
SyncVIS: Synchronized Video Instance Segmentation

Rongkun Zheng1 Lu Qi2 Xi Chen1 Yi Wang3
Kun Wang4 Yu Qiao3 Hengshuang Zhao1∗

1The University of Hong Kong 2University of California, Merced
3Shanghai Artificial Intelligence Laboratory 4SenseTime Research

{zrk22@connect, hszhao@cs}.hku.hk

Abstract

Recent DETR-based methods have advanced the development of Video Instance
Segmentation (VIS) through transformers’ efficiency and capability in modeling
spatial and temporal information. Despite harvesting remarkable progress, existing
works follow asynchronous designs, which model video sequences via either
video-level queries only or adopting query-sensitive cascade structures, resulting
in difficulties when handling complex and challenging video scenarios. In this
work, we analyze the cause of this phenomenon and the limitations of the current
solutions, and propose to conduct synchronized modeling via a new framework
named SyncVIS. Specifically, SyncVIS explicitly introduces video-level query
embeddings and designs two key modules to synchronize video-level query with
frame-level query embeddings: a synchronized video-frame modeling paradigm
and a synchronized embedding optimization strategy. The former attempts to
promote the mutual learning of frame- and video-level embeddings with each other
and the latter divides large video sequences into small clips for easier optimization.
Extensive experimental evaluations are conducted on the challenging YouTube-VIS
2019 & 2021 & 2022, and OVIS benchmarks, and SyncVIS achieves state-of-the-
art results, which demonstrates the effectiveness and generality of the proposed
approach. The code is available at https://github.com/rkzheng99/SyncVIS.

1 Introduction

Video Instance Segmentation (VIS) is a fundamental while challenging vision task that aims to detect,
segment, and track object instances inside videos based on a set of predefined object categories at the
same time. With the prosperous video media, VIS has attracted various attention due to its numerous
vital applications in areas such as video understanding, video editing, autonomous driving, etc.

Benefiting from favorable long-range modeling among frames, query-based offline VIS methods [6,
31, 15, 29, 17, 36] like Mask2Former-VIS [6], and SeqFormer [31] begin to dominate the VIS.
Inspired by the object detection method DETR [5], they learn a group of queries that can track and
segment potential instances simultaneously across the multiple frames of a video. On the other hand,
online VIS approaches like IDOL [32] also exploit the temporal consistency of query embeddings
and associate instances via linking the corresponding query embeddings frame by frame. Albeit
the success gained by those methods, we find they barely capitalize multi-frame inputs. In practice,
the Mask2Former-VIS [6] would significantly perform worse if more input frames are given during
training (evidenced in Fig. 3). This is paradoxical to our common sense that more frames could
facilitate deep learning models obtaining more motion information of instances.

For this problem, many researchers [15, 31, 17] point out that the video-level queries are vitally
hard to track the instances well if receiving many frames in training. That is because the trajectory

∗Corresponding author

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/rkzheng99/SyncVIS

Input Video

Synchronized

Frame & Video Queries

Pred.Trans.

 Dec.

Input Video Frame Queries

Trans.

 Dec.

Video Queries

Pred. Optim

Synchronized

Optimization

Trans.

 Dec.
Pred. Sync.

Optim.

Fig. 1. Comparison of video instance segmentation paradigms. Previous methods (left part) like VITA [15]
adopt asynchronous query-sensitive structures to model instance appearances and trajectories. Our model
(right part) employs frame and video embeddings in a query-robust synchronous manner, and they synchronize
with each other through the transformer decoder to generate the refined video-level query embeddings for the
prediction. Also, we employ a synchronized embedding optimization strategy ‘Sync. Optim.’ instead of the
classic optimization approach.

complexity will increase in polynomials along with the number of frames. Therefore, state-of-the-art
methods like SeqFormer [31] and VITA [15] usually decouple the trajectory into spatial and temporal
dimensions, which are modeled by frame-level and video-level queries, respectively. Specifically,
they utilize the frame-level queries to segment each frame independently and then associate these
frame-level queries with video-level queries, which are responsible for the final video-level prediction.
The well-trained frame-level queries guarantee the quality in the spatial dimension and thus decrease
the burden of video queries. However, we argue that two issues remain in these asynchronous
designs (as illustrated at the left of Fig. 1). First, with the asynchronous structure, the wellness of
video-level queries heavily relies on the learning of former frame-level queries, inside which some
motion information may be lost because it is an image encoding stage (rather than video encoding),
which leads to the sensitivity of queries to the learning quality of former stages. Second, previous
works have not solved the bipartite matching among more frames (rather than single frame), and thus
the optimization complexity of trajectories remains exorbitant. Both two issues block the further
development of query-based methods for video instance segmentation.

To this end, we propose to model video and frame queries synchronously with a new framework
named SyncVIS to address the above-mentioned issues. Built upon DETR-style structures [6, 32],
our SyncVIS has two key components: the synchronized video-frame modeling paradigm and the
synchronized embedding optimization strategy. Both designs put effort into unifying the frame- and
video-level predictions in synchronization. The synchronized video-frame modeling paradigm makes
frame- and video-level embeddings interact with each other in a query-robust parallel manner, rather
than a query-sensitive cascade structure. Then the synchronized embedding optimization strategy
adds a video-level buffer state to generate more tractable intermediate bipartite matching optimization
compared with only frame-level losses. Fig. 1 demonstrates the schematic difference between the
asynchronous state-of-the-art method and our synchronous approach. Our model is schematically
simple but practically more effective, with exquisite designs as follows.

In the synchronized video-frame modeling paradigm, we employ frame and video-level embeddings
in the transformer decoder to model object segmentation and tracking synchronously. Specifically,
frame-level embeddings are assigned to each sampled frame, and responsible for modeling the
appearance of instances, and video-level embeddings are a set of shared instance queries for all
sampled frames, which are used to characterize the general motion (In the DETR-style architecture,
when video queries are associated with features across time via the decoder, they can effectively
model instance-level motion through the cascade structure. In Mask2Former-VIS, the use of video
queries alone enables the capture of instance motion). Frame-level embeddings are kept on each
frame to attend to instances locally. In each decoder layer, the video-level embeddings are aggregated
to refine frame-level embeddings on the corresponding frame. The refined frame-level embeddings, in
turn, are aggregated into video-level embeddings. By repeating this synchronization in decoder layers,
SyncVIS incorporates the semantics and movement of instances in each frame. In the synchronized
embedding optimization strategy, we focus more on video-level bipartite matching. Concretely, we
decouple the input video into several clips to synchronize video and frame, and the total number
of clips is related to the combinatorial number. Then, we calculate each clip loss independently by
video-level bipartite matching, so that video embeddings can maintain their association ability.

We evaluate our SyncVIS on four popular VIS benchmarks, including YouTube-VIS 2019 & 2021 &
2022 [34], and OVIS-2021 [27]. The experiments show the effectiveness of our method with signifi-

2

cant improvement over the current state-of-the-art methods VITA [15], DVIS [38], and CTVIS [37].
Our contributions are as follows:

• We analyze the limitations of existing video instance segmentation methods and propose a
framework named SyncVIS with synchronized video-frame modeling. It can well character-
ize instances’ trajectories under complex and challenging video scenarios.

