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Abstract

Recent advancements in multi-turn voice in-001
teraction models have improved user-model002
communication. However, while closed-source003
models effectively retain and recall past utter-004
ances, whether open-source models share this005
ability remains unexplored. To fill this gap, we006
systematically evaluate how well open-source007
interaction models utilize past utterances using008
ContextDialog, a benchmark we proposed for009
this purpose. Our findings show that speech-010
based models have more difficulty than text-011
based ones, especially when recalling infor-012
mation conveyed in speech, and even with013
retrieval-augmented generation, models still014
struggle with questions about past utterances.015
These insights highlight key limitations in open-016
source models and suggest ways to improve017
memory retention and retrieval robustness.1018

1 Introduction019

Voice assistants such as Apple Siri and Amazon020

Alexa have become an irreplaceable element of021

daily life, enabling natural and efficient speech-022

based interactions. In early systems, a cascaded023

pipeline is employed where speech is first tran-024

scribed using automatic speech recognition (ASR),025

then processed as text, and finally converted back to026

speech via text-to-speech (TTS) (Lin et al., 2024b).027

With the advent of large language models (LLMs)028

(Brown et al., 2020; Llama Team, 2024), how-029

ever, the research community has shifted greatly030

towards end-to-end approaches. These models inte-031

grate ASR, text processing, and TTS into a unified032

multimodal framework (Zhang et al., 2023), which033

not only reduces latency (Xie and Wu, 2024a) but034

also better preserves the richness of vocal cues035

(Kim et al., 2024). In line with this trend, GPT-036

4o (OpenAI, 2024a) has demonstrated impressive037

capabilities by processing visual, speech, and text038

1ContextDialog: https://huggingface.co/datasets/Context
Dialog/ContextDialog

data in an end-to-end manner, where various voice 039

interaction models, datasets, and benchmarks have 040

rapidly emerged alongside. (Cheng et al., 2025a,b; 041

Fang et al., 2025; Xie and Wu, 2024b). 042

Despite these advances, most current models 043

excel only in single-turn interactions. In practi- 044

cal applications, however, users engage in multi- 045

turn dialogs where a one-off response is insuffi- 046

cient. Specifically, models must continuously retain 047

and leverage contextual information from previous 048

turns. For example, Gemini 2.0 (Google DeepMind, 049

2024) demonstrates the ability to remember pre- 050

ceding details—for instance when a user provides 051

an apartment door code during interaction and in- 052

quires about it later—thereby showcasing robust 053

context-maintenance. Notably, other closed-source 054

solutions, such as OpenAI’s Advanced Voice Mode 055

(OpenAI, 2024), have also showcased similar capa- 056

bilities by referencing past interactions. 057

In parallel, the open-source community has also 058

intensified its efforts to develop voice interaction 059

models that support multi-round communications 060

(Défossez et al., 2024; Yao et al., 2024; Zeng et al., 061

2024). Typically, these models take speech as input 062

and generate both text and speech outputs, rather 063

than producing spoken responses alone, to leverage 064

the strengths of pre-trained LLMs and ensure co- 065

herent, multi-turn responses. However, it remains 066

unclear whether current open-source systems can 067

effectively retain and utilize long-range interaction 068

histories. Furthermore, there are no benchmarks 069

that explicitly require leveraging dialog history to 070

generate responses. 071

In this work, we systematically investigate the 072

ability of open-source voice interaction models to 073

maintain and utilize conversational context through 074

two key experiments. We evaluate (1) whether mod- 075

els can recall and generate spoken responses based 076

on previous dialog and (2) their robustness in incor- 077

porating externally retrieved utterances. To support 078

this evaluation, we introduce ContextDialog—a 079
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speech-to-speech benchmark that focus on assess-080

ing recall via spoken question-answer (QA) pairs081

derived from existing spoken dialogs, prompting082

one speaker to reference earlier information.083

Our findings reveal that open-source models084

struggle with past speech in two key aspects. Per-085

formance gap with text-based systems – Speech086

models generally perform worse than their text-087

based counterparts, and Modality-based recall088

gap – Within speech models, recalling speech-089

based information is less accurate than retrieving090

text, likely due to weaker speech processing capa-091

bilities. Additionally, our investigation of retrieval-092

augmented generation (RAG) shows that it fails to093

compensate for the model’s inability to recall past094

information. We identify a major challenge: Sen-095

sitivity to retrieval errors – Models are highly096

susceptible to retrieval mistakes, leading to un-097

changed or even degraded performance. Through098

these findings, we highlight the challenges mod-099

els face in processing past conversational context100

and their sensitivity to noise in retrieved informa-101

tion, drawing attention to a fundamental, yet often102

overlooked, capability within the open-source com-103

munity. Our contributions are as follows:104

• We introduce ContextDialog, a benchmark de-105

signed to evaluate the models’ ability to utilize106

dialog history in multi-turn conversations.2107

• We show that most open-source models strug-108

gle with recalling past dialogs and fail to effec-109

tively incorporate retrieved information, even110

when augmented with external retriever.111

• Through extensive evaluation and analysis,112

we uncover overlooked limitations in current113

models that restrict their applicability and pro-114

pose directions for future improvements.115

2 Related Works116

Voice Interaction Models Early voice interaction117

models follow a cascaded approach (Lin et al.,118

2024b), transcribing speech into text, processing119

the transcription, and then synthesizing the out-120

put speech. Recently, end-to-end pipelines have121

emerged, performing these steps within a single122

model (Zhang et al., 2023). Although some mod-123

els generate spoken responses without relying on124

text (Nguyen et al., 2023), the inherent length and125

data scarcity of speech hinder semantic modeling126

2Project Page: https://contextdialog.github.io/

(Défossez et al., 2024). Recent approaches integrate 127

text generation within speech modeling to mitigate 128

such problem, leveraging pre-trained LLMs by in- 129

corporating text as an intermediate representation 130

(Kim et al., 2024; Zhang et al., 2023), generating it 131

alongside speech (Fang et al., 2025), or interleaving 132

it with speech tokens (Zeng et al., 2024). 133

Many prior works focus on single-turn interac- 134

tion (Fang et al., 2025; Kim et al., 2024; Xie and 135

Wu, 2024a,b; Zeng et al., 2025; Zhang et al., 2023; 136

Zhao et al., 2024). As an extension of these stud- 137

ies, multi-round voice interaction models have also 138

emerged (Chen et al., 2024c, 2025; Défossez et al., 139

2024; Fu et al., 2025; Li et al., 2025; Mai and 140

Carson-Berndsen, 2025; Mitsui et al., 2024; Park 141

et al., 2024; Veluri et al., 2024; Wang et al., 2024c; 142

Yao et al., 2024; Zeng et al., 2024; Zhang et al., 143

2024, 2025; Zhong et al., 2024). However, whether 144

these models can effectively handle past conver- 145

sation history in real-world multi-turn dialog sce- 146

narios remains unexplored. For models to function 147

as effective voice assistants, it is crucial to assess 148

their ability to retain and leverage past utterances 149

to generate contextually appropriate responses. 150

Benchmarks Numerous datasets and bench- 151

marks for audio foundation models have emerged 152

(Sakshi et al., 2025; Wang et al., 2025; Yang 153

et al., 2024c), particularly for voice interaction 154

models (Chen et al., 2024b; Fang et al., 2025; Park 155

et al., 2024; Xie and Wu, 2024a). For example, in 156

task-oriented spoken dialogs, benchmarks assess 157

a model’s ability to recognize entities and dialog 158

states from past utterances (Henderson et al., 2014; 159

Si et al., 2023; Spithourakis et al., 2022), while 160

in open-domain dialogs, they focus on modeling 161

and evaluating response coherence (Busso et al., 162

2008; Cieri et al., 2004; Cheng et al., 2025a; Park 163

et al., 2024). Beyond semantic relevance, recent 164

works propose benchmarks targeting non-verbal 165

components crucial for voice interaction models, 166

such as gender, emotion, and background noise 167

(Ao et al., 2024; Chen et al., 2024d; Cheng et al., 168

2025b). Unlike existing benchmarks that evaluate 169

multi-turn semantics without ensuring past infor- 170

mation is necessary for responses, ContextDialog 171

explicitly requires models to retrieve and utilize 172

relevant past utterances, enabling a systematic as- 173

sessment of recall ability. 174

Retrieval in Voice Interaction Model With ad- 175

vancements in RAG techniques in natural language 176

processing (NLP) (Izacard et al., 2023; Lewis et al., 177

2020), efforts to integrate RAG into spoken dialog 178
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Multi-Round
Spoken Dialog

Hi! So do you like music? I love rock 
music and well many other genre's.

Yes, I'm the same! I love music....

…

…

Stage 1. 
Text QA 

GPT-4o with
Generation

Prompt

O1-mini with
Validation

Prompt

Stage 2. 
Spoken QA 

Spoken Question and Answer 
Generation with Speaker-Adaptive TTS

Automatic and Human Verification for 
Pronunciation Errors

What genres of music did I say I liked?

You said you like rock music 
and many other genres!

