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Abstract

3D generative models have shown significant
promise in structure-based drug design (SBDD),
particularly in discovering ligands tailored to spe-
cific target binding sites. Existing algorithms of-
ten focus primarily on ligand-target binding, char-
acterized by binding affinity. Moreover, models
trained solely on target-ligand distribution may
fall short in addressing the broader objectives
of drug discovery, such as the development of
novel ligands with desired properties like drug-
likeness, and synthesizability, underscoring the
multifaceted nature of the drug design process.
To overcome these challenges, we decouple the
problem into molecular generation and property
prediction. The latter synergistically guides the
diffusion sampling process, facilitating guided
diffusion and resulting in the creation of mean-
ingful molecules with the desired properties. We
call this guided molecular generation process as
TAGMOL. Through experiments on benchmark
datasets, TAGMOL demonstrates superior per-
formance compared to state-of-the-art baselines,
achieving a 22% improvement in average Vina
Score and yielding favorable outcomes in essen-
tial auxiliary properties. This establishes TAG-
MOL as a comprehensive framework for drug
generation. The code is available at https:
//github.com/moleculeai/TAGMol.
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1. Introduction
The presence of molecular data featuring 3D spatial
information has paved the way for the complex field of
structure-based drug design (SBDD) (Anderson, 2003).
The advent of generative AI for molecules has accelerated
the rational drug-design—in contrast to the traditional Edis-
onian trial-and-error approach—with the goal of creating
drug-like molecules in 3D space that effectively bind to
specific targets. Specifically, deep generative models, such
as those proposed by Luo et al. (2021); Liu et al. (2022);
Peng et al. (2022), autoregressively generate atoms and
bonds, while Zhang et al. (2023) generate motifs. Despite
their progress, the performance of autoregressive models
heavily relies on the order of generation, as they condition
on previously generated atoms, which can lead to error prop-
agation. Alternatively, diffusion models (Sohl-Dickstein
et al., 2015; Ho et al., 2020) overcome this limitation by
conditioning upon all the atoms simultaneously and there by
efficiently generating realistic molecules that demonstrate
stronger binding affinities with their intended targets.

The effectiveness of these generative models is heavily
reliant on how well training datasets — consisting of
protein-ligand complexes — align with desired properties
such as binding affinity, drug-like topological features,
synthetic accessibility (ease of synthesis), to name a few.
For instance, CrossDocked 2020 (Francoeur et al., 2020), a
widely-used training dataset for SBDD tasks, predominantly
includes complexes with moderate binding affinities. Con-
sequently, models trained solely on such datasets may yield
sub-optimal molecules, intrinsically tying their success
closely to the dataset’s quality. Moreover, drug generation is
a multi-faceted process that encompasses not only binding
affinity but also a range of other desired properties. Com-
piling a comprehensive dataset that encompasses a broad
range of desired properties poses significant challenges,
particularly associated with the high computational costs
of assessing a suite of properties. Additionally, refining
datasets to meet specific quality constraints can drastically
reduce the volume of usable training data. As the number of
constraints grows, the likelihood of finding samples that sat-
isfy all these criteria becomes increasingly difficult, further
exacerbating the situation. Consequently, generative models
trained on lower-quality, but high-volume, data may uninten-
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tionally capture suboptimal signals, leading to diminished
performance in the context of drug discovery. This situation
prompts an exploration into how, during the denoising
phase of a generative model, we can effectively introduce
desired signals while ensuring meaningful reconstruction.

To address these challenges, we introduce TAGMOL–
(Target-Aware Gradient-guided Molecule Generation),
wherein we decouple molecular generation and property
prediction. We start by training a time-dependent guide
model that predicts properties from inputs with noise levels
similar to those in the base diffusion model. Crucially, we
turn the challenge of using inferior quality data, i.e., the
property of interest is well spread with the inclusion of sub-
optimal values in the dataset, to our strength for robust guide
training. Inspired by classifier guidance in diffusion models
(Dhariwal & Nichol, 2021), we use the gradient of guide to
direct the latent space during the diffusion sampling process,
ensuring the reconstructed molecules possess the targeted
properties. In the sampling phase, we harness the strengths
of both the generative model and the guide. This interactive
dynamic enables us to explore regions with superior proper-
ties while simultaneously denoising the latent space to gen-
erate diverse molecules. While gradient guidance is a well-
explored concept in the drug discovery domain, many exist-
ing methods overlook target awareness (Bao et al., 2022) or
fail to integrate 3D structure (Eckmann et al., 2022; Stanton
et al., 2022; Lee et al., 2023). In contrast, our approach
seeks to simultaneously optimize for both target-aware and
molecular properties in 3D space. Furthermore, to address
real-world scenarios where multiple property constraints ex-
ist, we train separate guides for each property, subsequently
employing them to steer the diffusion process effectively.

Overall, the key contributions of our work are as follows.

• Reformulation of the drug-discovery problem: We re-
formulate the problem of drug generative modeling mov-
ing beyond the myopic lens of optimizing binding activity.
The need to optimize other properties of interest, even
when these signals are not adequately present in the train
set, is explicitly coded into our problem formulation.

• Algorithm design: We design a novel generative process,
called TAGMOL, which jointly leverages the signals from
two different components: an SE(3) equivariant graph
diffusion model to mimic geometries of the train set, and
a multi-objective guide model, empowered by an SE(3)
invariant GNN, to steer the exploration region of diffusion
sampling towards the property of interest by leveraging
gradients.

• Rigorous empirical evaluation: We demonstrate that our
model achieves 22% improvement in average Vina Score,
all the while being guided by considerations of binding
affinity and crucial pharmacological properties such as
QED and SA.

2. Problem Statement
Generative models for SBDD aim to create ligand molecules
that effectively bind to specific protein binding sites. A
protein binding site is characterized by a set of atoms, de-
noted by P = {

(
xP
i ,v

P
i

)
}NP
i=1, where NP represents the

number of protein atoms, xP
i ∈ R3 represents the 3D co-

ordinates of the protein atom, and vP
i ∈ RNf represents

protein atom features such as element types and amino acid
types, with Nf representing the number of such features.
We aim to jointly optimize binding affinity and desired
pharmacological properties (denoted as Y), by generating
prospective ligand molecules M = {

(
xM
i ,vM

i

)
}NM
i=1 , for

a given protein P . Here xM
i ∈ R3 and vM

i ∈ RK rep-
resents the atom coordinates and atom types of a ligand
molecule, respectively, with K representing the number
of such features to represent atom types. The variable
NM signifies the number of atoms in the ligand molecule,
which can be sampled during inference utilizing either
an empirical distribution (Hoogeboom et al., 2022; Guan
et al., 2023a;b) or predicted through a neural network (Liu
et al., 2022). To simplify, in matrix representation the
ligand molecule is denoted as M = [XM,VM], where
XM ∈ RNM×3 and VM ∈ RNM×K and the protein is
denoted as P = [XP ,VP ], where XP ∈ RNP×3 and
VP ∈ RNP×Nf . The foundational concepts integral to our
research and the corresponding notations employed through-
out this study are outlined in Appendix § C and Table 3 in
the Appendix § A, respectively.

