0); however, when starting with a biased distribution, these two may not be equal.
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We demonstrate that PSM can provide a superior training process in terms of data fidelity, regardless of
whether the training data is biased or unbiased. Since ∇xt log p(xt) =

∫
p(x0|xt)∇x0 log p(x0)dx0, the

optimal solution satisfies:

arg min
s(·,·)

Ep(x0)Ep(xt|x0)∥s(xt, t)−∇xt log p(xt)∥ = Ep(x0|xt) [∇x0 log p(x0)] . (7)

Thus, the ground truth is given by Ep(x0|xt) [∇ log p (x0)] , and the Denoising Score Matching (DSM) method
learns this same expectation. The following theorem establishes that at small time steps, PSM more closely
approximates the Boltzmann distribution than DSM. A detailed explanation is provided in Appendix B.3.
Theorem 2. For the Boltzmann distribution p(x0), the data distribution q(x0), and small t, PSM learns a
more accurate score function than DSM,∥∥∥∥∥∥∥Eq(x0|xt) [∇ log p (x0)]︸ ︷︷ ︸

PSM

−Ep(x0|xt) [∇ log p (x0)]︸ ︷︷ ︸
Ground Truth

∥∥∥∥∥∥∥
2

2

⩽

∥∥∥∥∥∥∥Eq(x0|xt) [∇ log q (x0)]︸ ︷︷ ︸
DSM

−Ep(x0|xt) [∇ log p (x0)]︸ ︷︷ ︸
Ground Truth

∥∥∥∥∥∥∥
2

2

.

(8)
Furthermore, denoting the right-hand side as ∥I1∥2

2 and the left-hand side as ∥I2∥2
2, the difference between

these two terms satisfies ∥I2∥2
2−∥I1∥2

2 ≥ ∥I3∥2
2 +O(t3), where I3 = I3(x0,xt) > 0 in a neighborhood of t = 0.

Recent works Yang et al. (2023); Phillips et al. (2024) have indicated that during the training of traditional
diffusion models, there is a tendency to encounter large Lipschitz constants and significant variance in
relation to the time variable near t = 0, can be seen in Lemma 2 and 3 in Appendix Appendix B.4,
which have the potential to destabilize the training process. These highlight the need for improved training
strategies in the small-t regime. Encouragingly, Theorem 2 shows that PSM offers a theoretically grounded
debiasing mechanism by promoting convergence toward the Boltzmann distribution in molecular systems.
This suggests the potential of applying PSM labels in the small-t region of diffusion models. We propose a
weighted combination of both losses, referred to as “Piecewise Loss” and “Piecewise Weighted Loss”. These
methods prioritize PSM for small t while favoring DSM at larger time values. We denote the noise adding
time range of PSM loss as tpsm, and similarly denote the time of DSM label as tdsm.

Piecewise loss. Assuming kBT = 1 and given a chosen time point tp, we use the force loss (equation 6)
exclusively for t ∈ [0, tp], while employing DSM for t > tp as follows. Here, tpsm ≜ [0, tp] and tdsm ≜ [tp, 1].

s (xt, t) =
{

1
αt
Ex0|xt

[∇x0 log p (x0)] , if t < tp,

Ex0|xt
[∇xt log p (xt | x0)] , if t ∈ [tp, 1].

(9)

Piecewise Weighted loss. Since s (xt, t) = Ex0|xt

[
1

αt
∇x0 log p (x0)

]
= Ex0|xt

[∇xt
log p (xt | x0)] =

Ex0|xt

[
x0−xt

σ2
t

]
, we consider another form of the score

s (xt, t) = Ex0|xt

[
ωt

1
αt
∇x0 log p (x0) + (1− ωt)

x0 − xt

σ2
t

]
, (10)

and the the loss is L = Et,xt,x0

[
λ(t)

∥∥∥− ϵθ(xt,t)
σt

+ ωt

αt
F − (1− ωt) x0−xt

σ2
t

∥∥∥2

2

]
. We choose ωt as a time-varying

function which satisfies that ω0 = 1 and ω1 = 0. For example, ωt = sigmoid(50(t − 0.05)), t ∈ [0, 0.1] and
ωt = 0 when t ∈ [0.1, 1]. We can see that this loss is a generalization of “Piecewise loss”. With a random
noise ϵ, the “Piecewise loss” and the “Piecewise Weighted loss” can be unified as

LPSM = Et,xt,x0

[
∥ϵθ(xt, t)− ((1− ωt)ϵ1 + ωtϵ2)∥2

2
]
, where ϵ1 = ϵ[tdsm], ϵ2 = −F [tpsm] · σt , tdsm ∈ [0, 1] \ {tpsm} ,

(11)
where ϵ is a random noise, tpsm refers to the noise adding time range using F as label, and tdsm is the
element in its complement. The training process is shown in Algorithm 1.
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Algorithm 1 Potential Score Matching
Require: Network ϵθ, total iteration N , data x0, forces F , weight function ωt, noise schedule σt, and αt;

Select random noise ϵ;
Determine the time when the labels F and random noise ϵ act, tpsm and tdsm.
while n ≤ N do

t ∼ U(0, 1), xt ∼ N (αtx0, σ
2
t ), ϵ1 = ϵ[tdsm], ϵ2 = −F [tpsm]

αt
σt;

LPSM = ∥ϵθ(xt, t)− ((1− ωt)ϵ1 + ωtϵ2)∥2
2;

θ ← Update(θ,∇θLPSM);
end while

Our approach to incorporating force information is designed to be sample-efficient and does not impose
constraints on the sampling methodology. It is compatible with common techniques employed in diffusion
models, including the Euler method, Prediction-Correction (PC) method, and EDM Song et al. (2020b);
Karras et al. (2022).

4 Experiments

Datasets. We assess the performance of our proposed Potential Score Matching loss across various settings,
including toy models like the Lennard-Jones (LJ) potential Köhler et al. (2020), and more intricate molecular
systems such as MD17 and MD22. The LJ configurations, LJ-13 and LJ-55, consist of 13 and 55 atoms,
respectively, arranged in a three-dimensional space. Historically, energy-based molecular sampling has largely
concentrated on toy models Midgley et al. (2022); Akhound-Sadegh et al. (2024); Woo & Ahn (2024); Bortoli
et al. (2024), but our approach extends this to higher-dimensional, real-world datasets, such as MD17 and
MD22. MD17 contains molecular trajectories for different molecules, with 9 to 21 atoms, sampled at 500 K,
where the thermal energy kBT in the Boltzmann distribution equals 1 kcal/mol. In contrast, MD22 poses
a more demanding challenge due to its greater complexity, featuring molecular dynamics (MD) trajectories
from a small peptide with 42 atoms to a double-walled nanotube with 370 atoms Chmiela et al., sampled at
400 to 500 K with a time resolution of 1 fs.

To demonstrate our method’s capability to correct biased training distributions and ensembles, we use
Denoising Score Matching (DSM) Song et al. (2020b) as a baseline and compare our results with those from
iDEM and Flow AIS bootstrap (FAB) in toy model contexts Akhound-Sadegh et al. (2024); Midgley et al.
(2022). Our experiments primarily utilize biased training sets, employing the first 1, 000 frames for LJ data
and the first 5, 000 frames for MD reference trajectories. Further investigation into the impact of dataset
bias is conducted in the ablation study (Section 4.2).

