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Abstract
Scene graph generation (SGG) is an important
task in image understanding because it represents
the relationships between objects in an image as
a graph structure, making it possible to under-
stand the semantic relationships between objects
intuitively. Previous SGG studies used a message-
passing neural networks (MPNN) to update fea-
tures, which can effectively reflect information
about surrounding objects. However, these stud-
ies have failed to reflect the co-occurrence of ob-
jects during SGG generation. In addition, they
only addressed the long-tail problem of the train-
ing dataset from the perspectives of sampling and
learning methods. To address these two prob-
lems, we propose CooK, which reflects the Co-
occurrence Knowledge between objects, and the
learnable term frequency-inverse document fre-
quency (TF-l-IDF) to solve the long-tail prob-
lem. We applied the proposed model to the SGG
benchmark dataset, and the results showed a per-
formance improvement of up to 3.8% compared
with existing state-of-the-art models in SGGen
subtask. The proposed method exhibits general-
ization ability from the results obtained, showing
uniform performance improvement for all MPNN
models.

1. Introduction
Scene graph generation (SGG) is a type of image under-
standing that infers and interprets the relationships between
objects in an image and expresses them as a language graph.
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Figure 1. A novel learning recipe for SGG. (a) shows the class
distribution and scene graph results of SGG performed using a
conventional MPNN-based method. The proposed CooK + TF-l-
IDF layer can be easily applied to existing MPNN-based models, as
shown in (b). By updating the features according to the knowledge
of object co-occurrence and the label inverse frequency, as shown
in (c), it is possible to generate accurate relations between objects
and successfully alleviate the long-tail problem.

SGG has been applied to various computer vision tasks,
including image retrieval (Johnson et al., 2015; Schroeder
& Tripathi, 2020), image captioning (Hossain et al., 2019;
Zeng et al., 2022b), visual questions and answers (Ghosh
et al., 2019; Guo et al., 2021a; Li et al., 2022c; Zeng et al.,
2022a), and action recognition (Hu et al., 2022). The most
common SGG approach is using an object detector (Ren
et al., 2015; Redmon et al., 2016; Carion et al., 2020) to infer
the relationships between detected objects in an image as a
< subject, predicate, object> triplet. This triplet
is then represented as a graph with a predicate edge between
the subject and object nodes. For example, in the scene
graph shown in Figure 1, the subject is ‘man,’ the predicate
is ‘carrying,’ and the object is ‘surfboard.’ The relation-
ship between ‘man’ and ‘surfboard’ is represented by the
predicate edge ‘carrying,’ which indicates that the ‘a man is
carrying a surfboard’. However, there are many challenges
with respect to accurately and effectively inferring the under-
stood content. SGG has evolved to address the challenging
problem of inferring relationships between objects. (John-
son et al., 2015) first proposed the use of scene graphs for
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image retrieval and introduced a conditional random field
(CRF) model for inferring relationships between objects.
Recently, deep learning methods that utilize graph struc-
tures (Yang et al., 2018; Li et al., 2021; Yoon et al., 2023;
Kim et al., 2023), such as graph neural networks (GNNs),
have shown excellent performance in SGG. These methods
use message-passing neural networks (MPNN) to accurately
determine relationships between neighboring objects in a
scene, enabling a more effective SGG inference.

However, existing SGG training datasets have a serious
long-tail distribution, which can lead to the degradation of
fine-grained object relationships and biased predictions to-
ward dominant class labels. For example, a relationship such
as ‘walking on’ and ‘carrying’ may be incorrectly predicted
as a more dominant class label such as ‘on’ and ‘has.’ Sev-
eral methods (Zheng et al., 2023; Sudhakaran et al., 2023)
have been proposed to mitigate this issue. The methods
mentioned above have all contributed to the improvement
of performance for successful SGG, but they all have the
following limitations: when updating relation features using
an MPNN with a graph structure, there is a limitation in
that prior knowledge about the mutual correlation between
surrounding objects, such as that shown in Figure 1 (b) (e.g.,
person-surfboard, surfboard-wave), is not reflected in this
process. State-of-the-art (SoTA) unbiased SGG studies (Li
et al., 2021; Tang et al., 2020a; Zhou et al., 2022; Yu et al.,
2021) are also constrained in their ability to solve this limi-
tation because they focus only on de-biasing between class
labels.

To overcome the limitations of existing SGG methods, we
propose a novel SGG method that learns object relation-
ships based on Co-occurrence Knowledge (CooK). The
proposed SGG learning strategy reflects the co-occurrence
information between objects in a scene by calculating the
co-occurrence between objects from the training data and
applying it to an MPNN. This provides the model with
knowledge about the co-occurrence between objects, which
has not been carefully considered in previous methods, en-
abling a more accurate inference of object relationships. In
addition, we add a Learnable Term Frequency-Inverse Doc-
ument Frequency (TF-l-IDF) layer to the CooK-based SGG
model to alleviate the long-tail problem that exists in scene
graph datasets. This layer updates features in a manner that
emphasizes the features of the tail class and weakens those
of the head classes. The contributions of the proposed SGG
learning strategy are as follows:

• Reflecting co-occurrence knowledge for accurate
relationship inference: SGG leverages the co-
occurrence information between objects in a scene to
improve the accuracy of relationship inference. This
knowledge, which had been previously neglected by
existing methods, helps the model to infer to more

precise relationships between objects.

