
AlphaVerus: Bootstrapping Formally Verified Code Generation through
Self-Improving Translation and Treefinement

Pranjal Aggarwal 1 Bryan Parno 1 Sean Welleck 1

Abstract
Automated code generation with large language
models has gained significant traction, but there
remains no guarantee of the correctness of gen-
erated code. We aim to use formal verification
to provide mathematical guarantees that the gen-
erated code is correct. However, generating for-
mally verified code with LLMs is hindered by the
scarcity of training data and the complexity of
formal proofs. To tackle this challenge, we in-
troduce AlphaVerus, a self-improving frame-
work that bootstraps formally verified code gen-
eration by iteratively translating programs from
a higher-resource language and leveraging feed-
back from a verifier. AlphaVerus operates in
three phases: exploration of candidate transla-
tions, Treefinement—a novel tree search algo-
rithm for program refinement using verifier feed-
back, and filtering misaligned specifications and
programs to prevent reward hacking. Through
this iterative process, AlphaVerus enables the
LLaMA-3.1-70B model to generate verified
code without human intervention or model fine-
tuning. AlphaVerus shows an ability to gen-
erate formally verified solutions for HumanEval
and MBPP, laying the groundwork for truly trust-
worthy code-generation agents.1

1. Introduction
There has been an enormous effort to train code-generating
large language models (LLMs) (Chen et al., 2021; Austin
et al., 2021; Li et al., 2023; Rozière et al., 2024; Team, 2024),
leading to LLM-powered agents that can perform tasks rang-

1Carnegie Mellon University. Correspondence to: Pranjal Ag-
garwal <pranjala@cmu.edu>, Bryan Parno <parno@cmu.edu>,
Sean Welleck <wellecks@cmu.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1Code is available at https://alphaverus.github.
io

ing from fixing bugs in software repositories to solving
Olympiad-level algorithmic problems (Jimenez et al., 2024;
Li et al., 2022). Despite these successes, multiple stud-
ies have identified disturbing mistakes in LLM-produced
code, including subtle bugs and serious security vulnerabili-
ties (Hendler, 2023; Pearce et al., 2021; Jesse et al., 2023;
Zhong & Wang, 2024; Perry et al., 2023; Elgedawy et al.,
2024). Ultimately, these mistakes stem from a fundamental
property of LLMs: language models can generate any string
of code, without regard to correctness. As a result, automat-
ically checking the correctness of LLM-generated code is
one of the grand challenges facing the research community.

The generated code must be correct for all possible inputs
it may receive. However, today’s code generation methods
select or filter generations with imperfect proxies of correct-
ness, such as runtime testing or human inspection. Achiev-
ing perfect test coverage is typically infeasible (Li et al.,
2022; Liu et al., 2023), and incomplete coverage leads to an
unreliable signal that can be exploited by a model (Pan et al.,
2022; Liu et al., 2023; Denison et al., 2024). Relying on hu-
man review is equally problematic since it scales poorly and
humans can struggle to tell whether LLM-generated code is
correct (Perry et al., 2023). In turn, the difficulty of trusting
generated code reduces the potential productivity gains from
using LLMs and can lead to unexpected vulnerabilities or
unreliable signals for improving models.

In contrast, generating code in a verification-aware program-
ming language such as Dafny (Leino, 2010), F∗ (Swamy
et al., 2016), or Verus (Lattuada et al., 2023; 2024) offers
a promising approach to addressing these challenges by
providing mathematical guarantees that a program obeys a
specification for all possible inputs. In this paradigm, code is
paired with a specification and proof written in a specialized
language, and a mechanical verifier checks whether the code
meets the specification. This could dramatically improve the
trustworthiness of the generated code: if the verifier passes,
the LLM’s generated program is mathematically guaranteed
to meet the specification. However, writing formal specifica-
tions and proofs introduces additional layers of complexity.
Furthermore, although LLMs have demonstrated success in
automated theorem proving in mathematical domains (Lu
et al., 2023; Li et al., 2024), their capability to generate

1

https://alphaverus.github.io
https://alphaverus.github.io

AlphaVerus

Figure 1: Overview of AlphaVerus, a self-improving framework for generating formally verified code. Each iteration
consists of three key steps: (1) Exploration translates programs from a source language to Verus by sampling multiple
trajectories and selecting partially correct ones using verifier feedback, (2) Treefinement iteratively fixes errors guided by
verifier feedback and tree search, and (3) Critique validates and filters out underspecified or incorrect translations. The
framework bootstraps new exemplars after each iteration to continuously improve performance without human intervention.

verified code for even basic algorithms is limited (Sun et al.,
2024a; Lohn & Welleck, 2024).