Diffusion settings and network. We evaluate our method using DSM, Piecewise, and Piecewise
Weighted approaches, employing VESDE for denoising with equal time weight functions, λ(t) = 1. In
the Piecewise approach, PSM is applied for t ≤ 0.05, while DSM is used for t ∈ [0.05, 1]. In the Piecewise
Weighted setting, the label is combined as ωt×psm target+(1−ωt)×dsm target, where ωt = 1

1+exp(50(t−0.05)) .

During training, we employ the “ϵ-model” loss function to learn the noise ϵ.

Molecular systems often represent molecular structures as graphs, with atomic coordinates, numbers, and
bonds defining a molecular graph. Symmetry and equivariance in these graph representations are crucial
for accurate molecular interactions. We modify the Equiformer-v2 network based on Liao et al. (2024) by
adding the time embedding, more details about this network can be seen in Appendix A.2.2.

For sampling process, we use the Prediction-Correction (PC) sampler Song et al. (2020b), where each pre-
diction step are followed by one correction step. Additional experimental details, including hyperparameter
settings, are available in Appendix C.

Evaluation metrics. To evaluate the physical plausibility of the generated molecular conformations, we
assess the stability of molecules in the MD17 dataset, following the method in Fu et al. (2022). A molecule
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is deemed unstable at time T if:

max
(i,j)

∣∣∥xi(T )− xj(T )∥ − bij

∣∣ > 0.5, (12)

where bij is the equilibrium bond length between atoms i and j. If no unstable molecules are detected, the
dataset is considered stable. Moreover, we evaluate whether generated samples show an unbiased distribution
by analyzing the statistical distribution of interatomic distances (h(r)), defined as:

h(r) = 1
N(N − 1)

N∑
i=1

N∑
j ̸=i

δ(r − ∥xi − xj∥), (13)

where r is the interatomic distance and δ is the Dirac delta function. This metric indicates whether the
generated samples follow an unbiased molecular distribution. The mean absolute error (MAE) between the
sampled h(r) and reference data h(r) also serves as a numerical comparison, providing more intuitive results.

For further numerical insights, we provide the Total Variation Distance (TVD) to measure the maximum
distribution distance between sampled and reference data. For probability distributions P and Q, TVD is
defined as:

TVD(P,Q) = 1
2

∫
Rd

|P (x)−Q(x)| dx,

or equivalently for discrete distributions: TVD(P,Q) = 1
2
∑

x∈X |P (x)−Q(x)|. For datasets with available
analytical energy expressions, we additionally provide energy distribution visualizations.

4.1 Main Results

4.1.1 Lennard-Jones Potential

The Lennard-Jones (LJ) potential encapsulates the fundamental principles of interatomic interactions: repul-
sive forces dominate at short distances, while attractive forces prevail at longer ranges. It is mathematically
expressed as:

ELJ(x) = 1
2τ
∑

ij

((
rm

dij

)12
− 2

(
rm

dij

)6
)
. (14)

Eosc(x) = 1
2
∑

i

∥xi − xmean∥2 Etot = ELJ(x) + Eosc(x) . (15)

Here, rm and τ are constants that characterize the potential. In our experiments, we use the standard values
rm = 1 and τ = 1, in line with previous studies Köhler et al. (2020); Akhound-Sadegh et al. (2024). The
term Eosc represents the harmonic potential energy associated with particle displacements relative to the
system’s center of mass, xmean.

As indicated by equation 14, the function magnitude significantly increases when any interatomic distance
dij approaches zero, presenting substantial challenges, particularly in high-dimensional systems. To examine
the effect of biased training data, we plot the histograms of interatomic distance distributions, r = dij ,
for LJ-13 and LJ-55, denoted as h(r), in Figure 1. The results demonstrate that PSM effectively debiases
samples when trained on biased distributions.

Compared to Akhound-Sadegh et al. (2024); Midgley et al. (2022), we also report the corresponding
Wasserstein-2 (W-2) distance and total variation distance (TVD) based on three sets of samples obtained
by sampling with different random seeds. Table 2 presents these metric comparisons, where we test the LJ
potential using a random 10% subset of the reference data as the training set. Our experimental results
show that it is applicable to the toy model and has advantages in high-dimensional situations. From another
aspect, PSM also significantly reduces sampling time.

7



Published in Transactions on Machine Learning Research (08/2025)

0 2 4 6
r (Å)

0.0

0.5

1.0

1.5

2.0

h(
r)

(a)
Ref data
DSM Sample

0 2 4 6
r (Å)

0.0

0.5

1.0

1.5

2.0

h(
r)

Ref data
Piecewise Sample

0 2 4 6
r (Å)

0.0

0.5

1.0

1.5

2.0

h(
r)

Ref data
Piecewise Weighted

0 2 4 6
r (Å)

0.0

0.2

0.4

0.6

0.8

1.0

h(
r)

(b)
Ref data
DSM Sample

0 2 4 6
r (Å)

0.0

0.2

0.4

0.6

0.8

1.0

h(
r)

Ref data
Piecewise Sample

0 2 4 6
r (Å)

0.0

0.2

0.4

0.6

0.8

1.0

h(
r)

Ref data
Piecewise Weighted

Figure 1: The distribution of interatomic distances h(r) for LJ potential using biased training data with a
sample size of 500. (a) Comparison of h(r) for DSM, Piecewise, and Piecewise Weighted losses (from left to
right) against reference data for LJ-13; (b) Comparison of h(r) for DSM, Piecewise, and Piecewise Weighted
losses for LJ-55.

Table 2: Comparisons of PSM with FAB Midgley et al. (2022) and iDEM Akhound-Sadegh et al. (2024) on
LJ-13 and LJ-55 results. Metrics include 2-Wasserstein distance and atomic distance TVD, evaluated on
three different seeds.

LJ-13 (39D) LJ-55 (165D)
Sample W-2 Distance TVD Sample W-2 Distance TVD

FAB 4.35± 0.001 0.252± 0.002 18.03± 1.21 0.24± 0.09
iDEM 4.26± 0.03 0.044± 0.001 16.128± 0.071 0.09± 0.01

Piecewise 4.287± 0.003 0.0582± 0.001 15.894± 0.003 0.047± 0.000
Piecewise-Weighted 4.278± 0.001 0.0585± 0.001 16.054± 0.008 0.023± 0.002

4.1.2 Molecular Dynamical Data

Unlike other studies, our model proves effective on higher-dimensional datasets, specifically testing on MD17
and MD22 datasets. In MD17, we consider molecules such as Uracil (12 atoms), Naphthalene (10 atoms),
Aspirin (21 atoms), Salicylic Acid (16 atoms), Malonaldehyde (9 atoms), Ethanol (9 atoms), and Toluene (15
atoms). This dataset provides molecules with properties like Cartesian coordinates (in Å), atomic numbers,
total energies (in kcal/mol), and atomic forces (in kcal/mol/Å) at 500 K, where the thermal energy kBT in
the Boltzmann distribution corresponds to 1 kcal/mol. Additionally, we test the MD22 benchmark dataset,
which includes Ac-Ala3-NHMe (42 atoms), Docosahexaenoic Acid (DHA) (56 atoms), Stachyose (87 atoms),
DNA base pair (AT-AT) (60 atoms), DNA base pair (AT-AT-CG-CG) (118 atoms), Buckyball catcher (148
atoms), and Double-walled nanotube (370 atoms).