• We develop two critical modules: a synchronized video-frame modeling paradigm and a
synchronized embedding optimization strategy. The former adopts a synchronized paradigm
to alleviate error accumulation in cascade structures. The latter divides large video sequences
into small clips for easier optimization.

• We conduct extensive experimental evaluations on challenging VIS benchmarks, including
YouTube-VIS 2019 & 2021 &2022, and OVIS 2021, and the achieved state-of-the-art results
demonstrate the effectiveness and generality of the proposed approach.

2 Related Works

Online video instance segmentation. Most online VIS methods adopt the tracking-by-detection
paradigm, integrating a tracking branch into image instance segmentation models. These methods
predict detection and segmentation within a local range using a few frames and associate these
outputs using matching algorithms. MaskTrack R-CNN [34] incorporates a tracking branch to
Mask R-CNN [12]. Many subsequent approaches [4, 35, 21], follow this pipeline, measuring the
similarities between frame-level predictions and associating them with different matching modules.
CrossVIS [35] uses the instance feature in the current frame to pixel-wisely localize the same instance
in another frame. MinVIS [16] implements a query-based image instance segmentation model [7] on
individual frames and associate query embeddings via bipartite matching.

Contrarily, some previous works [9, 19, 10, 14], draw inspiration from Video Object Segmenta-
tion [25], Multi-Object Tracking [8, 24, 41, 2, 26, 39], and Multi-Object Tracking and Segmenta-
tion [28]. GenVIS [14] adopts a novel target label assignment strategy and builds instance prototype
memory in query-based sequential learning. IDOL [32], based on Deformable-DETR [42], introduces
a contrastive learning head that acquires discriminative instance embeddings for association [11].
CTVIS [37] improved upon IDOL by constructing a consistent paradigm for both training and
inference. However, online VIS methods usually adopt frame-level query and ignore the video-level
associations across non-adjacent frames, which is problematic when handling complex long videos.

Offline video instance segmentation. Offline methods predict instance masks and trajectories
through the whole video in one step using the whole video as input. STEm-Seg [1] proposes a
single-stage model which learns and clusters the spatio-temporal embeddings. MaskProp [3] and
Propose-Reduce [19] improve association and mask quality by mask propagation. Efficient-VIS [30]
uses a tracklet query paired with a tracklet proposal to represent object instances. VisTR [29]
successfully adapts DETR [5] to VIS, using instance queries to model the whole video. IFC [17]
proposes inter-frame communication transformers, using memory tokens to model associations
across frames. By adapting Mask2Former [7] to 3D spatio-temporal features, Mask2Former-VIS [6]
becomes the state-of-the-art by exploiting its mask-oriented representation. TeViT [36] introduces
a new approach based on transformers instead of the CNN backbone and associates temporal
information efficiently. SeqFormer [31] decomposes the shared instance queries into frame-level
box ones and utilizes video-level instance queries to relate different frames. Recently, VITA [15]
uses object tokens to represent the whole video and employs video queries to decode semantics from
object tokens. TMT-VIS [40] manages to jointly train multiple datasets to improve performance via
different taxonomy information. However, these methods typically implement only video query or
utilize asynchronous structures, and the final query-sensitive approaches have difficulties dealing
with complex scenarios.

3 Method

Video instance segmentation can be formulated into a set prediction problem, which can be addressed
by a DETR [5] style framework like Mask2Former [7]. We first revisit the Mask2Former-VIS [6], one
of the baselines that our method is built on. Then we propose a synchronized transformer framework
named SyncVIS to address challenging video scenarios, with its two key designs.

3

Frame Queries

Video Queries

Pixel

Decoder

Back-

 bone

L×

Input Video

Frame Features

Synchronized Video-Frame Modeling

Aggregation

Video

Predictions

𝐿𝑓

𝐿clip

𝐿clip

𝐿clip

Synchronized Embedding Optimization

Frame

Predictions

T1

T2

T3

T1

T2

T3

T1

T2

T3

T1

T2

T1

T3

T2

T3

Aggregation

F
F

N

S
el

f-
A

tt
en

ti
o

n

C
ro

ss
-A

tt
en

ti
o

n

Fig. 2. Overview of the proposed synchronous video-frame modeling framework SyncVIS. The developed syn-
chronized video-frame modeling paradigm enables video-level embeddings and frame-level ones to synchronize
with each other in each stage of the decoder. SyncVIS also suggests a new synchronized embedding optimization
strategy. As shown in the right part, SyncVIS decouples the input video frames into several sub-clips and feeds
each sub-clip into the mask and classification head. By applying these modules, SyncVIS can incorporate both
semantics and movement of instances in each frame in a synchronous manner for superior characterizing ability.

3.1 Revisiting Mask2Former

Mask2Former [6, 7] is a universal Transformer-based framework for image or video instance seg-
mentation. Given an input sample, Mask2Former adopts a Transformer-based decoder, which first
learns N number of C-dimensional queries Q ∈ RN×C to generate embeddings E ∈ RN×1×1×1×C ,
then predicts N segmentation masks based on the generated embeddings, where the 2nd, 3rd, and
4th dimensions of E correspond to temporal T , height H , and width W dimensions respectively.
Here, we note that the transformer decoder is a nine-layer structure, where lth layer cascades a
masked cross-attention hl

CA, a self-attention hl
SA, and a feed-forward network FFNl. For frame-level

Mask2Former, E is expanded along spatial dimensions W and H to the shape of N×1×H×W ×C.
Alternatively, for video-level Mask2Former, E is with a shape of N × T ×H ×W × C, and the
combination of temporal T and spatial dimensions W and H enables Mask2Former to utilize the
shared embeddings to represent the same visual instances across different frames consistently. Finally,
E is utilized for instance-level classification Pc and pixel-level mask prediction Pm.

Analysis. Although Mask2Former-VIS [6] has achieved impressive results, it exhibits notable
performance degradation when dealing with complex videos. For instance, we observe a decrease in
average precision (AP) of 1.5% when the number of input frames increases to ten. This observation
is counter-intuitive as we expect models to improve their performance with an increased number of
training frames. We hypothesize that this decline in performance stems from the insufficiency of
stand-alone video queries for effective long-range video modeling. In the case of challenging long-
range video sequences, there is a need to model more instances and their corresponding movements
using video-level queries. This unexpected scenario suggests that there is a significant demand for
distinct sets of queries that can effectively characterize both the object categories and movement
trajectories in video sequences.

3.2 Overall Architecture

The SyncVIS is a new framework designed to improve the representation of long video frame infor-
mation and optimize system learning processes. It combines video-level and frame-level embeddings
synchronously, which enhances the overall functionality of the framework. The framework is depicted
in Fig. 2 and features two fundamental modules, i.e., a synchronized video-frame modeling paradigm
(Sec. 3.3) and a combinatorial embedding optimization strategy (Sec. 3.4).

3.3 Synchronized Video-Frame Modeling

Synchronized video-frame modeling is a strategy designed to avoid the sensitive cascading in previous
methods and improve the synchrony between the frame-level embeddings Xl

f ∈ RT×N×C and video-

4

level Xl
v ∈ R1×N×C . Xl

f focuses on every frame separately, while Xl
v mainly interacts with the

whole video features.