A significant barrier to automatically generating real-world,
formally verified code is the scarcity of training data. In
particular, verification-aware research languages have a rich
history (e.g., Dafny (Leino, 2010) or F∗ (Swamy et al.,
2016)), yet verifying real-world code in mainstream lan-
guages remains nascent. For example, Verus (Lattuada
et al., 2023)—a verification language for the very popular
language Rust—has fewer than 10 public repositories, de-
spite Rust itself having millions of code examples. Hence,
enabling formally verified code generation in a mainstream
language such as Rust faces a bootstrapping problem: with-
out training data, how do we create an initial model that can
generate even relatively simple verified programs?

We propose AlphaVerus, a framework for bootstrapping
a formally verified code generation model by iteratively
translating programs from a resource-rich domain and self-
improving using feedback from the verifier. As illustrated in
Figure 1, each iteration of AlphaVerus has three phases.
First, the exploration phase generates candidate programs by
translating from a source language (such as Dafny) to the tar-
get language (here, Verus) by generating multiple candidates
and saving partially and completely verified attempts. Sec-
ond, Treefinement refines the imperfect candidates through
a novel tree search over the space of output programs using

feedback from the verifier, saving the final verified program,
along with its ancestors to serve as error correction exam-
ples. We show that Treefinement leads to substantial gains
over vanilla refinement strategies that resemble those used
in concurrent work (Yang et al., 2024; Chen et al., 2024).
Third, critique models detect misaligned translations and
specifications–the one part of the pipeline that lacks formal
guarantees. Crucially, this alleviates reward hacking, in
which models learn to game the system by generating trivial
or incomplete specifications, or even by identifying verifier
limitations that cause trivial programs to pass the verifier.
While previous work has investigated methods that rely on
test cases (Sun et al., 2024a), our critique models address the
challenging problems of automated specification generation
and validation without relying on any unit test cases.

Each iteration of AlphaVerus collects new exemplars
that improve the models in each phase, creating a cycle of
improvement. Thus, unlike recent work that relies on hu-
man experts to write correction prompts (Yang et al., 2024),
our method requires no human intervention and automati-
cally learns to generate better code. Moreover, the system
operates using a single language model (e.g., Llama 70b),
without the need for the expensive GPT-4 initialization used
in concurrent work (Chen et al., 2024). Finally, the collected
exemplars can be used to improve the verified code genera-
tion performance of any model without any finetuning.

2

AlphaVerus

To demonstrate AlphaVerus, we consider Dafny (Leino,
2010) programs as the source domain, since the Dafny lan-
guage has been around for over a decade and has accumu-
lated a reasonable amount of code. We run AlphaVerus
to automatically collect the DAFNY2VERUS-COLLECTION,
a dataset of trajectories containing translated programs, er-
ror corrections, and critique examples based on the source
dataset DafnyBench (Loughridge et al., 2025)–a dataset of
562 programs of varying difficulty. Finally, we evaluate
the AlphaVerus pipeline by using the resulting data as
few-shot exemplars for the downstream task of formally
verified code generation: generating complete, formally
verified implementations—including both algorithmic code
and proof annotations—given human-written specifications
Formally verified code generation is a significant step over
concurrent work that focuses solely on the simplified, artifi-
cial setting of generating proof annotations for correct pre-
written code (Yang et al., 2024; Chen et al., 2024). We show
AlphaVerus enables Llama-70B to successfully gener-
ate verified solutions to 33% of HumanEval-Verified (The
HumanEval-Verus Contributors, 2024), outperforming GPT-
4o-based methods. Furthermore, through ablations, we es-
tablish the necessity of each component in AlphaVerus.

In summary, our contributions are five-fold: (1) We pro-
pose AlphaVerus, a novel self-improving framework for
generating formally verified code; (2) We present a novel
combination of tree search and refinement that improves
over time; (3) We propose a novel critique phase, which has
to our knowledge the first neural method that can improve
the quality of specifications without test cases; (4) We in-
troduce a new dataset containing formally verified Verus
programs, along with error pairs; and (5) We demonstrate
the effectiveness of our approach, evaluating its formally ver-
ified code generation abilities and ablating its components.
In particular, AlphaVerus is the first method to achieve
non-zero formally verified code generation performance on
a verified version of HumanEval (Chen et al., 2021), thus
establishing a starting point for code generation models that
generate increasingly complex—yet trustworthy—code.

2. Formally Verified Code Generation
Our goal is to develop a model that generates formally ver-
ified code in a real-world programming language, which
we refer to as formally verified code generation. Next, we
provide background and then introduce AlphaVerus.