Figure 1: Overview of the ContextDialog generation process. Past-recall QA pairs are first generated and validated
(Section 3.1), then converted to speech via adaptive TTS and verified both automatically and manually (Section 3.2).

models have emerged (Lin et al., 2024a; Min et al.,179

2025; Wang et al., 2024a). Prior works have pri-180

marily focused on task-oriented dialog for entity181

extraction (Wang et al., 2024a) or spoken question182

answering (Lin et al., 2024a; Min et al., 2025), re-183

trieving information from long speech documents184

(Lee et al., 2018). In contrast, we focus on multi-185

turn voice interactions, examining whether rele-186

vant data retrieved via an external module can be187

effectively utilized in the generation, specifically188

tailored for recent open-source interaction models.189

3 ContextDialog190

We propose ContextDialog, a comprehensive191

benchmark designed to evaluate a voice interac-192

tion model’s ability to engage in, retain, and lever-193

age relevant information throughout multi-turn con-194

versations, reflecting real-world scenarios where195

people often forget and revisit past exchanges. Con-196

textDialog is constructed using MultiDialog (Park197

et al., 2024), a spoken dialog corpus featuring con-198

versations between two speakers, comprising ap-199

proximately 340 hours of data with at least 10 turns200

per conversation from 12 speakers. We use the201

test_freq and test_rare splits from MultiDi-202

alog, consisting of 450 and 381 spoken dialogs,203

respectively. Some data are filtered during genera-204

tion and validation, with the final statistics of Con-205

textDialog shown in Table 1 and the data generation206

pipeline illustrated in Figure 1.207

3.1 Text Question-Answer Generation208

We first construct a dataset of context-recall QA209

pairs using gpt-4o. Given the transcripts of MultiDi-210

alog, the model is prompted to generate questions211

and answers based solely on information that ap-212

peared only once in the conversation. To ensure213

diversity and broad applicability, we generate ques-214

tions based on both user and system utterances, se-215

Statistics test_freq test_rare

Dialog
History

# dialogs 363 290
max turn 16 24
min turn 10 10
avg turn 10.57 10.61

Question /
Answer

# QA pairs 1,452 1,160
max dur(s) 13.19 / 24.80 19.23 / 22.11
min dur(s) 2.60 / 1.11 2.14 / 1.30
avg dur(s) 5.97 / 6.78 5.90 / 6.59

Table 1: Statistics of ContextDialog for Dialog History
and generated QA on test_freq and test_rare splits.
The numbers on the left and right are related to the
question and answer, respectively. The term dur refers
to the duration of the generated question and answer.

lecting information from either the first or second 216

half of the conversation. This results in four QA 217

pairs per spoken dialog. Additionally, the model is 218

requested to output the supporting utterance—the 219

utterance in the conversation that serves as the clue 220

for the answer—for each pair to enhance both data 221

quality and usability. For a more realistic setting, 222

the questions are designed to require detailed an- 223

swers rather than simple Yes/No responses. 224

After generating the QA pairs, we validate each 225

question, answer, and supporting utterance using 226

o1-mini (OpenAI, 2024b). A validation prompt as- 227

sesses their appropriateness within the dialog con- 228

text through three rounds of evaluation: (1) dialog 229

context up to just before the supporting utterance, 230

(2) up to and including the supporting utterance, 231

and (3) the entire conversation. The first step is 232

to check whether the answer can be inferred with- 233

out the supporting utterance, requiring a NO re- 234

sponse, while the second and third ensure consis- 235

tency across different context levels, requiring YES 236

responses. Failed QA pairs are filtered out, and the 237

validated pairs are used to construct the spoken QA 238

dataset. The prompts used are in Appendix A.3. 239
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Model

Voice Interaction Model

User
𝓢𝒖

Model
𝓣𝒎, 𝓢𝒎

⋯

⋯ ⋯

⋯
What did you
say about ⋯ ? 

Voice Interaction Model

User
𝓢𝒖

Model
𝓣𝒎, 𝓢𝒎

⋯

⋯ ⋯

⋯
What did I

say about ⋯ ? 

Source: 𝓢𝒖

Source: 𝓣𝒎, 𝓢𝒎

Voice Interaction Model

⋯

⋯ ⋯

⋯
What did you/I
say about ⋯ ? 

User

Based on your/my statement “𝒯𝑖
′ ”, 

(a) Exp 1-1. recall ability for user’s past utterances

(b) Exp 1-2. recall ability for model’s past utterances (c) Exp 2. evaluating RAG capability

Turn 1

Turn 1

Turn N-1

Turn N

Model

User

⋯

Automatic 
Speech Recognition

Text Embedding
Extraction

QueryPassage top-𝒌

Figure 2: Overview of our analyses. In Section 4.1, we evaluate model recall by analyzing responses to questions
about (a) past user and (b) past model utterances. In Section 4.2, we examine whether (c) augmenting spoken
response generation with separately retrieved utterances improves responses to questions about past utterances.

3.2 Spoken Question-Answer Generation240

To ensure the user and model to continue naturally241

in the given spoken dialog, the voice of the spoken242

QA pair must seamlessly match that of the original243

conversation. To achieve this, we use Fish Speech244

(Liao et al., 2024), a speaker-adaptive TTS model245

that generates speech in the target speaker’s timbre246

using a reference speech. For each QA pair, we247

select the longest speech segment from the orig-248

inal dialog for each speaker as the reference to249

maximize speaker similarity. To ensure accurate250

pronunciation, each spoken QA pair is generated251

five times, and the sample with the lowest word252

error rate (WER)—measured using a separate ASR253

model (Radford et al., 2023)—is selected. If the254

selected sample has a nonzero WER, it is manually255

reviewed, and mispronounced samples are filtered256

out. This process ensures that ContextDialog main-257

tains both speaker identity and clear pronunciation258

in the final spoken QA pairs.259

4 Experiments260

In this section, we present the results of two exper-261

iments and analyses using ContextDialog. In Sec-262

tion 4.1, we demonstrate that open-source voice in-263

teraction models struggle to recall past information264

on their own, particularly user-specific information265

that exists solely in spoken form. Then, in Section266

4.2, we show that even when leveraging a more267

advanced dedicated text retriever, models fail to268

respond robustly given the retrieved information, 269

yielding limited improvements in spoken response 270

generation. These two analyses highlight a critical 271

yet often overlooked aspect of voice interaction 272

models, their ability to remember past interactions, 273

which is essential for real-world deployment. 274

For our experiments, we select four open-source 275

multi-turn voice interaction models: GLM-4-Voice 276

(Zeng et al., 2024), MiniCPM-o 2.6 (Yao et al., 277

2024), Freeze-Omni (Wang et al., 2024c), and Lyra 278

(Zhong et al., 2024). To support real-time genera- 279

tion and minimize latency, these models generate 280

responses directly from the input speech without 281

an intermediate speech-to-text conversion. To miti- 282

gate semantic degradation in speech-only genera- 283

tion, these models generate text responses along- 284

side spoken responses: GLM-4-Voice employs an 285

interleaved token generation approach, alternat- 286

ing between text and speech tokens (Figure 5(a)), 287

while MiniCPM-o, Freeze-Omni, and Lyra gener- 288

ate text responses while simultaneously synthesiz- 289

ing speech using real-time generated text tokens 290

and the LLM’s hidden states (Figure 5(b)). 291

In all experiments, we evaluate each model’s spo- 292

ken response using the LLM-as-a-judge approach 293

(Zheng et al., 2023), following previous voice in- 294

teraction models (Chen et al., 2024c; Fang et al., 295

2025; Zeng et al., 2025). We employ gpt-4o-mini 296

for evaluation, referred to as the GPT Score in this 297

paper, using a five-point scale, and design prompts 298

to assess recall by measuring how well the gener- 299
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Model LLM FT Modality GPT Score WER
User System Overall

S → T , S 1.94±0.07 2.76±0.08 2.35±0.05 8.36%
GLM-4-Voice (GLM et al., 2024) ✓

S → T ,S 2.04±0.07 2.97±0.08 2.50±0.06 −
glm-4-9b-chat (Zeng et al., 2024) − T → T 4.30±0.05 3.90±0.06 4.10±0.04 −

S → T , S 2.51±0.09 3.16±0.09 2.83±0.06 5.90%
Lyra (Zhong et al., 2024) ✓

S → T ,S 2.67±0.09 3.38±0.09 3.03±0.07 −
Qwen2-VL-7B-Instruct (Wang et al., 2024b) − T → T 3.80±0.08 3.88±0.08 3.84±0.06 −

S → T , S 1.73±0.06 2.28±0.07 2.00±0.05 12.36%
Freeze-Omni (Wang et al., 2024c) ✗

S → T ,S 2.09±0.07 3.06±0.08 2.57±0.06 −
Qwen2-7B-Instruct (Yang et al., 2024a) − T → T 4.26±0.06 3.81±0.07 4.03±0.05 −

S → T , S 2.44±0.09 2.84±0.09 2.64±0.06 24.90%
MiniCPM-o (Yao et al., 2024) ✓

S → T ,S 3.22±0.09 3.93±0.08 3.58±0.06 −
Qwen2.5-7B-Instruct (Yang et al., 2024b) − T → T 4.28±0.05 3.84±0.06 4.06±0.04 −

Table 2: Evaluation results for voice interaction models, including the instruct fine-tuned version of each model’s
backbone LLM. S and T represent speech and text, respectively. “Modality” indicates input → output data type.
“LLM FT” shows whether the backbone LLM was fine-tuned during training. “User” and “System” represent scores
for responses to past user and model utterances, respectively. “Overall” denotes the score across all responses.
“WER” refers to the word error rate between the model’s intermediate text response and the transcribed spoken
response, highlighting degradation from speech synthesis. GPT Scores are reported with a 95% confidence interval.

ated responses contain the ground truth information300

relevant to the given question, as detailed in Ap-301

pendix A.4. Since gpt-4o-mini is tailored to text302

inputs, we first convert the spoken responses into303

text using whisper-large-v3 (Radford et al., 2023)304

(S → T , S ).305

Additionally, considering that each model also306

generates an intermediate text response correspond-307

ing to the spoken output, we also evaluate it308

(S →T ,S). By analyzing the evaluation results309

along with the word error rate (WER) between310

the text response and the transcribed spoken re-311

sponse, we can disentangle recall ability from312

speech synthesis capability, allowing us to identify313

cases where the model successfully recalls infor-314

mation but fails in speech synthesis.315

We use the official implementations, hyperpa-316

rameters, and checkpoints for all four models (Sec-317

tion A.2), running experiments on a single NVIDIA318

A40 GPU. Detailed model descriptions and addi-319

tional analyses are provided in Appendix A.1.320

4.1 Does Your Model Truly Recall Past321

Information?322

Using ContextDialog, we examine whether these323

models can recall or remind users of past utterances,324

either from the user or the model itself. To assess325

differences in question difficulty, we additionally326

evaluate the chat versions of each model’s back-327

bone LLM (GLM et al., 2024; Yang et al., 2024a,b;328

Wang et al., 2024b), providing a basis for compar- 329

ing the difficulty of questions based on user-spoken 330

versus model-generated utterances. 331

The scores for each model on questions about 332

past user utterances and the model’s own responses, 333

along with their 95% confidence intervals and av- 334

erages, are presented in Table 2. In this table, we 335

observe two key patterns. First, in multi-turn di- 336

alogs requiring past context, all voice interaction 337

models (shaded in gray) show significant perfor- 338

mance drop compared to text-based counterparts 339

(unshaded), regardless of whether evaluation is on 340

the intermediate text response (S →T ,S) or the 341

transcribed response (S → T , S ). This degrada- 342

tion is particularly pronounced in Freeze-Omni, 343

where the LLM is frozen during speech model train- 344

ing (LLM FT: ✗). These results indicate that ex- 345

panding a pre-trained LLM to speech significantly 346

weakens its ability to process long contexts. 347

Secondly, unlike their text-based counterparts 348

(unshaded), voice interaction models (shaded in 349

gray) perform consistently better when recalling 350

their own past utterances than the user’s (p < 0.01). 351

This stems from the generation mechanism of re- 352

cent voice interaction models. Since speech-only 353

output degrades semantic modeling, most modern 354

models generate text alongside speech—either si- 355

multaneously or alternately—to leverage the back- 356

bone LLM’s text capability. Consequently, when 357

responding to questions about the model’s past ut- 358
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(a) GLM-4-Voice (b) Lyra