Based on the design of the transformer decoder, we concurrently introduce frame- and video-level
embeddings to each layer. Here, the frame- and video-level embeddings are replicated for T and 1
times by learnable frame- and video-level embeddings at first when given a video with T frames.
Thus both the frame- and video-level embeddings pass the transformer decoder layer and two kinds of
interaction operations for synchronous exchange and refinement. For each step, these two embeddings
are updated as follows:

Xl+1
t = FFNt(ht

SA(h
t
CA(X

l
t,F))), (1)

where t ∈ {f, v} indicates the frame- or video-level embeddings and F means the pyramid features
extracted from the backbone. Xl is the embeddings processed by the lth transformer decoder layer.
The hv

CA(q, r) indicates the cross-attention with video-level query embedding q and frame-level
reference embedding r. In our design, frame-level embeddings are assigned to each sampled frame,
and responsible for modeling the appearance of instances, and video-level embeddings are a set of
shared instance queries for all sampled frames, which are used to characterize the general motion
(because they encode the position information of instances across frames, and thereby naturally
contain the motion information).

Then, we feed the frame- and video-level embeddings into the proposed synchronous structure for
mutual information exchange and refinement as follows:

Xl+1
f = λ · hf

CA(X
l+1
f , FFNvf(Xl+1

v-s)) + (1− λ) ·Xl+1
f , (2)

Xl+1
v = λ · hv

CA(X
l+1
v , FFNfv(Xl+1

f-s)) + (1− λ) ·Xl+1
v , (3)

where ‘v-s’ and ‘f-s’ mean that we only select top Nk embeddings in key and value to interact with the
query, while ‘fv’ and ‘vf’ indicate the refinement direction of the feedfoward network, from frame to
video and video to frame. λ (set to 0.05) is the update momentum of video-level embeddings, because
we presume that the aggregation of frame-level features should not change the general video-level
embeddings significantly, and vice versa.

The motivation behind this approach is similar to that of the masked attention mechanism used in
Mask2Former. The key difference lies in the dimension where the masking happens. In Mask2Former,
the strategy is to mask out the background regions within the spatial dimension. On the other hand,
our method works differently by masking out background embeddings within the key and value
dimensions. This is done by selecting the top Nk embeddings based on the confidence scores provided
by the prediction head. Therefore, while both methods aim to reduce the influence of irrelevant
background information, they do so in different ways: Mask2Former masks spatially, while our
method targets key and value embeddings.

3.4 Synchronized Embedding Optimization

Video-level bipartite matching is a challenging memory-costly problem that remains asynchronous:
The matching approaches from previous VIS methods are adapted directly from DETR, so the
complexity of matching increases with the number of frames in a video, as the instances are not
restrained to a single frame, but could be in any frame in the video. Even though larger input frames
can bring more trajectory information of instances for prediction, this presents a challenge due to
the resulting trajectory complexity, which scales polynomically with the input. Conversely, when
the input is insufficient, the system may lack the necessary information to function optimally. Such
asynchrony is the motivation of our new optimization strategy.

Regarding this, we present the synchronized embedding optimization strategy using the divide-and-
conquer: if we want to associate frame ti to frame tj and yet the time interval may be large, an
effective approach is to find k, s.t i < k < j, and associate ti to tk as well as tk to tj . When the
model achieves better segmentation results on sub-clips, combining these local optimums and we can
achieve a better matching. Therefore, when generating the output predictions, we would divide the
predictions into several sub-clips, and optimize each sub-clips independently. This sub-clip is like a
video-level buffer to help synchronizing video-level and frame-level embeddings. By optimizing the
local sub-sequence of the video, rather than the entire video sequence, if the target instance becomes
occluded in certain frames, our optimizing strategy can adjust the features within the sub-sequence
to adapt to this change, without being affected by the unoccluded frames. The size of sub-clips,
Ts, is variable across all VIS datasets: as for VIS datasets with fewer instances per video, such as

5

Youtube-VIS 2019, Ts is set to 3, while for OVIS, Ts works best at 2 (discussed in Sec. 4.4). In order
to further reduce the complexity for better optimization, dividing into smaller sub-clips can accelerate
the optimization. Also, keeping the size of two is able to maintain the temporal information. In this
way, our video-level objective Lv could be divided into several clips as follows:

Lv =
∑

0≤i̸=j≤T

Lclip(i,j), (4)

where T indicates the number of input frames. And the overall training loss L for our model can be
formulated as:

L =
∑

k∈{v,f}

Lce
k (P

c
k,G

c
k) +

∑
k∈{v,f}

Lbce
k (Pm

k ,Gm
k)+

∑
k∈{v,f}

Ldice
k (Pm

k ,Gm
k) + Lcontras, (5)

where Lce
f and Lce

v denote the cross-entropy loss for frame- and video-level classification. Similarly,
Lbce
f , Lbce

v , Ldice
f , and Ldice

v denote the binary cross-entropy and dice loss for frame- and video-level
mask prediction, respectively. Here P is the prediction, and G is the ground truth, and c refers to
classification while m refers to mask. Lcontras represents the contrastive loss, which is applied in
online settings (but not in offline) as IDOL [32] does, where the previous frame is set as a reference
frame and the current frame is set as key frame.

3.5 Implementation Details

Our method is built on detectron2 [33]. Hyper-parameters regarding the pixel and transformer decoder
are the same as these of Mask2Former-VIS [6]. In the synchronized video-frame modeling, we set
the number of frame-level and video-level embeddings N to 100. To extract the key information,
we set the Nk to 10. Following the design of Mask2Former-VIS [6], we first trained our model on
COCO [20] before training on VIS datasets. We use the AdamW [23] optimizer with a base learning
rate of 5e-4 on Swin-Large backbone in YoutubeVIS 2019 (we use different training iterations and
learning rates for different datasets). During inference, each frame’s shorter side is resized to 360
pixels for ResNet [13] and 448 pixels for Swin [22]. Most of our experiments are conducted on 4
A100 GPUs (80G), and on a cuda 11.1, PyTorch 3.9 environment. The training time is approximately
1.5 days when training with the Swin-L backbone.

4 Experiments

Datasets and metrics. YouTube-VIS dataset is a large-scale video database for video instance
segmentation. The dataset has seen three iterations, in 2019, 2021, and 2022, with each adding more
challenges to the dataset [34]. The first iteration, YouTube-VIS 2019, contains 2.9k videos with an
average duration of 4.61 seconds. The validation set has an average length of 27.4 frames per video
and covers 40 predefined categories. The dataset was updated to YouTube-VIS 2021 with longer
videos with more complex trajectories. As a result, the validation videos’ average length increased to
39.7 frames. The most recent update, YouTube-VIS 2022, adds an additional 71 long videos to the
validation set and 89 extra long videos to the test set.

OVIS dataset is another resource for video instance segmentation, particularly focusing on scenarios
with severe occlusions between objects [27]. It consists of 25 object categories and 607 training
videos. Despite a smaller number of training videos compared to the YouTube-VIS datasets, the
OVIS videos are much longer, averaging 12.77 seconds each. OVIS emphasizes the complexity of
the scenes and the severity of occlusions between objects.