Formal verification of code. Formal verification ensures
that a program adheres to a formally defined specification
of its intended behavior. As illustrated in Figure 2, formally
verified code typically consists of three components: (1)
formal specifications yS defining the expected input-output
behavior; (2) a code implementation yI intended to satisfy
the specifications; and (3) a proof yP demonstrating that the

implementation conforms to the specifications. A verifier
v(yS , yI , yP) → {0, 1} uses the proof to statically check
that the implementation meets the specification for all possi-
ble inputs, returning 1 if the program is correct with respect
to ys and 0 if verification fails. Upon failure, the verifier
additionally returns a set of messages {m1, . . . ,mM} con-
taining the number of verified statements, the number of
errors, and localized error messages (e.g., see Figure 2).

Misaligned specs and implementations. The specifica-
tions themselves are not verified, as they represent the de-
veloper’s intended behavior. Therefore, it is critical that the
specifications accurately reflect the desired input-output be-
havior for all possible inputs. We use the term misaligned to
refer to situations in which the specification does not reflect
the desired input-output behavior. This includes misalign-
ments between the specification and the developer’s intent
or the implementation, which can occur due to language
features that cause programs to pass the verifier trivially
(e.g., using “assume(false)”).

Formally verified code generation. Our goal is to develop
a model that generates formally verified code given a spec-
ification. Specifically, (yI , yP) ∼ G (yS ; c, θ), where G(·)
is a generation algorithm such as sampling from a language
model with parameters θ, and the model generates both an
implementation yI and proofs yP given a specification yS
and any additional context c. The goal is for the resulting
code to verify, i.e., v(yS , yI , yP) = 1.

Bootstrapping formally verified code generation. A prac-
tical goal is to perform formally verified code generation
in a mainstream language, such as Rust code verified with
the Verus verifier (Lattuada et al., 2023). However, doing
so raises a technical challenge: it is infeasible to train a
model on (yS , yI , yP) examples since few examples ex-
ist. We refer to this as a bootstrapping problem, since we
need to create an initial generation model (that we may
subsequently improve) without any training data. Next, we
describe AlphaVerus, a framework for bootstrapping a
verified code generation model by translating from a more
resource-rich language.

3. AlphaVerus
To generate verified code in the absence of training data in
our target language (Verus), we propose to iteratively trans-
late programs from a higher-resource domain into Verus.
Each iteration collects data by exploring candidate trans-
lations, refining them with a novel tree search, and then
filtering out misaligned programs. Finally, we use the data
to enable a verified code generation model (via few-shot
learning), and evaluate the model plus the tree search on
the downstream task of verified code generation: generating
verified code and proofs given a held-out test specification.

3

AlphaVerus

Figure 2: Example of formally verified code generation. Given a specification, AlphaVerus generates the corresponding
code and proof. The verifier checks the proof and provides either verification success or detailed error messages.

3.1. Translation

AlphaVerus translates programs using a three-stage
pipeline consisting of exploration, refinement, and critique.
The exploration stage translates source programs into can-
didate Verus programs. The refinement stage repairs the
programs using a novel tree search over program refine-
ments. The critique stage uses a suite of models to discard
flawed specifications and implementations that could de-
grade future iterations. The pipeline iterates, creating a
self-reinforcing cycle where verified programs and refine-
ment trajectories improve the models’ capabilities, enabling
translation of increasingly complex programs. The result is
a growing synthetic dataset of progressively more complex
and reliable Verus programs. The complete algorithm is
listed in Algorithm 1 and visualized in Figure 1.

Exploration. Given a source program x (e.g., a Dafny
implementation, specification, and proofs), exploration uses
a model to generate candidate target (i.e., Verus) programs:

{y1, . . . , yk} ∼ Gexplore

(
x;D(i)

x→y

)
, (1)

where G is a generation algorithm (e.g., LLM sampling)
that is given the source and a set of (source, target) examples
D

(i)
x→y . Initially, D(0)

x→y has a few hand-written examples.

Any generated (source, verified program) pairs are placed in
a candidate set, C, that will be passed to the filtering stage.
If no candidates verify for source x, candidates that are
syntactically correct proceed to refinement. Intuitively, this
stage serves as initial “exploration”, in that it generates a set
of candidates that may eventually be refined and filtered into
verified programs in the later stages. Unlike other methods
of bootstrapping (Zelikman et al., 2022; Lin et al., 2025)
that discard anything but correct solutions, we use both
syntactically correct programs and fully verified programs
for further improvement, expanding the learning signal.