MD17 dataset. We first evaluate the stability of generated molecular configurations across DSM, Piece-
wise, and Piecewise Weighted methods, as proposed in Fu et al. (2022). Stability is assessed on 1, 000 samples
generated at the epoch with the lowest training loss over 1, 000 epochs. All samples meet the stability crite-
rion. With no unstable molecules in any of the sampled data, we plot the distribution of interatomic distances
for these MD17 datasets, as shown in Figure 2. The figure indicates that at the peak, DSM tends to capture
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Figure 2: The distribution of interatomic distances h(r) of r(Å) for (a) aspirin, (b) ethanol, (c) malonalde-
hyde, (d) naphthalene, (e) salicylic acid, (f) toluene, and (g) uracil in MD17 dataset. The insets display the
ball-and-stick representations of these molecules learned by Piecewise method. The sample number is 1, 000.

greater fluctuations, and PSM can more accurately learn the neighboring structure. Table 3 summarizes the
mean absolute errors (MAEs) of the sampled interatomic distances and total variation distance compared
to the reference molecular data. These results demonstrate that, despite the inherent bias in the training
data, PSM successfully debiases molecular samples.

Table 3: Comparison of MAE of interatomic distance and Total Variation Distance (TVD) for different
MD17 molecules with sample size 1, 000.

MD 17 MAE of h(r) TVD

DSM Piecewise Piecewise Weighted DSM Piecewise Piecewise Weighted

Aspirin 0.1240 0.0570 0.0510 0.0662 0.0373 0.0290
Ethanol 0.1193 0.0845 0.0911 0.0663 0.0508 0.0501
Malonaldehyde 0.1003 0.0843 0.0630 0.0515 0.0492 0.0518
Naphthalene 0.1257 0.0701 0.1164 0.0716 0.0365 0.0592
Salicylic Acid 0.0799 0.0554 0.0584 0.0450 0.0424 0.0337
Toluene 0.0970 0.0769 0.0948 0.0536 0.0428 0.0490
Uracil 0.0747 0.0705 0.0560 0.0478 0.0421 0.0426

MD22 dataset. Similarly, Figure 3 and Table 4 present h(r) and the numerical metrics of the MD22
dataset, showing improved performance with the PSM method. The sample size is 128.

Table 4: Comparison of MAE of h(r) and Total Variation Distance (TVD) for different MD22 molecules.

MD 22 MAE of h(r) TVD

DSM Piecewise Piecewise Weighted DSM Piecewise Piecewise Weighted

Ac-Ala3-NHMe 0.0873 0.0505 0.0486 0.0415 0.0224 0.0301
Stachyose 0.0384 0.0333 0.0424 0.0174 0.0161 0.0198
Docosahexaenoic acid 0.0602 0.0444 0.0518 0.0254 0.0221 0.0228
AT-AT 0.0767 0.0620 0.0611 0.0336 0.0292 0.0285
AT-AT-CG-CG 0.0706 0.0655 0.0677 0.0341 0.0324 0.0329
Buckyball catcher 0.0978 0.0350 0.0567 0.0417 0.0158 0.0264
Dw-nanotube 0.1527 0.0919 0.0484 0.0946 0.0597 0.0256
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Figure 3: The distribution of interatomic distances (r(Å)) for (a) Ac-Ala3-NHMe, (b) DNA base pair (AT-
AT), (c) DNA base pair (AT-AT-CG-CG), (d) Docosahexaenoic acid, (e) Stachyose, (f) Buckyball catcher,
(g) Dw nanotube in MD22 dataset. The insets display the ball-and-stick representations of these molecules.

Figure 4: UMAP of SOAP feature for reference data, PSM, and DSM.

Debiasing conformations using SOAP descriptors. In molecular dynamics, to illustrate that PSM
extends beyond recovering ensemble averages such as h(r) and achieves debiased results in terms of structural
accuracy, we utilize the Smooth Overlap of Atomic Positions (SOAP) descriptor. SOAP describes the local
atomic environment around a central atom α as a smoothly varying atomic density function:

ρα(r) =
∑

i

fc(riα)g(riα)Ylm(r̂iα), (16)

where riα = |ri−rα| is the distance between the central atom α and its neighbor i. The function fc(r) ensures
locality, g(r) is a radial basis function, and Ylm(r̂) are spherical harmonics describing angular dependence.
SOAP maintains a high-dimensional feature representation invariant under rotations. To visualize SOAP
results, we apply UMAP, a nonlinear dimensionality reduction technique, for intuitive comparison.

To demonstrate PSM’s capability in debiasing, we construct a deliberately biased training dataset informed
by our ablation study (Section 4.2), which reveals that the first 1, 000 simulation frames exhibit structural
deviation. Specifically, we augment a randomly selected subset (comprising 0.5% of the full trajectory,
approximately 1, 000 frames) with these biased early frames to introduce controlled bias into the training
data. We then compare the resulting molecular distributions generated by PSM, DSM, and the reference data
using UMAP-projected SOAP features clustered via DBSCAN. As shown in Figure 4, the cluster proportions
for the reference, PSM, and DSM are (28.2%, 71.8%), (29.4%, 70.6%), and (31.0%, 68.4%), respectively. The
close alignment between PSM and the reference indicates that PSM more effectively captures the underlying
atomic environments and debiases the molecular distribution.
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4.2 Ablation Study

In this section, we conduct ablation experiments on the debias capability of PSM and the amortized MD
computation cost to illustrate the efficiency of PSM.

Debias ability. First, we investigate the impact of biased versus unbiased training data on the performance
of DSM and PSM. To emphasize the effect of debiasing, we conduct experiments on both biased and unbiased
datasets. Specifically, we use two different training sets: (1) a biased dataset consisting of the first 1, 000
frames of the trajectory, and (2) an unbiased dataset created by randomly selecting 10% of the reference
data. Figure 5 (a) confirms that these datasets exhibit distinct bias characteristics. For this study, we use
the ethanol molecule as an example.
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Figure 5: The distribution of interatomic distance comparisons. (a) Distribution of interatomic distances in
the reference dataset, the randomly selected subset, and the first 1, 000 frames. (b) Comparison of DSM,
Piecewise, and Piecewise Weighted methods trained on the first 1, 000 frames. (c) Comparison of the three
methods when trained on a randomly selected 10% subset of the reference data.

Figure 5 (b) compares the sample distributions generated by DSM and PSM when trained on the first 1,000
frames. The results show that DSM mainly reflects the characteristics of the biased training data, whereas
PSM successfully corrects the bias, producing samples that better align with the unbiased distribution.
In contrast, Figure 5 (c) demonstrates that when the training data is initially unbiased, both DSM and
PSM yield accurate estimates. These findings underscore the importance of data quality in DSM training
and highlight PSM’s capability to generating samples that more accurately approximate the Boltzmann
distribution.

Amortized MD computation cost. We further compare PSM with molecular dynamics simulations
on the aspirin molecule. For MD, we adopt the QuinNet force field Wang et al. (2023), following the
original training protocol. We measure both the force field training time and the time required to generate
sufficiently long, converged trajectories (treated as the sampling time). For PSM, we train the diffusion model
for 500 epochs until convergence and measure the sampling time using the Euler discretization scheme. All
experiments are conducted on a single NVIDIA A100 GPU. Our results show that PSM completes training
in approximately 8 hours and requires only 10 minutes to generate 1,000 batches, each consisting of 1,000
time steps. In contrast, training the MD force field to a comparable accuracy takes around 24 hours, while
achieving state-of-the-art performance may require up to one week of training. Moreover, the MD simulation
phase takes about 31 hours and 18 minutes to generate 210, 000 steps—the trajectory length used in the
reference MD17 aspirin dataset. These results demonstrate that PSM offers substantially improved sampling
efficiency over MD.