4.1 Main Results

We compare SyncVIS with state-of-the-art approaches which are with ResNet-50 and Swin-L back-
bones on the YouTube-VIS 2019 & 2021 & 2022 [34] & OVIS 2021 [27] benchmarks. The results
are reported in Tables 1 , 2 and 3.

YouTube-VIS 2019. Table 1 shows the comparison on YouTube-VIS 2019. When applying our
design to CTVIS, we discover that the forward passing of CTVIS is still asynchronous. While a

6

Table 1. Results comparison on the YouTube-VIS 2019 and 2021 validation sets. We group the results by online
or offline methods, and then with ResNet-50 or Swin-L backbone structures. SyncVIS is the model to which
we add our two designs based on CTVIS and VITA. Typically, since our design is orthogonally designed for
decoder and optimization, our module could seamlessly integrate with both online & offline approaches without
bells and whistles. Our algorithm gets the best AP performance under all of the settings.

Method Backbone YouTube-VIS 2019 YouTube-VIS 2021
AP AP50 AP75 AR1 AR10 AP AP50 AP75 AR1 AR10

O
nl

in
e CrossVIS [35] ResNet-50 36.3 56.8 38.9 35.6 40.7 34.2 54.4 37.9 30.4 38.2

MaskTrack R-CNN [34] ResNet-50 38.6 56.3 43.7 35.7 42.5 36.9 54.7 40.2 30.6 40.9
MinVIS [16] ResNet-50 47.4 69.0 52.1 45.7 55.7 44.2 66.0 48.1 39.2 51.7
TCOVIS [18] ResNet-50 52.3 73.5 57.6 49.8 60.2 49.5 71.2 53.8 41.3 55.9
IDOL [32] ResNet-50 49.5 74.0 52.9 47.7 58.7 43.9 68.0 49.6 38.0 50.9
DVIS [38] ResNet-50 51.2 73.8 57.1 47.2 59.3 46.4 68.4 49.6 39.7 53.5
CTVIS [37] ResNet-50 55.1 78.2 59.1 51.9 63.2 50.1 73.7 54.7 41.8 59.5
SyncVIS ResNet-50 57.9 81.3 60.8 53.1 64.4 51.9 74.3 56.3 43.0 60.4

MinVIS [16] Swin-L 61.6 83.3 68.6 54.8 66.6 55.3 76.6 62.0 45.9 60.8
DVIS [38] Swin-L 63.9 87.2 70.4 56.2 69.0 58.7 80.4 66.6 47.5 64.6
TCOVIS [18] Swin-L 64.1 86.6 69.5 55.8 69.0 61.3 82.9 68.0 48.6 65.1
IDOL [32] Swin-L 64.3 87.5 71.0 55.6 69.1 56.1 80.8 63.5 45.0 60.1
CTVIS [37] Swin-L 65.6 87.7 72.2 56.5 70.4 61.2 84.0 68.8 48.0 65.8
SyncVIS Swin-L 67.1 88.9 73.0 57.5 71.2 62.4 84.5 69.6 49.1 66.5

O
ffl

in
e

EfficientVIS [30] ResNet-50 37.9 59.7 43.0 40.3 46.6 34.0 57.5 37.3 33.8 42.5
IFC [17] ResNet-50 41.2 65.1 44.6 42.3 49.6 35.2 55.9 37.7 32.6 42.9
Mask2Former-VIS [6] ResNet-50 46.4 68.0 50.0 - - 40.6 60.9 41.8 - -
TeViT [36] MsgShifT 46.6 71.3 51.6 44.9 54.3 37.9 61.2 42.1 35.1 44.6
SeqFormer [31] ResNet-50 47.4 69.8 51.8 45.5 54.8 40.5 62.4 43.7 36.1 48.1
VITA [15] ResNet-50 49.8 72.6 54.5 49.4 61.0 45.7 67.4 49.5 40.9 53.6
DVIS [38] ResNet-50 52.6 74.5 58.2 47.4 60.4 47.4 71.0 51.6 39.9 55.2
SyncVIS ResNet-50 54.2 75.1 58.2 51.2 61.7 48.9 71.4 52.8 40.4 57.9

SeqFormer [31] Swin-L 59.3 82.1 66.4 51.7 64.4 51.8 74.6 58.2 42.8 58.1
Mask2Former-VIS [6] Swin-L 60.4 84.4 67.0 - - 52.6 76.4 57.2 - -
VITA [15] Swin-L 63.0 86.9 67.9 56.3 68.1 57.5 80.6 61.0 47.7 62.6
DVIS [38] Swin-L 64.9 87.0 72.7 56.5 69.3 60.1 82.0 67.4 47.7 65.7
SyncVIS Swin-L 65.7 87.3 72.5 56.7 69.8 60.3 81.8 67.5 48.6 65.4

single frame produces the frame embedding, there is no explicit video-level embedding to interact
with the frame-level instance embedding. In our design, we add a set of video-level embeddings that
gradually update with the frame-level embeddings. Our SyncVIS sets new state-of-the-art results
under all of the settings. Among the online approaches, SyncVIS gets the highest performance of
57.9% AP and 67.1% AP with ResNet-50 and Swin-L backbones, which outperforms the previous
best solution CTVIS [37] by 2.8 and 1.5 points, exceeds the top-ranking method DVIS [38] by 6.7
and 3.2 points, respectively. We list the model parameters and FPS of SeqFormer (220M/27.7), VITA
(229M/22.8), and our SyncVIS (245M/22.1). Our model performs notably better with similar model
parameters and inference speed. The two designs in SyncVIS can also boost the performance of
both offline and online VIS solutions and can set new records in both settings, demonstrating the
effectiveness and importance of synchronous modeling.

YouTube-VIS 2021 & 2022. Table 1 also compares the results on YouTube-VIS 2021. Our method
hits the new records on the two backbone settings. SyncVIS achieves 51.9% AP and 62.4% AP with
ResNet-50 and Swin-L backbones, respectively, outperforming the previous SOTA by 1.8 and 1.2
points, which further demonstrates the effectiveness of our approach. In Table 2, SyncVIS exceeds
the previous SOTA by 1.1 points, proving its potency in handling complex long video scenarios.

OVIS. Table 3 illustrates the competitiveness of SyncVIS on the challenging OVIS dataset. SyncVIS
also shows superior performance over other high-performance algorithms with 36.3% AP and 50.8%
AP on ResNet-50 and Swin-L backbones, outperforming the current strongest architecture DVIS [38]
by 2.2 and 0.9 points, respectively. SyncVIS harvests the highest performance on all four datasets,
further evidencing its effectiveness and generality.

4.2 Ablation Studies

We ablate our proposed components, which are conducted with ResNet-50 on YouTube-VIS 2019.

7

Table 2. Results comparison on the YouTube-VIS
2022 long videos.