Refinement with Treefinement. Having a verifier opens the
possibility of refining candidate programs into verified ones
by providing detailed feedback, including unverified func-
tions and specific errors like overflows, unsatisfied condi-
tions, and syntactic mistakes (e.g., Figure 2). While human
programmers often use such feedback for iterative correc-
tions, naively providing LLMs with incorrect solutions and
feedback often fails to produce improvements. Our key in-
sight is that verifier feedback induces an implicit ordering
of solutions based on verified functions and error severity.
This ordering lets us extend common refinement techniques
by framing refinement as a tree search over the space of
refined programs, which we call Treefinement.

Specifically, the refinement stage takes syntactically cor-
rect but unverified candidate translations {y1, . . . , yk′} and
performs a tree search to discover verified programs. Each
node in the tree contains an imperfect program and its asso-
ciated errors, (y, e(y)). Nodes are expanded by invoking a
refinement model:

{y′1, . . . , y′k} ∼ Grefine

(
y, e(y);D

(i)
y→y′

)
, (2)

where D
(i)
y→y′ is a set of (program, error, correct program)

examples, initially containing a few hand-written examples.

Given a node scoring function v(y) → R that is used to
prioritize nodes, we can search over the space of program
refinements with a tree search algorithm that selects and
expands nodes, such as breadth-first or depth-first search.

We develop a symbolic scoring function based on the num-
ber of (un)verified functions, errors, and warnings:

s(y) =
nver(y)− αnerr(y)− βnwarn(y)

nver(y) + nunver(y)

where nver(y) is the number of verified functions in y,
nerr(y) and nwarn(y) are the counts of errors and warnings
from the verifier for the node’s program y. α and β are

4

AlphaVerus

hyperparameters controlling the penalties for errors and
warnings, respectively. Intuitively, programs that are closer
to a verified program have higher scores, with proximity
determined by the proportion of verified functions, resolved
errors, and resolved warnings. Upon generating a verified
program, the program’s search trajectory is added to a can-
didate set Cτ , and the new (source, program) pair to the
candidate set C that is passed to the critique stage.

Treefinement extends two kinds of prior methods into a
new search over program refinements. First, refining LLM
outputs is a common technique (Madaan et al., 2023; Kamoi
et al., 2024), but not within a tree search. On the other
hand, tree search developed in step-by-step mathematical
problem solving involves appending solution steps rather
than refining a full program (Wu et al., 2024). Our approach
specifically addresses the non-local nature of error fixes.

Although Treefinement can use any tree search algorithm,
we use REBASE (REward BAlanced SEarch) (Wu et al.,
2024). REBASE allocates an exploration budget by sam-
pling nodes from a distribution determined by the node
scores at the current depth, providing an effective balance
of exploration and exploitation. The search continues until
it finds a verified program or reaches a maximum depth.

Critique. Synthesized specifications are the one part of
the translation pipeline that lacks formal guarantees, which
can result in a mismatch between the intended and actual
functionality of generated programs. Furthermore, in a few
degenerate cases, there can be a mismatch between the spec-
ification’s intent and the program’s implementation, since
Verus has features that can result in trivial programs passing
the verifier (e.g., assume(false)). These can lead to
reward hacking, causing a snowballing effect when used as
exemplars in future iterations. Hence, we propose a three-
part approach for filtering out such misaligned programs:
a rule-based model, a comparison model, and an exploit
model.

The rule-based model receives a generated program y, and
detects if y uses a Verus feature which leads to a trivial
program. Since there are a relatively small number of
such features, and these features can be detected through
string matching, it suffices to use a list of hand-coded
filters. This includes checking for assume(false),
“#[verifier::external]”, and trivial preconditions.

The comparison model f(x, y) receives a source input x and
a program candidate y, and evaluates whether the specifica-
tions and algorithms used in the candidate match those from
the source in intent and structure. In practice, we prompt a
model to generate multiple evaluation sequences and reject
an output if at least r sequences indicate rejection.

The exploit model is an adversarial approach that leverages
the feedback from Verus. We use a generator prompted

to generate simple and often trivial solutions–such as re-
turning an empty array–that satisfy the specifications, i.e.,
(yI , yP) ∼ Gexploit

(
yS ;D

(i)
exploit

)
, where yS is a generated

specification, yI , yP is an implementation and proof, and
D

(i)
exploit contains (specification, implementation+proofs) ex-

amples. If such simple solutions pass verification, it indi-
cates that the specification is flawed, and the corresponding
translation is discarded. This includes subtle forms of mis-
specification; for instance, on tasks requiring array manip-
ulation, the specification may omit conditions on the array
length, resulting in trivial solutions.