3. TAGMOL

In this work, we improve upon Conditional Diffusion mod-
els which utilizes protein pockets as a conditioning factor
for generating ligand molecules (Guan et al., 2023a;b). The
effectiveness of such models in practical scenarios can be
hindered if the conditioning signal is overlooked or weak-
ened, an issue that becomes more pronounced with datasets
of inferior quality. Models that are exclusively trained to
maximize the likelihood of protein-ligand complexes in
such datasets naturally inherit the same quality issues. To
counteract this, TAGMOL employs a strategic approach to
explicitly integrate additional conditioning signals learned
over a set of binding and desirable pharmacological prop-
erties Y (Recall § 2) during the model’s denoising phase.
In particular, for a property y ∈ Y, we train a regressor (or
classifier as appropriate) pϕ(y|Mt,P, t) on noisy molecule
Mt and then use the gradients ∇XM

t
pϕ(y|Mt,P, t) to

guide the diffusion sampling process towards the desirable
properties encoded in y.

Figure 1 outlines the TAGMOL pipeline, which comprises
two primary components. The first, Guide Training, de-
tailed in § 3.1, introduces our SE(3) Invariant GNN archi-
tecture and its objectives, establishing the foundation of our
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Figure 1. Overview of TAGMOL. (a) Training a property-oriented guide using existing data. (b) Utilizing the trained guide and diffusion
model to steer the diffusion sampling process towards the optimal regions of the property of interest.

approach. The second component, discussed in § 3.2, is
Guided Sampling, where we explain how a trained guide
model effectively directs the diffusion sampling process to-
ward specific regions of interest, emphasizing desired prop-
erties. Additionally, our study demonstrates the concurrent
optimization of multiple properties, as elaborated in § 3.3.

3.1. Property Guide

We approach the input space as a 3D point cloud system
where we build a k-nearest neighbors (k-NN) graph G by
representing ligand and protein atoms as nodes, and each
atom is connected to its k-nearest neighbors. For properties
such as binding affinity, including protein atoms within the
graph is critical; however, the inclusion of protein atoms can
be omitted for properties solely dependent on the ligand. We
parameterize our guide using an Invariant GNN ϕy, which
is trained to predict property y ∈ Y given a noisy input
Mt, protein P and time t. Later in the denoising phase, the
gradients of ϕy are used to direct exploration in regions of
interest. Given the graph representation G at diffusion time
step t, we define the GNN convolution layer as follows:

di,j = D(∥xi,t − xj,t∥2)

mi,j = ϕm
y (hl

i,t,h
l
j,t,di,j ,ai,j)

ei,j = ϕe
y(mi,j)

mi =
∑

j∈N (i)

ei,jmi,j

hl+1
i,t = ϕh

y(h
l
i,t,mi)

h0
i,t =

{
ϕp
y(v

P
i ) if i ∈ P

ϕl
y([v

M
i,t , τ ]) if i ∈ M

(1)

where hl
i,t ∈ Rd represents the SE(3)-invariant hidden

representation of protein and ligand atoms after l layers;
xi,t,xj,t ∈ R3 represents hidden representation of protein
and ligand atoms. di,j represents the distance embedding
and ai,j represents the edge attributes in the graph.
Invariance of hl

i,t stems from the fact that we take the
L2-distance between the atom representations. N (i) stands

for the set of neighbors for atom i. τ represents the time
embedding to make the model aware of noise at time step t.
ϕm
y , ϕe

y, ϕh
y, ϕp

y and ϕl
y are Multi-Layer Perceptrons (MLP)

where as D is a distance encoder.

Once we get the final hidden states hL
i,t, we predict the final

property using an MLP layer as:

ŷ = ϕf
y

(∑
i∈M

hL
i,t

)
(2)

While equivariance is essential for generative models to
maintain the consistency of the probability p(M0|P) against
SE(3) transformations in protein-ligand complexes, it is also
vital that a scalar property predicted from guide remains
independent of SE(3) transformations. Hence, the GNN in
guide is SE(3) invariant.

The probability modeling is articulated through a normal
distribution as:

pϕy
(y|Mt,P) = N (y, ϕy(Mt,P, t), I) (3)

The training of these models is oriented toward minimizing
the Negative log-likelihood (NLL).

NLL = −Ep(P,M0:T )

T∑
t=0

log(pϕy
(y|Mt,P, t))

= Ep(P,M0:T )

T∑
t=0

(y − ϕy(Mt,P, t))2

2

(4)

Although we designed our guide for regression tasks, it is
versatile enough to be adapted for classification tasks or
other suitable applications.

3.2. Single Objective Guidance

Departing from the methodologies outlined in prior studies
(Guan et al., 2023a;b), our generative model distinctively
conditions on both the protein pocket and property to
be guided. Remarkably, without retraining the diffusion
model, we guide the diffusion sampling process by shifting
coordinates.
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As demonstrated in Dhariwal & Nichol (2021), efficiently
sampling Mt−1 for each denoising transition can be ade-
quately achieved by:

pθ,ϕy (Mt−1|Mt,P,y) = Zpθ(Mt−1|Mt,P)

· pϕy (y|Mt−1,P, t− 1)
(5)

where Z is a normalizing constant. However, direct sam-
pling from this distribution is intractable. We approximate
the sampling process via perturbation to a Gaussian dis-
tribution as per prior work (Sohl-Dickstein et al., 2015;
Dhariwal & Nichol, 2021). Thus, we use perturbation to
pθ(Xt−1|Mt,P) and sample XM

t−1 as:

XM
t−1 ∼ N (µ̃θ(Mt,P, t) + sβ̃∇XM

t
log pϕy (y|Mt,P, t), β̃I)

VM
t−1 ∼ C (c̃θ (Mt,P, t))

(6)
In this context, s, denotes the guidance strength, play-
ing a crucial role in prioritizing Mt with optimal prop-
erty by sampling it from the updated distribution ∝
pθ(Mt−1|Mt,P)

(
pϕy(y|Mt−1,P, t)

)s
. Fine-tuning of s

is essential during the optimization process while main-
taining the effectiveness of denoising within the diffusion
model.