Method AP AP50 AP75 AR1 AR10

Sw
in

-L
MinVIS [16] 33.1 54.8 33.7 29.5 36.6
VITA [15] 41.1 63.0 44.0 39.3 44.3
DVIS [38] 45.9 69.0 48.8 37.2 51.8
SyncVIS 47.0 69.4 48.6 38.9 52.4

Table 3. Results comparison on the OVIS.
Method AP AP50 AP75 AR1 AR10

R
-5

0 DVIS [38] 34.1 59.8 32.3 15.9 41.1
SyncVIS 36.3 60.9 33.0 17.0 42.8

Sw
in

-L CTVIS [37] 46.9 71.5 47.5 19.1 52.1
DVIS [38] 49.9 75.9 53.0 19.4 55.3
SyncVIS 50.8 75.7 53.1 20.5 55.9

Table 4. Experiments on aggregating our design to various
popular VIS methods.

Method AP Method AP

Mask2Former-VIS [6] 45.1 VITA [15] 49.5
+ Synchronized Modeling 50.3 + Synchronized Modeling 53.0
+ Synchronized Optimization 46.7 + Synchronized Optimization 51.2
+ Both (SyncVIS) 51.5 + Both (SyncVIS) 54.2

TMT-VIS [40] 47.3 DVIS [38] 52.6
+ Synchronized Modeling 51.1 + Synchronized Modeling 54.9
+ Synchronized Optimization 48.7 + Synchronized Optimization 54.0
+ Both (SyncVIS) 51.9 + Both (SyncVIS) 55.8

GenVIS [14] 51.3 IDOL [32] 49.5
+ Synchronized Modeling 54.4 + Synchronized Modeling 55.1
+ Synchronized Optimization 52.7 + Synchronized Optimization 51.3
+ Both (SyncVIS) 55.4 + Both (SyncVIS) 56.5

Fig. 3. Ablation study on the complexity of video
scenarios regarding the number of input frames T .

Table 5. Ablation study on synchronized video-frame
modeling.

ID Frame→Video Video→Frame AP AP50 AP75

I 45.1 65.7 49.0
II ✓ 50.2 72.5 54.2
III ✓ 48.6 71.4 51.8
IV ✓ ✓ 51.5 73.2 55.9

Table 6. Ablation study on the structure and query
selection of synchronized video-frame modeling.

Method AP AP50 AP75

Cascade Structure + Frame-level Queries 46.2 67.8 49.9
Cascade Structure + Video-level Queries 46.7 68.2 50.3
Cascade Structure + Both Queries 49.9 72.0 54.4
Synchronous Structure + Both Queries (SyncVIS) 51.5 73.2 55.9

Complexity of video scenarios. Changing the complexity of video scenarios can check the ca-
pability of VIS solutions. We define the complexity as an indicator of the movements of different
instances, which is calculated as the maximum combination of trajectories between frames. For
example, if frame t has n instances while t+1 frame has m, then the maximum complexity would be
mn, and thus complexity is in polynomials with input frames, and we could use the frame number as
an indicator of complexity. We examine the effect of different numbers of input frames in Fig. 3. We
find the popular Mask2Former-VIS framework meets difficulties when dealing with complex videos,
i.e., T = 2 works best for the model, and as T continually increases, the performance will degrade
notably. In contrast, as we increase the input frames, our SyncVIS improves gradually and achieves
the best performance at T = 9. This evidences that our model is capable of handling challenging
scenarios and can well characterize the movement trajectories of video instances.

Key component designs. Table 4 demonstrates the effect of our component designs when combined
with the prevalent VIS methods. By aggregating the synchronized video-frame modeling paradigm,
Mask2Former-VIS achieves a huge gain of 5.2 points in AP performance. This is credited to the design
of two levels of queries as well as their mutual interactions. The synchronized embedding optimization
strategy further advances performance improvement across all VIS methods. Aggregating two designs
could also boost VITA by 3.5 and 1.7 points in performance, respectively. Note that the gain of
7.0 points for IDOL is also contributed by changing its original backbone to a Mask2Former-based
backbone. The extensive results in Table 4 show that our new designs can introduce consistent
improvements to various popular VIS methods, further indicating the effectiveness and generality.

4.3 Synchronized Video-Frame Modeling

Enhancement direction. In Table 5, we investigate the effect of the direction of the modeling
paradigm, including synchronous bidirectional and asynchronous unidirectional ones. Unidirectional
embedding enhancement can be divided into two types according to the output of the transformer
decoder: i) utilize the frame-level embeddings to enhance the video-level ones, and the aggregation
module consists of an FFN and cross-attention layer (denoted as ‘Frame→Video’); ii) adopt the video-

8

level embeddings to update the frame-level ones, and feed the frame-level embeddings to prediction
heads to generate the masks and instance classes independently (denoted as ‘Video→Frame’).

In Table 5, we find that without embedding enhancement, the decrease in performance is conspicuous
as up to 6.4 points. With either unidirectional asynchronous embedding enhancement strategy, the
result gets improved but is still not paired with the bidirectional synchronized video-frame modeling.
This signifies several points: first, introducing frame-level embeddings to refine video-level embed-
dings can increment the performance by adding more frame-level instance details, thus strengthening
the representative ability of video-level embeddings. Second, video-level embeddings contain more
spatial-temporal information, and utilizing video-level embeddings to predict segmentation results for
the video can receive better results. Third, adopting synchronized video-frame modeling is better than
unidirectional modeling. Even though adding frame-specific information to video-level embeddings
can contribute to representing more instance details, building the mutual association and aggregation
leads to a stronger representation ability to characterize the semantics and motions.

Modeling structure. We suppose the superiority of using a synchronous structure over a cascade one
is that the former avoids motion information loss and error accumulation. In Table 6, we evaluate these
two structures. For the cascade structure, we use frame-level embeddings to extract information and
associate image-level embeddings with video-level ones. The synchronized video-frame modeling
and synchronized embedding optimization remain the same in cascade structure experiments. The
synchronous structure gets 1.6 points higher AP performance than the cascade one, demonstrating
the superior design of the proposed synchronous structure over the classical cascade structure.

Query selection. As shown in Table 6, utilizing only video-level queries performs better than only
adopting frame-level ones. Frame-level queries segment each frame independently and focus less on
the association across frames, which leads to lower performance. Our synchronous model, on the
other hand, adopts both queries and achieves the best performance, validating the effectiveness of our
synchronized video-frame modeling paradigm.

Table 7. Ablation study on aggregation strategies.

Method AP AP50 AP75 AR1 AR10

Query Similarity 49.7 72.8 53.2 48.7 60.3
Mask Similarity 48.2 71.6 52.8 47.8 59.1
Class Prediction 51.5 73.2 55.9 49.5 60.4

Aggregation strategy. Table 7 shows the results
of different aggregation strategies in the synchro-
nized video-frame modeling. In the ‘Query Sim-
ilarity’, we select the most similar embeddings by
computing the cosine similarity between video-
level and frame-level embeddings. Note we com-
pute similarities frame-by-frame and concatenate
the top Nk embeddings together as input to the aggregation module. In the ‘Mask Similarity’, we
get similarities of corresponding mask embeddings to determine the most similar ones. We use class
scores (i.e., ‘Class Prediction’) to select key embeddings that work the best. Since some objects only
appear in a few frames, the most similar embeddings may represent the background in extreme cases,
disturbing the useful information for discrimination. Both aggregation methods have such problems,
and using mask similarity is even worse since masks are insufficient to encode motion fully, leading
to ineffective similarity calculation.