5 Conclusions

In this study, we introduce Potential Score Matching (PSM), a method designed to mitigate biases in
non-Boltzmann distributions by incorporating force labels. Traditional molecular dynamics simulations are
computationally expensive. While diffusion models offer an alternative by learning a score function to
generate samples that satisfy the training data distribution, obtaining training data that accurately follows
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the Boltzmann distribution is challenging. PSM relaxes these constraints. Theoretical analysis indicates that
PSM provides training with lower variance and more accurate score estimations in the vicinity of t = 0, which
allows for a concentrated training effort around this point. This has led to the development of two novel
loss formulations: Piecewise and Piecewise Weighted losses. Empirical assessments validate the performance
of PSM over Denoising Score Matching by effectively debiasing data towards the Boltzmann distribution.
Furthermore, our research extends the application of PSM to high-dimensional real-world datasets, such as
MD22 and MD17, demonstrating its capability in handling complex molecular modeling challenges.

Additionally, flow matching has proven to be an effective method for generating molecular conformations and
predicting properties Lipman et al. (2022); Chen & Lipman (2023); Miller et al. (2024). Progress in this area
Woo & Ahn (2024); Domingo-Enrich et al. (2024) has resulted in unified frameworks that integrate diffusion
models and flow matching techniques. Considering the established relation between the velocity field and the
score function, as expressed by v(x, t) = α̇t

αt
x + γt

(
α̇t

αt
γt − γ̇t

)
s(x, t), where xt = αty1 + γty0 = αtx0 + γtε,

and y0, y1 are sampled from the noise and data distributions respectively, our PSM framework is well-
positioned for extension to flow matching. This prospective expansion is earmarked for future exploration,
while further theoretical insights and formulations for VPSDE and VESDE are delineated in Appendix D.
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A Preliminary

A.1 Diffusion Models

A diffusion model typically consists of a forward noise addition process and a reverse denoising process.
In the forward process, noise is iteratively added to the data x (at t = 0), gradually transforming the
distribution into an approximation of a Gaussian distribution at time T , independent of the initial state x0.
The reverse process then generates samples that conform to the data distribution by leveraging information
obtained from the forward process.

We introduce the Variance-Preserving Stochastic Differential Equation (VPSDE) and the Variance-Exploding
Stochastic Differential Equation (VESDE) Song et al. (2020b), summarized in the following Table 5. Here,
z is a random noise, i ∈ {1, · · · , N} is one of noising steps.
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Table 5: VESDE and VPSDE.

VESDE VPSDE

Noise addition xi = xi−1 +
√
σ2

i − σ2
i−1zi−1 xi = αix0 + σizi

SDE Formulation dxt = σ(t)dWt dxt = − 1
2βtxtdt+

√
βtdWt

Parameterization σ(t) = σmin(σmax/σmin)t βt = βmin + (βmax − βmin)t

Transition Distribution N
(
xt; x0, σ

2
min(σmax/σmin)2tI

)
N
(

xt; x0e
− 1

2

∫ t

0
βsds

, (1− e−
∫ t

0
βsds)I

)

We sample from the diffusion model follows a Predictor-Corrector (PC) scheme. The predictor step follows
the time-reversed SDE, while the corrector step applies Langevin dynamics to refine the sample. Given a
time step ∆t, the predictor step updates the sample as:

x̃t−∆t = xt − f(xt, t)∆t+ g(t)
√

∆tzt, (17)

where zt ∼ N (0, I) is Gaussian noise, and f and g are drift and diffusion coefficients. The corrector step
refines x̃t−∆t using Langevin dynamics xt−∆t = x̃t−∆t + η∇x log pt(x) +

√
2ηz′, where η is the step size, and

z′ ∼ N (0, I). This two-step process improves the quality of generated samples and enhances convergence to
the data distribution.

A.2 Equiformer-v2

A.2.1 Equivariance and Irreducible Representation

In molecular systems, molecular structures are typically represented as graph, where atomic coordinates,
atomic numbers, and bonded connections define a molecular graph. Ensuring properties such as symmetry
and equivariance in these graph representations is crucial for capturing molecular interactions accurately.

Graph representation. A molecular graph is defined as G = (V,E), where V = {v1, v2, . . . , v|V |} repre-
sents the set of atoms (nodes), and E = {eij | (i, j) ⊂ V × V } denotes the set of edges capturing atomic
interactions. The number of atoms in a molecule is denoted as N = |V |. Each node vi ∈ V is characterized
by its nuclear charge zi and 3D coordinate ri ∈ R3. Our goal is to design a generative model that learns to
generate molecular distributions while preserving the underlying chemical and spatial properties.

Graph neural networks. Graph Neural Networks (GNNs) are widely used to process graph-structured
data by propagating information across nodes and edges. At each iteration t, node features h(t)

v are updated
using a message-passing mechanism:

m(t+1)
v =

∑
u∈N (v)

ϕ(h(t)
v ,h(t)

u , evu), h(t+1)
v = ψ(h(t)

v ,m(t+1)
v ), (18)

where N (v) represents the neighboring nodes of v, evu denotes the edge feature between nodes v and u, and
ϕ(·) and ψ(·) are learnable functions, implemented as networks.

Equivariance and irreducible representations. Equivariance serves as a fundamental property in
neural networks, providing strong prior knowledge that enhances data efficiency in molecular modeling. A
function f : X → Y is equivariant under a transformation group G if, for any input x ∈ X, output y ∈ Y , and
group element g ∈ G, f (DX(g)x) = DY (g)f(x) holds, where DX(g) and DY (g) are transformation matrices
parameterized by g in X and Y . In 3D atomistic graphs, molecular structures must maintain equivariance
under the Euclidean group E(3), which includes translations, rotations, and reflections.

For the Euclidean group E(3), scalar quantities remain invariant under rotations, whereas vector quantities
transform accordingly. To enforce translation symmetry, computations are performed on relative positions.
Since rotation and inversion transformations commute, any representation of the special orthogonal group
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SO(3) can be decomposed into irreducible representations (irreps), which serve as fundamental transfor-
mation components. Equivariant neural networks leverage these irreducible representations to construct
features that remain equivariant to 3D rotations.

For probabilistic models, the equivariance property extends to probability distributions. A probability
distribution p(xt) is equivariant under the special Euclidean group SE(3) if, for any transformation Tg

corresponding to g ∈ SE(3), then p(xt) = p(Tg(xt)), and p(xt−1 | xt) = p(Tg(xt−1) | Tg(xt)). A similar
definition applies for E(3).

A.2.2 Equiformer-v2 Network

In our research, we harness the capabilities of the Equiformer-v2 network Liao et al. (2024) to maintain
SE(3)/E(3)-equivariance, a critical aspect for accurately modeling molecular configurations. This advanced
architecture builds on the principles of irreducible representations, ensuring that its operations and features
are equivariant and robust. Other works have also incorporated designs ensuring molecular invariance and
equivariance Xu et al. (2022); Shi et al. (2021); Le et al. (2022); Musaelian et al. (2023).

