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Abstract

Understanding the progression trajectories of diseases is crucial for early diagnosis and
effective treatment planning. This is especially vital for life-threatening conditions such as
Idiopathic Pulmonary Fibrosis (IPF), a chronic, progressive lung disease with a prognosis
comparable to many cancers. Computed tomography (CT) imaging has been established
as a reliable diagnostic tool for IPF. Accurately predicting future CT scans of early-stage
IPF patients can aid in developing better treatment strategies, thereby improving survival
outcomes.

As inspired by the recent success of world models in generating video-based virtual
physical worlds, we present the first world model for IPF, to synthesize realistic scans of
early-stage IPF patients at any time point. We term our model 4D Vector Quantised
Generative Adversarial Networks (4D-VQ-GAN). Our model is trained using a two-stage
approach. In the first stage, a 3D-VQ-GAN is trained to reconstruct CT volumes. In the
second stage, a Neural Ordinary Differential Equation (ODE) model is trained to capture
the temporal dynamics of the quantised embeddings, which are generated by the encoder
trained in the first stage. For clinical validation, we conduct survival analysis using imaging
biomarkers derived from generated CT scans and achieve a C-index either better than or
comparable to that of biomarkers derived from the real CT scans. The survival analysis
results suggest the potential clinical utility inherent to generated longitudinal CT scans,
showing that they can reliably predict survival outcomes. The code is publicly available at
https://github.com/anzhao920/4DVQGAN.
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1. Introduction

Understanding the disease progression trajectories is vital for understanding diseases’ bio-
logical mechanisms and developing better treatments. The traditional methods for under-
standing the disease progression focus on modelling the progression trajectories using lon-
gitudinal, low-dimensional data (e.g., differential equation models (Villemagne et al., 2013;
Jack et al., 2013; Oxtoby et al., 2014), self-modelling regression methods (Jedynak et al.,
2012; Donohue et al., 2014), event-based models (Wijeratne and Alexander, 2024; Young
et al., 2018; Fonteijn et al., 2012)). Those traditional methods normally require strong
assumptions of the statistical disease progression patterns, relying on the prior knowledge
of the diseases, which are hard to obtain for rare diseases. In addition, the majority of
the traditional methods models the progression trajectories at a population level, hindering
their applicability on hetergeneous diseases.

To address the aforementioned limitations of the traditional methods to understand the
disease progression, we explore a new paradigm of machine learning methods, namely, world
models (NVIDIA et al., 2025; Parker-Holder et al., 2024; Bruce et al., 2024). The world
models simulate the physical worlds with interactive virtual environments. For example, a
recent world model called Genie (Parker-Holder et al., 2024; Bruce et al., 2024) can create
game video based environments for the AI agents to interact with. Similarly, in the context
of the disease progression, we can adapt temporal medical imaging as the environments, on
the analogy as using the videos as environments in physical world models.

In this paper, we explore world models on investigating the progression trajectory of
idiopathic pulmonary fibrosis (IPF), a progressive lung condition, with high-resolution CT
volumetric scans. As proof of the concept, in this paper, we focus on only one interactive
action with the virtual progression trajectories, which is the time. More precisely, we intro-
duce the 4D Vector Quantized Generative Adversarial Network (4D-VQ-GAN). Given two
3D CT scans of an IPF patient at irregular time points, our method can generate synthetic
3D images at any desired time point, effectively modelling a virtual continuous disease pro-
gression trajectory for each individual. More importantly, we found that biomarkers derived
from the generated CT volumes exhibit a strong clinical correlation with survival outcome,
highlighting the potential of our method for personalized treatment planning.

2. Related Works

Our work can be regarded as a type of spatial-temporal disease progression modelling with
high-dimensional volumetric imaging data. Previously, a few generative models have been
explored to simulate longitudinal magnetic resonance imaging (MRI) scans specifically in
the context of Alzheimer’s disease (AD) progression (Couronné et al., 2021; Sauty and
Durrleman, 2022; Kim et al., 2021; Mart́ı-Juan et al., 2023; Fan et al., 2022; Puglisi et al.,
2024; Ravi et al., 2022; Yoon et al., 2023). For instance, auto-encoder styles model have
been used to couple with linear temporal models in (Sauty and Durrleman, 2022; Kim et al.,
2021). However, they rely on oversimplified assumptions about evolution trajectories (e.g.
linear progression). Other methods (Mart́ı-Juan et al., 2023; Fan et al., 2022) use recurrent
neural networks to capture the temporal information. These methods model dynamics in
discrete steps, limiting their ability to capture the continuous nature of disease progression.
Puglisi et al.(Puglisi et al., 2024) use the latent diffusion model and incorporate prior
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knowledge to model the disease progression. However, it also struggles to ensure continuous
temporal changes. In addition, existing methods for generating longitudinal MRI scans
in AD are not directly applicable to CT lung scans of IPF patients for several reasons.
First, IPF is much rarer with shorter patient lifespans than AD resulting in less imaging
being acquired. Furthermore, radiation side effects from CT scans discourage repeated
scans, resulting in a scarcity of longitudinal CT data and hindering model development.
Second, lung CT scans contain vastly more fine textured-structures like vessels, airways,
and interstitial tissue compared to the smooth, homogenous brain seen in MRI. Generating
these intricate lung structures synthetically is more challenging than replicating brain tissue.

3. Methods

Our 4D-VQ-GAN is a self-supervised generative model trained on temporal CT volumes.
As shown in Figure 1, the model consists of two key components: a 3D-VQ-GAN and
a temporal model. We train the two components of our model sequentially to make the
overall training on high-dimensional spatial-temporal data easier to stabilize. In the first
stage, we train a 3D-VQ-GAN to reconstruct each scan. By doing so, the trained encoder of
the 3D-VQ-GAN can project the high-dimensional data into low-dimensional code books.
In the second stage, we use a Neural ODE to capture the temporal dynamics of the code
books. Most importantly, the neural ODE provides us an interactive environment with the
latent temporal disease trajectories, so that during the inference, we can simulate the scans
at any time point given two scans. In addition, the use of code books as input for temporal
modelling avoids overfitting on the temporal data.