(c) Freeze-Omni (d) MiniCPM-o

Figure 3: Attention maps for ground truth answers given each model’s past dialog and question. In each subfigure,
the left side represents questions about past user utterances, and the right side represents questions about past model
utterances. Red boxes indicate the positions of supporting utterances.

terances, both text and speech are utilized (Figure359

2(b)), whereas for user utterances, the model must360

rely solely on speech (Figure 2(a)).361

We further analyze how models respond to ques-362

tions about past user and model utterances by ex-363

amining their attention maps during response gen-364

eration as shown in Figure 3. The horizontal axis365

represents the turn index (“U” for user, “M” for366

model), and the vertical axis represents the atten-367

tion layer index. We sum attention weights over368

all tokens in each utterance. As shown, models at-369

tend less to supporting utterances when answering370

questions about past user utterances than model ut-371

terances. This suggests that an inherent bias, where372

models allocate less attention to user-spoken con-373

tent, contributes to the recall gap and highlights the374

need for improved modeling capabilities.375

The findings in this section reveal modality-376

specific differences, both compared to text interac-377

tion models and within speech models. They under-378

score the need to improve voice interaction models379

by introducing training and generation methods to380

better utilize long-range conversational history. In381

the following section, we validate a practical ap-382

proach to enhancing past information utilization383

with minimal computational cost when the model384

fails to recall relevant details. Specifically, we ex-385

amine the effectiveness of retrieval-augmented gen-386

eration (RAG) in voice interaction models.387

4.2 Does Your Model Reliably Augment388

Retrieved Information into Generation?389

Leveraging RAG methods from the NLP domain390

(Izacard et al., 2023; Lewis et al., 2020), we assess391

whether voice interaction models can effectively 392

utilize past utterances when retrieved by a dedi- 393

cated module, as illustrated in Figure 2(c). Given 394

our observation in Section 4.1 that models struggle 395

more with speech than text, we transcribe past user 396

and model utterances at the end of each speech 397

segment using a separate ASR model. These tran- 398

scriptions are stored with their corresponding text 399

embeddings, extracted via a separate retriever. 400

Once stored, these transcriptions serve as pas- 401

sages from which relevant information can be re- 402

trieved when a user query arrives. Upon receiving 403

input speech, we convert it into text using the same 404

ASR model, extract its embedding, and retrieve 405

the top-k most relevant past utterances by compar- 406

ing cosine similarity. These retrieved utterances 407

are then augmented into spoken response genera- 408

tion. We use whisper-large-v3-turbo (Radford et al., 409

2023) for the ASR model and e5-large-v2 (Wang 410

et al., 2022), a widely used retrieval model in NLP. 411

The retrieved texts are incorporated into the gen- 412

eration stage using the following format: Based on 413

your/my statement: “RETRIEVED TRANSCRIBED 414

TEXT1”, your/my statement: “RETRIEVED 415

TRANSCRIBED TEXT2” .... The choice between 416

your and my depends on the speaker of the re- 417

trieved utterance, ensuring clear integration into 418

the prompt. The model then utilizes this prompt 419

to generate spoken responses, as shown in Figure 420

2(c). Details on how each model incorporates this 421

prompt into spoken response generation are in Ap- 422

pendix A.1.1, while experiments with various other 423

prompts are discussed in Appendix A.1.5. 424

The experimental results on integrating RAG 425
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(a) GLM-4-Voice (b) Lyra (c) Freeze-Omni (d) MiniCPM-o

Figure 4: The results of applying a RAG method to each model are shown. The red dashed line indicates the results
generated without RAG (Section 4.1). The evaluation is based on the transcribed spoken response S → T , S .

into voice interaction models are presented in Fig-426

ure 4, where (a)–(d) correspond to the four eval-427

uated models. The red dashed line indicates base-428

line performance when models generate responses429

based solely on intrinsic recall without RAG (Sec-430

tion 4.1). These results are measured using the ASR431

transcript of the spoken response (S → T , S ) for432

all QA pairs, and trends in the intermediate text re-433

sponse are similar, as detailed in Appendix A.1.2.434

As shown in the figure, all models perform simi-435

larly or worse with RAG, showing little to no im-436

provement as the number of retrieved utterances in-437

creases. We attribute this to two main factors. First,438

while RAG increases the chances of retrieving and439

using supporting utterances, retrieval failures intro-440

duce irrelevant sentences that add noise and dis-441

rupt generation. Second, unlike text-based models,442

voice interaction models are generally trained to443

avoid long responses, as users do not expect lengthy444

monologs. However, RAG adds prompts to the gen-445

eration process, leading to longer responses that446

contradict the models’ training tendencies.447

4.2.1 Analyses448

We observe that incorporating utterances retrieved449

by a dedicated retrieval module (Wang et al., 2022)450

into spoken response generation has little effect on451

voice interaction models. To further investigate this452

phenomenon, we conduct various experiments.453

To determine whether prompting itself is inef-454

fective for voice interaction models, we conduct455

two experiments: (1) providing the supporting utter-456

ance from the ContextDialog QA pair as a prompt457

instead of retrieved utterances and (2) using an458

unrelated utterance as a prompt to generate the spo-459

ken response. As in previous evaluations, we assess460

the spoken response based on its transcribed text461

(S → T , S ), with results shown in Table 3.462

For models other than MiniCPM-o, we observe463

that providing the correct supporting utterance im-464

proves performance on QA requiring past informa-465

tion, while using an incorrect utterance as a prompt466

Model Prompt GPT Score

GLM-4-Voice
✗ 2.35± 0.05

Supporting 2.60± 0.05

Irrelevant 1.87± 0.05

Lyra
✗ 2.83± 0.06

Supporting 3.44± 0.05

Irrelevant 1.96± 0.05

Freeze-Omni
✗ 2.00± 0.05

Supporting 2.38± 0.04

Irrelevant 1.54± 0.04

MiniCPM-o
✗ 2.64± 0.06

Supporting 2.49± 0.06

Irrelevant 1.63± 0.05

Table 3: GPT Score results when augmenting spoken
response generation with either the ground-truth sup-
porting utterance (“Supporting”) or an entirely unrelated
utterance (“Irrelevant”) as prompts.

degrades performance. This suggests that for most 467

models, the primary obstacles to using RAG for re- 468

membering past conversations in voice interaction 469

models lie not in the act of augmentation itself, but 470

in factors beyond incorporating relevant informa- 471

tion, such as retrieval errors. 472

To examine whether the limited effectiveness of 473

RAG is primarily due to ASR errors, we analyze the 474

impact of recognition errors in retrieving past ut- 475

terances. Specifically, we compare two approaches: 476

(1) retrieving using the ground-truth text of past 477

conversations and the ground-truth transcript of 478

the input speech and (2) retrieving directly from 479

speech with a speech retriever module, bypassing 480

the recognition process. 481

Since no suitable open-source speech retriever 482

module is available, we use SONAR (Duquenne 483

et al., 2023), which, while not primarily designed 484

for retrieval, extracts semantic embeddings from 485

speech and retrieves past utterances based on co- 486

sine similarity. Note that since the voice interaction 487

models rely on text for spoken response genera- 488

tion, retrieved information is provided in text form 489
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Model Retriever ASR GPT Score

top-1 top-2 top-3

✓ 2.34±0.05 2.30±0.05 2.09±0.05

GLM-4-Voice (GLM et al., 2024)
e5-large-v2 (Wang et al., 2022)

✗ 2.42±0.05 2.40±0.05 2.15±0.05

SONAR (Duquenne et al., 2023) − 2.24±0.05 2.15±0.05 1.97±0.05

✓ 2.83±0.06 2.68±0.06 2.52±0.06

Lyra (Zhong et al., 2024)
e5-large-v2 (Wang et al., 2022)

✗ 2.94±0.06 2.78±0.06 2.68±0.06

SONAR (Duquenne et al., 2023) − 2.48±0.06 2.39±0.06 2.25±0.06

✓ 2.02±0.04 1.98±0.04 1.80±0.04

Freeze-Omni (Wang et al., 2024c)
e5-large-v2 (Wang et al., 2022)

✗ 2.08±0.04 2.03±0.04 1.90±0.04

SONAR (Duquenne et al., 2023) − 1.83±0.04 1.77±0.04 1.67±0.04

✓ 2.10±0.05 1.91±0.05 1.81±0.05

MiniCPM-o (Yao et al., 2024)
e5-large-v2 (Wang et al., 2022)

✗ 2.16±0.06 1.98±0.05 1.86±0.05

SONAR (Duquenne et al., 2023) − 2.01±0.05 1.82±0.05 1.78±0.05

Table 4: Evaluation results for RAG with voice interaction models. “ASR” indicates whether RAG is performed
using ASR-transcribed text (✓) or ground-truth text (✗). The scores are reported with a 95% confidence interval.