• Mitigating the long-tail problem through a learn-
able TF-l-IDF layer: SGG addresses the long-tail
problem inherent in scene graph datasets by incorpo-
rating a learnable TF-l-IDF layer. This layer boosts
the features of underrepresented classes (tail classes)
while weakening the features of dominant classes (head
classes), leading to more balanced and unbiased pre-
dictions.

• Improving SGG performance: Our research demon-
strates that integrating the CooK module into existing
SGG models results in significant performance im-
provements. In addition, experimental results show
that it is possible to develop SGG models with bet-
ter generalization performance by strengthening CooK
knowledge with more data.

2. Related Work
2.1. SGG Approaches

Conventional SGG approaches typically use CNN (Lu et al.,
2016) and RNN (Zellers et al., 2018; Chen et al., 2019c) to
model object relationships and understand the visual con-
text. These methods typically perform object detection and
relation analysis in stages, and they use heuristic rules to
generate scene graphs. However, this can lead to the overfit-
ting of complex images or long-tail head classes.

Recently, there has been increased interest in SGG meth-
ods that exploit graph structures. Graph-based approaches
can effectively reflect surrounding information by updating
nodes based on the features of neighboring nodes. A rep-
resentative graph-based study, Graph-R-CNN (Yang et al.,
2018), proposed adaptive graph convolution networks that
can efficiently update information between objects on top of
existing graph convolutional networks. GPS-Net (Lin et al.,
2020) proposed direction-aware message passing for node-
specific contextual information. BGNN (Li et al., 2021) fo-
cused on unbiased SGG generation by proposing confidence-
aware message propagation. HetSGG (Yoon et al., 2023) ap-
plied unbiased heterogeneous graph structures and updated
object-predicate correlated features through the proposed
relation-aware message passing, enabling more accurate
SGG generation. EdgeSGG (Kim et al., 2023) addressed the
limitations of existing graph-based SGG models by propos-
ing an edge dual SGG architecture that inverts the roles
of each node and edge of the graph. EdgeSGG enables
the capture of both object- and edge-centric information,
which is essential for generating fine-grained scene graphs.
Prior studies on graph-based SGG focused on capturing
more accurate relationships between objects and predicates.
However, common-knowledge insights have been largely
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Figure 2. The whole training strategy of our proposed CooK + TF-l-IDF method. (a) In the MPNN process, we use the prior knowledge
value CooK(cj |ci) extracted from the training data to enable learning that reflects CooK. The 1-order node feature n′ generated in this
way is used as an input to (b) TF-l-IDF, which can update features by considering the frequency between labels, to create a 2-order node
feature n̂. Finally, the 2-order node feature n̂ that has undergone L times of (a) and (b) processes is used to generate the final SG through
the scene graph predictor in (c).

overlooked in SGG, limiting the ability of SGG models to re-
flect common sense regarding general correlations between
objects.

2.2. Long-Tail Problem Solving

To improve SGG performance, data-centric approaches that
consider the long-tail problem of the training dataset have
also attracted attention. The most intuitive approach to
addressing the long-tail problem is to design a loss func-
tion for long-tail mitigation without modifying the model
(Knyazev et al., 2020). GPS-Net (Lin et al., 2020) addressed
the long-tail problem in SGG by introducing a reweighted
loss. BGNN (Li et al., 2021) used a new resampling strat-
egy to construct scene graphs and improve the prediction
performance of tail classes. HetSGG (Yoon et al., 2023)
achieved unbiased scene graphs by changing the graph struc-
ture from homogeneous to heterogeneous. PE-Net (Zheng
et al., 2023) proposed prototype embedding to make the
unbiased feature vectors for each predicate more compact
during the SGG process. VETO+MEET (Sudhakaran et al.,
2023) is a mutually exclusive expert learning strategy that is
employed for SGG to address long-tail problems. As noted
previously, to address the long-tail problem, prior methods
predominantly focused on structural modifications to the
model. In this study, we introduce a data-centric approach
to alleviate long-tail issues.

2.3. Label Correlation

Several approaches have been attempted in various fields to
incorporate the correlation between labels into learning. For
multi-label classification, SSGRL (Chen et al., 2019a) uti-
lized a graph structure defined by co-occurrence information
between labels to improve label classification performance.
SALGL (Zhu et al., 2023b) achieved higher performance

multi-label classification than previous studies by simultane-
ously utilizing co-occurrence knowledge and scene-aware
knowledge between labels. In the SGG field, BA-SGG
(Guo et al., 2021b) enabled more sophisticated scene graph
generation by utilizing the co-occurrence information of
”predicates” between objects. However, it has the limitation
of not considering the co-occurrence knowledge between
objects.