3D-VQ-GAN As shown in Figure 1, the first stage of training involves a 3D-VQ-GAN
(Ge et al., 2022) to reconstruct CT volumes for each case at every time point in the training
set. Unlike the original 2D-VQ-GAN (Esser et al., 2021), our 3D-VQ-GAN employs 3D
convolutional layers, enabling it to capture spatial structures more effectively in volumetric
imaging data. Following the VQ-VAE framework (Van Den Oord et al., 2017), 3D-VQ-
GAN compresses high-dimensional volumetric imaging data into a discrete set of latent
codes, constrained by a predefined codebook size. Since the model is trained on imaging
data, its codebook learns to represent meaningful imaging patterns, with each code acting
as a compact and discrete representation of local anatomical structures or texture features.
We adapted the original 3D-VQ-GAN loss functions (Ge et al., 2022) for training. Further
details can be found in Appendix E.2.

Temporal Model In the second stage of the training, we train a temporal model that
can reconstruct the temporal trajectories of the latent embeddings (z) of the imaging data
from different time-points, as demonstrated in Figure 1. We realise that generating the fu-
ture or past latent embeddings from a few observed latent embeddings naturally formulates
as an ordinary differential equation. We therefore utilise a neural ODE solver (Chen et al.,
2018) to predict the unknown embeddings at new time-points. We found that it is more
beneficial to adapt a 3D-ConvGRU (Ballas et al., 2015) as the encoder of the neural ODE
solver on our data, with much better computational efficiency. The outputs of the neural
ODE are then fed into a light-weight projector, two 3D convolutional layers, to reconstruct
the latent embeddings z at inquired time points, with a specified time interval. In prac-
tice, We found that adding skip connections to the generated embeddings improves results,
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Figure 1: The overview of our two-stage training strategies. The first stage trains an
encoder-decoder-based 3D-VQ-GAN to reconstruct the CT volumes. The sec-
ond stage takes the latent embeddings (zt, ..., z0) from the first stage, and trains
a temporal model to reconstruct them. The temporal model consists of a 3D-
ConvGRU, that compresses the temporal latent embeddings to match the di-
mensionality of the input of the ODE Solver to ease the computational burden.
The projector, a light-weight 3D convolutional module reconstructs the temporal
latent embeddings from the outputs of the ODE Solver. Those reconstructed
latent embeddings are then fed into a frozen 3D-VQ-GAN Decoder from stage 1
for longitudinal CT reconstruction.

offering two key benefits. 1) Training Stability and Efficiency: Skip connections stabilize
training and speed up convergence, similar to ResNets, by focusing gradient propagation on
meaningful pathological changes rather than both stable anatomy and disease progression.
2) Anatomical Preservation: Skip connections condition predictions on baseline anatomy,
preserving stable structures and enabling personalized disease progression modelling. We
train the temporal model in a self-supervised manner by using a L2 loss between the input
embeddings and the reconstructed embeddings. Please refer to Appendix E.3 for details.

Inference The inference follows the process shown in Figure 2. The trained model
needs two CT scans. The user can also input two hyper-parameters for the neural ODE,
namely the interval time and the total time duration. For example, as shown in Figure 2,
given two initial scans at time point 0 and 1, the interval as 1 year and the total time
duration as 3 years, the model will reconstruct the scans at time point 0 and 1, and start
to extrapolate future scans at time point 2 and 3.

Survival analysis and biomarker discovery We explore our model’s clinical util-
ity using a survival analysis based approach to mimic the clinical workflows. Radiologists
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track prognostic imaging biomarkers in IPF over time to assess disease progression. Though
we lack comprehensive visual scores for all cases, we propose a method that mirrors clin-
ical workflows, including selecting key prognostic biomarkers, analyzing their longitudinal
changes, and comparing their prognostic value in synthesized vs. real scans. Despite not
being pixel-perfect replicas, if synthesized scans maintain consistent biomarker represen-
tation and exhibit comparable longitudinal changes to real scans, it would support their
clinical utility. The method is as follows:

• Biomarker Extraction: The trained 3D-VQGAN encoder is used to project each CT
scan into a set of codebook. Each code index represents a distinct imaging pattern in
the CT. The frequency of each code index reflects the prevalence of the correspond-
ing imaging pattern. We then use these normalized frequencies of code indices as
candidate cross-sectional prognostic biomarkers.

• Cross-sectional prognostic biomarker selection: To identify prognostic cross-sectional
biomarkers, we perform survival analysis using five-fold cross-validation. The original
training dataset is divided into training and validation datasets. In each fold, uni-
variate Cox proportional hazards models (Cox, 1972) are applied to each biomarker,
adjusting for age, sex, and smoking status (smoking vs non-smoking). Biomarkers
are selected based on three criteria: (1) Hazard Ratio (HR) > 1 (indicating that
higher biomarker values are associated with increased mortality risk), (2) p-value <
0.01 (ensuring statistical significance), and (3) Concordance Index (C-index) > 0.5
(demonstrating predictive ability). A biomarker must meet these criteria in all five
folds to be considered robust. The top five biomarkers with the highest mean C-
index values across the validation sets are selected for further longitudinal biomarker
analysis, ensuring that the most predictive biomarkers are prioritized.

• Longitudinal biomarker analysis: For each patient in the test dataset, we use their first
two available CT scans to synthesize both their second available scan and an additional
follow-up scan one year later. The synthetic second scan serves as a predicted version
of the actual second scan. We then extract the five selected cross-sectional biomarkers
from both real and synthetic scans at two time points: the second scan and the
one-year follow-up. The longitudinal biomarker is defined as the change in these
biomarkers between the two time points, separately computed for real and synthetic
scans. These longitudinal biomarkers, along with the covariates, are input into the Cox
model to assess their prognostic value in the test dataset. This analysis evaluates the
consistency of biomarker trajectories between real and synthetic scans, and explores
the potential utility of synthetic scans in tracking changes over time.