The incorporation of discrete variables such as atom types
VM

t in the diffusion process poses challenges in directly
applying explicit guidance through gradients. However, in
our approach, while we explicitly provide guidance for co-
ordinates XM

t , the guidance for discrete variables operates
implicitly. More specifically, at diffusion time step t, the
denoised ligand atom types VM

t−1 are influenced by both
XM

t and VM
t . Therefore, by providing guidance for XM

t ,
the generative model is encouraged to denoise VM

t−1 for the
optimized XM

t , effectively making the guidance implicit
for the atom types.

3.3. Multi Objective Guidance

We now generalize our objective to holistically enhance
various desired properties, collectively denoted as Y. At
each denoising step t, we condition on Y and sample Mt−1

according to the probability distribution as :

pθ,ϕY(Mt−1|Mt,P,Y) = Zpθ(Mt−1|Mt,P)

· pϕY(Y|Mt−1,P, t)
(7)

Assuming all the properties y ∈ Y are conditionally inde-
pendent given Mt−1 and P, Eq. 7 is factorized as follows:

pθ,ϕY(Mt−1|Mt,P,Y) = Zpθ(Mt−1|Mt,P)

·
∏
y∈Y

pϕy (y|Mt−1,P, t) (8)

Thus we train a set of models ϕY = {ϕy : ∀y ∈ Y} inde-
pendently and sample Mt−1 using a similar approximated

posterior distribution in Equation 6 as:

XM
t−1 ∼ N (µ̃θ(Mt,P, t) + δ, β̃I)

VM
t−1 ∼ C (c̃θ (Mt,P, t))

(9)

where

δ =
∑
y∈Y

syβ̃∇XM
t

log pϕy (y|Mt,P, t) (10)

and sy represents the guidance strength for property y ∈ Y.

4. Experimental Setup
Datasets TAGMOL is trained and evaluated on the Cross-
Docked2020 dataset (Francoeur et al., 2020), consistent
with the approaches outlined in Luo et al. (2021); Peng et al.
(2022); Guan et al. (2023a;b). The training set includes
roughly 100,000 protein-ligand pairs, where the root-mean-
square deviation (RMSD) between the docked pose and
the ground truth is under 1Å, and the protein sequences
exhibit less than 30% identity. For inference, we generate
100 molecules for each of the 100 proteins in the test set.

Baselines We benchmark against state-of-the-art base-
lines in structure-based drug design (SBDD). This includes
liGAN (Ragoza et al., 2022), which leverages a conditional
variational autoencoder (CVAE) trained on a grid represen-
tation of atomic densities in protein-ligand structures. Addi-
tionally, we consider AR (Luo et al., 2021) and Pocket2Mol
(Peng et al., 2022), both GNN-based methods that employ
autoregressive frameworks to generate 3D molecular atoms
by conditioning on the protein pocket and previously gener-
ated atoms. Furthermore, we extend to the recent diffusion-
based approaches, TargetDiff (Guan et al., 2023a) and De-
compDiff (Guan et al., 2023b), which non-autoregressively
generate atom coordinates and types. DecompDiff enhances
TargetDiff with bond considerations and decomposed pri-
ors for ligand arms and scaffolds. For a comprehensive
overview of prior works, refer to Appendix B.

Metrics In line with previous works, we assess the molec-
ular properties of the generated compounds using the fol-
lowing metrics: (i) QED, which estimates drug-likeness
(Bickerton et al., 2012); (ii) SA, an indicator of synthetic
accessibility, normalized between 0 and 1 (Ertl & Schuffen-
hauer, 2009); and (iii) Diversity, determined by calculating
the average pairwise Tanimoto distances between ligands
(Bajusz et al., 2015; Tanimoto, 1958). To analyze metrics
related to the binding affinity with the target, we employ
AutoDock Vina (Eberhardt et al., 2021). The metrics in-
clude: (i) Vina Score, directly evaluating binding affinity
based on the 3D molecular poses generated; (ii) Vina Min,
which estimates affinity after local structure minimization;
(iii) Vina Dock, which incorporates a re-docking process
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Table 1. Comparison of various properties between reference molecules and those generated by our model and other baselines. (↑) / (↓)
indicates whether a larger or smaller number is preferable. The first and second-place results are emphasized with bold and underlined
text, respectively. Refer to Appendices F.5 and F.6 for more evaluations.

Methods Vina Score (↓) Vina Min (↓) Vina Dock (↓) High Affinity (↑) QED (↑) SA (↑) Diversity (↑) Hit(↑)
Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Rate %

Reference -6.36 -6.46 -6.71 -6.49 -7.45 -7.26 - - 0.48 0.47 0.73 0.74 - - 21

liGAN - - - - -6.33 -6.20 21.1% 11.1% 0.39 0.39 0.59 0.57 0.66 0.67 13.2
AR -5.75 -5.64 -6.18 -5.88 -6.75 -6.62 37.9% 31.0% 0.51 0.50 0.63 0.63 0.70 0.70 12.9
Pocket2Mol -5.14 -4.70 -6.42 -5.82 -7.15 -6.79 48.4% 51.0% 0.56 0.57 0.74 0.75 0.69 0.71 24.3
TargetDiff -5.47 -6.30 -6.64 -6.83 -7.80 -7.91 58.1% 59.1% 0.48 0.48 0.58 0.58 0.72 0.71 20.5
DecompDiff -4.85 -6.03 -6.76 -7.09 -8.48 -8.50 64.8% 78.6% 0.44 0.41 0.59 0.59 0.63 0.62 24.9
TAGMOL -7.02 -7.77 -7.95 -8.07 -8.59 -8.69 69.8% 76.4% 0.55 0.56 0.56 0.56 0.69 0.70 27.7

to gauge optimal binding affinity; and (iv) High Affinity,
which measures the proportion of generated molecules ex-
hibiting better binding than the reference molecule for each
target protein. The percentage of molecules that satisfy the
hit criteria—QED ≥ 0.4, SA ≥ 0.5, and Vina Dock ≤ -
8.18 kcal/mol—is calculated. These thresholds align with
those of marketed drugs (Eckmann et al., 2022), ensuring
moderate biological activity. We refer to this as the hit rate.

Generative Backbone We chose TargetDiff as our gen-
erative backbone model over DecompDiff. This decision
was based on TargetDiff’s self-contained nature, in contrast
to DecompDiff, which relies heavily on external computa-
tional tools. Specifically, DecompDiff utilizes AlphaSpace2
(Katigbak et al., 2020) for extracting subpockets, which are
potential protein binding sites. In fact, our study demon-
strates how our guidance mechanism can effectively replace
the computational tools employed in DecompDiff.