3. Cook + TF-l-IDF Recipe
3.1. Preliminaries

Scene Graph Generation. The goal of SGG is to success-
fully generate a graph G = (O,R), where O is a set of
objects found in a input image I and R is a set of rela-
tions between them. To generate the graph, we first extract
the object set oi ∈ O from the input image I using Faster
R-CNN (Ren et al., 2015). Each object oi is represented
as a tuple (vi, bi, ci), where vi ∈ Rd is the visual feature
map of oi, bi ∈ [0, 1]4 is the coordinates of the bounding
box of oi, and ci ∈ C is the class label of oi. The relation
between two objects oi and oj is represented as a triplet
ri = < oi, pi→j , oj >, where pi→j is the relation feature
map that represents the relation from oi to oj . The feature
map can be constructed by concatenating the features of oi
and oj (Jung et al., 2023), or by updating the visual feature
map of the union box of oi and oj (Li et al., 2021; Yoon
et al., 2023; Kim et al., 2023). A successful SGG aims to
learn the relation feature map pi→j in a more discriminative
manner.

Bag of the Word (BoW). BoW is a method for automati-
cally classifying documents by looking at the distribution
of words in a text. BoW considers a term to be relevant if
it appears in a document, regardless of the word order or
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structure of the document. However, BoW does not con-
sider the frequency of words, so term frequency inverse
document frequency (TF-IDF) was proposed to address this
issue. TF-IDF can reflect the importance of each word by
assigning different weights based on the frequency of each
word. TF-IDF is calculated as follows:

twd = TF (ntd, nd) · IDF (N,nt) (1)

TF (ntd, nd) =
ntd

nd
, IDF (N,nt) = log(

N

nt
) (2)

where, ntd, nd, nt and N means occurrences of word t in
document d, number of word occurrence in document d,
number of documents that contain word t and number of
documents, respectively.

3.2. Co-occurrence Knowledge

Existing SGG learning methods ignore the potential for co-
occurrence between objects. Inspired by (Zhu et al., 2023a),
we propose a CooK that can learn the co-occurrence of
objects during the SGG learning stage. CooK is expressed as
a matrix, as shown in Figure 2 (a); however, for convenience,
we refer to it is CooK. For successful CooK-based SGG
learning, CooK was extracted from the training dataset. In a
training set Dtrain having K images, we count the number
of objects with class i, card(oci) in each image, and count
the number of cases where different object class i and j
coexist in the same image card(oci ∩ ocj). The CooK
probability of the object classes oci and object class ocj
occurring simultaneously in all images can be calculated as
follows:

CooK(cj |ci) =
∑K

k=1 cardk(oci ∩ ocj)∑K
k=1 cardk(oci)

(3)

Advanced CooK. To obtain more refined knowledge, we
adopt two different object recognition datasets, the Visual
Genome (Xu et al., 2017b) and Open Images (Kuznetsova
et al., 2020), which are used for SGG learning. This ad-
vanced CooK is able to store more extensive knowledge.
With this advanced CooK, we can expect significant per-
formance improvements for all SGG subtasks. A detailed
discussion of the performance improvement is provided in
Section 4.7.

3.3. Learnable TF-l-IDF Layer

Despite the successful generation of CooK, there remains a
long-tail problem. To address this, previous studies have fo-
cused primarily on relation classes; however, object classes
used for relation inference can also cause serious long-tail
problems. Consequently, CooK can be biased in its con-
figuration, which can severely hinder the generalization of

overall model learning. To address this issue, we propose
a novel method for updating node features by introducing
a learnable TF-l-IDF layer inspired by TF-IDF scores and
adding it to the output of MPNN, as shown in Figure 2 (b).
The 1-order node features updated by the MPNN and CooK
are input to TF-l-IDF, which updates them to new 2-order
node features. The updated 2-order node features using the
TF-l-IDF layer reduce the influence of the head class that
can occur in the base backbone MPNN and increase the
influence of rare body and tail classes.

TF-l-IDF Layer. Let the MPNN block be repeated L times,
the image batch size be B, and the object label set be O.
Zl
i = {zl1, zl2, · · · zlO} ∈ RO×di is the set of 1-order node

feature of the i-th object and di is the feature dimension.
Let the set of Zl

i of a batch B, X l = {Zl
1, Z

l
2, · · ·Zl

B} ∈
RB×O×di . X l is fed to the TF-l-IDF layer, and the output
is then the updated node feature set Z(l+1)

i :

Zl+1
i = TF -l-IDF (X l) (4)

The TF-l-IDF layer can be expressed as the product of two
terms as follows:

TF (X l|ncb, nb) · l-IDF (X l|B,nzi ; ϵ, γ) (5)

where ncb is the total number of occurrences of a specific
class label c observed in the i-th image of the batch, and
nb denotes the total number of occurrences of all object
labels in the b-th image of the batch. nzi is the number of
images in zi class. In Equation 6, the TF value represents
the frequency of appearance of class c in image b.