Aggregation embedding size. Table 8 shows the performance of SyncVIS with varying numbers
of embedding in the aggregation stage of the synchronized video-frame modeling paradigm. When
selecting top Nk = 10 embeddings to aggregate, the model performance reaches its best. When Nk

decreases, the aggregated key information contained in embeddings is not sufficient, the selected one
may not encode the semantic information of all instances in the video, and therefore cause the drop
in performance. Alternately, when Nk gets larger than optimum, the redundant query features dilute
the original information, which also leads to performance degradation.

4.4 Synchronized Embedding Optimization

Sub-clips size. Table 8 shows the results of SyncVIS with a varying Ts of sub-clips. The larger
the sizes of sub-clips are, the more complicated the optimization will be, and embeddings are less
likely to capture the proper semantics and trajectories. When we set the size of sub-clips to 3, the
model achieves its best performance. When Ts decreases to the lowest, the problem of optimizing
the whole video descends to optimizing each frame, weakening the model’s ability to associate

9

Table 8. Ablation study on the aggregation embed-
ding size Nk of synchronized video-frame modeling
paradigm and the sub-clip size Ts of synchronized em-
bedding optimization strategy.

Nk AP AP50 AP75 AR1 AR10 Ts AP AP50 AP75 AR1 AR10

5 51.1 73.0 55.4 49.1 59.3 1 50.9 73.7 54.9 49.0 60.1
10 51.5 73.2 55.9 49.5 60.4 2 51.3 73.3 55.6 49.2 60.2
25 50.9 73.5 55.1 48.4 59.6 3 51.5 73.2 55.9 49.5 60.4
50 49.3 72.8 52.3 47.4 56.7 4 50.7 73.8 54.1 47.9 58.9
100 47.5 70.4 51.4 46.8 56.1 5 50.4 73.3 54.2 47.2 58.1

Table 9. Ablation study on synchronized embedding
optimization strategy with ResNet-50 backbone.

Datasets Method AP AP50 AP75

YouTube-VIS 2019 Mask2Former-VIS 45.1 65.7 49.0
+ Optimization 46.7 68.6 50.7

YouTube-VIS 2021 Mask2Former-VIS 39.8 59.8 41.5
+ Optimization 41.3 62.1 42.5

OVIS Mask2Former-VIS 10.6 25.4 7.2
+ Optimization 12.3 27.1 9.2

frames temporally. When Ts increases, though there is a gain in the performance when compared to
undivided circumstances, the optimization is still more complex, making the training process hard
to reach optimum. Learned embeddings are insufficient to capture all semantics for sub-clip, and
therefore the performance is weaker than the optimal Ts value. However, Ts = 3 is the optimum
for Youtube-VIS 2019 & 2021. For Youtube-VIS 2022 and OVIS, SyncVIS performs best when
Ts is 2, which is the smallest size to maintain temporal associations. We suppose, that for more
complex scenarios, dividing into smaller sub-clips is beneficial for query embeddings to associate
across frames and accelerate the optimization. In optimization strategy, our main goal is to reduce
the increasing optimization complexity as the input frame number grows. To realize this target,
our strategy is to divide the video into several sub-clips that could make optimization easier while
retaining the temporal motion information. Longer Sub-clips could provide the model with more
temporal information, but their optimization complexity also rises polynomially. By optimizing
sub-clips, models can better adapt to changes in the target instance within the video, particularly
in cases of occlusion of many similar instances (In OVIS, most cases are videos with many similar
instances, most of which are occluded in certain frames). By optimizing the local sub-sequence of
the video, rather than the entire video sequence, if the target instance becomes occluded in certain
frames, our optimizing strategy can adjust the features within the sub-sequence to adapt to this change,
without being affected by the unoccluded frames.

Generality. The proposed optimization strategy is effective and general that can be adapted into
various DETR-based approaches. In these frameworks, the optimization problem for long video
sequences still exists. As in Table 9, when adding our optimization strategy to Mask2Former-VIS,
we harvest notable performance gains on all three benchmarks. This demonstrates that the proposed
optimization can be treated as a robust design suitable for different video scenarios.

5 Conclusion

We have proposed SyncVIS for synchronized Video Instance Segmentation. Unlike the current VIS
approaches that use asynchronous structures, SyncVIS utilizes a synchronized video-frame modeling
paradigm to encourage the synchronization between frame embeddings and video embeddings in a
synchronous manner, which incorporate both semantics and movement of instances more effectively.
Moreover, SyncVIS develops a plug-and-use synchronized embedding optimization strategy during
training, which reduces the complexity of bipartite matching in a divide-and-conquer approach.
Based on these two designs, our SyncVIS outperforms current methods and achieves SOTA on four
challenging benchmarks. We hope that our method can provide valuable insights and motivate the
future VIS research.

Broader impacts and limitations. SyncVIS is designed to propose a new synchronized structure
for VIS with promising performance. We hope this work can contribute to further applications in
video-related tasks and real-life applications. However, even though our model achieves promising
results, it has a problem segmenting very crowded or heavily occluded scenarios, which is discussed
in the supplementary.

Acknowledgement. This work is partially supported by the National Natural Science Foundation of
China (No. 62201484), National Key R&D Program of China (No. 2022ZD0160100), HKU Startup
Fund, and HKU Seed Fund for Basic Research.

10

References
[1] Ali Athar, Sabarinath Mahadevan, Aljosa Osep, Laura Leal-Taixé, and Bastian Leibe. Stem-seg:

Spatio-temporal embeddings for instance segmentation in videos. In ECCV, 2020. 3

[2] Philipp Bergmann, Tim Meinhardt, and Laura Leal-Taixe. Tracking without bells and whistles.
In ICCV, 2019. 3

[3] Gedas Bertasius and Lorenzo Torresani. Classifying, segmenting, and tracking object instances
in video with mask propagation. In CVPR, 2020. 3

[4] Jiale Cao, Rao Muhammad Anwer, Hisham Cholakkal, Fahad Shahbaz Khan, Yanwei Pang,
and Ling Shao. Sipmask: Spatial information preservation for fast image and video instance
segmentation. In ECCV, 2020. 3

[5] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In ECCV, 2020. 1, 3

[6] Bowen Cheng, Anwesa Choudhuri, Ishan Misra, Alexander Kirillov, Rohit Girdhar, and Alexan-
der G Schwing. Mask2former for video instance segmentation. arXiv:2112.10764, 2021. 1, 2,
3, 4, 6, 7, 8, 15, 16

[7] Bowen Cheng, Ishan Misra, Alexander G Schwing, Alexander Kirillov, and Rohit Girdhar.
Masked-attention mask transformer for universal image segmentation. In CVPR, 2022. 3, 4

[8] Patrick Dendorfer, Aljosa Osep, Anton Milan, Konrad Schindler, Daniel Cremers, Ian Reid,
Stefan Roth, and Laura Leal-Taixé. Motchallenge: A benchmark for single-camera multiple
target tracking. IJCV, 2021. 3

[9] Yang Fu, Linjie Yang, Ding Liu, Thomas S Huang, and Humphrey Shi. Compfeat: Comprehen-
sive feature aggregation for video instance segmentation. In AAAI, 2021. 3