Retriever ASR Recall

top-1 top-2 top-3

e5-large-v2 ✓ 0.5773 0.7339 0.7959

✗ 0.5827 0.7561 0.8212

SONAR − 0.3955 0.5306 0.6087

Table 5: Retrieval performance for each model used in
the analysis, measuring the probability of the supporting
utterance being included in the top-k utterances. “ASR”
indicates that retrieval is performed using transcripts
obtained from the ASR model.

regardless of retriever modality.490

As shown in Table 4, ASR has minimal im-491

pact on RAG performance for text-based retrievers492

(“ASR” ✓vs. ✗). In contrast, using a speech re-493

triever leads to a relatively significant performance494

drop. These results align with the retrieval perfor-495

mance in Table 5, where ASR does not substantially496

affect the retriever’s ability to include the support-497

ing utterance in the top-k results. Additionally, the498

speech retriever is not originally designed for re-499

trieval, and training challenges—such as longer500

audio sequences and limited data—contribute to501

recall degradation, leading to performance decline.502

The observations in Section 4.1 highlight the re-503

call difficulty of speech being substantial compared504

to text. The findings in this section show that even505

when models retrieve information through an ex-506

ternal module and augment it into generation, they507

fail to use it effectively, suggesting two key areas508

for improvement. First, even when explicitly pro-509

vided with the supporting utterance, current models510

underperform compared to text-based counterparts,511

underscoring the need for stronger conversational 512

capabilities in voice interaction models. Second, 513

while several methods were developed to ensure ro- 514

bustness against retrieval noise in the NLP domain 515

(Chen et al., 2024a; Yoran et al., 2024), voice inter- 516

action models require better training and inference 517

strategies to enhance resilience to retrieval noise 518

alongside general modeling improvements. 519

5 Conclusion 520

In this work, we conducted an in-depth analysis 521

of a critical yet underexplored challenge in open- 522

source voice interaction models: maintaining and 523

utilizing past utterances. To address the lack of 524

benchmarks that explicitly require accurate refer- 525

ence to past dialog, we introduced ContextDialog, 526

a speech-to-speech benchmark designed to system- 527

atically evaluate a model’s ability to recall utter- 528

ances from previous turns. Using this benchmark, 529

our experiments revealed that models struggle with 530

recalling past utterances and remain highly sensi- 531

tive to retrieval errors, limiting improvements even 532

with dedicated retriever. These findings highlight 533

a crucial gap in memory retention for open-source 534

models, emphasizing the need for stronger con- 535

versational memory methods, such as improved 536

long-context modeling, robust RAG techniques, or 537

dedicated memory modules. We hope that our work 538

may act as a trigger to raise awareness to this over- 539

looked challenge and encourage future research to 540

further enhance the usability and effectiveness of 541

voice interaction models. 542
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Limitations543

Our study highlights the overlooked issue of history544

recall in voice interaction models and introduces a545

benchmark for systematic evaluation. We focus on546

open-source multi-round voice interaction models,547

analyzing them with additional results in Appendix548

A.1.3. However, other open-source models not cov-549

ered in our analyses may exist. Additionally, while550

most recent models enhance semantic modeling by551

jointly generating spoken and text responses, some552

still generate speech directly without relying on553

intermediate text. Future research could extend our554

analysis to these models.555

Another limitation of our retrieval-based analy-556

ses is its focus on text-based retrieval-augmented557

generation (RAG). Currently, no well-established558

speech retriever modules exist for open-source559

models, and open-source voice interaction models560

struggle with speech-based prompting for RAG, re-561

stricting our analysis to text prompts. Furthermore,562

we do not consider the latency introduced by RAG.563

Developing low-latency speech retrievers that ef-564

ficiently integrate spoken information—including565

linguistic and non-verbal cues—remains crucial for566

real-time conversational applications.567

Finally, our benchmark addresses only the sim-568

plest form of questions requiring past information,569

those directly retrieving and utilizing prior context.570

While our analysis shows that current open-source571

voice interaction models struggle even with basic572

recall, more advanced benchmarks will be neces-573

sary as these models evolve. For instance, future574

benchmarks could move beyond simple retrieval-575

based responses to questions requiring deeper rea-576

soning over past context. Additionally, a bench-577

mark focusing on memory capabilities in common578

voice interaction scenarios—such as handling frag-579

mented information (e.g., a customer providing a580

phone number in segments)—would be valuable581

for assessing more complex recall abilities.582

Ethical Considerations583

Our analysis highlights the recall capabilities of584

voice interaction models, particularly in personal-585

ized voice assistants that rely on past interactions586

for customized services. However, this capability587

inherently raises security and privacy concerns, as588

stored conversational data may be vulnerable to589

unauthorized access. As voice assistants become590

more deeply integrated into daily life, ensuring they591

retain necessary context while safeguarding user592

data is crucial. Therefore, alongside advancements 593

in memory retention and utilization, developing 594

robust mechanisms to protect stored history must 595

remain a parallel research priority. 596
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A Appendix1031

A.1 Additional Details and Analysis1032

In Section A.1.1, we describe the four models1033

used in our experiments—GLM-4-Voice (Zeng1034

et al., 2024), Freeze-Omni (Wang et al., 2024c),1035

Lyra (Zhong et al., 2024), and MiniCPM-o (Yao1036

et al., 2024)—along with how the text-based RAG1037

method in Section 4.2 is applied to each. Sec-1038

tion A.1.2 provides results on intermediate text1039

responses for questions about the past utterances,1040

which are not covered in Section 4.2. Section A.1.31041

presents our analysis of other open-source mod-1042

els and explains why certain models are excluded.1043

We also report experiments on additional datasets1044

and various RAG prompts in Sections A.1.4 and1045

A.1.5. Finally, we categorize and illustrate failure1046

cases where models struggle with past utterance1047

questions in Section A.1.6.1048

A.1.1 Model Details1049

(1) GLM-4-Voice tokenizes raw waveforms into1050

discrete tokens, enabling training with a pre-trained1051

LLM to construct a cross-modal spoken dialog1052

model using both speech and text tokens. The1053

speech tokenization module incorporates a pool-1054

ing layer and a vector quantization layer (van den1055

Oord et al., 2017) into the pre-trained whisper en-1056

coder (Radford et al., 2023), modifying it to be1057

causal with block-wise causal attention for stream-1058

ing support. For token-to-speech reconstruction,1059

the model employs a CosyVoice-based module (Du1060

et al., 2024) with chunk-wise autoregressive mod-1061

eling. It is trained to generate speech tokens in1062

response to input speech tokens while also gener-1063

ating text tokens to leverage the LLM’s text capa-1064

bility. To minimize latency, instead of generating1065

the full text sequence before speech, it adopts inter-1066

leaved generation, alternating 13 text tokens with1067

26 speech tokens per step (Figure 5(a)).1068

In Section 4.2, we use the pre-trained retriever1069

e5-large-v2 (Wang et al., 2022) to select the top-k1070

utterances as prompts to evaluate RAG in spoken re-1071

sponse generation. Retrieved sentences are format-1072

ted using the prompt template Based on your/my1073

statement “...” and tokenized. Since the prompt1074

typically exceeds 13 tokens, it is sequentially fed1075

into the model at each text generation step, filling1076

the text token slots in GLM-4-Voice’s interleaved1077

generation process (13 text tokens alternating with1078

26 speech tokens) until fully consumed. The model1079

generates response text only after completing the1080

Voice Interaction Model

User
𝓢

𝓣 𝓢 𝓢 𝓣 𝓢 𝓢 ⋯

𝓣 𝓢 𝓢 𝓣 𝓢 𝓢

(a) Generation scheme with modalities interleaving

Voice Interaction Model

User
𝓢

𝓣 𝓣 𝓣 𝓣

𝓣 𝓣 𝓣

(b) Generation scheme with (chunk-wise) streaming decoder

⋯

⋯

Speech Decoder

Output Spoken Response

Hidden
States

Figure 5: Two representative approaches for generating
text alongside spoken responses to enhance semantic
coherence in voice interaction models.

prompt, and for speech token slots, it first produces 1081

speech tokens corresponding to the prompt before 1082

generating tokens for the newly generated text. As 1083

both the intermediate text response and the tran- 1084

scribed spoken response contain the prompt, we 1085

remove it using gpt-4o before final evaluation to 1086

ensure a fair comparison. 1087

(2) Freeze-Omni is built by freezing the back- 1088

bone LLM and training only the plug-in speech 1089

encoder and decoder, without additional speech 1090

tokenization. Input speech is processed through a 1091

separately trained ASR encoder, which supports 1092

chunk-wise streaming by feeding encoder outputs 1093

in segments. These outputs pass through an adapter 1094

before entering the frozen LLM, where speech fea- 1095

tures are converted into LLM-compatible inputs 1096

to generate text responses. The plug-in speech de- 1097

coder then takes the text response and the LLM’s 1098

hidden states to generate speech alongside text. 1099

This design preserves the LLM’s text capabilities 1100

while enabling speech generation through dedi- 1101

cated encoding and decoding modules. 1102

Freeze-Omni, along with Lyra and MiniCPM-o, 1103

generates speech using text output, hidden states, 1104

or both, as illustrated in Figure 5(b), with speech 1105
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(a) GLM-4-Voice (b) Lyra (c) Freeze-Omni (d) MiniCPM-o

Figure 6: The results of applying a RAG method to each model are shown. The red dashed line indicates the results
generated without RAG (Section 4.1). The evaluation is based on the intermediate text response S →T ,S.