Building upon the Equiformer, the Equiformer-v2 introduces sophisticated equivariant graph attention mech-
anisms, supplanting standard Transformer operations with their SE(3)/E(3)-equivariant counterparts and
utilizing tensor products for higher-degree representations. Node embeddings are crafted by concatenating
channel-dimension features and applying rotations based on relative positions or edge orientations.

To enhance computational efficiency, Equiformer-v2 forgoes separate depth-wise tensor products and linear
layers in favor of a single SO(2) linear layer that processes scalar and irreps features distinctly. It encodes
edge distance information using radial basis functions, integrating them into the node embeddings.

The attention mechanisms benefit from extra normalization and separable S2 activation for improved sta-
bility. The network’s feed-forward section employs a two-layer MLP with SiLU activation. The output head
either aggregates scalar predictions or computes atom-wise forces, utilizing equivariant graph attention to
boost expressiveness and scalability.

ESCN convolution. The ESCN convolution refines equivariant tensor products by substituting conven-
tional SO(3) operations with SO(2) linear ones. Typically, SO(3) convolutions combine input irreps features
with spherical harmonics of relative positions using Clebsch-Gordan coefficients. ESCN simplifies this by
aligning the relative position vector with a fixed axis through rotation, reducing dependencies and limiting
interactions to cases where mf = 0, which streamlines computations while preserving equivariance.

Attention re-normalization. To maintain stability at higher Lmax, we introduce an additional layer
normalization step before non-linear transformations, ensuring well-scaled scalar features f (0)

ij . Attention
weights are computed through a leaky ReLU and a linear layer, promoting numerical stability in operations
like softmax, which aids in training convergence and model robustness.

Separable S2 activation The separable S2 activation processes degree-0 and higher-degree features sepa-
rately. Degree-0 vectors are partially activated with SiLU, while the remainder is blended with higher-degree
vectors for S2 activation. This selective processing minimizes cross-degree interference, stabilizes gradients,
and enhances expressiveness, particularly in FFNs.

Separable layer normalization. Separable layer normalization (SLN) extends traditional equivariant
normalization by independently normalizing degree-0 and higher-degree features. By computing their means
and standard deviations separately, SLN preserves inter-degree dynamics, enhancing stability and expres-
siveness, especially in high Lmax scenarios.

Our network architecture is predicated on Equiformer-v2, which yields both one-dimensional energy and
three-dimensional force terms. For the ϵ-net output, we utilize only the energy head. Furthermore, we adapt
the model to consider time as an additional input feature to align with the diffusion model’s time-dependent
noise addition.
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B Derivation of Loss Function

B.1 Proof of Theorem 1

Proof. Assume that p(x0) ∝ e−E/(kBT ), the derivation of the loss function follows from the transformation
of scores using the Gaussian transition probability density function and the integration by parts. Since
∇xt

p(xt|x0) = 1
αt
∇x0p(xt|x0),

∇xt
log p(xt) =

∇xt

∫
p(x0)p(xt|x0)dx0

p(xt)
=

∫
p(x0)∇xt

(
e

− ∥xt−αtx0∥2

2σ2
t

)
dx0

p(xt)

=

∫
p(x0)

(
− 1

αt
∇x0e

− ∥xt−αtx0∥2

2σ2
t

)
dx0

p(xt)
=
∫ 1

αt
(∇x0p(x0)) e

− ∥xt−αtx0∥2

2σ2
t dx0

p(xt)

=
∫ 1
αt

(p(x0)∇x0 log p(x0)) 1
p(xt)

e
− ∥xt−αtx0∥2

2σ2
t dx0

=
∫ 1
αt
p(x0|xt)∇x0 log p(x0)dx0

= 1
αt

Ex0|xt

[
−∇x0E
kBT

]
= 1
αt

Ex0|xt

[
F

kBT

]
,

(19)

where E is the energy function, and F represents the force derived from −∇x0E . Specifically, for the VESDE,
αt = 1, then ∇xt log p(xt) = Ex0|xt

[
−∇x0 E

kBT

]
.

For simplicity, let kBT = 1. Combining these results, the potential score matching loss can be derived as:

Lscore - model = Et∼U(0,1)Ext∼p(xt|x0)Ex0∥sθ(xt, t)− (− 1
αt
∇x0E)∥2 (20)

= Et∼U(0,1)Ext∼p(xt|x0)Ex0∥sθ(xt, t)−
1
αt

F ∥2. (21)

The reason why ∇xt
log p(xt) = Ex0|xt

[−∇x0E ] (objective equation 19) is the solution of the loss function
(equation 20) lies in Theorem 3. According to the above expansion, label ∇xt log p(xt) can be rewritten as

∇xt log p(xt) =
∇xt

∫
p(x0)p(xt|x0)dx0

p(xt)
=

∫
p(x0)(−xt−x0

σ2
t

)p(xt|x0)dx0

p(xt)

=
∫
p(x0|xt)(−

xt − x0

σ2
t

)dx0 = Ex0|xt

[
x0 − xt

σ2
t

]
,

(22)

which is consistent with the writing of “x0-model”. Similarly, we can rewrite the loss function with a network
representing x0.

Ex0|xt

[
x0 − xt

σ2
t

+∇x0E(x0)
]

= Ex0|xt

[
x0 − xt + σ2

t∇x0E(x0)
σ2

t

]
= Ex0|xt

[
x0 −Dθ

σ2
t

]
. (23)

Lx0−model = Et∼U(0,1)Ext∼p(xt|x0)Ex0∥Dθ − xt − σ2
t∇x0E(x0)∥2

2 . (24)
Theorem 3. Let X be an integrable random variable. Then for each σ-algebra V and Y ∈ V, Z = E(X|V)
solves the least square problem Evans (2012)

∥Z −X∥ = min
Y ∈V
∥Y −X∥ ,

where ∥Y ∥ =
(∫
Y 2dP

) 1
2 .
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To prove the theorem, we first introduce a lemma.
Lemma 1. If Y is V-measurable, and f is a measurable function in the sense that its domain and codomain
are appropriately aligned with the σ-algebras, then f(Y ) will also be V-measurable Evans (2018).

Proof of Theorem 3. Let X be an integrable random variable, V be a σ-algebra, and Y ∈ V. We need
to show that Z = E(X|V) minimizes the least square problem |Z −X| = minY ∈V |Y −X|.

First, recall the property of conditional expectation: E(Z|V) = Z for any Z ∈ V. Consider the difference
X − Y for any Y ∈ V. We can write this difference as:

X − Y = (X − E(X|V)) + (E(X|V)− Y )

Note that E(X|V) ∈ V, so the second term (E(X|V)−Y ) ∈ V. Using the property of conditional expectation,
we have E(E(X|V)− Y |V) = E(X|V)− Y .

Now, let’s calculate the conditional expectation of the product of (X − E(X|V)) and (E(X|V)− Y ):

E((X − E(X|V))(E(X|V)− Y )|V) = E((X − E(X|V))(E(X|V)− Y )) = 0

The last equality follows from the fact that the product of the two terms is uncorrelated, and their expectation
is zero. This implies that (X − E(X|V)) and (E(X|V)− Y ) are orthogonal.

Now, we can use the Pythagorean theorem for Hilbert spaces:

|X − Y |2 = |X − E(X|V)|2 + |E(X|V)− Y |2

Notice that the right-hand side is minimized when |E(X|V) − Y |2 is minimized. This is true because
|X − E(X|V)|2 is constant and non-negative. Therefore, the least square problem is minimized when Y =
E(X|V), i.e., Z = E(X|V).