4. Experiments

Datasets Our data comes from a longitudinal dataset comprising 681 volumetric CT scans
from 219 IPF patients, obtained from University Hospitals Leuven, Belgium, a single centre
in Leuven. We randomly divided the dataset into 80% for training (552 CT scans from
175 patients) and 20% for testing (129 CT scans from 44 patients). Different patients have
varying numbers of scans, reflecting the natural variations in imaging availability in real
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Figure 2: The inference of the trained model. Given two scans, the model can generate
more scans up to the specified year at a specific interval.

clinical practice. The CT scans were acquired with varying slice thicknesses, ranging from
0.75 mm to 1 mm, and in-plane resolution varied with pixel spacing ranging from 0.38 mm
to 0.98 mm. Additionally, we use an external cross-sectional dataset of 98 IPF patients from
the University Hospital Southampton NHS Foundation Trust, UK, to evaluate the general-
izability of the 3D-VQ-GAN trained in Stage 1 and more details can be found in Appendix
D.1. For survival analysis, patients must have complete data on death status, censoring in-
formation, and all relevant covariates (age, sex and smoking status). In the training dataset,
71 out of 141 patients have observed deaths. For the cross-sectional biomarker analysis test
dataset, patients must have at least three time points, with 10 out of 17 patients having
observed deaths. For the longitudinal biomarker analysis test dataset, patients are required
to have at least three time points and a one-year follow-up for the second available data
point, with 9 out of 14 patients having observed deaths.

Preprocessing We focus on modelling changes within the lung areas. We segment
the lung regions using a pre-trained U-Net (Ronneberger et al., 2015; Hofmanninger et al.,
2020) for all CT scans of IPF patients and visually inspect the lung masks. Subsequently,
we register the longitudinal lung scans to remove extraneous artifacts caused by lung motion
or incorrect body positioning. Our lung scan registration method is a faster version (imple-
mented in (Hansen and Heinrich, 2021)) of the CorrField method (Heinrich et al., 2015).
Visualizations of the segmentation and registration outcomes can be found in Appendix C.

Training Our models are trained on an NVIDIA A100 80GB GPU. The first training
stage used a batch size of 1, with an accumulated batch size of 6, and lasted 20,000 steps,
equivalent to 10 days. The second training stage also used a batch size of 1 and lasted 15
hours. The hyperparameters of the training can be found in Appendix A.

Evaluation Metrics To evaluate the image quality of the reconstructed CT scans in the
first stage of training, we use Mean Squared Error (MSE). For assessing the image quality
of the generated temporal CT scans in the second stage, we use Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity Index (SSIM). For survival analysis, we use C-index,
a metric that measures the predictive accuracy of a model by evaluating the agreement
between predicted risk scores and actual survival outcomes.

5. Results

In this section, we present the results of our model on the following tasks: 1) interpolation,
for imputing missing CT scans between the two input scans; 2) extrapolation, for predicting
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Figure 3: Three real CT scans of an IPF patient are shown in the upper panel, representing
axial, coronal, and sagittal sections. Using two scans from year 0 and year 2,
the trained model can generate CT scans at any arbitrary time points. The
below panel shows the generated CT images at five different time points, with
three corresponding to the real scans. A zoomed region of the left lower lobe
(yellow box) in the real and generated CT scans show comparable amounts of
architectural distortion, patterned ground glass opacification and reticulation, all
hallmarks of lung fibrosis. The availability of our scans are not uniform across
time and across patients, the model is trained on scans at irregular time points.

the future CT scans beyond the time span of the two given input scans; 3) survival outcome
prediction, for evaluating of the clinical utility of the proposed method.
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Table 1: Ablation Study on Interpolation and Extrapolation Tasks.

Model Variant
Interpolation Extrapolation

MSE↓ SSIM↑ PSNR↑ MSE↓ SSIM↑ PSNR↑
3D-VQ-GAN+ODE encoder (ConvGRU) 0.018 0.500 17.913 0.023 0.472 16.974

3D-VQ-GAN+ODE encoder (ConvGRU)+embeddings skip connections (proposed) 0.020 0.469 17.387 0.019 0.489 17.816

3D-VQ-GAN+ODE encoder (ODE-ConvGRU)+embeddings skip connections 0.018 0.508 17.900 0.026 0.440 16.913

3D-VQ-GAN+ODE encoder (ConvGRU)+embeddings skip connections+masked out inputs 0.035 0.343 15.366 0.036 0.340 15.24

Interpolation and extrapolation In this experiment, we evaluate the performance
of the proposed method in reconstructing latent dynamics from sparse, irregularly sampled
data. The model is trained to reconstruct the given input sequence of 3D imaging data and
is then tested on both interpolation and extrapolation tasks. Figure 3 illustrates example
qualitative results. The patient’s year 0 and year 2 scans were used for inference, with
the year 3.5 scan serving as ground truth for the extrapolation experiment. Inference was
performed with a 0.5-year interval, extending up to 5.5 years from the baseline (year 0).
As shown in the zoomed-in section, both real and generated CT scans exhibit comparable
architectural distortion, ground glass opacification, and reticulation—key features of lung
fibrosis. The quantitative results are shown in Table 1.

Ablation study The proposed method uses Neural ODE to predict the difference em-
beddings for each time point relative to the previous one, incorporating skip connections. In
the ablation experiments (Table 1), we remove the skip connections and allow the model to
directly predict the latent embeddings of all time points using Neural ODE. However, this
modification resulted in significantly poorer extrapolation performance. We also replaced
ConvGRU with ODE-ConvGRU (Park et al., 2021) as the ODE solver encoder. While
ODE-ConvGRU is designed for irregularly sampled longitudinal data, it leads to notably
worse extrapolation performance compared to the model using standard ConvGRU. Addi-
tionally, we experiment with randomly masking time points (excluding the baseline) and
task the model with reconstructing the unseen time points. This approach also results in
significantly worse extrapolation performance. Overall, the proposed model demonstrates
balanced performance in both interpolation and extrapolation tasks.