decoding typically performed end-to-end. To inte-1106

grate RAG, past transcribed utterances retrieved1107

by a separate model are formatted according to a1108

predefined template and provided as a prefix before1109

text response generation. That is, in addition to past1110

conversational history and the user’s input speech,1111

the model utilizes the retrieved prompt as a prefix1112

to generate the intermediate text response. How-1113

ever, the prefix and corresponding hidden states are1114

excluded from the decoder input; only the subse-1115

quently generated response is used, ensuring that1116

the spoken response does not include the prompt.1117

(3) Lyra is an Omni model capable of process-1118

ing text, speech, and visual data such as video and1119

images. For speech, it employs whisper-large-v31120

as an encoder to extract information for the back-1121

bone LLM, while its speech decoder is trained sim-1122

ilarly to LLaMA-Omni (Fang et al., 2025). Lyra1123

generates spoken responses using discrete units1124

obtained via k-means clustering on intermediate1125

representations from a self-supervised model (Hsu1126

et al., 2021). Given user speech features as input,1127

Lyra generates text alongside discrete speech units.1128

While generating text responses, the LLM’s hidden1129

states are upsampled based on the average text-to-1130

unit length ratio, and the resulting features are used1131

to produce speech units, which are then converted1132

into waveforms via a unit-to-speech model. This1133

allows Lyra to generate spoken and text responses1134

simultaneously, leveraging text-derived representa-1135

tions for speech synthesis.1136

(4) MiniCPM-o, similar to Lyra, is an Omni1137

model that processes vision, speech, and text. For1138

speech, it extends the pre-trained whisper encoder1139

by adding a downsampling layer, providing 25Hz1140

speech features to the LLM. Like other models, the1141

LLM generates text responses from input features,1142

ensuring better semantic coherence than direct1143

speech generation. To enable real-time speech gen-1144

eration, MiniCPM-o employs a streaming speech1145

decoder that takes both the LLM’s hidden features1146

and text response as inputs, generating speech in1147

a chunk-wise autoregressive manner. As a result, 1148

MiniCPM-o produces text and speech simultane- 1149

ously, with speech synthesized in parallel once the 1150

number of text tokens reaches a certain chunk size. 1151

A.1.2 Additional Results 1152

In Section 4.2, we observe that integrating text- 1153

based RAG into voice interaction models has mini- 1154

mal impact on overall performance. We confirm 1155

that this trend persists in intermediate text re- 1156

sponses, demonstrating that errors from speech syn- 1157

thesis do not influence the observed pattern. The 1158

results are presented in Figure 6. 1159

A.1.3 Analysis on Additional Models 1160

We analyze various models in addition to the four 1161

models analyzed in the main paper. We provide 1162

explanations and results for each model. 1163

Single-Round Voice Interaction Models Sev- 1164

eral models, including SpeechGPT (Zhang et al., 1165

2023), USDM (Kim et al., 2024), LLaMa-Omni 1166

(Fang et al., 2025), and Mini-Omni (Xie and Wu, 1167

2024a), are trained on single-round data. While 1168

some official implementations support multi-turn 1169

settings, they do not retain conversation history, 1170

treating each exchange as an independent query- 1171

response pair. When we modified these models 1172

to incorporate conversation history, discrepancies 1173

between training and inference led to unreliable 1174

multi-turn generation. Due to these limitations, we 1175

exclude them from our main analysis. 1176

Multi-Round Voice Interaction Models We 1177

evaluate the recall capabilities of the open-source 1178

voice interaction models, Moshi (Défossez et al., 1179

2024) and SLAM-Omni (Chen et al., 2024c), using 1180

the same methodology as in Section 4.1. A brief 1181

description of each model follows. 1182

(1) Moshi is a voice interaction model built us- 1183

ing Mimi, a streaming neural audio codec trained 1184

with residual vector quantization (Zeghidour et al., 1185

2022). Mimi extracts an 8-level codec at 12.5Hz 1186

from both input and output speech during train- 1187

ing. The core interaction model, trained on these 1188
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Model LLM FT Modality GPT Score

User System Overall

SLAM-Omni (Chen et al., 2024c) ✓ S → T , S 1.13 ±0.02 1.19 ±0.03 1.16 ±0.02

Qwen2-0.5B-Instruct (Yang et al., 2024a) − T → T 1.85 ±0.07 1.96 ±0.07 1.90 ±0.05

Moshi (Défossez et al., 2024) ✓ S → T , S 1.16 ±0.03 1.55 ±0.06 1.35 ±0.03

Table 6: Evaluation results for additional open-source multi-turn voice interaction models, including the instruct-
tuned versions of their backbone LLMs. S represents speech, and T represents text. “Modality” denotes the input →
output data type for each model, while “LLM FT” indicates whether the backbone LLM is fine-tuned or kept frozen
during training. “User” refers to scores for responses to questions about past user utterances, whereas “System”
assesses responses regarding the model’s own past utterances. “Overall” represents the average score across all
responses. Scores are reported with a 95% confidence interval.

codec features together with text, models speech1189

from both the user and the system. Unlike the four1190

previously analyzed models, which handle only1191

one speaker at a time, Moshi enables flexible in-1192

teractions (e.g., backchanneling, interruptions) by1193

jointly modeling an 8-level user codec and an 8-1194

level system codec, resulting in 16 tokens per time1195

step. Additionally, to prevent semantic degradation,1196

Moshi generates response text tokens along with1197

16 speech tokens, producing a total of 17 tokens1198

per time step.1199

Since response text tokens (3 ∼ 4Hz) are signifi-1200

cantly shorter than speech tokens (12.5Hz), Moshi1201

employs speech-aligned text tokens (12.5Hz),1202

leveraging pre-extracted text-speech alignment dur-1203

ing training. However, for RAG-based analysis in1204

Section 4.2, the prompt provided to Moshi must1205

also be an expanded sequence aligned with speech,1206

similar to training, which cannot be derived from1207

text alone. Due to this limitation, we conduct only1208

the recall analysis from Section 4.1 for Moshi.1209

(2) SLAM-Omni is another model that pro-1210

cesses speech input and generates speech output.1211

The input speech is encoded using whisper, and1212

the extracted features pass through a projector that1213

aligns embeddings before being fed into the interac-1214

tion model. The model produces discrete semantic1215

tokens at 50Hz, following the approach used in1216

CosyVoice-300M-SFT (Du et al., 2024). To miti-1217

gate the challenges of storing past conversations as1218

speech, which would significantly increase length1219

and degrade long-context performance, SLAM-1220

Omni retains all past interactions as text. It utilizes1221

text dialog history along with the user’s current1222

speech input to generate responses. We evaluate1223

SLAM-Omni’s recall performance using the same1224

methodology as in Section 4.1.1225

The recall performance of past utterances for1226

both models is in Table 6. We reaffirm two key1227

findings from Section 4.1: (1) SLAM-Omni per- 1228

forms worse than its text-based counterparts (ex- 1229

cluding Moshi, as its backbone LLM is unavail- 1230

able), and (2) Moshi, which processes user inputs 1231

solely through speech, shows significantly lower re- 1232

call performance for user utterances than for model- 1233

generated ones (p < 0.01). SLAM-Omni is ex- 1234

cluded from this comparison as it retains past in- 1235

teractions in text format for both user and model. 1236

These results further validate the generalizability 1237

of our analysis. Notably, both models exhibit lower 1238

performance than those analyzed in the main paper. 1239

While multiple factors contribute to performance 1240

drops, SLAM-Omni’s small backbone model size 1241

is the most likely cause. Unlike other models with 1242

7B∼9B parameters, SLAM-Omni is built on a 1243

much smaller 0.5B LLM, and even its chat vari- 1244

ant exhibits weak recall performance. 1245

For Moshi, multiple factors may contribute to 1246

its performance degradation. Unlike models with 1247

clearly separated input and output, Moshi processes 1248

both speakers’ voices simultaneously, allowing flex- 1249

ible interactions (e.g., interruptions) without strict 1250

turn-taking. Consequently, it sometimes remains 1251

silent instead of responding to past conversations 1252

and user queries, leading to performance loss. Ad- 1253

ditionally, as a free-form conversational model, 1254

Moshi lacks explicit end markers for speech out- 1255

put, making it difficult to determine when to stop 1256

generation. To ensure a consistent evaluation, we 1257

assess speech generated within a fixed 12-second 1258

window, though this may introduce artifacts such 1259

as unintended utterances or truncated responses, 1260

further impacting performance. 1261

A.1.4 Analysis on Additional Dataset 1262

To further enhance the reliability of our analysis, 1263

we create an additional dataset following a similar 1264

pipeline described in Section 3 to evaluate both 1265
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Model LLM FT Modality GPT Score WER
User System Overall

S → T , S 1.43±0.07 2.25±0.11 1.84±0.07 15.72%
GLM-4-Voice (GLM et al., 2024) ✓

S → T ,S 1.55±0.08 2.89±0.12 2.22±0.08 −
glm-4-9b-chat (Zeng et al., 2024) − T → T 4.06±0.07 4.49±0.06 4.28±0.05 −

S → T , S 2.66±0.11 3.37±0.11 3.02±0.08 34.66%
Lyra (Zhong et al., 2024) ✓

S → T ,S 2.86±0.11 4.20±0.09 3.53±0.08 −
Qwen2-VL-7B-Instruct (Wang et al., 2024b) − T → T 4.02±0.09 4.16±0.10 4.09±0.07 −

S → T , S 2.31±0.10 2.45±0.10 2.38±0.07 12.37%
Freeze-Omni (Wang et al., 2024c) ✗

S → T ,S 2.67±0.11 3.73±0.11 3.20±0.08 −
Qwen2-7B-Instruct (Yang et al., 2024a) − T → T 4.23±0.07 4.49±0.07 4.36±0.05 −

S → T , S 2.01±0.10 1.61±0.08 1.81±0.06 71.03%
MiniCPM-o (Yao et al., 2024) ✓

S → T ,S 3.36±0.11 4.25±0.09 3.81±0.07 −
Qwen2.5-7B-Instruct (Yang et al., 2024b) − T → T 4.09±0.07 4.39±0.07 4.24±0.05 −

Table 7: Evaluation results for the additional dataset constructed using the SpokenWOZ dataset. The definitions of
each term and the evaluation method follow those in Table 2.