Guide Training We train guide models for various prop-
erties employing an Invariant Graph Neural Network (GNN)
architecture, as detailed in § 3.1. For QED and SA, which
are target-independent properties, protein atoms are ex-
cluded during the k-Nearest Neighbors (k-NN) graph con-
struction. To ensure a fair comparison with other baseline
methods, we utilize the same CrossDocked2020 dataset and
identical data splits when training the guide models. For
training our binding affinity guide, we used Autodock Vina
scores from the CrossDocked2020 dataset, and for QED and
SA, we calculated scores using the RDKit package (Lan-
drum, 2013). To effectively guide the denoising phase, we
train our guide using the same noise as our backbone model,
TargetDiff, which applies Gaussian noise to coordinates
and uniform noise to categories. Additional training and
evaluation details of guide can be found in Appendix E.

Guide Strengths For the single objective guidance, the
optimal guide strength sopty for each property y is identified
through a grid search on small set of 4 targets (see Ap-
pendix F.1 for more details). The configuration that delivers
the best value for the intended property in the generated

molecules is selected. For multi-objective guidance, the
optimal guide strength values sopty are recalibrated using
a set of weights wy, where

∑
y∈Y wy = 1. These modi-

fied guide strengths, wys
opt
y , are subsequently utilized to

steer property optimization as described in Equation 9. In
our approach, where all properties are considered equally
important, we assigned equal weights to them.

5. Results
TAGMOL outperforms all baselines, including the refer-
ence molecules, in binding-related metrics and hit rate (see
Table 1). This achievement is especially noteworthy when
compared to the state-of-the-art DecompDiff model, which
relies on external computation for informed priors in the de-
noising process. The success of our model, attained without
requiring extra data, underscores the importance of effec-
tively learning useful signals from the existing training set
and skillfully guiding the diffusion denoising phase. Figure
2 presents examples of ligand molecules generated by our
model, featuring valid structures and reasonable binding
poses to the target.

Binding scores Our TAGMOL excels in the Vina Score,
achieving a 22% improvement over state of the art (AR).
This highlights its proficiency not only in generating
molecules that bind effectively with proteins but also
in producing high-affinity poses. Further, 69.8% of the
molecules generated by our model exhibit superior binding
affinity compared to reference molecules, surpassing all
other models.

Molecular properties TAGMOL shows remarkable per-
formance, surpassing diffusion-based models in QED by
14.6% and 22.2% compared to TargetDiff and DecompDiff,
respectively, while maintaining similar diversity levels. Al-
though there’s a slight decrease in SA, the metric remains
within a reasonable range, indicating satisfactory synthesiz-
ability. A detailed discussion of the challenges in optimizing
SA is provided in Appendix F.7. Appendix F.4 presents evi-
dence of statistically significant changes in guided properties
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Table 2. Ablation analysis assessing the properties of generated molecules under different property guidance scenarios. The first and
second-place results are emphasized with bold and underlined text, respectively.

Methods Vina Score (↓) Vina Min (↓) Vina Dock (↓) QED (↑) SA (↑) Hit (↑)
Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Rate

backbone -5.47 -6.30 -6.64 -6.83 -7.80 -7.91 0.48 0.48 0.58 0.58 20.5
backbone + BA Opt -7.35 -8.18 -8.38 -8.46 -9.04 -9.04 0.49 0.50 0.53 0.53 22.6
backbone + QED Opt -5.48 -6.46 -6.77 -6.93 -7.93 -8.06 0.56 0.57 0.58 0.58 24.5
backbone + SA Opt -5.22 -6.03 -6.40 -6.57 -7.53 -7.73 0.47 0.48 0.61 0.60 19.4
TAGMOL -7.02 -7.77 -7.95 -8.07 -8.59 -8.69 0.55 0.56 0.56 0.56 27.7

Figure 2. Visualization of reference molecules (left), alongside
molecules generated by our backbone, TargetDiff (middle), and
TAGMOL (right), for two targets: 5D7N and 5MGL.

upon incorporation of guidance.

Ablation In Table 2, we conduct an ablation study on
our property guidance mechanism for multiple properties
separately and all of them in tandem, demonstrating its ef-
fectiveness across various aspects. We observe superior
performance in each property when we provide respective
guidance, showcasing the robustness of our guidance mech-
anism. We also observed that when we provide guidance for
one property, it does not result in a substantial deterioration
in other properties. This highlights the collaborative mech-
anism between the denoising model and the guide model,
emphasizing their combined power. Notably, a substantial
enhancement is observed when we guide for binding affinity.
This improvement is likely due to our approach of calcu-
lating binding affinity through docking software (Trott &
Olson, 2010), which primarily depends on atomic distances.
Our guide model’s architecture, with its inherent inductive
bias in modeling atomic distances, effectively facilitates
the explicit guidance for coordinate generation, contribut-

ing to this advancement. Consequently, improvements in
QED and SA scores are comparatively less pronounced, as
these properties exhibit a relatively lower dependence on
molecule’s geometric configuration. TAGMOL’s focus on
optimizing multiple properties, achieves a state-of-the-art
hit rate, surpassing the backbone model—TargetDiff—by a
considerable margin. This is evidenced by the higher frac-
tion of molecules generated by our method that meet the hit
criteria. These collective results underscore the formidable
capabilities of TAGMOL in SBDD. Table 6 in Appendix,
presents a more comprehensive study in evaluating the ef-
fectiveness of our guides when offering guidance for subsets
of properties.

6. Conclusions
In this work, we redefined the problem of drug generative
modeling by extending our focus beyond merely optimizing
binding activity. We emphasize the importance of optimiz-
ing additional properties and integrating these considera-
tions into our problem formulation, even when training data
is sparse. Secondly, we developed a optimized generative
method, TAGMOL, which effectively combines two key
components: an SE(3) equivariant graph diffusion model
to accurately replicate the geometries found in the training
set and a multi-objective guidance driven by SE(3) invari-
ant GNN models. This innovative combination enables
our model to efficiently navigate the diffusion sampling
space, focusing on properties of interest through the use of
gradients. Lastly, our rigorous empirical evaluation demon-
strates that TAGMOL notably enhances metric performance,
balancing the optimization of binding affinity with critical
pharmacological properties such as QED and SA.