TF (ncb, nb) =
ncb

nb
(6)

The l-IDF value is the inverse of the TF value.

l-IDF (B,nc; ϵ, γ) = log(
B + ϵ

nc + γ
) (7)

where nc is the number of images containing class label c.
To address potential biases introduced during training owing
to uneven sampling, we add trainable parameters ϵ and γ.
These parameters allow for dynamic adjustments to the log
term, thereby minimizing the impact of scenarios in which
the body or tail labels are oversampled. The learnable TF-l-
IDF layer aims to create a balanced feature representation
that addresses the long-tail problem within object classes.
By combining the TF with the l-IDF, the layer effectively
updates the node features, ensuring a more nuanced and
unbiased knowledge representation in CooK.

3.4. Training Strategy

In this section, we introduce a novel training strategy for
SGG that exploits the capabilities of the CooK and TF-l-IDF
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layers. The TF-l-IDF layer demonstrates seamless integra-
tion with any MPNN-based SGG task, improving model per-
formance in capturing complex relationships within scenes.
Figure 2 shows the overall pipeline that seamlessly com-
bines CooK and TF-l-IDF components. To provide a more
concrete illustration of this strategy, we examine the equa-
tion using Graph-R-CNN, which is a widely adopted and
representative MPNN framework in SGG. The core of
MPNN for SGG is determined by the node feature update
using the following formula:

zl+1
o(u→v) = zlo(u→v) + σ(zlo(u) +

∑
v∈N (u)

αuvWzlo(v)) (8)

where zlo(u) denotes the node features of node u included
in object o after the l-th iteration, with z0o(u) defined as the
initial node feature of node u. αuv represents the attention
score between nodes u and v.

αuv =
exp(Wattu)

exp(Wattu) + exp(Wattv)
(9)

where Watt is the weight used to compute the attention
score between u and v. To leverage CooK in the MPNN
process, Equation 8 is replaced with Equation 10.

zl+1
o(u→v) = zlo(u→v) +

σ(zlo(u) +
∑

v∈N (u)

cooku→vαuvWzlo(v)) (10)

Here, cooku→v refers to the CooK value that v will occur
when object u occurs, and can be easily mapped to the (u, v)
values of the CooK calculated in advance. Through this
process, CooK is successfully reflected during the MPNN
process. For a more detailed explanation of the TF-l-IDF-
based node feature updating process, refer to Algorithm
1.

3.5. Inference

Finally, we infer the scene graph G = (O,R) for the in-
put image I using the successfully trained feature Z. The
proposed CooK + TF-l-IDF learning method applies to all
models in the MPNN format. Therefore, we describe the
inference process using Graph-R-CNN as an example. The
feature zLu→v that has passed through the final L iterations
is projected to the final relation class probability vector
pu→v through a simple linear classifier of weights Wrel and
softmax function:

pu→v = softmax(Wrelz
L
u→v) (11)

Training Losses. We use cross-entropy loss to train the
MPNN model using the CooK + TF-l-IDF layer. The Lobj

Algorithm 1 Processing of the TF-l-IDF layer
Input:
B: batch size
ϵ and γ: parameters for TF-l-IDF layer
ncb: the total occurrences of a specific class label c observed in
the b-th image
nb: the total number of occurrences of all object labels in the b-th
image
nzi : the number of images including zli class
Zl

i = {zl1, zl2 · · · zlO} ∈ RO×di : the set of 1-order node feature
of i-th image of l times
Xl = {Zl

1, Z
l
2 · · ·Zl

B} ∈ RB×O×di : the set of Zl
i of a batch B

// TF-l-IDF score value init.
ncb, nb, nzi = 0

// TF score set init.
TF-score = Ø

for Zl
i ∈ Xl do
nb = |Zl

i |
for zli ∈ Zl

i do
ncb = count(b, zli) // count zli label in image b
nzi+=I{zi∈b} // if image b contain label zi
TF-score = TF-score ∪ TF (ncb, nb)
· l-IDF (B,nzi ; ϵ, γ)

end
end
2-order Xl = TF-score ×Xl // elemental-wise multiplication

Output: 2-order Xl ∈ RB×O×di

and Lrel losses for object classification and relation classifi-
cation are jointly used for the final training as follows:

Lobj =
1

|V|

|V|∑
i=1

Lce(yi, ũi),

Lrel =
1

|R|

|R|∑
i=1

Lce(su→v, pu→v)

L = Lobj + Lrel (12)

In Equation 12, yi and su→v represent the ground-truth (GT)
for object and relation, respectively. ũ represents the feature
of the u node that has passed through the linear classifier of
weights Wobj for object classification (e.g., ũi = Wobju

L
i ).

Please refer to the PySGG (Tang, 2020) for detailed training
environments of additional models, such as GPS-Net and
BGNN.