(a) GLM-4-Voice (b) Lyra

(c) Freeze-Omni (d) MiniCPM-o

Figure 7: The results of applying a RAG method to each model are shown, where the left side of each subfigure
represents the evaluation on the spoken response (S → T , S ), and the right side represents the evaluation on the
intermediate text response (S → T ,S). The red dashed line indicates the results generated without RAG.

the recall ability and RAG performance of voice1266

interaction models. For this dataset, we use spoken1267

dialog data from SpokenWOZ (Si et al., 2023), a1268

task-oriented dialog dataset where users interact1269

with the model to achieve specific goals such as1270

booking flights or making restaurant reservations.1271

This dataset closely resembles real-world voice as-1272

sistant applications, where remembering past user1273

utterances is crucial.1274

We construct a new Spoken QA dataset using1275

the test split of SpokenWOZ. Using 1,000 dialogs1276

spanning approximately 44 hours, we create 1,9301277

QA pairs, with each dialog requiring the recall of1278

both user and model utterances, along with their1279

corresponding supporting utterances. Compared to1280

MultiDialog, which has an average conversation 1281

length of around 2.5 minutes, SpokenWOZ consists 1282

of longer conversations averaging 6.5 minutes. This 1283

allows us to evaluate model recall performance 1284

over extended dialogs and assess the impact of 1285

augmenting retrieved sentences during generation. 1286

However, the SpokenWOZ transcripts are gen- 1287

erated using an ASR model and contain discrepan- 1288

cies from the original audio, meaning the QA data 1289

derived from them may not be perfectly aligned 1290

with the original spoken dialog. Additionally, the 1291

original audio quality is low at 8kHz, making it 1292

unsuitable for high-fidelity analysis. Therefore, we 1293

include the results from this dataset as a reference 1294

in the Appendix. The recall performance of each 1295
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Model Prompt top-1 top-2 top-3

GLM-4-Voice (GLM et al., 2024)

Based on your/my statement ... 2.34±0.05 2.30±0.05 2.09±0.05

Since you/I said ... 2.09±0.05 1.93±0.05 1.52±0.04

As I recall you/myself saying ... 1.60±0.04 1.49±0.04 1.39±0.04

Concatenation of Utterances 1.55±0.04 1.47±0.04 1.35±0.04

Lyra (Zhong et al., 2024)

Based on your/my statement ... 2.83±0.06 2.68±0.06 2.52±0.06

Since you/I said ... 2.02±0.05 1.98±0.05 1.60±0.05

As I recall you/myself saying ... 1.57±0.05 1.42±0.04 1.56±0.04

Concatenation of Utterances 1.71±0.05 1.52±0.04 1.46±0.04

Freeze-Omni (Wang et al., 2024c)

Based on your/my statement ... 2.02±0.04 1.98±0.04 1.80±0.04

Since you/I said ... 2.00±0.04 1.95±0.04 1.64±0.04

As I recall you/myself saying ... 1.98±0.04 1.76±0.04 1.66±0.04

Concatenation of Utterances 1.40±0.03 1.22±0.03 1.19±0.03

MiniCPM-o (Yao et al., 2024)

Based on your/my statement ... 2.10±0.05 1.91±0.05 1.81±0.05

Since you/I said ... 1.67±0.05 1.57±0.04 1.37±0.04

As I recall you/myself saying ... 1.54±0.04 1.44±0.04 1.50±0.04

Concatenation of Utterances 1.39±0.04 1.28±0.03 1.18±0.03

Table 8: Evaluation results for the effects of prompts used in RAG. For each model, the same four prompts are
evaluated, with GPT Scores reported along with a 95% confidence interval.

voice interaction model is presented in Table 7,1296

while the spoken response performance with re-1297

trieved sentences from the dedicated module, e5-1298

large-v2 (Wang et al., 2022), is in Figure 7.1299

Overall, the trends remain consistent with the1300

main paper: (1) performance degradation compared1301

to text-based counterparts, particularly in recalling1302

past user utterances, and (2) minimal impact of1303

RAG on improving past information-based QA ac-1304

curacy. However, MiniCPM-o and GLM-4-Voice1305

exhibit opposite trends in the two respective experi-1306

ments compared to the original findings. Given the1307

quality issues in SpokenWOZ, as also evidenced1308

by the high WER in Table 7, we emphasize that1309

these results are for reference only.1310

A.1.5 Analysis on Retrieval Prompts1311

In this section, we assess whether the observation1312

from Figure 4 in Section 4.2—that RAG gener-1313

ally has limited effectiveness in voice interaction1314

models—holds across different prompt templates1315

beyond the Based on your/my statement: ...1316

format used in the main paper. We conduct exper-1317

iments using three additional prompt templates:1318

(1) Since you/I said ..., (2) As I recall1319

you/myself saying ..., and (3) a simple con-1320

catenation of retrieved sentences. The evaluation1321

is performed on the final spoken response, and the1322

results are presented in Table 8.1323

From Table 8, we observe that the prompt used1324

in our main experiments minimizes performance1325

degradation compared to other prompts, which also1326

exhibit similar declines. Additionally, performance 1327

varies significantly depending on the prompt used 1328

for RAG. Considering these results with Table 3, 1329

which demonstrates performance improvements 1330

when providing supporting utterances, our findings 1331

indicate that the prompt template we used is effec- 1332

tive for RAG. However, further exploration of more 1333

optimal prompting and augmentation strategies tai- 1334

lored for spoken response generation in voice inter- 1335

action models remains a key research direction. 1336

A.1.6 Failure Cases 1337

In this section, we categorize the responses from 1338

models that received low scores in our evaluation. 1339

Figure 8 illustrates common types of errors these 1340

models frequently make. 1341

(1) The first type of error occurs when the model 1342

expresses uncertainty, stating that it does not recall 1343

the necessary information, likely due to its failure 1344

to retrieve past utterances. (2) The second type 1345

involves retrieving an incorrect utterance, leading 1346

to an erroneous answer. As shown in Example 2, to 1347

correctly respond to the question, the model should 1348

refer to an utterance related to a sitcom; however, 1349

it mistakenly retrieves an unrelated one, resulting 1350

in a wrong response. 1351

(3) The third type involves generating an in- 1352

correct answer by relying on intrinsic knowledge 1353

rather than recalling the relevant past utterance. 1354

For instance, even though the necessary informa- 1355

tion was mentioned earlier in the conversation, an 1356

unrelated topic—the Lion King—appeared later, 1357
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Category Models Link

Voice
Interaction

Models

GLM-4-Voice (GLM et al., 2024) https://github.com/THUDM/GLM-4-Voice
Freeze-Omni (Wang et al., 2024c) https://github.com/VITA-MLLM/Freeze-Omni
Lyra (Zhong et al., 2024) https://github.com/dvlab-research/Lyra
MiniCPM-o (Yao et al., 2024) https://github.com/OpenBMB/MiniCPM-o
Slam-Omni (Chen et al., 2024c) https://github.com/X-LANCE/SLAM-LLM
Moshi (Défossez et al., 2024) https://github.com/kyutai-labs/moshi

Text
Language
Models

glm-4-9b-chat (Zeng et al., 2024) https://huggingface.co/THUDM/glm-4-9b-chat
Qwen2-VL-7B-Instruct (Yang et al., 2024a) https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct
Qwen2-7B-Instruct (Wang et al., 2024b) https://huggingface.co/Qwen/Qwen2-7B-Instruct
Qwen2.5-7B-Instruct (Yang et al., 2024b) https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
Qwen2-0.5B-Instruct (Yang et al., 2024a) https://huggingface.co/Qwen/Qwen2-0.5B-Instruct

Extra
Modules

Fish Speech (Liao et al., 2024) https://github.com/fishaudio/fish-speech
whisper-large-v3 (Radford et al., 2023) https://huggingface.co/openai/whisper-large-v3
whisper-large-v3-turbo (Radford et al., 2023) https://huggingface.co/openai/whisper-large-v3-turbo
e5-large-v2 (Wang et al., 2022) https://huggingface.co/intfloat/e5-large-v2
SONAR (Duquenne et al., 2023) https://github.com/facebookresearch/SONAR
gpt-4o (2024-08-06) (OpenAI, 2024a) https://platform.openai.com/docs/models#gpt-4o
gpt-4o-mini (2024-07-18) (OpenAI, 2024a) https://platform.openai.com/docs/models#gpt-4o-mini
o1-mini (2024-07-18) (OpenAI, 2024b) https://platform.openai.com/docs/models#o1
evaluate (Von Werra et al., 2022) https://github.com/huggingface/evaluate

Table 9: Links to the models, libraries, APIs, and checkpoints used in our experiments.

Category Name Speech License

Model

GLM-4-Voice (GLM et al., 2024) ✓ Apache-2.0
glm-4-9b-chat (Zeng et al., 2024) ✗ Apache-2.0
Lyra (Zhong et al., 2024) ✓ Apache-2.0
Qwen2-VL-7B-Instruct (Wang et al., 2024b) ✗ Apache-2.0
Freeze-Omni (Wang et al., 2024c) ✓ Apache-2.0
Qwen2-7B-Instruct (Yang et al., 2024a) ✗ Apache-2.0
MiniCPM-o (Yao et al., 2024) ✓ Apache-2.0
Qwen2.5-7B-Instruct (Yang et al., 2024b) ✗ Apache-2.0
SLAM-Omni (Chen et al., 2024c) ✓ MIT License
Qwen2-0.5B-Instruct (Yang et al., 2024a) ✗ Apache-2.0
Moshi (Défossez et al., 2024) ✓ Apache-2.0, MIT License

Dataset
MultiDialog (Park et al., 2024) ✓ CC
SpokenWoz (Si et al., 2023) ✓ CC BY-NC 4.0
ContextDialog ✓ CC BY-NC 4.0

Table 10: License and relevance to speech of each model and dataset used for analyses.