References
Alonso, H., Bliznyuk, A. A., and Gready, J. E. Com-

bining docking and molecular dynamic simulations
in drug design. Medicinal Research Reviews, 26,
2006. URL https://api.semanticscholar.
org/CorpusID:16337213.

https://api.semanticscholar.org/CorpusID:16337213
https://api.semanticscholar.org/CorpusID:16337213


TAGMOL: Target-Aware Gradient-guided Molecule Generation

Anderson, A. C. The process of structure-based drug design.
Chemistry & biology, 10(9):787–797, 2003.
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A. Notation Summary

Table 3. Notations

Notation Explanation Domain

NP Number of protein atoms ∈ R1

Nf Feature dimension of protein atom ∈ R1

xP
i i-th protein atom coordinate ∈ R3

vP
i i-th protein atom feature ∈ RNf

NM Number of ligand atoms ∈ R1

K Number of ligand atom types ∈ R1

xM
i i-th ligand atom coordinate ∈ R3

xM
i,t i-th ligand atom coordinate at diffusion time step t ∈ R3

vM
i i-th ligand atom one-hot representation ∈ RK

vM
i,t i-th ligand atom one-hot representation at diffusion time step t ∈ RK

XM Matrix representation of all ligand atom coordinates ∈ RNM×3

VM Matrix representation of all ligand atom types ∈ RNM×K

XP Matrix representation of all protein atom coordinates ∈ RNP×3

VP Matrix representation of all protein atom features ∈ RNP×Nf

βt Variance Schedule for the diffusion model ∈ R1

q Diffusion noising transition function -
θ Parameters of generative model -
pθ Denoising diffusion transition function -
Y Set of properties to be optimized during generation -
y A property y ∈ Y -
ϕy Parameters of guide corresponding to y -
ϕY Set of guide parameters corresponding to ∀y ∈ Y -
sy Guide strength for property y ∈ R1

sopty Optimal Guide strength for property y ∈ R1

B. Related Work
Neural Drug Design Neural models have significantly changed the landscape for drug design that was previously
dominated by computational techniques such as MD simulations and Docking (Alonso et al., 2006). It has gone through
multiple paradigm shifts in the recent past - ranging from using only 1D representations (SMILES) (Bjerrum & Threlfall,
2017; Gómez-Bombarelli et al., 2018) to 2D representations (molecular graphs) (Liu et al., 2018; Zhou et al., 2018) to 3D
representations (Skalic et al., 2019; Ragoza et al., 2020) (molecular coordinates). Recent works have also showcased the
importance of using target-aware models for practical drug design. Advancements in target-aware drug design, particularly
in the realm of text and graph-based generative methods (Eckmann et al., 2022; Stanton et al., 2022; Chenthamarakshan
et al., 2020; Lee et al., 2023), have made significant strides. However, these methods often generate ligands without
considering the 3D structure of the target protein. TargetDiff (Guan et al., 2023a) and DecompDiff (Guan et al., 2023b)
are two diffusion-based models that consider the 3D structure of the target protein. DecompDiff extends TargetDiff by
decomposing the task into generating the arms and scaffold while explicitly considering bonds between the atoms during the
diffusion process which is ignored by TargetDiff. Fragment-based generation methods such as (Ghorbani et al., 2023) allow
for controlled generation, ensuring that only certain types of molecular fragments are present in the generated ligand. But
they still fall behind the performance of diffusion-based approaches in terms of their binding affinity.

Molecular Property Prediction Predicting the properties of molecules through physio-chemical experiments is an
expensive and time-consuming solution, that is unsuitable for getting intermediate feedback on AI-designed molecules.
Using neural models has allowed high-quality prediction of various molecular properties in an automated fashion. Neural
methods use different molecular representations to predict molecules, including SMILES representation with pre-trained
transformers (Liu et al., 2023) or molecular structures (Yang et al., 2019; Zhou et al., 2023) for predicting the properties of
interest.
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Molecular Property Optimization Prior methods for property optimization have focused on using Reinforcement learning
to generate molecules with desired properties (You et al., 2018; Zhou et al., 2019; Zhavoronkov et al., 2019; Jeon & Kim,
2020; Olivecrona et al., 2017). However, RL methods are often computationally expensive and challenging to optimize
due to the vast search space. LIMO (Eckmann et al., 2022) uses Variational Auto Encoders (VAEs) and gradient gudiance
on MLP-based property predictors but does not consider the 3D structure of the target protein or the generated ligand.
(Lee et al., 2023) introduced a novel graph-based diffusion model for out-of-distribution (OOD) generation, enhancing
explorability through OOD-controlled reverse-time diffusion and property-guided sampling, albeit focusing solely on 2D
molecular representations, unlike the target-aware 3D structure generation with multi-objective guidance featured in our
work.

C. Diffusion models for Target-Aware Generation
As delineated in previous works on diffusion-based target-aware molecular generations (Guan et al., 2023a;b), the process
involves two phases: noise injection, also termed as forward diffusion, and denoising (backward diffusion).

Noise injection: This phase involves a gradual injection of Gaussian noise for co-ordinates and uniform noise for categorical
data through a Markov chain. This noise addition is uniquely applied to the ligand molecule, excluding the protein in the
diffusion process. In this context, the atom positions and types of the ligand molecule at time step t are represented as XM

t

and VM
t respectively. The diffusion forward transition is defined by the following equations:

q (Mt|Mt−1,P) = N
(
XM

t ;
√

1− βtX
M
t−1, βtI

)
· C

(
VM

t | (1− βt)V
M
t−1 + βt/K

) (11)

q (Mt|M0,P) = N
(
XM

t ;
√
ᾱtX

M
0 , (1− ᾱt) I

)
· C

(
VM

t |ᾱtV
M
0 + (1− ᾱt) /K

) (12)

where N and C denotes the normal and categorical distribution respectively while β1, ..., βT represents the variance
schedules. The corresponding posteriors are analytically derived as follows:

q (Mt−1|M0,Mt,P) = N
(
XM

t−1; µ̃t

(
XM

t ,XM
0

)
, β̃tI

)
· C

(
VM

t−1|c̃t
(
VM

t ,VM
0

)) (13)

where,
µ̃t

(
XM

t ,XM
0

)
=

√
ᾱt−1βt

1−ᾱt
XM

0 +
√
αt(1−ᾱt−1)

1−ᾱt
XM

t , β̃t =
1−ᾱt−1

1−ᾱt
βt, αt = 1− βt, ᾱt = Πt

s=1αs,

c̃t
(
VM

t ,VM
0

)
= c⋆/

∑K
k=1 c

⋆
k, and c⋆

(
VM

t ,VM
0

)
= [αtV

M
t + (1− αt) /K]⊙ [ᾱt−1V

M
0 + (1− ᾱt−1) /K].

In practical applications, it is recognized that the schedules βt for coordinates and categories may differ. However, for the
sake of simplicity in this context, they are uniformly represented.