Survival outcome prediction Following the method in Section 3, the top five most
significant cross-sectional imaging biomarkers are selected for survival analysis. The selected
five biomarkers exhibit weak to moderate correlation, with pairwise correlation coefficients
all below 0.64 and an average correlation of 0.41. In the test dataset, we extrapolate the third
CT scan using the first two available CT scans. For the cross-sectional imaging biomarker,
the C-index using the generated third scans is 0.943. In comparison, using biomarkers
derived from real CT scans for survival prediction yields a slightly lower C-index of 0.914.
Next, we compute the longitudinal biomarker by evaluating the change in these top five
significant biomarkers over the course of one year, both for real and generated CT scans.
By inputting these longitudinal biomarkers along with covariates into the Cox model, we
obtain C-indices of 1.0 for both real and generated CT scans. However, these results may
be overestimated due to the limited sample size. The C-index of survival analysis using
generated scans is comparable to that of real scans, further highlighting the strong clinical
potential of our method.
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Table 2: Survival outcome prediction results on biomarkers selected from 5-fold cross-
validation.

Biomarker type
C-Index

Real CT scans Generated CT scans (ours)

Cross-sectional biomarker 0.914 0.943

Longitudinal biomarkers 1 1

6. Discussion

We aim to understand disease progression by interacting with a virtual disease progression
trajectory, which is physically visualized through a medical imaging modality that both
clinicians and patients can intuitively perceive. This is a key aspect that distinguishes our
approach from previous methods in disease progression modeling, which build mathematical
models to explicitly describe disease progression based on a limited set of variables derived
from medical images. Our approach enables clinicians to perform direct virtual diagnoses
on the generated future scans, thereby avoiding information loss that occurs during the
extraction of variables from the scans. Our model is also designed to be scalable, allowing
future work to explore larger-scale implementations, with more potential interactions (e.g
interventions) with the progression trajectories. We hope that our work will interest the
community in further exploration of disease progression trajectories through the lens of
world models, extending beyond IPF. This approach could as well potentially improve
existing screening and prevention technologies for different diseases.

Beyond disease progression analysis, the model has the potential for applications like
data augmentation. However, the proposed method exhibits certain limitations. Firstly, the
current approach utilizes a deterministic Neural ODE in the latent space, which assumes
a shared disease dynamic across all patients. This might not be ideal for heterogeneous
diseases with diverse subtypes and distinct progression patterns. Secondly, a crucial limi-
tation of the current validation process is its reliance on a single dataset for evaluating the
model. Finally, the study relies on a single training/validation split due to limited training
resource, preventing an assessment of performance variability.

7. Conclusion

This paper presents a generative environment to simulate the progression trajectories of
IPF patients based on CT imaging. The proposed generative environment can be seen as
a world model. Our world model for IPF can realistically synthesize CT images of IPF
patients that contain visual hallmarks of lung fibrosis comparable to those in real scans.
Most importantly, the generated CT images can yield survival outcomes that are sometimes
even more accurate than those derived from the real images.
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Appendix A. Training and implementation details

We train the model for two stages, 3D-VQ-GAN and latent disease ODE. All models are
trained on a NVIDIA A100 80GB GPU.

A.1. 3D-VQ-GAN

In line with recommendations from (Ge et al., 2022; Esser et al., 2021), the training of
3D-VQ-GAN begins on all CT scans in the training set using the reconstruction loss. Sub-
sequently, the GAN loss is introduced after 10,000 steps. Hyperparameters are set as follows:
λperc = λrec = 4 and λGAN = 1. The Adam optimizer (Kingma and Ba, 2014) is employed
with a learning rate of 3 × 10−4 and β1 = 0.5, β2 = 0.9. Training the 3D-VQ-GAN spans
20,000 steps, and the best model, determined by the smallest training loss after adding
the GAN loss, is selected. The batch size is set at 1, and the accumulated batch size is 6.
Training the first-stage model takes approximately 10 days.

A.2. Disease ODE

After completing the training of 3D-VQ-GAN, we proceed to train the latent disease ODE
using the AdamW optimizer (Loshchilov and Hutter, 2017). The training spans 100 epochs,
employing a batch size of 1, a learning rate of 2× 10−4, and β1 = 0.5, β2 = 0.9. To enhance
the model’s performance at later time points, we implement a linearly increasing weights
strategy, assigning higher loss weights for later time points. The best model, identified by
the smallest training loss, is selected. Training the latent disease ODE takes approximately
15 hours.

A.3. Implementation details

For the implementation of 3D-VQ-GAN, we adopt a similar network structure as outlined
in (Ge et al., 2022). The codebook size is set to M = 256 with an embedding size of c = 16.
We employ a compression rate r = 4, calculated as the ratio between D,H,W and d, h, w.
All input 3D CT scans are resized to D = 96, H = 256,W = 256 before being fed into the
model. In the latent disease ODE, the neural ODE solver is implemented by stacking three
3D convolution layers. The code is implemented using PyTorch 1.8.
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Appendix B. Pseudo code for the algorithm for biomarker extraction
and selection

Input: Baseline CT scans, time-to-death, censoring status, age, gender, smoking status
Output: A ranked list of prognostically significant biomarkers, with corresponding HR,
p-value, and C-index values.

Feature Extraction:
Use a trained 3D-VQGAN encoder to extract codebook indices from each CT scan.
Compute a normalized histogram of these indices to obtain proportional representations of
imaging patterns (biomarkers).

Biomarker selection via Five-Fold Cross-Validation:
for fold do

Split the dataset into training (80%) and validation (20%) sets.
for biomarker candidate do

Fit a univariate Cox proportional hazards model, adjusting for covariates (age, sex,
smoking status).
Compute p-value, hazard ratio (HR) from the trained Cox model, and compute
C-index on the validation set.
Retain biomarkers that satisfy HR > 1, p-value < 0.01, and C-index > 0.5 on all
five folds.