4. Experiment
4.1. Datasets

To verify the performance of the proposed CooK + TF-l-
IDF method, experiments were conducted on the following
two datasets: Visual Genome (Xu et al., 2017b) and Open
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Methods PredCls SGCls SGGen
mR@ 50 / 100 R@ 50 / 100 mR@ 50 / 100 R@ 50 / 100 mR@ 50 / 100 R@ 50 / 100

IMP (Xu et al., 2017a) 11.0 / 11.8 61.1 / 63.1 6.4 / 6.7 37.4 / 38.3 3.3 / 4.1 23.6 / 28.7
KERN (Chen et al., 2019b) 17.7 /19.2 65.8 / 67.6 9.4 /10.0 36.7 / 37.4 6.4 / 7.3 27.1 / 29.8
Motifis (Zellers et al., 2018) 14.6 / 15.8 66.0 / 67.9 8.0 / 8.5 39.1 / 39.9 5.5 / 6.8 32.1 / 36.9
VCTree (Tang et al., 2019) 15.4 / 16.6 65.5 / 67.4 7.4 / 7.9 38.9 / 39.8 6.6 / 7.7 31.8 / 36.1

G-RCNN (Yang et al., 2018) 16.4 / 17.2 65.4 / 67.2 9.0 / 9.5 37.0 / 38.5 5.8 / 6.6 29.7 / 32.8
MSDN (Li et al., 2017) 15.9 / 17.5 64.6 / 66.6 9.3 / 9.7 38.4 / 39.8 6.1 / 7.2 31.9 / 36.6

Unbiased (Tang et al., 2020b) 25.4 / 28.7 47.2 / 51.6 12.2 / 14.0 25.4 / 27.9 9.3 / 11.1 19.4 / 23.2
GPS-Net (Lin et al., 2020) 15.2 / 16.6 65.2 / 67.1 8.5 / 9.1 37.8 / 39.2 6.7 / 8.6 31.1 / 35.9

R-CAGCN (Yang et al., 2021) 18.3 / 19.9 66.6 / 68.3 10.2 / 11.1 38.3 / 39.0 7.9 / 8.8 28.1 / 31.3
Nice-Motif (Li et al., 2022a) 29.9 / 32.3 55.1 / 57.2 16.6 / 17.9 33.1 / 34.0 12.2 / 14.4 27.8 / 31.8

PPDL (Li et al., 2022b) 32.2 / 33.3 47.2 / 47.6 17.5 / 18.2 28.4 / 29.3 11.4 / 13.5 21.2 / 23.9
RU-Net (Lin et al., 2022) - / 24.2 - / 46.9 - / 14.6 - / 29.0 - / 10.8 - / 24.2
BGNN (Li et al., 2021) 30.4 / 32.9 59.2 / 61.3 14.3 / 16.5 37.4 / 38.5 10.7 / 12.6 31.0 / 35.8

IS-GGT (Kundu & Aakur, 2023) 26.4 / 31.9 - / - 15.8 / 18.9 - / - 9.1 / 11.3 - / -
HetSGG (Yoon et al., 2023) 31.6 / 33.5 57.8 / 58.9 17.2 / 18.7 37.6 / 38.7 12.2 / 14.4 30.0 / 34.6

HetSGG++ (Yoon et al., 2023) 32.3 / 34.5 57.1 / 59.4 15.8 / 17.7 37.6 / 38.5 11.5 / 13.5 30.2 / 34.5
PE-Net (Zheng et al., 2023) 31.5 / 33.8 68.2 / 70.1 17.8 / 18.9 39.4 / 40.7 12.4 / 14.5 30.7 / 35.2
SQUAT (Jung et al., 2023) 30.9 / 33.4 - / - 17.5 / 18.8 - / - 14.1 / 16.5 - / -

Transformer+CFA (Li et al., 2023) 30.1 / 33.7 59.2 / 61.5 15.7 / 17.2 36.3 / 37.3 12.3 / 14.6 27.7 / 32.1
VETO+Rwt (Sudhakaran et al., 2023) 33.1 / 35.1 61.9 / 63.9 16.1 / 17.1 35.1 / 36.3 10.0 / 11.7 26.2 / 30.4

CooK (ours) 33.7 / 35.8 62.1 / 64.2 17.5/ 18.6 39.1 / 40.0 12.6 / 14.9 30.1 / 34.6
TF-l-IDF (ours) 33.6 / 35.8 61.7 / 63.4 18.5 / 19.4 38.4 / 39.8 12.8 / 15.0 29.3 / 32.6

CooK + TF-l-IDF (ours) 35.4 / 37.2 60.4 / 62.3 19.1 / 20.3 36.4 / 37.6 14.2 / 16.3 27.7 / 32.7

Table 1. Performance comparison with the SoTA SGG methods on the VG dataset.

Images (Kuznetsova et al., 2020).

Visual Genome (VG). The VG dataset consists of 108k
images, with 150 object class labels and 50 relation labels.
The dataset was divided into 70% training data and 30%
test data, and preprocessing was performed according to a
previous study (Xu et al., 2017a).

Open Images (OI). The OI dataset consists of 133k images,
with 301 object class labels and 31 relation labels. A total
of 126,368 images were used for training; 1,813 and 5,322
images were used for validation and testing, respectively.