Denoising phase: In the generative process, a neural network parameterized by θ learns to recover M0 by iteratively
denoising MT . During reverse process, M0 is approximated using θ and Mt−1 by predicting M̂0|t = [X̂M

0|t, V̂
M
0|t] at time

step t and Mt−1 is sampled as follows:
pθ (Mt−1|Mt,P) = q

(
Mt−1|M̂0|t,Mt,P

)
= N

(
XM

t−1; µ̃θ (Mt,P, t) , β̃tI
)

· C
(
VM

t−1|c̃θ (Mt,P, t)
)

= N
(
XM

t−1; µ̃t

(
XM

t , X̂M
0|t

)
, β̃tI

)
· C

(
VM

t−1|c̃t
(
VM

t , V̂M
0|t

))
(14)

Training: In line with the principles outlined in the variational auto-encoder (Kingma & Welling, 2013), the model undergoes
training through the optimization of variational bound on the negative log-likelihood. Given that both q (Xt−1|M0,Mt,P)
and pθ (Xt−1|Mt,P) are Gaussian distributions, the Kullback-Leibler (KL) divergence for the atom coordinates is expressed
in a closed-form equation:
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L
(x)
t−1 =

1

2β̃t

∥µ̃t

(
XM

t ,XM
0

)
− µ̃θ

(
[XM

t ,VM
t ],P, t

)
∥2 + C

= γt∥XM
0 − X̂M

0|t∥2 + C

(15)

where γt =
ᾱt−1β

2
t

2σ2
t (1−ᾱt)

2 and C is a constant. As recommended by (Ho et al., 2020) and (Guan et al., 2023a), training the
model using an unweighted Mean Squared Error (MSE) loss, by setting γt = 1, leads to enhanced performance. Regarding
the atom-type loss, the KL divergence of categorical distributions is computed in the following manner:

L
(v)
t−1 =

K∑
k=1

c
(
VM

t ,VM
0

)
k
log

c
(
VM

t ,VM
0

)
k

c
(
VM

t , V̂M
0|t

)
k

(16)

The final loss is a weighted sum of atom coordinate loss and atom type loss, which is expressed as L = L
(x)
t−1 + λL

(v)
t−1.

D. Property Distribution in Training Data
Figure 3 illustrates the distribution of QED, SA, and Vina Scores within the training split. From the figure, it is evident that
a substantial proportion of molecules exhibit low binding and fall below the hit criteria for QED.
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Figure 3. Distribution of QED, SA, and Vina Score properties in the training split, with the mean values represented by dotted lines

E. Training and Evaluation of Guide
E.1. Training

As detailed in § 3.1, we employed a 9-layer Invariant Graph Neural Network (GNN) as the foundational model for
constructing guides across various properties. Notably, for QED and SA — properties that are not dependent on the target —
we adapted the k-Nearest Neighbors (k-NN) graph construction methodology, which omits protein atoms into consideration.
The k value was specifically tailored to each property: set at 6 for both QED and SA and increased to 32 for the binding
affinity property predictor to optimize the model’s performance in different contexts. For training our binding affinity guide,
we used Autodock Vina scores from the CrossDocked2020 dataset (Eberhardt et al., 2021; Francoeur et al., 2020), and for
QED and SA, we calculated scores using the RDKit package (Landrum, 2013). To effectively guide the denoising phase, we
train our guide using the same noise as our backbone model, TargetDiff, which applies Gaussian noise to coordinates and
uniform noise to categories.

The models are trained with a batch size of 4 to minimize the Root Mean Square Error (RMSE) loss, utilizing a gradient
descent algorithm. The initial learning rates were set at 0.001 for the binding affinity and QED guides, and at 5e-4 for the SA
guide. Additionally, to maintain the stability of the training process, the gradient norms were clipped at a maximum value
of 8. The learning rate underwent exponential decay by a factor of 0.6, with a lower bound set at 1e-5. This decay was
triggered in the absence of any improvement in the validation loss across 10 consecutive evaluations. Evaluations were
conducted every 2000 training steps, and convergence of all models was achieved within 200,000 steps. All experiments
were conducted using the NVIDIA A100 GPU.



TAGMOL: Target-Aware Gradient-guided Molecule Generation

E.2. Evaluation

The performance of each guide model was evaluated for their respective property predictions using the same test dataset. As
outlined in § 4, we employed the same split to evaluate our binding affinity guide model. While the train-test split ensures the
uniqueness of the protein-ligand complexes between the sets, 34 ligands are common to both, leading to potential train-test
leakage. Consequently, for QED and SA guides that depend solely on ligands, we have excluded these 34 overlapping
ligands from the test split (No overlaps). Table 4 presents the performance evaluation of each guide model, indicating high
R2 values on the original test dataset. After removing the overlapping ligands from the test set, the performance metrics
remained consistent, confirming the model’s effective generalization to unseen ligands. While we report the results on fair
test split, it’s crucial to note that, diverging from the traditional machine learning training and testing process, we train the
guide to direct the generated latent space of the diffusion model.

Table 4. Evaluation of the guide model on the original test set with unique protein-ligand complexes, and on a modified test set (No
Overlaps) where 32 overlapping ligands have been removed.

Target
Property

Test Set (Original) Test Set (No Overlaps)

RMSE R2 RMSE R2

BA 0.642 0.953 0.652 0.951
QED 0.067 0.892 0.079 0.850
SA 0.054 0.848 0.065 0.821

F. Additonal Experiments and Results
F.1. Search for optimal Guide Strength

To determine the optimal Guide Strength (s), a grid search was conducted over the set of values: {0, 1, 2, 5, 10, 20, 50}. Here,
s = 0 represents the scenario without guidance, included for comparative purposes to gauge guide-induced enhancements.
The generation process was limited to 50 molecules for a limited set of 4 targets, to accommodate computational constraints.
Initially, for each property, we find the optimal guide strength sopty over the grid. Once the optimal values for single objective
are tuned, for multi-objective guidance, we obtained optimal s values by recalibrating the sopty with wy, as detailed in §-4.

Table 5 presents the results of our tuning across different guide strengths (s) mentioned in the grid. It is evident that non-zero
s values yield improved property metrics, underscoring the efficacy of guidance. For Binding Affinity (BA) guidance,
optimal s values emerge as 1 and 2, based on average and median Vina Scores, respectively. Considering both Vina Min
and Vina Dock values, s = 2 is selected for superior outcomes. In the case of QED guidance, an s value of 20 distinctly
outperforms others in terms of both average and median QED scores. With SA guidance, although s = 20 and s = 50
appear to be optimal, the validity(Guan et al., 2023b) of generated molecules takes a low value of 67% and 46%, respectively.
Consequently, s = 5 is chosen, providing the second-best SA values, with 84% of molecules being valid and only a slight
decrease in average SA value by 0.02. In summary, the selected Guide Strengths are: soptba = 2, soptqed = 20, and soptsa = 5.