Among the shortlisted biomarkers, select the top 5 with the highest mean validation-set
C-index across folds.
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Appendix C. Pre-processing

Figure 4: Segmentation results for selected cases from Leuven cohort

The registration process aligns corresponding structures across scans, ensuring the model
focuses on disease-related changes. The Learn2Reg challenge, associated with MICCAI 2020
and 2021, provides valuable insights for choosing a suitable registration method for lung CT
scans. This challenge compared various approaches on clinically relevant tasks. In the lung
CT task, the goal was to register expiration scans to inspiration scans, with corresponding
landmarks provided for accuracy evaluation (Hering et al., 2022). Notably, CorrField (Hein-
rich et al., 2015), a non-rigid registration method, emerged as the top performer among 15
methods, including deep learning and conventional approaches. CorrField achieved a target
registration error (the Euclidean distance between corresponding landmarks in the warped
fixed and moving scan) of only 1.75mm (Hering et al., 2022).

We use the faster version (implemented in (Hansen and Heinrich, 2021)) of CorrField
method (Heinrich et al., 2015), a non-learning-based unsupervised method. CorrField first
employs Foerstner operator (Förstner and Gülch, 1987) to extract distinctive keypoints in
one 3D volume. Then a dissimilarity distribution over a densely quantized space of dis-
placements is calculated. Finally, a parts-based model is used to infer the smooth motion
of connected keypoints and regularize the correspondence field. Specifically, a minimum
spanning tree (MST) is generated from the set of sparse keypoints, which enables exact
message passing using belief propagation on the graph to regularise the displacement costs.
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Figure 5: Visualization of four registration outcomes with a focus on lung areas for clarity.
The left two columns present axial views before and after registration, while the
right two columns showcase coronal views. Baseline scans are denoted in blue,
whereas follow-up scans are highlighted in yellow. The merging of colours results
in grey or white hues, indicating aligned structures due to RGB amalgamation.
Notably, follow-up scans are registered to their corresponding baseline scans. The
first two rows illustrate cases with successful registration outcomes, while the
subsequent two rows demonstrate instances of varying degrees of misalignment.

To ensure the disease progression model focuses solely on lung tissue, we define keypoints
within lung masks for registration. After aligning the longitudinal CT scans to the baseline
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CT scan using image registration, we replaced the non-lung region in the registered scans
with the corresponding region from the baseline CT scan. This eliminates distractions from
surrounding body parts. We leverage the default hyperparameters from the validated im-
plementation (https://grand-challenge.org/algorithms/corrfield/) for registration.
To verify registration quality, all registered scans undergo visual inspection by me to identify
and exclude those with significant errors. However, because of the non-clinical background,
there is still risk compared with verification conducted by experienced radiologists.

Appendix D. Additional experiments

In this section, we began by conducting experiments on the initial stage of the model to
show the reconstruction performance of 3D-VQ-GAN, both qualitatively and quantitatively.
Additionally, we explore the impact of varying hyperparameters on the reconstruction per-
formance. Subsequently, we assess the proposed two-stage model’s effectiveness in disease
progression modelling and interpolation tasks, demonstrating its capability to capture the
dynamics of disease progression. Finally, we present visualizations of the learned codebook
for enhanced interpretability.

Table 3: Reconstruction performance of 3D-VQ-GAN with different hyperparameters.
No. Vocabulary size Compression rate Learning rate MSE on internal test set MSE on external test set

1 1024 4 3× 10−4 3.76× 10−3 6.84× 10−3

2 4096 4 3× 10−4 3.54× 10−3 6.64× 10−3

3 256 4 1× 10−4 4.88× 10−3 8.67× 10−3

4 256 4 3× 10−4 4.23× 10−3 8.10× 10−3

5 256 8 3× 10−4 6.17× 10−3 1.15× 10−2

D.1. Reconstruction performance of 3D-VQ-GAN

This experiment investigates the influence of two critical hyperparameters—codebook vo-
cabulary size and compression rate—on the performance of the 3D-VQ-GAN model (Ap-
pendix E.2). The codebook vocabulary size specifies the number of discrete latent vectors
in the codebook Z, which serve as building blocks for representing input data in the latent
space. A larger vocabulary size enables the model to capture finer details in 3D CT scans
but increases computational demands. In contrast, the compression rate controls the degree
of dimensionality reduction during encoding, reducing the complexity of the latent space
representation. While a higher compression rate simplifies the model, it risks losing infor-
mation and compromising reconstruction quality. To identify the optimal configuration,
the model was trained on a training dataset and evaluated on internal and external test
sets (Table 3) using quantitative metrics (e.g., reconstruction error) and qualitative visual
inspection. A vocabulary size of 256 and a compression rate of 4 were chosen as they offered
the best balance between detail preservation, computational efficiency, and reconstruction
performance. Figure 6 showcases examples of input 3D CT scans and the corresponding
reconstructions generated by VQ-GAN models trained with different hyperparameter set-
tings.
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Figure 6: Examples of input 3D CT scans and corresponding CT scans reconstructed by
3D-VQ-GAN with varying hyperparameters, as detailed in Table 3
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Appendix E. Details of the Methodology

E.1. Problem formulation

We denote the irregularly sampled longitudinal 3D imaging data of a subject as XT =
{Xt0 ,Xt1 , ...,Xtj , ...,XtT }, where each Xtj ∈ RD×H×W×C (D: depth, H: height, W : width,
C: channel) and T = {t0, t1, ..., tj , ...tT } (tj : the time of the jth observation of the subject).
Each subject can have an arbitrary number of observations. In the context of IPF disease
progression modelling, this translates to each patient having an arbitrary number of longi-
tudinal volumetric lung CT scans. The corresponding mask for the region of interest is also
segmented. Given XT , the objective of this work is to build a model capable of generating
synthetic 3D imaging data at any time point between t0 and tT , illustrating the progression
of the disease within a patient over time. In this study, we use 3D volumetric CT scans of
IPF patients as an example application.