4.2. Evaluation Metrices

Visual Genome (VG). To evaluate the performance of SGG
on the VG dataset, we report the performance of three sub-
tasks: Predicate Classification (PredCls), Scene Graph Clas-
sification (SGCls), and Scene Graph Generation (SGGen),
which have been used in previous studies (Lyu et al., 2022;
Tang et al., 2020a; 2019). PredCls are given labels and
bounding box information for the object. SGCls is given
only the bounding box information for the object, and
SGGen uses only the values detected by the object detector
without the GT label for the object. Following previous
studies, we used recall@K (R@K) and mean recall@K
(mR@K) as the primary evaluation metrics.

Open Images (OI). Following previous studies, we report
the performance of the Recall@50 (R@50), weighted mean

AP of relation wmAPrel, and weighted mean AP of phrase
wmAPphr metrics (Li et al., 2021), which are the main
metrics used to measure performance on the OI dataset.
In addition, we reported the final score scorewtd, which
was calculated as the weighted sum of the following three
indicators:

scorewtd = 0.2× R@50 + 0.4×wmAPrel+

0.4×wmAPphr (13)

4.3. Implementation Details

All of the experiments were conducted on a private machine
equipped with two Intel(R) Xeon(R) CPUs, that is, a Gold
6230R CPU @ 2.10 GHz; 128 GB RAM, and an NVIDIA
RTX 3090 GPU. To detect objects in the image, we adopted
the Faster R-CNN (Ren et al., 2015) with ResNeXt-101-
FPN (Xie et al., 2017). GloVe (Pennington et al., 2014) was
used to word embedding method.

4.4. Increasing Performance Using CooK + TF-l-IDF

Visual Genome. Table 1 compares the performances of
the proposed CooK + TF-l-IDF and SoTA models. As
shown in Table 1, our proposed method significantly im-
proves the performance of most evaluation metrics. For
CooK, which includes the co-occurrence knowledge be-
tween objects, PredCls showed a performance improvement
of 2.1% / 2.3% on mR@50 / 100 because the object GT
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Methods mR@50 R@50 wmAPrel wmAPphr scorewtd

RelDN (Zhang et al., 2019) 37.2 75.3 32.2 33.4 42.0
VCTree (Tang et al., 2019) 33.9 74.1 34.2 33.1 40.2

G-RCNN (Yang et al., 2018) 34.0 74.5 33.2 34.2 41.8
Motifs (Zellers et al., 2018) 32.7 71.6 29.9 31.6 38.9

Unbiased (Tang et al., 2020b) 35.5 69.3 30.7 32.8 39.3
GPS-Net (Lin et al., 2020) 38.9 74.7 32.8 33.9 41.6

BGNN (Li et al., 2021) 40.5 75.0 33.5 34.1 42.1
RU-Net (Lin et al., 2022) - 76.9 35.4 34.9 43.5

HetSGG (Yoon et al., 2023) 42.7 76.8 34.6 35.5 43.3
HetSGG++ (Yoon et al., 2023) 43.2 74.8 33.5 34.5 42.2

PE-Net (Zheng et al., 2023) - 76.5 36.6 37.4 44.9
CooK (ours) 42.9 75.5 34.6 36.4 43.5

TF-l-IDF (ours) 43.3 76.5 35.4 36.8 44.2
CooK + TF-l-IDF (ours) 43.8 77.0 36.6 37.6 45.1

Table 2. Performance comparison with the SoTA methods on OI dataset.

Method SGGen
mR@50 mR@100 R@50 R@100

G-RCNN (Yang et al., 2018) 5.8 6.6 29.7 32.8
G-RCNN + ours 7.1 8.7 30.1 33.2

GPS-Net (Lin et al., 2020) 6.7 8.6 31.1 35.9
GPS-Net + ours 8.3 10.6 33.5 37.4

BGNN (Li et al., 2021) 10.7 12.6 31 35.8
BGNN+ ours 11.4 14.2 29.8 34.6

Mean improv.(%) 17.6↑ 22.6↑ 1.6↑ 0.7↑

Table 3. Performance changes when the proposed CooK+TF-l-IDF
are applied to various MPNN based models in the VG dataset.

was reflected in CooK. In addition, SGCls and SGGen each
improved the performance by 0.3% / 0.1% and 0.4% / 0.5%
on mR@50 / 100, respectively, but the performance im-
provements were smaller than those of PredCls. This is
because neither method reflects CooK information and uses
object labels directly predicted by the model. When only
the TF-l-IDF layer was used, similar levels of performance
improvement were observed for all three subtasks. In partic-
ular, as evidence of the performance improvement for the
tail classes, which is the role of TF-l-IDF, the performance
improvement of R@K was larger than that of mR@K. Fi-
nally, the largest performance improvement was observed
when using information for both CooK and TF-l-IDF. This
is the result of considering the knowledge of both object
co-occurrence and class balance, which shows that more
accurate SGG is possible through these considerations.