F.2. Ablation on Single and Multi-Objective Guidance

To assess the impact of guidance on various combinations of properties, we conducted a detailed ablation study. Initially,
we present results for single-objective guidance on different properties, then proceed to guidance for two properties at a
time, and ultimately, guidance incorporating all properties. Our results, highlighted in Table 6, indicate that single-objective
guidance maximizes improvement for the targeted property without any substantial deterioration in other properties. When
applying guidance to two properties, the enhancements for each are moderate, illustrating a trade-off compared to separate
guidance. This trade-off persists with guidance across all properties. However, given the multifaceted nature of drug
discovery, where the goal is to produce molecules with high binding affinity and desired properties like QED and SA,
our approach significantly enhances hit rate and most properties over no guidance. This underscores the effectiveness of
guidance in navigating regions that are crucial in discovery.
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Table 5. Search for optimal Guide Strength (s), conducted individually for each Guide Model (single-objective setting). To minimize
computational demands, the generation is limited to 50 samples across 4 targets. Only the metrics of the property being guided are
included. Symbols (↑) / (↓) denote preference for higher or lower values, respectively. Top results are highlighted in bold for first place
and underlined for second. Italicized figures indicate instances where over 25% of molecules generated under the specified guide strength
were not valid.

BA Guide QED Guide SA Guide

s Vina Score (↓) Vina Min (↓) Vina Dock (↓) QED (↑) SA (↑)
Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med.

0 -5.37 -6.17 -6.31 -6.83 -7.65 -7.67 0.51 0.54 0.59 0.59
1 -7.82 -7.93 -8.16 -8.24 -8.62 -8.64 0.52 0.53 0.59 0.59
2 -7.69 -8.08 -8.33 -8.40 -8.86 -8.89 0.52 0.53 0.60 0.59
5 -7.55 -7.74 -8.02 -8.04 -8.67 -8.65 0.55 0.58 0.62 0.62

10 -7.11 -7.09 -7.53 -7.33 -8.42 -8.34 0.54 0.54 0.60 0.59
20 -6.85 -6.69 -7.03 -6.87 -8.16 -8.14 0.58 0.60 0.64 0.63
50 -6.11 -5.96 -5.68 -5.91 -7.73 -7.44 0.55 0.55 0.64 0.63

Table 6. Extensive ablation analysis assessing the properties of generated molecules under different property guidance scenarios. The first
and second-place results are emphasized with bold and underlined text, respectively.

wba wqed wsa Vina Score (↓) Vina Min (↓) Vina Dock (↓) QED (↑) SA (↑) Hit (↑)
Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Rate

0 0 0 -5.47 -6.30 -6.64 -6.83 -7.80 -7.91 0.48 0.48 0.58 0.58 20.5

1 0 0 -7.35 -8.18 -8.38 -8.46 -9.04 -9.04 0.49 0.5 0.53 0.53 22.6
0 1 0 -5.48 -6.46 -6.77 -6.93 -7.93 -8.06 0.56 0.57 0.58 0.58 24.5
0 0 1 -5.22 -6.03 -6.4 -6.57 -7.53 -7.73 0.47 0.48 0.61 0.6 19.4

0.5 0.5 0 -7.11 -7.96 -8.13 -8.21 -8.82 -8.85 0.56 0.57 0.55 0.55 26.1
0.5 0 0.5 -7.2 -7.95 -8.16 -8.26 -8.83 -8.84 0.5 0.51 0.55 0.55 24.7
0 0.5 0.5 -5.43 -6.34 -6.63 -6.86 -7.85 -7.97 0.55 0.56 0.59 0.59 24.1

0.34 0.33 0.33 -7.02 -7.77 -7.95 -8.07 -8.59 -8.69 0.55 0.56 0.56 0.56 27.7

F.3. Multi-Objective Rationale

Figure 4 presents the distribution of molecular properties for 10,000 generated molecules (100 per target, across 100 targets).
These molecules are generated using three methods: (i) the backbone model without any guidance; (ii) guidance using only
two properties, leaving out the third one indicated on the x-axis; and (iii) guidance using all three properties. Optimizing all
the properties helps improve the Vina Score and QED compared to the ‘No Opt’ baseline. Although it doesn’t help improve
the SA, it is still helpful, as excluding the SA property in optimization worsens the SA scores. Thus, it is useful to provide
guidance for all three properties.

F.4. Statistical Significance of Guidance

To demonstrate that the integration of guidance contributes to statistically significant changes in the results, we employ
Paired t-test (for QED, SA, Vina Score, Vina Min and Vina Dock) and Chi-square test (for hit rate), comparing our model,
TAGMOL, against the backbone model, TargetDiff. For the Paired t-test, we group the generated samples by target protein
and compute the average scores for each property, yielding 100 pairs for comparison in our case. Our null hypothesis posits
that there is no difference in the average values of a given property produced by the two models across various protein
targets. The p-values for the guided properties QED, SA, and Vina Score were remarkably low, at 4.65E-33, 5.00E-13, and
7.05E-10, respectively. Similarly, for Vina Min and Vina Dock, the p-values were 2.89E-15 and 4.38E-06, respectively.

On the other hand, for the hit rate, we utilize the Chi-square test, since the t-test may not be the suitable test. Here, outcomes
for a protein target are categorized as either “a greater number of molecules generated by TAGMOL satisfied the hit criteria
compared to those by TargetDiff” or the reverse, with the null hypothesis being an equal likelihood of occurrence, implying
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Figure 4. Distribution of molecular properties in molecules generated by the backbone model without any guidance (No Opt), when
guided by two properties while excluding the one indicated on the x-axis (Excluded Property on x-axis), and when guided by all three
properties (All Properties). (↓) denote properties where lower values are preferred, while (↑) indicate properties where higher values are
desirable.

no difference between the models. The obtained p-value of 5.73E-07 further supports our findings.

Given that the p-values across all tests are substantially lower the than the conventional threshold of 0.05, we can confidently
reject the null hypothesis, affirming that the guidance incorporation leads to highly statistically significant differences in the
outcomes.

F.5. Comparison of Bond Distance Distributions

Table 7. Jensen-Shannon Divergence comparing bond distance distributions between reference molecules and generated molecules. Lower
values indicate better performance. ’-’ represents single bonds, ’=’ represents double bonds, and ’:’ represents aromatic bonds. The first
and second-place results are emphasized with bold and underlined text, respectively.

Bond liGAN AR Pocket2 Target Decomp TAGMOL
Mol Diff Diff

C-C 0.601 0.609 0.496 0.369 0.371 0.384
C=C 0.665 0.620 0.561 0.505 0.539 0.501
C-N 0.634 0.474 0.416 0.363 0.352 0.365
C=N 0.749 0.635 0.629 0.550 0.592 0.559
C-O 0.656 0.492 0.454 0.421 0.373 0.422
C=O 0.661 0.558 0.516 0.461 0.381 0.430
C:C 0.497 0.451 0.416 0.263 0.258 0.269
C:N 0.638 0.551 0.487 0.235 0.273 0.252

We calculate the Jensen-Shannon divergences (JSD) to assess the differences in bond distance distributions between the
reference molecules and the generated molecules (Guan et al., 2023a;b). As shown in Table 7, our method closely maintains
the bond distribution in alignment with the backbone diffusion model, namely TargetDiff, surpassing the non-diffusion
baselines. This outcome emphasizes the efficient synergy between our guide model and the diffusion model, markedly
improving our ability to generate molecules with targeted properties while preserving molecular conformation.