Hence, we have proved that Z = E(X|V) solves the least square problem:

|Z −X| = min
Y ∈V
|Y −X| .

B.2 Relationships Among Three Diffusion Losses

In this section, we give the forms of three commonly used losses, ϵ-loss, s-loss and x0-loss in the PSM setting.
Assume α = 1 and kBT = 1 for simplicity, since

∇xt
log p(xt) =

∇xt

∫
p(x0)p(xt|x0)dx0

p(xt)

=

∫
p(x0)

(
−∇x0e

− ∥xt−αtx0∥2

2σ2
t

)
dx0

p(xt)
=
∫
p(x0|xt)∇x0 log p(x0)dx0 = Ex0|xt

[
−∇x0E
kBT

]
(a)

=

∫
p(x0)(−xt−x0

σ2
t

)p(xt|x0)dx0

p(xt)
=
∫
p(x0|xt)(−

xt − x0

σ2
t

)dx0 = Ex0|xt

[
x0 − xt

σ2
t

]
(b) ,

(25)
where E is the energy of x0. When using a score network sθ to learn the gradient of log probability
∇xt

log p(xt), the s-loss can be derived by (a) that

Lscore - model = Et∼U(0,1)Ext∼p(xt|x0)Ex0∥sθ(xt, t)− (−∇x0E)∥2. (26)
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and accordingly, the ϵ-loss is

Lϵ - model = Et∼U(0,1)Ext∼p(xt|x0)Ex0∥ϵθ(xt, t)− σt∇x0E∥2 , (27)

if we take σt, which is independent of xt and θ, out of the norm. Similarly by (b), the formula
Ex0|xt

[
x0−xt

σ2
t

+∇x0E(x0)
]

is expected to be zero, as the optimal score function satisfies that ∇xt
log p(xt) =

Ex0|xt
[−∇x0E(x0)]. Since Ex0|xt

[
x0−xt

σ2
t

+∇x0E(x0)
]

= Ex0|xt

[
x0−xt+σ2

t ∇x0 E(x0)
σ2

t

]
, we can use the loss

function with a network representing x0, Dθ, to learn the diffusion.

Lx0−model = Et∼U(0,1)Ext∼p(xt|x0)Ex0∥Dθ − xt − σ2
t∇x0E(x0)∥2

2 . (28)

Therefore, ϵ-loss and x0-loss are different objects, but are essentially derived from the same formula.

B.3 Proof of Theorem 2

Proof. Let I1 be the formula on the left side Eq(x0|xt) [∇ log p (x0)] − Ep(x0|xt) [∇ log p (x0)], and I2 be the
right one, Eq(x0|xt) [∇ log q (x0)]− Ep(x0|xt) [∇ log p (x0)].

I1 =
∫
∇ log p (x0) (q (x0 | xt)− p (x0 | xt)) dx0 ,

I2 =
∫

(∇ log q (x0) q (x0 | xt)−∇ log p (x0) p (x0 | xt)) dx0 ,

I3 =
∫

(∇ log q (x0)−∇ log p (x0)) q (x0 | xt) dx0 .

(29)

Then I2 = I1 + I3. We only need to prove that for t near 0,

∥I1∥2
2 =

∥∥∥∥∫ ∇ log p (x0) (q (x0 | xt)− p (x0 | xt)) dx0

∥∥∥∥2

2

⩽

∥∥∥∥∫ (∇ log q (x0) q (x0 | xt)−∇ log p (x0) p (x0 | xt)) dx0

∥∥∥∥2

2
= ∥I2∥2

2 .

(30)

By ∥I2∥2
2 = ∥I3 + I1∥2

2 = ∥I3∥2
2 + ∥I1∥2

2 + 2I⊤
1 · I3, we need to explain that I⊤

3 (I3 + 2I1) ⩾ 0 .

For simplicity, we assume the reverse SDE satisfies that dxt = −h(t)∇xt
log p (xt) dt+

√
2h(t)dW̃t. Here

h(t) = σ2
min( σmax

σmin
)2t, and W̃t is a Brownian motion. For function f, f : [0, 1] × Rd → R, the Ito formula of

f (xt) is expanded as:

df (xt) =f ′ (xt) dxt + 1
2f

′′ (xt) (dxt)2

=f ′ (xt)
[
−h(t)∇xt log p (xt) dt+

√
2h(t)dW̃t

]
+ 1

2f
′′ (xt) · 2h(t)dt

= [−f ′ (xt)h(t)∇xt log p (xt) + f ′′ (xt)h(t)] dt+
√

2h(t)f ′ (xt) dW̃t

For reverse transition p (xt | xs), where t < s, assume that p (xt | xs) in the form of N
(
g (xs) , β2

t,s

)
, g(xs)

is a function of xs, and βt,s is a time function related to t, s. Then

dp (xt | xs) =
[
−xt − g (xs)

β2
t,s

p (xt | xs)h(t)∇xt log p (xt)

+
(
− 1
β2

t,s

p (xt | xs) +
(

xt − g (xs)
β2

t,s

)2
p (xt | xs)

)
h(t)

]
dt+

(
−xt − g (xs)

β2
t,s

√
2h(t)dW̃t

)
.
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Therefore, ∂p(xt|xs)
∂t = p (xt | xs)h(t)

[
−xt−g(xs)

β2
t,s

∇xt log p (xt)− 1
β2

t,s
+
(

xt−g(xs)
β2

t,s

)2
]
, and

p (x0 | xs) = p (xs | xs)−

p (x0 | xs)− h(0)

−x0 − g (xs)
β2

0,s

∇x0 log p (x0)− 1
β2

0,s

+
(

x0 − g (xs)
β2

0,s

)2
 · s+O

(
s2)

= p (xs)−
[
h(0)p (x0 | xs) 1

β2
0,s

[
(g (xs)− x0)∇x0 log p (x0)− 1 +

(
(x0 − g (xs)

β0,s

)2
]]
· s+O(s2) .

Let C1 (x0,xs) = −h(0)p (x0 | xs) 1
β2

0,s
·
(

(g (xs)− x0)∇x0 log p (x0)− 1 +
(

x0−g(xs)
β0,s

)2
)

, then p (x0|xs) =

p (xs) + C1 (x0,xs) · s+O
(
s2).

I3 =
∫

(∇ log q (x0)−∇ log p (x0))
[
p (xt) + C1 (x0,xt) t+O

(
t2
)]
dx0

= p (xt)
∫

(∇ log q (x0)−∇ log p (x0)) dx0 + t ·
∫

(∇ log q (x0)−∇ log p (x0)) · C1 (x0,xt) dx0 +O
(
t2
)
,

where C2 (x0,xs) = −h(0)q (x0 | xs) 1
β2

0,s
·
(

(g (xs)− x0)∇x0 log q (x0)− 1 +
(

x0−g(xs)
β0,s

)2
)

, then

p (x0|xs) = p (xs) + C1 (x0,xs) · s+O
(
s2).

We then expand I1 :=
∫
∇x0 log p (x0) (q (x0 | xt)− p (x0 | xt)) dx0. From above, we know that,

I1 =
∫
∇ log p (x0)

[
q (xt) + C2 (x0,xt) t− p (xt)− C1 (x0,xt) t+O

(
t2
)]

= (q (xt)− p (xt))
∫
∇ log p (x0) dx0 +

∫
∇ log p (x0) (C2 (x0,xt)− C1 (x0) xt) dx0 +O

(
t2
)
.