[10] Su Ho Han, Sukjun Hwang, Seoung Wug Oh, Yeonchool Park, Hyunwoo Kim, Min-Jung
Kim, and Seon Joo Kim. Visolo: Grid-based space-time aggregation for efficient online video
instance segmentation. In CVPR, 2022. 3

[11] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In CVPR, 2020. 3

[12] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In ICCV, 2017. 3

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016. 6

[14] Miran Heo, Sukjun Hwang, Jeongseok Hyun, Hanjung Kim, Seoung Wug Oh, Joon-Young Lee,
and Seon Joo Kim. A generalized framework for video instance segmentation. In CVPR, 2023.
3, 8

[15] Miran Heo, Sukjun Hwang, Seoung Wug Oh, Joon-Young Lee, and Seon Joo Kim. Vita: Video
instance segmentation via object token association. In NeurIPS, 2022. 1, 2, 3, 7, 8, 15, 16

[16] De-An Huang, Zhiding Yu, and Anima Anandkumar. Minvis: A minimal video instance
segmentation framework without video-based training. In NeurIPS, 2022. 3, 7, 8

[17] Sukjun Hwang, Miran Heo, Seoung Wug Oh, and Seon Joo Kim. Video instance segmentation
using inter-frame communication transformers. In NeurIPS, 2021. 1, 3, 7

[18] Junlong Li, Bingyao Yu, Yongming Rao, Jie Zhou, and Jiwen Lu. Tcovis: Temporally consistent
online video instance segmentation. In ICCV, 2023. 7

[19] Huaijia Lin, Ruizheng Wu, Shu Liu, Jiangbo Lu, and Jiaya Jia. Video instance segmentation
with a propose-reduce paradigm. In ICCV, 2021. 3

[20] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV,
2014. 6

11

[21] Dongfang Liu, Yiming Cui, Wenbo Tan, and Yingjie Chen. Sg-net: Spatial granularity network
for one-stage video instance segmentation. In CVPR, 2021. 3

[22] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In ICCV, 2021.
6

[23] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv:1711.05101,
2017. 6

[24] Tim Meinhardt, Alexander Kirillov, Laura Leal-Taixe, and Christoph Feichtenhofer. Track-
former: Multi-object tracking with transformers. In CVPR, 2022. 3

[25] Seoung Wug Oh, Joon-Young Lee, Ning Xu, and Seon Joo Kim. Video object segmentation
using space-time memory networks. In ICCV, 2019. 3

[26] Jiangmiao Pang, Linlu Qiu, Xia Li, Haofeng Chen, Qi Li, Trevor Darrell, and Fisher Yu.
Quasi-dense similarity learning for multiple object tracking. In CVPR, 2021. 3

[27] Jiyang Qi, Yan Gao, Yao Hu, Xinggang Wang, Xiaoyu Liu, Xiang Bai, Serge Belongie, Alan
Yuille, Philip HS Torr, and Song Bai. Occluded video instance segmentation: A benchmark.
IJCV, 2022. 2, 6, 14

[28] Paul Voigtlaender, Michael Krause, Aljosa Osep, Jonathon Luiten, Berin Balachandar Gnana
Sekar, Andreas Geiger, and Bastian Leibe. Mots: Multi-object tracking and segmentation. In
CVPR, 2019. 3

[29] Yuqing Wang, Zhaoliang Xu, Xinlong Wang, Chunhua Shen, Baoshan Cheng, Hao Shen, and
Huaxia Xia. End-to-end video instance segmentation with transformers. In CVPR, 2021. 1, 3

[30] Jialian Wu, Sudhir Yarram, Hui Liang, Tian Lan, Junsong Yuan, Jayan Eledath, and Gerard
Medioni. Efficient video instance segmentation via tracklet query and proposal. In CVPR, 2022.
3, 7

[31] Junfeng Wu, Yi Jiang, Song Bai, Wenqing Zhang, and Xiang Bai. Seqformer: Sequential
transformer for video instance segmentation. In ECCV, 2022. 1, 2, 3, 7

[32] Junfeng Wu, Qihao Liu, Yi Jiang, Song Bai, Alan Yuille, and Xiang Bai. In defense of online
models for video instance segmentation. In ECCV, 2022. 1, 2, 3, 6, 7, 8

[33] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2.
https://github.com/facebookresearch/detectron2, 2019. 6

[34] Linjie Yang, Yuchen Fan, and Ning Xu. Video instance segmentation. In ICCV, 2019. 2, 3, 6, 7,
14

[35] Shusheng Yang, Yuxin Fang, Xinggang Wang, Yu Li, Chen Fang, Ying Shan, Bin Feng, and
Wenyu Liu. Crossover learning for fast online video instance segmentation. In ICCV, 2021. 3, 7

[36] Shusheng Yang, Xinggang Wang, Yu Li, Yuxin Fang, Jiemin Fang, Wenyu Liu, Xun Zhao, and
Ying Shan. Temporally efficient vision transformer for video instance segmentation. In CVPR,
2022. 1, 3, 7

[37] Kaining Ying, Qing Zhong, Weian Mao, Zhenhua Wang, Hao Chen, Lin Yuanbo Wu, Yifan Liu,
Chengxiang Fan, Yunzhi Zhuge, and Chunhua Shen. Ctvis: Consistent training for online video
instance segmentation. In ICCV, 2023. 3, 7, 8

[38] Tao Zhang, Xingye Tian, Yu Wu, Shunping Ji, Xuebo Wang, Yuan Zhang, and Pengfei Wan.
Dvis: Decoupled video instance segmentation framework. In ICCV, 2023. 3, 7, 8

[39] Yifu Zhang, Chunyu Wang, Xinggang Wang, Wenjun Zeng, and Wenyu Liu. Fairmot: On the
fairness of detection and re-identification in multiple object tracking. IJCV, 2021. 3

12

https://github.com/facebookresearch/detectron2

[40] Rongkun Zheng, Lu Qi, Xi Chen, Yi Wang, Kun Wang, Yu Qiao, and Hengshuang Zhao.
Tmt-vis: Taxonomy-aware multi-dataset joint training for video instance segmentation. In
NeurIPS, 2023. 3, 8

[41] Xingyi Zhou, Tianwei Yin, Vladlen Koltun, and Philipp Krähenbühl. Global tracking transform-
ers. In CVPR, 2022. 3

[42] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr:
Deformable transformers for end-to-end object detection. In ICLR, 2020. 3

13

Appendix

This appendix provides more details about the proposed SyncVIS, more qualitative visual compar-
isons, and the codebase of our implementation. The content is organized as follows:

• More ablation study experiments of the SyncVIS.
• The qualitative visual comparisons between popular VIS methods and our SyncVIS.
• The codebase is contained in the link:
https://github.com/rkzheng99/SyncVIS

A Dataset Details

Here, we provide a detailed overview of various VIS datasets in Table 10. Our extensive experimental
evaluations are conducted on four challenging benchmarks, namely YouTube-VIS 2019, 2021, and
2022 [34], and OVIS [27]. YouTube-VIS 2019 [34] was the first large-scale dataset designed for
video instance segmentation, comprising 2.9K videos averaging 4.61s in duration and 27.4 frames in
validation videos. YouTube-VIS 2021 [34] poses a greater challenge with longer and more complex
trajectory videos, averaging 39.7 frames in validation videos. The OVIS [27] dataset is another
challenging VIS dataset with 25 object categories, focusing on complex scenes with significant object
occlusions. Despite containing only 607 training videos, OVIS’s videos last an average of 12.77s.
Lastly, the most recent update, YouTube-VIS 2022, adds an additional 71 long videos to the validation
set and 89 extra long videos to the test set.