The proposed method has two stages: In the first stage, a 3D-VQ-GAN is trained to
reconstruct CT volumes. In the second stage, a latent (ODE) is trained to model the
temporal dynamics from quantised embeddings of longitudinal CT scans generated by the
encoder in the first stage, reconstructing continuous trajectories from discrete observations
in the latent space (Figure 7).

Figure 7: The overview of the proposed two-stage model. The left side is the 3D-VQ-GAN
for image reconstruction. The right side is the latent disease ODE for modelling
disease progression dynamics from longitudinal 3D imaging data.

E.2. 3D-VQ-GAN for image reconstruction

To capture the dynamics of disease progression in the latent space, which can significantly
decrease computational costs, the model needs to first learn an effective and compact latent
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Figure 8: The overview of the 3D-VQ-GAN for image reconstruction.

representation of the input image. In the first stage, we adopt 3D-VQ-GAN (Ge et al.,
2022) (Figure 8), which replaces 2D operations of the original VQ-GAN (Esser et al., 2021)
with 3D operations. VQ-GAN is a variant of VQ-VAE. VQ-VAE consists of an encoder E
and a decoder G and keeps a discrete codebook of learned representations in latent space.
Given an input X, the VQ-VAE tries to represent the input image with embeddings from
the codebook in the latent space. More specifically, the encoder E projects X into the
embedding ẑ = E(X) ∈ Rd×h×w×c in latent space followed by an element-wise quantization
operation q(·) which approximates ẑ by replacing each spatial code ẑi,j,k ∈ Rc with its
nearest neighbour in the trainable codebook Z = {zm}Mm=1 ∈ Rc. The discrete latent
indices and embeddings after quantization are denoted as c ∈ Zd×h×w and zq ∈ Rd×h×w×c

respectively. zq then goes through the decoder to reconstruct the input X̂ = G(zq), using:
zq = q(ẑ) = argmin

zm∈Z
||ẑi,j,k − zm||.

For the non-differentiable quantization operation, VQ-VAE uses a straight-through esti-
mator (Bengio et al., 2013) which copies gradients from decoder input zq to encoder output
ẑ (Van Den Oord et al., 2017).

zq = q(ẑ) = argmin
zm∈Z

||ẑi,j,k − zm|| (1)

The VQ-VAE loss Lvqvae consists of three terms: reconstruction loss Lrec, codebook
loss Lcodebook and commitment loss Lcommit. Lrec is used for optimizing both encoder and
decoder. Lcodebook is used only for optimizing the codebook by pushing embeddings in the
codebook to be close to the output of the encoder. Lcommit is employed to enforce the
encoder commits to an embedding in the codebook (Van Den Oord et al., 2017).

Lvqvae = ||X− X̂||1︸ ︷︷ ︸
Lrec

+ ||sg[E(X)]− zq||22︸ ︷︷ ︸
Lcodebook

+β||sg[zq]− E(X)||22︸ ︷︷ ︸
Lcommit

(2)
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sg[·] is the stop-gradient operator here.
In addition to the VQ-VAE loss, VQ-GAN also uses GAN loss LGAN and perceptual

loss Lperc to improve the reconstruction quality as well as increase the compression rate.
Similar to 3D-VQ-GAN (Ge et al., 2022), we use two discriminators D2d and D3d. D2d is
used to distinguish the real slice and the reconstructed slice of 2D plane. D3d is used to
distinguish real 3D input X and reconstruction X̂ to encourage the consistency between
slices:

LGAN = logD2d/3d(X) + log(1−D2d/3d(X̂)) (3)

Perceptual loss (Zhang et al., 2018) measures the distance of the true input and recon-
struction in the feature space of a VGG network (Simonyan and Zisserman, 2014).

Lperc =
∑
l

wl||VGG(l)(X̂)−VGG(l)(X)||1 (4)

VGG(l)(·) extracted the features of lth layer of VGG. wl is a learned weight for scaling.
The overall loss of 3D-VQ-GAN L3D-VQ-GAN would be

min
E,G,Z

( max
D2d,D3d

(λGANLGAN))+

min
E,G,Z

(λpercLperc + λrecLrec + Lcodebook + βLcommit)
(5)

E.3. Disease ODE: modelling latent disease progression dynamics

E.3.1. Overview

As shown in Figure 7, given the trained encoder of 3D-VQ-GAN, longitudinal input 3D
imaging data Xt0 ,Xt1 , ...,XtT for each patient can be projected to a series of quantized em-
beddings zqt0 , zqt1 , ..., zqtT . This sequence of embeddings can be considered as samples from
the continuous disease trajectory of that subject in the embedding space. To reconstruct
the continuous trajectory from discrete observations, we adapt the common latent ODE
structure, an encoder-decoder-based latent-variable time series model. In this application,
the primary focus lies on capturing changes within specific Regions of Interest (ROIs), i.e.
lung area. To isolate and emphasize these areas in the analysis, we apply a masking tech-
nique that excludes regions outside of the ROI in the latent embedding series. The overview
of the latent disease ODE is shown in Figure 7. Firstly, we use convolution-based gated
recurrent unit (3D-ConvGRU) neural network (Ballas et al., 2015) as an encoder to embed
the input sequence zqt0 , zqt1 , ..., zqtT into a latent initial state ht0 . Then, the continuous
latent trajectory can be generated by using an ODE solver given ht0 . Finally, the latent
trajectory is projected back to the embedding space of 3D-VQ-GAN to get embeddings
ẑqs1 , ẑqs2 , ..., ẑqsSat any target timesteps S = {s1, s2, ..., sS}. Feeding this sequence to the
trained decoder G of 3D-VQ-GAN can reconstruct the 3D imaging data at target timesteps
X̂s1 , X̂s2 , ..., X̂sS .