2I⊤
3 I1 = 2p (xt) · (q (xt)− p (xt))

(∫
(∇ log q (x0)−∇ log p (x0)) dx0

)⊤(∫
∇ log p (x0) dx0

)
+ 2t (q (xt)− p (xt))

(∫
C1 (x0,xt) (∇ log q (x0)−∇ log p (x0)) dx0

)⊤

·
(∫
∇ log p (x0) dx0

)
+ 2t p (xt)

(∫
(C2 (x0,xt)− C1 (x0,xt))∇ log p (x0) dx0

)⊤

·
(∫

(∇ log q (x0)−∇ log p (x0)) dx0

)
+ 2t2 ·

(∫
(∇ log q (x0)−∇ log p (x0)) · C1 (x0,xt) dx0

)⊤

·
(∫
∇ log p (x0) (C2 (x0,xt)− C1 (x0,xt)) dx0

)
+O

(
t3
)

Since
∫
∇ log p (x0) dx0 = 0,

2I⊤
3 I1 = 2t2 ·

(∫
(∇ log q (x0)−∇ log p (x0)) · C1 (x0,xt) dx0

)⊤

·
(∫
∇ log p (x0) (C2 (x0,xt)− C1 (x0,xt)) dx0

)
+O

(
t3
)

Consider the second term of the last equality,

C2 (x0,xt)− C1 (x0,xt) = h(0) 1
β2

0,s

[(g (xs)− x0) (p (x0 | xs)∇x0 log p (x0)− q (x0 | xs)∇x0 log q (x0))]

+ h(0) 1
β2

0,s

[(
−1 +

(
x0 − g (xs)

β0,s

)2
)

(p (x0 | xs)− q (x0 | xs))
]
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Then∫
∇ log p (x0) − (C2 (x0, xt) − C1 (x0, xt)) dx0 = h(0) ·

∫ (
x0 − g (xt)

β2
0,t

)2

· (p (x0 | xt) − q (x0|xt)) · ∇ log p (x0) dx0

= h(0) ·
∫

−
(

x0 − g (xt)
β2

0,t

)2

· p (xt|x0)
(

p (x0)
p (xt)

− q (x0)
q (xt)

)
∇ log p (x0) dx0

=
(i)

O(t) · h(0)
∫ (

x0 − g (xt)
β2

0,t

)2

p (xt | x0) ∇ log p (x0) dx0

The (i) above is the assumption p(x0)
p(xt) ≈ 1, which is result from that for p(xt|x0) = N (x0, σ

2
t I), where σt =

σmin

(
σmax
σmin

)t

, and expanding p(xt) around x0 is p(xt) = p(x0)+ 1
2σ

2
0∇2p(x0)t+O(t2) . Hence, p(x0)

p(xt) = O(t).
Then

2I⊤
3 I1 = 2t3

(∫
C1 (x0, xt) (∇ log q − ∇ log p)dx0

)⊤

·

(
h(0)

∫ (
x0 − g(xt)

β2
0,t

)2

p (xt | x0) ∇ log p (x0) dx0

)
.

Therefore,

I⊤
3 (I3 + 2I1) = IT

3 I3 +O(t3)

=
(∫

(∇ log q (x0)−∇ log p (x0)) q (x0 | xt) dx0

)T (∫
(∇ log q (x0)−∇ log p (x0)) q (x0 | xt) dx0

)
+O(t3) .

If t is small, q(x0|xt) ≈ δ(x0 − f(xt)), where f is a function of xt. Since ∇ log q (x0) ̸= ∇ log p (x0), then
I⊤

3 (I3 + 2I1) > 0 when t is small.

B.4 Singularity and Variance Problem

This section explains the role of PSM in the neighborhood of t = 0 from two aspects: (1) PSM has a smaller
training variance near 0 and the training is more stable; (2) PSM can alleviate the problem that the Lipschitz
constant of DSM is too large at 0.

(1) Variance of PSM. Let X be a sample from the data distribution, and let Y be a sample from the
noisy process xt = αtx0 + σtϵ.
Lemma 2. When t is close to zero, the variance of the DSM target satisfies VarX|Y

(
∇ log p(Y |X)

)
≫ 0 if

the noise schedule close to 0 near t = 0, and the variance of the PSM target V arX|Y (∇ log p(X)) is smaller
than DSM when t near 0.

Proof. Let X is the sample from the data distribution and Y is the noised data, Y = αX + σtε, we can
prove the variance of PSM target V arX|Y (∇ log p(X)) is smaller than the DSM target V arX|Y (∇ log p(y|x))
near t = 0 while larger when t is larger. The proof strategy here is similar to that of TSM Bortoli et al.
(2024); however, their work only considers the Gaussian case, whereas we address more complex distributions.
Nevertheless, the corresponding Boltzmann distribution or data distribution can be approximated by mixture
Gaussian distribution, and thus it suffices to establish the desired properties under the Gaussian setting for
simplicity. Let d be the dimension of the problem. Assume that pX(x) = N

(
µ, σ2

tar
)
, and the conditional

probability
pY |X(y | x) = N

(
αtx, σ

2
t

)
. (31)

By convolution, pY (y) = N
(
αtE(X), α2

tσ
2
tar + σ2

t

)
. Then, by Bayes’ formula, pX|Y (x | y) = PX (x)·pY |X (y)

PY (y) ∝
N
(

µ(1),σ(1)2)
PY (y) .

pX(x) · pY |X(y | x) ∝ exp
{
− (x− µ)2

2σ2
tar

− (y − αtx)2

2σ2
t

}
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= exp
{

1
2σ2

t σ
2
tar

[
σ2

t

(
x2 + µ2 − µx

)
+ σ2

tar
(
y2 + α2

tx
2 − 2αtxy

)]}
= exp

{
1

2σ2
t σ

2
tar

[(
α2

tσ
2
tar + σ2

t

)
x2 − 2

(
µσ2

t + αtyσ
2
tar
)

x + µ2σ2
t + y2σ2

tar

]
.

Hence, σ(1)2 = σ2
t σ2

tar
α2

t σ2
tar+σ2

t
, and

pX|Y (x | y) =
N
(
µ(1), σ(1))2

)
PY (y) = exp

{
−
(
x− µ(1))2

2σ(1)2 + (y − αtE(x))2

2 (σ2
t + αtσ2

tar)

}

= exp
{
− 1

2(σ(1))2

[(
x− µ(1)

)2
− σ(1))2

σ2
t + αtσ2

tar
(y − αtE(x))2

]}

= exp
{
− 1

2(σ(1))2

[(
x− C

(
µ(1), σ(1), µ, αt, σ

2
tar,E(x)

))2
]}

,

where C(·) is a constant decided by ·. Therefore, VarX|Y(x) = σ(1)2 = σ2
t σ2

tar
α2

t σ2
tar+σ2

t
. Therefore,

d∑
i=1

VarX|Y
(
∇i log pY |X(y | X = x)

)
=

d∑
i=1

VarX|Y

(
αtX − y
σt

2

)
=

d∑
i=1

α2
t

σ4
t

VarX|Y (X)

=
d∑

i=1
αt
α2

t

σ2
t

σ2
tar

α2
tσ

2
tar + σ2

t

= dα2
t

(
σtar

σt

)2 1
α2

tσ
2
tar + σ2

t

,

(32)

and
d∑

i=1
VarX|Y (∇i log p(x)) =

d∑
i=1

VarX|Y

(
x− µ
σ2

tar

)
= d

α2
t

(
σt

σtar

)2 1
α2

tσ
2
tar + σ2

t

. (33)

(2) The Lipschitz problem of DSM.
Lemma 3. Given the forward process xt = αtx0 + σtϵ, if the noise schedule satisfies σt → 0 as t→ 0, then
the Lipschitz constant of the neural network ϵθ satisfies limt→0 sup

∥∥∥∂ϵθ(xt,t)
∂t

∥∥∥
2
→∞.