Open Images. To verify the generalized performance im-
provement of the proposed method, we conducted exper-
iments on the SGGen task using the OI dataset, as listed
in Table 2. Table 2 presents the results of the performance
evaluation of the OI dataset. As with the VG dataset, our
CooK+TF-l-IDF method showed a performance improve-

Learnable PredCls
mR@20 mR@50 mR@100

w/o 26.8 31.6 33.4
w 29.9 33.6 35.8

Learnable SGCls
mR@20 mR@50 mR@100

w/o 12.2 15.1 16.3
w 16.1 18.5 19.4

Learnable SGGen
mR@20 mR@50 mR@100

w/o 8.3 11.1 13.2
w 9.7 12.8 15.0

Table 4. Performance changes depending on the with (w) or with-
out (w/o) learnable parameters in the TF-l-IDF layer.

ment of 0.2% over the SoTA models. In particular, unlike
PE-NET, which requires training with prototypes, our pro-
posed method can achieve a higher performance improve-
ment using CooK and TF-l-IDF extracted from the training
data.

CooK + TF-l-IDF with MPNN-based models. To verify
the generalized performance improvement of our proposed
method, we examined the changes in the SGGen perfor-
mance when CooK and TF-l-IDF layers were applied to
representative MPNN-based SGG methods (Yang et al.,
2018; Lin et al., 2020; Li et al., 2021). As shown in Table 3,
we can confirm that there was a performance improvement
in all MPNN-based models. This shows that the proposed
method can be broadly applied to MPNN-based SGG tasks
and can achieve high generalization performance.
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Figure 3. Difference in TF-l-IDF performance according to the batch size. As the proposed TF-l-IDF is performed in batches, it can be
confirmed that the performance increases proportionally as the batch size increases.

CooK-Type SGGen
mR@20 mR@50 mR@100

One CooK for VG 11.1 14.2 16.3
Advanced 11.4 14.9 17.1

Table 5. Performance changes when using Advanced CooK, a prior
knowledge collected from a wider variety of environments. Ad-
vanced CooK achieved a higher performance than when it was not
used. Because the OI dataset has more object labels than the VG
dataset, Map : OI → V G was excluded as many cases occurred
where mapping was not possible.

4.5. Abaltion Studies

Use of Learnable TF-l-IDF. The most significant contri-
bution of the proposed TF-l-IDF is the learnable design of
the IDF(,) function, which calculates the inverse document
frequency. To compare the extent of the performance im-
provement, we compared the performance of the structure
with the learnable design of TF-l-IDF and the performance
of the structure without it. As can be seen in Table 4, the use
of learnable parameters led to an average 2.4% performance
improvement when compared to the case where they were
not used. This is because learnable parameters can mitigate
the cases in which a specific label is oversampled during
training.

Difference in TF-l-IDF Performance According to Batch
Size. As discussed in the previous section, TF-l-IDF is
highly dependent on the batch size. Figure 3 depicts the
performance of the TF-l-IDF layer on the three subtasks of
PredCls, SGCls, and SGGen on the VG dataset according
to the batch size. As shown in the figure, the performance
gradually increased for all subtasks as the batch size in-
creased. Therefore, it is necessary to increase the batch size
to perform more sophisticated feature updates.

4.6. Long-tail Alleviation

In this experiment, we analyzed the effects of the proposed
learning method on long-tail problem mitigation. Figure 4
shows the change in mR@100 for each class when the pro-
posed method was applied. As illustrated in the figure, the
mR@100 value for the head decreased, whereas those for
the body and tail parts increased significantly. This demon-
strates that CooK’s ‘knowledge of object co-occurrence’
and TF-l-IDF’s ‘feature update’ were successfully applied
to each class part.

4.7. Advanced CooK

Human knowledge has become more generalized and reli-
able owing to extensive experience and activities. To ver-
ify the applicability of this human knowledge paradigm
to CooK, we generated an advanced CooK based on ad-
ditional datasets and applied it to the model. In this ex-
periment, we combined two CooKs from the VG and OI
datasets to create an advanced CooK. The mapping function
Map : OI → V G for the combination was hand-crafted.
Table 5 shows the performance results when using advanced
CooK. Similar to the general improvement effect of knowl-
edge, the advanced CooK achieved a higher performance
than individual CooK. This demonstrates that CooK can im-
prove the performance if the task uses knowledge obtained
from similar datasets.

5. Limitation and Future work
The proposed paper successfully improves the performance
of MPNN-based SGG models. However, exploring the
application of CooK and TF-IDF to non-MPNN models
could present a novel approach for SGG. As future work,
we intend to investigate the feasibility and effectiveness of
integrating the proposed CooK and TF-IDF methods into
other approaches beyond MPNN-based models.
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Figure 4. TF-l-IDF effect on long-tail problem. The proposed TF-
l-IDF successfully reduces the mR@100 for common labels in
head and focuses more on rare labels in body and tail.