E.3.2. Latent encoder: 3D-ConvGRU

ConvGRU (Ballas et al., 2015) leverages convolutions within the GRU framework, enabling
it to simultaneously process both spatial and temporal information in sequential data.
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Building on the concept of ConvGRU from (Ballas et al., 2015), which employs 2D convolu-
tions, this application utilizes 3D convolutions instead. This modified unit is referred to as
3D-ConvGRU and the corresponding update function is named 3D-ConvGRUCell. Given
the sequence of quantized embeddings zqt0 , zqt1 , ..., zqtT , 3D-ConvGRU models the time
series by making next-step prediction based on previous hidden state in an autoregressive
way. The 3D-ConvGRU is run backwards as suggested by (Chen et al., 2018) and can be
formulated as: hti−1 = 3D-ConvGRUCell(hti , zqti−1

), where hti is the hidden state on ti.

E.3.3. Latent decoder

The latent decoder comprises three components: a neural ODE, a 3D convolution layer, and
a linear composition layer. This decoder architecture is adapted from (Park et al., 2021).

The neural ODE defines a continuous hidden state h(t) which is the solution of an ODE
initial-value problem (IVP) as follows (Chen et al., 2018; Rubanova et al., 2019). Here the
initial status is ht0 produced by the above 3D-ConvGRU.

dh(t)

dt
= fθ(h(t), t), h(t0) = ht0 (6)

fθ is a neural network parameterized by θ and fθ defines the dynamics of h(t). By
employing a numerical ODE solver, the hidden states s1, s2, ..., sS at any target timesteps
can be obtained based on the initial status ht0 . This method excels by accommodating more
complex dynamics within the latent state, as opposed to relying on restrictive assumptions
like linearity (Sauty and Durrleman, 2022; Kim et al., 2021). This enables more flexible
disease progression modelling by using neural networks to directly parameterize the changes
in the hidden state. Subsequently, a single 3D convolution layer takes two hidden states
hsi , hsi−1 and outputs the difference map Dsi , approximating the difference ∆zqsi between
the current zqsi and the previous zqsi−1

.

The final output of the latent decoder ẑqsi is generated by combining previous gener-
ated output ẑqsi−1

with the difference map. The loss for training the latent disease ODE
comprises the sum of two components. The reconstruction loss, denoted as Lrecon, is defined
as ||ẑq − zq||22, and the difference loss, denoted as Ldiff , is calculated as ||Dsi −∆zqsi ||

2
2.

Feeding ẑqsi to the trained decoder G of 3D-VQ-GAN can reconstruct the corresponding

3D image X̂si . The generative process of the decoder can be formulated as follows.

hs1 ,hs2 , ...,hsS = ODESolve(ht0 , fθ, (s1, ..., sS)),

Dsi = 3DConv(hsi ,hsi−1),

ẑqsi = Dsi + ẑqsi−1
,

X̂si = G(ẑqsi)

(7)

E.4. Visualization of codebook

Every entry in the codebook corresponds to a distinctive representation or code assigned to
a specific region or pattern within the input space. Utilizing the techniques outlined in (Irie
et al., 2023), we visually represent each code in the learned codebook by creating a latent
representation zq using only that specific code. The resulting latent representation is then
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Figure 9: A visualization of the codebook (M = 256)

projected back into the 3D image space (see Figure 9). These visualizations exhibit varying
grayscale intensities and textures, highlighting the diverse characteristics associated with
different codes. This diversity within the codebook suggests that the model has effectively
captured a broad array of features, enabling it to generate samples with varied and realistic
qualities.
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Appendix F. More Related Work

F.1. Synthetic medical image generation

Synthetic medical image generation proves particularly useful in various applications, clas-
sified into two types: unconditional and conditional, depending on whether constraints
(e.g., images, a specific disease state, imaging modality, etc.) are applied respectively. The
most common generative models used for image generation include Generative Adversarial
Network (GAN) (Creswell et al., 2018), VAE (Kingma and Welling, 2013), and diffusion
models (Ho et al., 2020). These models have demonstrated success in natural image genera-
tion and have shown their potential in the context of medical images. However, 3D imaging
data (e.g., CT, MRI) is widely used in the medical field and generating realistic 3D images
poses more significant challenges compared to 2D natural images due to the inherent com-
plexity of three-dimensional space and the additional considerations required for realism.
More specifically, unlike a 2D image with a single viewpoint, generating 3D images requires
modelling the whole 3D structure which involves capturing depth information, spatial rela-
tionships, and fine details - essentially the ”world behind the image”. This requires not only
higher computational resources but also more advanced techniques to model these detailed
3D structures with fidelity. The challenge is further amplified in the medical domain, where
accurate representation of anatomical structures and simulation of physiological processes
add significant layers of complexity.

Methods employing 3D-GANs have been proposed for the synthesis of 3D imaging data
(Ferreira et al., 2022; Singh and Raza, 2021). However, training these models poses a consid-
erable challenge due to increased computational and memory demands. In response to this
issue, several memory-efficient 3D-GANs have been introduced (Sun et al., 2022; Uzunova
et al., 2019). GAN-based models are widely used in generating volumetric medical imaging
data (Ferreira et al., 2024). However, these models face additional challenges including
mode collapse, non-convergence, and lack of interpretability. Mode collapse occurs when
GANs fail to capture the full diversity of training data distribution and get stuck producing
a limited set of outputs (Bau et al., 2019). Training GANs can also be difficult due to the
need to balance and synchronize discriminator and generator. This often requires careful
hyperparameter tuning and network architecture design to ensure convergence. Addition-
ally, GANs typically lack interpretability, as it is challenging to understand what GANs
have learned in the latent representation (Shen et al., 2020). In contrast, VAE (Kingma
and Welling, 2013) has gained popularity for its explicit latent space representation and
stable training process.