B Additional Ablation Studies

Update momentum. In this part, we show the performance of different values of λ, which is the
update momentum in the synchronized video-frame modeling module. When λ equals zero, the
whole synchronization between two levels of embeddings is collapsed, and thus a huge degradation in
performance is shown in Table 11. As the λ grows larger than the optimum value, the synchronization
can not bring further gain. Rather, the aggregation interferes with the updating of both levels
of embeddings in the decoder, which leads to a less increase in performance. Noted that in this
experiment, we base our approach on IDOL instead of Mask2Former or CTVIS.

Limitations. As for limitations, our model has a problem in segmenting very crowded or heavily
occluded scenarios. Even though our model shows better performance in segmenting complex scenes
with multiple instances and occlusions than previous approaches (as shown in visualizations in
the main paper and supplementary file), handling with extremely crowded scenes is not our main
focus. Our SyncVIS, on the other hand, aims to build consistent video modeling by synchronously
implementing both video-level and frame-level embeddings as well as synchronized optimizations.
We provide visualizations in our github repo: https://github.com/rkzheng99/SyncVIS.

C Visualization
Visual comparisons of different VIS methods are illustrated in Fig. 4. Our proposed SyncVIS obtains
accurate segmentation masks and captures occluded movement trajectories in challenging video
scenarios, evidencing its effectiveness over traditional solutions. In the visualization comparisons
between Mask2Former-VIS and our model, we select some cases under different scenarios, which
include setting with multiple similar instances, setting with reappearance of instance, setting with
different poses of instance, and settings with long video in Fig. 5, Fig. 6 and Fig. 7. The high-
quality segmentation results under these diverse circumstances and scenarios prove our model’s
robustness and generality in modeling both semantics and movements of objects. Also, we choose
visualizations of implementing different levels of embeddings in Fig. 8. The comparisons further
prove the effectiveness of synchronized video-frame modeling.

14

https://github.com/rkzheng99/SyncVIS
https://github.com/rkzheng99/SyncVIS

Table 10. Key statistics of popular VIS
datasets.‘YTVIS’ is the acronym of ‘Youtube-VIS’.

YTVIS19 YTVIS21 OVIS

Videos 2883 3859 901
Categories 40 40 25
Instances 4883 8171 5223
Masks 131K 232K 296K
Masks per Frame 1.7 2.0 4.7
Object per Video 1.6 2.1 5.8

Table 11. Ablation study of λ in synchronized video-
frame modeling paradigm. The results are evaluated on
the Youtube-VIS 2019 dataset.

λ AP AP50 AP75 λ AP AP50 AP75

0.0 52.5 74.8 57.3 0.10 56.1 78.8 59.3
0.01 54.9 77.6 58.7 0.12 55.7 78.3 58.9
0.02 55.8 78.9 59.0 0.15 55.2 78.1 58.4
0.05 56.5 79.5 59.8 0.20 54.3 77.4 58.0
0.08 56.3 79.1 59.2 0.50 53.0 75.1 57.8

M
2
F

S
y
n
cV

IS
V

IT
A

Fig. 4. Visual comparison of our SyncVIS with Mask2Former-VIS (‘M2F’) [6] and VITA [15]. SyncVIS
shows impressive accuracy in long, complex scenarios where objects share similar appearances and have heavy
occlusions.

M
2
F

S
y
n
cV

IS
S

y
n
cV

IS
M

2
F

Fig. 5. Qualitative comparisons with Mask2Former-VIS (abbreviated as ‘M2F’) on Youtube-VIS 2019. In this
case, we want to further prove that SyncVIS can better distinguish and capture instances with the same identities.
In the first two rows, the person on the right is not segmented by Mask2Former-VIS, while in the last two rows,
the cyclist from the back is not segmented by Mask2Former-VIS.

15

M
2
F

S
y
n
cV

IS
S

y
n
cV

IS
M

2
F

Fig. 6. Qualitative comparisons with Mask2Former-VIS (abbreviated as ‘M2F’) on Youtube-VIS 2019. In the
first two rows, the person riding the motorcycle reappears in the frame, which tests the model’s ability to connect
instances across the temporal axis. Our model successfully connects instances across two frames and segments
more precisely than Mask2Former-VIS does (the motorcyclist’s leg in the third frame), which demonstrates
SyncVIS’s temporal association ability. In the last two rows, the person on the skateboard is changing his poses
across time. Our model successfully segments the person in different poses, while Mask2Former-VIS fails to
segment this person’s arm in the first frame. This further illustrates the robustness and generality of our model’s
temporal association ability, which is credited to the synchronization.

M
2
F

V
IT

A
S

y
n
cV

IS

Fig. 7. Visual comparison of our SyncVIS with Mask2Former-VIS (abbreviated as ‘M2F’) [6] and VITA [15].
SyncVIS shows impressive accuracy in long videos, while the previous methods have either low confidence (the
confidence of the car in blue masks in the first row is 77% while in the third row is 98%) or incomplete masks
(the first frame in the second row).

16

V
id

eo
-le

ve
l E

m
be

dd
in

gs
 &

Fr
am

e-
le

ve
l E

m
be

dd
in

gs
V

id
eo

-le
ve

l
Em

be
dd

in
gs

Fr
am

e-
le

ve
l

Em
be

dd
in

gs

Fig. 8. Qualitative comparisons with different designs of embeddings. Video-level embeddings are from a set of
shared instance queries for all sampled frames. In the first row, video-level embeddings successfully capture
most of the instances, but fail to mask the fish in the middle of the image. Frame-level embeddings are assigned
to each sampled frame. In the second row, frame-level embeddings segment instances better than the first row,
but fail to maintain the trajectories of fish in the bottom right. When synchronizing these two sets of embeddings,
our model achieves better segmentation results even under such a complex scenario.

17

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: I summarize the contributions and the motivations in the abstract, and my
experimental results support my claim.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We include limitations in the end of the paper, discussing some failure cases.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

18

Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We disclose the codebase via an anonymous link to share our approach, and
the hyper-parameters are shared.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

19

Answer: [Yes]

Justification: We disclose the codebase via an anonymous link to share our approach, and
the hyper-parameters are shared.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We share these parameters and the details of the datasets.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We get the results with three runs each.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We include these information in our paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conduct in conform with the ethic code.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We include it at the end of the paper.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

21

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No data or models have a high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite each used asset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

22

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We include them and make them well-documented.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

23

	Introduction
	Related Works
	Method
	Revisiting Mask2Former
	Overall Architecture
	Synchronized Video-Frame Modeling
	Synchronized Embedding Optimization
	Implementation Details

	Experiments
	Main Results
	Ablation Studies
	Synchronized Video-Frame Modeling
	Synchronized Embedding Optimization

	Conclusion
	Dataset Details
	Additional Ablation Studies
	Visualization