causing the model to mistakenly respond with Lion1358

King. Notably, while the conversation never men-1359

tioned that The Lion King was released in 1994,1360

the model included this fact based solely on its1361

intrinsic knowledge.1362

(4) Finally, some cases exhibit multiple error1363

types simultaneously. In Example 4, even though1364

“Oklahoma!” was never mentioned in the conver-1365

sation, the model generated a response including1366

this term. Upon investigation, we found that while1367

“Oklahoma!’ is the title of a state anthem, it is un-1368

related to Jimmy Rogers and has no connection to1369

the year 1971, highlighting the model’s tendency1370

to produce hallucinated responses.1371

A.2 Licenses and Links1372

The links and licenses for the models, datasets,1373

and libraries used in our experiments and analyses,1374

along with ContextDialog, are listed in Table 9 and 1375

Table 10, respectively. Our benchmark is intended 1376

solely for research on voice interaction models. 1377

For writing, we use ChatGPT-4o exclusively for 1378

expression and grammar refinement. 1379

A.3 ContextDialog 1380

In this section, we detail the customized prompt 1381

design used to construct ContextDialog and provide 1382

examples of the generated data. 1383

A.3.1 Prompt for ContextDialog 1384

Generation Prompt We use gpt-4o (OpenAI, 1385

2024a) as a QA generator, applying a custom- 1386

designed prompt to generate text-based questions, 1387

answers, and supporting utterances from dialog 1388

transcripts. As described in Section 3.1, ContextDi- 1389

alog contains four QA pairs per spoken dialog, de- 1390
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termined by the placement and speaker identity of1391

the supporting utterance. To construct these pairs,1392

we reuse the generation prompt with minimal mod-1393

ifications (e.g., replacing “first half” with “latter1394

half” or “system said” with “user said”). Figure 91395

shows an example prompt used to generate ques-1396

tion, answer, and supporting utterance pairs based1397

on a system utterance from the first half of the1398

conversation.1399

When designing this prompt, we consider several1400

key factors. First, our goal is to simulate real-world1401

scenarios where people forget and reconfirm infor-1402

mation. To achieve this, we structure each question1403

to double-check a single relevant utterance from1404

either the user or the system. The prompt ensures1405

that the user’s question and the system’s response1406

naturally relate to the preceding dialog (Require-1407

ments 4, 7, and 9). Additionally, since we aim to1408

evaluate voice interaction models in realistic set-1409

tings, we prioritize detailed answers over simple1410

yes/no responses (Requirement 8).1411

To enhance benchmark completeness and usabil-1412

ity, we enforce specific requirements. Requirement1413

1 ensures that questions are generated solely from1414

information that appears only once in the conver-1415

sation. This constraint prevents confusion caused1416

by participants correcting themselves or changing1417

decisions mid-dialog; otherwise, a QA pair might1418

seem valid when considering only the supporting1419

utterance but become misleading when viewed in1420

full context. Moreover, Requirement 3 mandates1421

that the supporting utterance be provided alongside1422

the generated QA pair. This metadata serves as a1423

precise reference for dialog history and is essential1424

for evaluating augmented generation (Section 4.2).1425

Validation Prompt For validation, we use o1-1426

mini (OpenAI, 2024a) as a reviewer, applying a1427

customized validation prompt—shown in Figure1428

10—to assess the generated question, answer, and1429

supporting utterance pairs. This prompt ensures1430

that the answer is fully deducible when a portion1431

of the dialog history is provided alongside the gen-1432

erated QA pair. Following the validation process1433

described in Section 3.1, we obtain QA pairs in1434

written form that meet our predefined criteria.1435

Refining Prompt for Text-to-Speech To con-1436

vert the validated text-based QA pairs into speech1437

using the voices of both speakers in the conver-1438

sation, we use Fish Speech (Liao et al., 2024),1439

a speaker-adaptive TTS model that synthesizes1440

speech in the target speaker’s timbre using refer-1441

ence audio. Before synthesis, we normalize the text1442

QA data into a TTS-compatible format using the 1443

refine prompt in Figure 11 with gpt-4o. 1444

A.3.2 Examples 1445

Figures 12 and 13 present examples from Con- 1446

textDialog. In each example, blue text highlights 1447

the supporting utterances, while red text indicates 1448

the generated questions and their corresponding 1449

reference answers. Figure 12 illustrates a QA ex- 1450

ample derived from a system utterance in the first 1451

half of the conversation, whereas Figure 13 shows 1452

an example based on a user utterance from the 1453

latter half. Additionally, we provide several audio 1454

samples on our demo page.3 1455

A.4 Evaluation 1456

In Section 4, we assess whether voice interaction 1457

models can accurately recall past information and 1458

effectively generate responses augmented with re- 1459

trieved information. While gpt-4o is widely used 1460

for LLM-as-a-judge (Zheng et al., 2023) evalua- 1461

tions, running all experiments with gpt-4o would 1462

be cost-prohibitive. Therefore, we use gpt-4o-mini 1463

(OpenAI, 2024a) to measure GPT Scores. 1464

To verify the reliability of gpt-4o-mini for our 1465

evaluation, we compare its scores against gpt-4o 1466

on the spoken response (S → T , S )-based perfor- 1467

mance of the four voice interaction models in Table 1468

2. Evaluating 10,448 samples, we compute the Pear- 1469

son correlation coefficient following Wang et al. 1470

(2025), obtaining a strong correlation of 0.8787 1471

(p < 0.01) between the two sets of scores. This 1472

confirms that gpt-4o-mini provides reliable evalu- 1473

ation results for our task, and thus, we report all 1474

GPT Scores in the main paper using gpt-4o-mini. 1475

Additionally, we introduce the evaluation tem- 1476

plate used to assess response quality, as shown in 1477

Figure 14. The template ensures that a model’s re- 1478

sponse sufficiently answers the user’s question by 1479

verifying whether it includes key information from 1480

the ground-truth answer. Furthermore, we structure 1481

the evaluation to avoid overly penalizing redundant 1482

utterances, such as greetings or friendly remarks, 1483

ensuring that general voice interaction models are 1484

not disadvantaged for maintaining conversational 1485

naturalness. 1486

3Demo page: https://contextdialog.github.io/
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Failure Cases

[Example 1] I Don’t Know
. . .
User: Yeah my nephews watch Pokemon on Netflix, I found it too silly though. I did not know the
UK did their own version of thats 70s show that was canceled after 10 episodes though.
System: yeah, that show was ok, kinda funny from what I remember. Hard to believe only 1 episode
of the simpsons without bart, mentioned or appearing.
User: Yeah I still watch it on Netflix every now and then if I am bored, I have been re watching
game of thrones as of late though.
. . .
User: Could you remind me what you mentioned about the episode of The Simpsons without Bart
being mentioned or appearing?
System: I don’t remember that.

[Example 2] Wrong Evidence
. . .
System: My favoite sitcom was friends. I miss it. I did not think 3rd rock from the sun deserved
the golden globe in 1997 over friends.
User: Friends was a great show, they had so much talent there. I was and am more of a Seinfeld
fan, 3rd rock was ok.
System: I just love that comedies generally have a happy ending. I love to smile and laugh.
User: Yeah same here, and comedy is pretty hard to do right!
. . .
User: Could you remind me what you said about your favorite sitcom and its recognition in award
shows?
System: I love that comedies generally have a happy ending. I love to smile and laugh.

[Example 3] Incorrect Answer with Instrinsic Knowledge
User: Did you watch Infinity Wars?
System: No. I heard that it was the first film ever shot in digital imax.
. . .
System: That is neat! How about "The Lion King" being dubbed into Zulu for its African release?
That is also neat.
. . .
User: Could you remind me what you mentioned about the first film shot in digital IMAX?
System: The first film shot in digital IMAX was "The Lion King". It was released in 1994.

[Example 4] Wrong Evidence with Incorrect Knowledge
User: That’s too funny. Did you know that the state rock song of Oklahoma is "do you realize?" by
the Flaming Lips?
System: I didn’t know states could have state rock songs! I wonder if Illinois’ is that song that
became the most requested track on that Chicago alt-rock radio station.
. . .
User: Could you remind me of which song I mentioned as the state rock song of Oklahoma?
System: Yes, I believe you’re referring to "Oklahoma!" which is the state rock song of Oklahoma.
It was written by Jimmy Rogers and was adopted as the state song in 1971.

Figure 8: Examples categorizing common model failure cases. This excerpt is from a conversation: blue text
indicates the supporting utterance, while red text highlights the incorrect response.
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Generation Prompt for Text QA

[Prompt Instruction]
You are given a conversation between a user and a system, with each dialog

line tagged with a speaker label (e.g., "USER" or "SYSTEM"). Your task is
to create a final question that the user might plausibly ask before ending
the conversation, as well as the system's corresponding answer. The
conversation context is that the user has forgotten certain details from
the previous exchanges and wants to confirm them.

↪→

↪→

↪→

↪→

↪→

{data}

### Requirements
1. **Single Mention Rule**

- The question **must** be about content that appears **only once** in the
entire conversation (in other words, it has not been repeated or
paraphrased anywhere else).

↪→

↪→

- If the same or a semantically equivalent piece of information appears
more than once, it is considered duplicated and thus **not** allowed.↪→

2. **Output Format**
- Your output **must** follow the structure below (each on a new line,

without extra explanation or commentary):↪→

USER: <The user's final question based on the unique content>
SYSTEM: <The system's answer based on that same unique content>
EVIDENCE: <The exact single dialog line (with speaker label) copied

verbatim from the conversation>↪→

3. **Evidence Line**
- In the `EVIDENCE:` section, you must copy the **exact** line (including

speaker label, and any text content) from the conversation.↪→

- This line should provide the **only** piece of information from which the
answer can be definitively inferred.↪→

4. **Context of the Question**
- The user is "double-checking" or "confirming" something that was

mentioned just once by the system.↪→

- Make sure the question is a natural follow-up to that unique line,
reflecting the user's forgotten detail.↪→

5. **Language**
- Write your final question (`USER:`) in English. The final answer

(`SYSTEM:`) may be in English as well, if appropriate.↪→
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Generation Prompt for Text QA

6. **Evidence Position Rule**
- The evidence line must come from the first half of the conversation

(based on the total number of lines).↪→

- If the same or a semantically equivalent piece of information is repeated
in the latter half, you must not use it as evidence.↪→

7. **Additional Important Requirement**
- At the end, the user is asking about something they forgot or want to

confirm.↪→

- It is more natural for the user to be asking about something the system
has said earlier, rather than something the user themselves said.↪→

- The user has forgotten what the system said and wants to confirm or ask
it again.↪→

- **The user's question must rely solely on the content of the conversation
and should not be answerable by general or external knowledge. Avoid
any question that could be answered without referencing the specific
system statement.**

↪→

↪→

↪→

8. **No Yes/No Questions**
- The user's final question should not be a yes/no question. It must invite

a more detailed answer and be grounded in the unique content from the
conversation.