The Vector Quantized Variational Autoencoder (VQ-VAE) (Van Den Oord et al., 2017),
a variant of VAE, was introduced to learn a discrete latent space, where continuous latent
representations in the traditional VAE are quantized to discrete codes using a codebook.
While the discrete latent space enhances efficiency and compactness, it also limits the
model’s ability to capture the full complexity of the input data, leading to blurry generated
images. To address this limitation, VQ-VAE-2 (Razavi et al., 2019) utilized hierarchical
multi-scale latent maps for large-scale image generation. VQ-GAN (Esser et al., 2021),
a variant of VQ-VAE, incorporated a discriminator and perceptual loss, combining the
strengths of both VQ-VAE and GAN to generate high-resolution images. Ge et al. (Ge
et al., 2022) extended VQ-GAN for image modelling to 3D-VQ-GAN for video modelling.
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While pure GAN-based models dominate 3D medical image generation, VAE and VQ-
VAE architectures are gaining traction. Existing applications focus primarily on brain and
heart MRI scans (Liu et al., 2024; Tudosiu et al., 2020). Khader et al. (Khader et al.,
2023) demonstrated the potential of 3D-VQ-GAN for lung CT scans by combining it with
transformers to generate realistic 3D CT scans based on a set of 2D radiographs. This
highlights the capability of 3D-VQ-GAN for compressing volumetric lung CT scans.

Diffusion models (Ho et al., 2020; Croitoru et al., 2023) represent another emerging area
in generative modelling. Diffusion models are a powerful class of probabilistic generative
models that can learn complex distributions. These models initiate with a forward diffusion
stage, where the input data is iteratively perturbed by adding noise, ultimately resulting
in purely Gaussian noise. Subsequently, the models learn to reverse this diffusion process,
aiming to reconstruct the original noise-free data from the noisy data samples (Kazerouni
et al., 2023). While diffusion models can generate diverse and high-quality images, their
application in 3D imaging data synthesis remains underexplored due to their high computa-
tional cost and low sampling efficiency compared to VAE and GAN families. Khader et al.
(Khader et al., 2022) employed a diffusion model in the lower-dimensional latent space of
VQ-GAN rather than the image space to reduce computational costs and increase sampling
efficiency.

F.2. Temporal synthesis

Temporal synthesis can be viewed as a challenge that involves combining static image
synthesis with temporal dynamics modelling. Recurrent Neural Networks (RNNs), Long
Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) are frequently employed
in temporal analysis. In addition, the recent success of transformer-based models in sequen-
tial data processing has sparked considerable interest due to their potential in modelling
longitudinal data (Li et al., 2022).

Previous research on temporal synthesis often concentrated on video generation, with
GAN-based models being the predominant methods inspired by the success of GANs in
image generation. However, GAN-based approaches may face challenges in capturing long-
term dependencies. Additionally, generating high-resolution frames or long video sequences
presents difficulties due to prohibitively high memory and time costs during both training
and inference (Ge et al., 2022). Some methods explore non-GAN-based generative models
for video generation. Models presented in (Yan et al., 2021; Ge et al., 2022; Le Moing et al.,
2021) employ VQ-VAE-based models and transformers for video generation, while (Ho et al.,
2022; Voleti et al., 2022) utilize the diffusion model for video generation. Computational
complexity, extended inference times, and temporal consistency remain open questions for
these models. Other works, such as (Kanaa et al., 2021; Park et al., 2021; Xia et al.,
2022), combine a typical encoder-decoder architecture with latent neural ODEs to capture
temporal dynamics in the latent space for continuous-time video generation.

Prior research in temporal synthesis for 3D imaging data has primarily focused on mod-
elling two areas: normal brain ageing and disease progression in AD. This is often achieved
by generating synthetic longitudinal brain MRIs. Normal ageing of the brain is characterized
by a gradual loss of grey matter, particularly in the frontal, temporal, and parietal regions
(Lorenzi et al., 2015). In contrast, the brain morphology observed in AD patients reflects
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a combination of both normal ageing and pathological matter loss specific to the disease
(Lorenzi et al., 2015). These two processes can be modelled independently or jointly using
temporal synthesis techniques (Sivera et al., 2019). Ravi et al. (Ravi et al., 2022) intro-
duced the 4D-Degenerative Adversarial NeuroImage Net (4D-DANI-Net), a model crafted
to generate high-resolution longitudinal MRI scans that replicate subject-specific neurode-
generation within the contexts of ageing and dementia. TR-GAN (Fan et al., 2022) was
conceived to predict multi-session future MRIs based on prior observations, utilizing a single
generator. Sauty et al. (Sauty and Durrleman, 2022) proposed a model that amalgamates
a VAE with a latent linear mixed-effect model to estimate linear individual trajectories in
latent space, enabling the sampling of patients’ trajectories at any given time point. While
this model transforms observations at discrete time points into continuous disease progres-
sion trajectories, it relies on a strong assumption about linear trajectories in latent space.
This linear assumption provides a simplified depiction of disease progression, but it falls
short in capturing the inherent complexity observed in real-world disease dynamics. More
flexible and adaptive approaches are needed to characterize disease progression trajectories
effectively (Kim et al., 2021). To address this limitation, Mart́ı-Juan et al. (Mart́ı-Juan
et al., 2023) employed a recurrent VAE where the latent space is parametrized with an
RNN, defining more flexible disease evolution dynamics.

These temporal synthesis models for 3D imaging data offer substantial potential for clin-
ical applications. These applications include: 1) Data Imputation: Longitudinal datasets
are quite useful for the study of progressive diseases. However, longitudinal datasets often
contain missing or incomplete data due to various reasons, such as missed appointments,
dropout from the study, etc. (Fan et al., 2022) and (Fan et al., 2024) complement missing
sessions for longitudinal MRI dataset expansion based on these models. 2) Assessing Treat-
ment Efficacy: These models can create simulated longitudinal data that closely mimics
the natural disease progression. This allows researchers to compare longitudinal imaging
biomarkers between treated and untreated individuals at any point in time. By observing
how the simulated disease course is altered by treatment, researchers can gain valuable in-
sights into the treatment’s effectiveness in slowing or even halting the disease process. This
information can be crucial for designing future clinical trials and making informed treat-
ment decisions. 3) Discovery of Temporal Biomarkers: Temporal synthesis models offer the
ability to generate rich longitudinal imaging features. Analyzing the relationships between
these features over time and how they connect to clinical outcomes can provide valuable
insights. Researchers can leverage this approach to unlock the underlying mechanisms of
disease progression and potentially discover novel temporal biomarkers.
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