Conclusion
In this study, we proposed a CooK and TF-l-IDF layer that
can solve co-occurrence knowledge and long-tail problems.
Our proposed method has a significant advantage in that it
can improve the performance of SGG tasks because it can
be easily applied without significantly changing the exist-
ing model. In addition, by performing experiments using
advanced CooK, we verify that this study realized a new
approach for generating more general knowledge matrices.
However, limitation is that it can only be applied to existing
MPNN-based models. In addition, CooK learning is cur-
rently applicable only to supervised learning; therefore, it
is difficult to apply it to foundation models conducted with
self-supervision. In future research, we plan to study SGG,
which enables CooK to learn the relationships between ob-
jects on its own and is applicable regardless of the SGG
model.
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A. Training Configuration

Hyperparmameters

Datasets

VG OI

PredCls SGCls, SGGen SGGen

LR 0.008 0.008 0.008

LR decay WarmupMultiStepLR WarmupMultiStepLR WarmupMultiStepLR

Weight decay 5× 10−5 5× 10−5 5× 10−5

Iteration 49,500 49,500 40,000

Batch size 12 9 9

Num layers 4 4 4

Object dim 128 128 128

Relation dim 128 128 128

Table 6. Model configurations for the benchmark datasets used in the experiments.

In order to ensure the reproducibility of the proposed model and the reliability of the experiments, we provide detailed
hyperparameter values employed in the experiment. Table 6 shows the model configurations on each benchmark dataset.
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B. CooK Visualization

(a) (b) (c) (d)

Figure 5. Visualization of CooK matrix. CooK above is a visualization of CooK that reflects object co-occurrence in VG dataset.

We visualize CooK to make it easier to explain how well the proposed CooK represents the correlation between objects.
As you can see in the figure, it clearly reflects the relationship between objects that are closely related in the real-world of
CooK. When looking at the relationship between the ‘surfboard’ and ‘wave’ in the case of (a), if there is a ‘surfboard’, it
can be seen that it occurs together with high probability of ‘wave’ and ‘beach’. Also, ‘beach’ and ‘surfboard’ show lower
probability of co-occurrence than ‘surfboard’ and ‘beach’. This is, of course, an accurate reflection of the fact that the
‘surfboard’ does not necessarily exist in the ‘beach’. In other (b), (c), and (d), it can be seen that CooK reflects real-world
co-occurrence knowledge well.
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C. Long-Tail Mitigation

Figure 6. Mitigation of long-tail problems after training.

To add clarity to the long-tail problem resolution of the proposed method, we additionally report the recall (R@100) value
and degree of improvement of the relocation labels in the SGGen task as learning progresses. The red area in the figure
represents head classes, the green area represents body classes, and the blue area represents tail classes. The line graph
represents the recall change of the relocation label according to model learning (right axis). As you can see in the figure,
Figure 6 the change in tail is more dynamic than the change in head or body. This is more evident when you check the bar
graph indicating the degree of improvement (left axis). It can be seen that the proposed TF-l-IDF decreases the frequency of
the common class and increases the frequency of the rare class dramatically.
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D. Scene Graph Visualization

wind
shield

tire

car

window window window

tire

on on on on

onon

wind
shield

tire

car

window window window

tire

with on on on

with

with

person

side
walk

person person

person

woman

phone

wheel

on

walking
on

walkingon

walking

on

on on

has

person

side
walk

person person

person

woman

phone

wheel

on

walking
on

walkingon

walking

on

above wa
lk

in
g

on

holding 

Image GT Ours

(a)

(b)

Figure 7. Visualization results of scene graph in PredCls subtask on VG dataset.

To prove the qualitative results of the proposed CooK + TF-l-IDF, we introduce the visualization results in PredCls subtask.
As you can see in the Figure 7, the proposed method makes more accurate relation predictions. As shown in Figure 7 (a) and
(b), we can see that our method avoids prediction to the dominant head class and performs prediction to a more delicate
class.
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E. TF-l-IDF Code
1 import torch
2 import torch.nn as nn
3 import math
4 import numpy as np
5

6 class TfIdfLayer(nn.Module):
7 def __init__(self, epsilon=0.0, gamma=0.0, bias=False):
8 super(TfIdfLayer, self).__init__()
9 self.epsilon = epsilon

10 self.gamma = gamma
11 self.bias = bias
12

13 if self.bias:
14 self.epsilon = nn.Parameter(torch.randn(1), requires_grad=True)
15 self.gamma = nn.Parameter(torch.randn(1), requires_grad=True)
16

17 def forward(self, x, labels):
18

19 num_img = len(labels)
20 t_id_list = []
21

22 for label in labels:
23 for ob_label in label.extra_fields[’pred_labels’]:
24 tf_idf = self.tfidf(ob_label, label.extra_fields[’pred_labels’], num_img, labels)
25 t_id_list.append(tf_idf)
26

27 weighted_x = torch.tensor(t_id_list).unsqueeze(-1).cuda() * x
28

29 return weighted_x
30

31 def tf(self, t, d):
32 return torch.count_nonzero(torch.where(d == t, True, False)).item()
33

34 def idf(self, t, N, docs):
35 ni = 0
36 for doc in docs:
37 ni += t in doc.extra_fields[’pred_labels’]
38

39 if self.bias:
40 return math.log((N + self.epsilon) / (ni + 1 + self.gamma))
41 else:
42 return math.log(N / (ni + 1))
43

44 def tfidf(self, t, d, N, docs):
45 return self.tf(t, d) * self.idf(t, N, docs)
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