↪→

↪→

9. **Explicit Reference to System's Earlier Explanation**
- It's advisable to frame the question by directly asking, for example,

'What was it you said earlier regarding that topic?' or 'Could you
remind me what you explained before?' so the user clearly indicates
they are trying to recall the system's previous statement.

↪→

↪→

↪→

**Make sure your output is strictly limited to**:
USER: ...
SYSTEM: ...
EVIDENCE: ...

**No additional text, commentary, or explanation should be included.**

Figure 9: Our prompt template to generate written-form question, answer, and supporting utterance.
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Validation Prompt for Text QA

You are given a conversation between a user and a system, with each dialog
line tagged with a speaker label (e.g., "USER" or "SYSTEM") and the
following question and answer pair between USER and SYSTEM.

↪→

↪→

Your task is to determine whether the **entire** answer is fully deducible
from the given conversation.↪→

Conversation:
{data}

Question: {question}
Answer: {answer}

### Requirements
1. **Output Format**

Your output must be either YES, or NO, with single line of extra
explanation:↪→

2. **Context of the Answer**
- If the **entire** answer can be fully deduced from the given conversation

with respect to the provided question, answer YES: <Reason for YES>.↪→

- If the answer cannot be fully deduced or is incorrect in any part, output
NO: <Reason for NO>.↪→

Make sure your output is strictly limited to YES: <Reason for YES> or NO:
<Reason for NO>:↪→

No additional line break, text, commentary, or explanation should be included.

Figure 10: Our prompt template to validate the generated samples.
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Refine Prompt for Spoken QA Generation

You are provided with a written conversation between a user and a system,
where each dialog line is tagged with a speaker label (e.g., "USER" or
"SYSTEM"). Your task is to convert four specified transcripts into a
format that is optimized for Text-to-Speech (TTS) processing.

↪→

↪→

↪→

### Conversation:
{data}

### Transcripts to Convert:
1. {sentence1}
2. {sentence2}
3. {sentence3}
4. {sentence4}

### Requirements:

1. **Punctuation Standardization**
- Retain only the following punctuation marks: period (.), comma (,),

exclamation mark (!), and question mark (?).↪→

- Remove all other special characters unless they are essential for the
meaning or pronunciation (e.g., $).↪→

- Replace any non-standard punctuation with one of the above four, as
appropriate.↪→

2. **Whitespace Normalization**
- Eliminate unnecessary spaces, especially those before punctuation marks.
- Ensure that there is only a single space between words.
- Examples:

- "I'm hungry . " should be converted to "I'm hungry."
- "Hi, I'm John." should be converted to "Hi, I'm John."

3. **Symbol and Number Conversion**
- Convert numbers to their spoken equivalents (e.g., "1000" becomes "one

thousand").↪→

- Replace currency symbols with their word equivalents (e.g., "$1000"
becomes "one thousand dollars").↪→

- Modify phone numbers, addresses, and postal codes into a spoken-friendly
format. For example:↪→

- Phone number "123-456-7890" becomes "one two three, four five six,
seven eight nine zero."↪→

- Address "123 Main St." becomes "one two three Main Street."
- Ensure that any attached symbols (e.g., "$", "#") are appropriately

converted into words.↪→

- **For any symbols or numbers not covered in the examples provided, please
consider the conversation context and convert them appropriately to
ensure clarity and proper pronunciation.**

↪→

↪→
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Refine Prompt for Spoken QA Generation

4. **Preservation of Conversational Elements**
- Retain interjections, filler words, and the repetition of short phrases

as they are in the original transcript to maintain the natural flow and
tone of the conversation.

↪→

↪→

- **Maintain the original English phrases as much as possible, modifying
only the necessary elements (e.g., numbers, symbols, addresses) to
ensure clarity and proper pronunciation.**

↪→

↪→

- Examples:
- "Um, I think that's correct." remains "Um, I think that's correct."
- "Yes, yes, I'll do that." remains "Yes, yes, I'll do that."

5. **Preservation of Meaning**
- Ensure that the transformed transcripts retain the original meaning and

context of the conversation.↪→

6. **Speaker Labels**
- Retain the speaker labels ("USER" or "SYSTEM") if they are necessary for

context. If not required for TTS, they can be removed.↪→

7. **Output Format**
- The response must consist of exactly four lines.
- Each line should start with `1.`, `2.`, `3.`, and `4.` respectively,

followed by the converted sentence.↪→

- No additional explanations, comments, or text should be included.
- **It is imperative that the output contains only these four lines with no

extra information.**↪→

- Example of the desired output format:
1. Can you send me fifty dollars?
2. Your order number is one two three four five.
3. I'm at one two three Main Street, Apartment four.
4. Please confirm your email address as example at domain dot com.

Please apply these rules meticulously to the specified transcripts to ensure
optimal TTS performance.↪→

Figure 11: Our prompt template to refine the generated QA pairs for text-to-speech.
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Example of ContextDialog

Example 1:

User: Hey! Are you a football fan?
System: Hello, I love football! how about you?
User: I watch a little here any there.
System: Are you a Tom Brady fan? I have his book, it is basically the new bible!
User: Really, Id be interested to read it. It does sound a little extreme at some times.
System: I agree lol, do you have a favorite team?
User: I do, unfortunately I root for the Dolphins, it was a family thing.
System: yikes, I am sorry to hear that, lol. I am a vikings fan and they blew it this year. Did you
know the average NFL game is only 11 minutes of gameplay?
User: It takes SOOO long for those 11 minutes to happen too.
System: For sure, between the commercials, half time, and timeouts, it is sooo long. Did you know
most engineers make more money overtime than nfl players
User: That is good to hear, I wish more people knew that. That way some more people would go
into a focused program to help the world.
System: For sure! Did you know those same engineers developed chips to track data in shoulder
pads of NFL players?
User: That is really neat, I think it would be cool to see the data from those. Look at how hard they
get him.
System: for sure. Do you have a favorite college football team?
User: I do. I root for Florida State.
System: They were my favorite growing up. Now it is the Iowa Hawkeyes. They have pink locker
rooms for visiting teams.
User: That must be a shock for people when they walk in to it.
System: For sure, it is for calming their opponents, get the upper advantage, which is some
psychology stuff.
User: I know that is a big part of the game. Being able to come back from losses and stuff like that.
System: For sure, sometimes they need that. Great chatting with you!

User: Could you remind me what you mentioned about NFL games and the amount of gameplay
they have?
System: Sure, I mentioned that the average NFL game consists of only 11 minutes of actual
gameplay.

Figure 12: An example of ContextDialog with a supporting utterance based on the system’s utterance from first half
of the conversation in test_freq split. Text in blue indicates the supporting utterance and text in red represents the
question and answer, respectively.
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Example of ContextDialog

Example 2:

User: Have you heard about CIMON?
System: Yeah I have, he’s going to be flying with spaceX
User: Apparently CIMON can smile. CIMON is the first AI technology going to the space station.
System: That’s pretty cool. CIMON is also capable of conversation and technical support. But
that’s about all for now.
User: They say SIMON is going to be kind of like Alexa, and to help scientists with experiments.
System: CIMON is the acronym for Crew Interactive Mobile Companion.
User: That’s interesting. Airbus built it and Watson (IBM’s supercomputer) power it.
System: I hear it will be guided by cameras and voice commands, and able to hold a conversation.
User: That’s cool. But I’m kind of concerned AI will take over a lot of human jobs. What about
you?
System: I’m hesitant as well. But I think if they slowly release this type of technology it will be
fine.
User: Airbu’s lead system engineer said that they don’t plan to replace crew members with artificial
intelligence and that it’s just there to support the crew. So that’s good.
System: Yeah exactly, they are still there to support the crew, in the end they will always be
required.
User: SpaceX has been flying cargo to the station for years but has yet to fly humans.
System: SpaceX plans to fly its future flights on its next-generation iteration, the block 5, a
configuration that the company says will be suited to fly astronauts as soon as this year.
User: That will be exciting to see.
System: It sure will! SpaceX has been also flying cargo to the station for years. But it hasn’t flown
humans yet.
User: Yeah, SpaceX sent 5,900 pounds of research, crew supplies and hardware.
System: Thats very interesting. SpaceX hit a series of milestones with its launch. It was the 15th
mission to resupply the station, the 14th time SpaceX reflew one of its boosters, and the fourth
time it had reflown one of its Dragon capsules.
User: Eventually AI may be able to explore deep space, the moon, or Mars.
System: I can’t wait till that day, it will be a great day in our history!

User: Could you remind me what I said earlier about how many pounds of supplies SpaceX sent to
the station?
System: You mentioned that SpaceX sent 5,900 pounds of research, crew supplies, and hardware.

Figure 13: An example of ContextDialog with a supporting utterance based on the user’s utterance from the latter
half of the conversation in test_rare split. Text in blue indicates the supporting utterance and text in red represents
the question and answer, respectively.

28



Evaluation Prompt for GPT Score

You need to evaluate the performance of a voice assistant in a multi-turn
speech interaction scenario. The model receives a speech input from the
user, who is asking about something they forgot or want to confirm, and
generates a response.

↪→

↪→

↪→

Your task is to assess the model's response [Generated] in the final turn
based on the user's question [User] and the reference answer [Reference].↪→

The primary evaluation criterion is how well the model's response includes the
key information from the reference answer that is relevant to the user's
question. While the model may provide additional information, it must
accurately reflect the essential content from the reference answer that
pertains to the user's query.

↪→

↪→

↪→

↪→

### Scoring Criteria (1 to 5 scale):

- **1 point**: Fails to include relevant details from the reference answer.
- **2 points**: Includes some relevant details but omits key information from

the reference answer.↪→

- **3 points**: Partially includes relevant details but with omissions or
misrepresentations of key points.↪→

- **4 points**: Mostly includes the key details from the reference answer,
with only minor inaccuracies or omissions.↪→

- **5 points**: Fully includes the key information from the reference answer
without any omissions or errors.↪→

Below are the transcriptions of the user's input, the model's response, and
the reference answer:↪→

{data}

Please output only a single score (1-5) for the conversation without any
explanations.↪→

Figure 14: Our prompt template to evaluate the performance of a voice interaction model in a multi-turn voice
interaction scenario.
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