Proof. By ϵθ = σt · sθ ≈ σt · ∇x log p (xt) and the chain rule, ∂ϵθ

∂t = −dσt

dt ∇x log p (xt) − ∂∇x log p(xt)
∂t σt. We

assume that the ∇x log p (xt) is smooth. Since xt = αtx0 + σtϵ,

(i) VESDE: αt = 1, σt = σ0

(
σ1
σ0

)t

, where σ0 = σmin, σ1 = σmax, then dσt

dt = σ0

(
σ1
σ0

)t

· ln σ1
σ0

= σt · ln σ1
σ0

.
Therefore, dσt

dt ∇x log p (xt) has the order of O(ln σ1
σ0
·z), where z is the random noise. As Song et al. (2020b)

mentioned that, σ0 approaches 0 theoretically, but in practice, σ0 = 0.01 is taken to avoid singular values.

(ii) VPSDE: αt=e
− 1

2

∫ t

0
βsds , σt =

√
1− e−

∫ t

0
βsdt, then dσt

dt = −βt

(
−e−

∫ t

0
βsds

)(
1− e−

∫ t

0
βsds

)− 1
2

=

βte
−
∫ t

0
βsds√

1−e
−
∫ t

0
βsds

→ +∞ if t→ 0+.

It shows the Lipschitz singularity property.

In summary, our theoretical analysis (Lemma 2, Lemma 3 and Theorem 2) demonstrates that PSM reduces
variance and corrects estimation bias in the small-t regime, providing strong motivation for its use when t
is close to zero.
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C More Experimental Details

Dataset and settings. The MD17 dataset and the MD22 dataset can be downloaded from http://
quantum-machine.org/gdml/data/npz, the LJ13 and LJ55 data are from https://osf.io/srqg7/files/
osfstorage. Hyperparameters for experiments are recorded in Table 6 and 7.

Table 6: Hyperparameters for different datasets with biased trainset

Dataset Data Split Batch Size Max Radius of
(train, val, test) (train, val) Epochs Graph

LJ13 First 1k, 0.1, remaining (64, 64) 2000 4
LJ55 First 1k, 0.1, remaining (64, 64) 2000 5
MD17 First 5k, 0.1, remaining (64, 64) 1000 5
MD22 (Dw nanotube) First 5k, 0.1, remaining (8, 8) 3000 4

MD22 (others) First 5k, 0.1, remaining (16, 16) 500

7 (AT-AT)
7 (AT-AT-CG-CG)
6 (Ac-Ala3-NHMe)

6 (Docosahexaenoic Acid)
6 (Stachyose, Buckyballcatcher)

Additional Settings

Learning rate: 0.0002 Lr scheduler: Cosine Seed: 42
Optimizer: Adam Weight decay: 5 × 10−7

All diffusion parameters: σmin = 0.1, σmax = 5, time weight function λ(t) = 1
Sampling timesteps: 1, 000 Sampling method: Predict-corrector sampler

Table 7: Hyperparameters compared with previous work in Table 2.

Dataset Data Split Batch Size Max Epochs Radius of Graph Noise Schedule
(train, val, test) (train, val)

LJ13 0.1, 0.1, remaining (64, 64) 5000 4 σmin = 0.01, σmax = 8
LJ55 0.1, 0.1, remaining (64, 64) 5000 5 σmin = 0.01, σmax = 4

Additional Settings are the same as before in Table 6.

Toy models in 1D and 2D. We conduct experiments using PSM alone in 1D and 2D toy distributions,
as shown in Figure 6, where p(x) = e−5∥x∥2+∥x∥4 and the according force label is (−4∥x∥2

2 +10)x. It indicates
that PSM and Piecewise perform comparably to DSM in 1D and 2D case, and it can be seen that Piecwise
and PSM can better learn the sparse area in the middle. Previous work also addresses the challenges for
learning high-dimensional molecular problems using only an energy label or log-density gradient Woo & Ahn
(2024); Bortoli et al. (2024). The constraint of force labels F become weak due to the projection of time-zero
information onto highly noisy xt for large t is smaller, which is unstable for dynamical learning. Refs Yang
et al. (2023) and Bortoli et al. (2024) have shown that DSM suffers from high variance and singularities near
t = 0, and encouragingly, our analysis further demonstrates that PSM achieves lower variance and corrects
bias in the small-t regime (Lemma 2 and Theorem 2), motivating its use specifically for small t. Therefore,
for high dimensional molecular system, we use PSM in small t range, and use DSM for large t.

Lennard-Jones potential. Here we additionally supplement the LJ potential with biased data training
to obtain the energy comparisons in Figure 7.
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Figure 6: Comparisons of (a) DSM, (b) Piecewise, (c) PSM in one-dimensional (the second row) and in
two-dimensional (the third row) examples. The first row is the ground truth for 1d and 2d cases where the
exact density function is p(x) = e−5∥x∥2+∥x∥4 .
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Figure 7: Comparisons of energy for (a) LJ-13 and (b) LJ-55 potential training with first 1, 000 data.

D Relationship with Flow Matching

Flow matching is a powerful tool for generating molecular conformations and predicting molecular properties
Lipman et al. (2022); Chen & Lipman (2023); Miller et al. (2024). It enables faster training and sampling
while achieving superior generalization performance. Motivated by recent advancements Woo & Ahn (2024);
Domingo-Enrich et al. (2024), unified frameworks have been developed to describe both diffusion models
and flow matching methods comprehensively.

Let y0 and y1 be samples from the noise distribution and the data distribution, respectively, in the flow
matching framework. As demonstrated in Domingo-Enrich et al. (2024), the relationship between the velocity
field and the score function is given by:

v(x, t) = α̇t

αt
x + γt

(
α̇t

αt
γt − γ̇t

)
s(x, t),

where xt = αty1 + γty0 = αtx0 + γtε. Based on this relationship, our method can be extended to flow
matching. In our setting, the coefficients are defined as follows:

VE : αt = 1, γt = σt = σ0

(
σ1

σ0

)t

, VP : αt = e
− 1

2

∫ t

0
βsds

, γt =
(

1− e−
∫ t

0
βsds

) 1
2

. (34)

Therefore, the vector field v(x, t) = γtγ̇ts(x, t) = σ2
0

(
σ1
σ0

)2t

ln
(

σ1
σ0

)
s(x, t) for VESDE, and v(x, t) =

− 1
2βtx + γt

(
− 1

2βtγt − γ̇t

)
s(x, t) for VPSDE. Building on the interplay between energy and the score func-

tion, we propose to investigate an energy-informed flow matching method. This energy-based extension will
form the basis of our future research endeavors.
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