F.6. Benchmarking with PoseCheck

Expanding our evaluation, we utilized PoseCheck (Harris et al., 2023) to evaluate the 3D poses generated by the models.
Our evaluation is focused on steric clashes and strain energy. Steric clashes quantify instances where the pairwise distance
between a protein and ligand atom is below the sum of their van der Waals radii, with a clash tolerance of 0.5 Å. Meanwhile,
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Figure 5. Comparison of distance distributions between all-atom distances of reference molecules in the test set (Reference) and distances
in model-generated molecules. The Jensen-Shannon divergence (JSD) between these two distributions is reported.

strain energy represents the internal energy accumulated within a ligand due to conformational changes upon binding.

In Table 8 and 9, we present the mean values of steric clashes and the median values of strain energy for the generated
molecules both before and after docking. In our discussion, we prioritize median values for strain energy as they offer
greater representativeness in this context, especially given the presence of significant outliers.

TAGMOL demonstrates superior performance compared to diffusion-based models TargetDiff and DecompDiff in terms
of clashes, highlighting the efficacy of our binding affinity guide. However, TAGMOL exhibits shortcomings concerning
strain energy. As elucidated in PoseCheck, diffusion-based methodologies often yield elevated strain energies, a trend
also observed in TAGMol due to minor errors in atom placement resulting from coordinate guidance. We hypothesize that
integrating strain energy guidance during the generation phase could yield more stable molecules. We plan to investigate
this in our future work.

Table 8. Evaluation of poses of generated molecules on biophysical benchmarks, PoseCheck. (↑) / (↓) indicates whether a larger or smaller
value is preferable. The first-place results are emphasized in bold.

Methods Clashes (↓) Strain Energy (↓)

TargetDiff 9.19 1258.02
DecompDiff 12.53 539.89
TAGMOL 6.05 2143.03

Table 9. Evaluation of poses of generated molecules on biophysical benchmarks, PoseCheck, after redocking. (↑) / (↓) indicates whether a
larger or smaller value is preferable. The first-place results are emphasized in bold.

Methods Clashes (↓) Strain Energy (↓)

Reference 3.5 118.17

TargetDiff 5.9 602.00
DecompDiff 5.75 441.61
TAGMOL 5.36 709.35

F.7. Challenges in SA optimization

The SA score serves as a comprehensive metric for assessing synthetic feasibility, considering various non-standard structural
features such as large rings, unconventional ring fusions, stereocomplexity, and overall molecule size (Ertl & Schuffenhauer,
2009). However, diffusion-based generative models face a limitation in accurately positioning atoms, leading to unrealistic
molecular topologies, especially the formation of large rings, which can negatively impact SA scores (Peng et al., 2023).

As evident from Table 10, the diffusion-based models exhibit a subpar distribution of ring sizes, notably characterized by a
prevalence of larger rings. In TAGMOL, the provision of multiple guidance signals to coordinates increases the likelihood



TAGMOL: Target-Aware Gradient-guided Molecule Generation

of forming large rings. Consequently, this propensity towards larger ring formations contributes to either a drop in SA values
or minimal improvement despite the guidance provided.

Table 10. Distribution of ring sizes in reference and generated molecules, expressed as percentages

Ring Ref Pocket2 Target Decomp TAGMOL
Size Mol Diff Diff

3 1.7% 0.1% 0.0% 2.9% 0.0%
4 0.0% 0.0% 2.8% 3.7% 2.4%
5 30.2% 16.4% 30.8% 30.8% 26.9%
6 67.4% 80.4% 50.7% 45.6% 48.6%
7 0.7% 2.6% 12.1% 11.6% 15.0%
8 0.0% 0.3% 2.7% 2.3% 3.7%
≥9 0.0% 0.2% 0.9% 3.1% 3.4%

G. Pseudo Code for TAGMOL

This section provides a summary of the overall sampling procedures employing multiple guidances.

Algorithm 1 Psuedo Code of TAGMOL

Require: The protein binding site P, generative model θ, Property Predictors ϕY.
Ensure: Generate ligand molecule M that binds to the protein pocket & optimized for properties Y

Sample NM atoms based on a prior distribution relative to the pocket size.
Move CoM of protein atoms to zero.
Sample coordinates XM

T and atom types VM
T based on prior:

XM
T ∼ N (0, I)

VM
T = one hot(argmaxi gi), where g ∼ Gumbel(0, 1)

for t = T, T − 1, . . . , 1 do
Calculate [X̂M

0|t, V̂
M
0|t] using θ([XM

t ,VM
t ], t,P)

Calculate µ̃t

(
XM

t , X̂M
0|t

)
according to posterior in Equation 13

Calculate δ according to Equation 10
Sample Mt−1 according to the Equation 9

end for

H. Time Complexity
When executed on an NVIDIA A100 GPU, we observed a notable processing time trend for inference. Guidance for
properties like QED and SA led to significant improvements (refer to Table 6) with minimal time increases of 1.06x and
1.07x, respectively, compared to the backbone. However, guiding for Binding Affinity (BA) led to a more substantial time
increase due to the inclusion of protein atoms, demanding extra computational effort compared to QED or SA guidance,
which involves only ligand atoms. Ultimately, TAGMOL recorded its longest processing time of 1.87x when applying
guidance for all properties. It is important to note that TAGMOL is still comparable to 1.72x of DecompDiff (Guan et al.,
2023a) sampling time.

Table 11. Inference time for different models

Method Time (s)

backbone 938
backbone + BA opt 1646
backbone + QED opt 995
backbone + SA opt 1007
TAGMOL 1755
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I. Limitations and Future Work.
Although the present work shows promising results, we share some complementary directions worth investigating in the
future. First, improved representation of the system using additional inductive bias in terms of symmetry and coarse-graining
could furnish more accurate predictions of different properties that are structure dependent. Second, model compression
and parameter pruning could speed-up inference without compromising performance. Third, integrating constraints on
discrete attributes into gradient-based optimization may enable the modeling of complementary properties, such as enforcing
hydrogen bonds between specific residues within the pocket, a capability our current algorithm lacks. Fourth, exploring
reduced noise sampling strategies or guidance mechanisms for generating more precise conformations could lead to reduced
strain energy and the production of stable molecules. Finally, it would be worth investigating physics-based techniques,
such as molecular simulations, to allow generalization to larger family of systems.