Self-improvement. Finally, the newly generated programs
and a subset of the error trajectories are added to a pool of
data that is used by the translator, refinement, and critique
models in the next iteration. In this sense, the models “self-
improve” given access to the Verus environment, so long as
the generated examples are useful exemplars.

Formally, for exploration, we create a new pool of examples,

D(i+1)
x→y = D(i)

x→y ∪ D̃(i+1)
x→y , (3)

where D̃
(i+1)
x→y consists of the (source, program) candidates

C that were collected during exploration and refinement,
and that additionally pass the critique stage.

For refinement, we create a new pool of examples using
the successful trajectories Cτ collected during refinement.
Namely, we keep those trajectories whose final program
passes the critique stage, and pair each intermediate program
y and its errors with the final program y′, i.e.,

D̃
(i+1)
y→y′ = {(y, e(y), y′) | y is an ancestor of y′}, (4)

and set D(i+1)
y→y′ = D

(i)
y→y′ ∪ D̃

(i+1)
y→y′ .

Similarly, for the exploit model, we add (specification, pro-
gram) exploits that pass the verifier into D

(i+1)
exploit to be used

by the exploit model in the next iteration. Table 4 sum-
marizes the components, feedback sources, models, and
generated synthetic data at each stage.

To use synthetic data as in-context exemplars, we employ a
stochastic few-shot sampling approach. Specifically, each
time a generator is called, we randomly sample k examples
from its respective data pool. This method reduces the com-
putational cost associated with fine-tuning large models and,
as shown in our results, enables other models to leverage the
data pool to improve their performance without any training.
Nevertheless, fine-tuning models and developing learning
objectives remain interesting future directions.

Source domain: Dafny. As our initial source domain, we
consider Dafny–a language that follows a similar paradigm
to Verus and has been in use for over a decade, resulting

5

AlphaVerus

in a larger set of available data. We use DafnyBench
(Loughridge et al., 2025), a dataset of 562 Dafny programs.

Translating Dafny programs to Verus presents several chal-
lenges due to two major differences: 1. Language Con-
structs: Significant differences exist in supported features,
data types, and the design of the underlying verifier, render-
ing direct translations infeasible. 2. Proof Requirements:
Verus imposes more rigorous proof obligations, such as
overflow checks, making proofs harder to verify.

3.2. Downstream Evaluation

After generating high-quality synthetic data in the form
of formally verified Verus programs and error-feedback-
correction triples, we use the data to enable a model that
performs formally verified code generation. Unlike prior
work that requires LLMs to fill proof annotations in existing
code and specifications (Loughridge et al., 2025; Yang et al.,
2024; Chen et al., 2024), we evaluate our models on the
more challenging task of generating both the code and the
proofs given only the specifications.

We use a two-part approach consisting of exploration and
Treefinement. During exploration, given a specification ys,
we generate k candidate programs {y(1), . . . , y(k)}. If any
candidate passes verification, we consider the task solved.
Otherwise, we initialize Treefinement with the candidates
and run it until we obtain a verified solution or reach a max-
imum number of iterations. This can be seen as a generator
that uses the collected data as a source of few-shot exem-
plars, (yI , yP) ∼ G(yS ;Dy, Dy→y′), which means gener-
ating an implementation and proofs using a language model
prompted with a subset of the collected verified programs
Dy and a test specification yS , followed by Treefinement
with the collected refinement examples Dy→y′ .

4. Experimental Setup
Generators. We use LLaMA-3.1-70B for translation
experiments and additionally evaluate LLaMA-3.1-8B,
Qwen-32B, and GPT-4o for downstream tasks. The ex-
ploration phase uses k = 256 samples, while tree search
uses breadth = 32 and maximum depth = 8.

Translation. We use DafnyBench consisting of 562 pro-
grams as our source domain Dsrc for our translation experi-
ments. The exploration model Gexplore is initialized using a
Verus syntax file and 5 examples from the Verus repository.

Downstream Evaluation. We evaluate formally verified
code generation, where models must generate both an im-
plementation and proof annotations given a specification.
We measure Pass@K, where success requires at least one
correct solution of the K generated programs.

0 1 2 3 4 5 6 7

Iteration

0

10

20

30

40

50

Tr
an

sl
at

io
n

S
uc

ce
ss

 (%
)

Translation Success

Figure 3: Programs translated over iterations. The trans-
lation success rate consistently improves over iterations.

Datasets. We evaluate on verified versions of the MBPP
and HumanEval datasets. In particular, MBPP-verified is
sourced from (Yang et al., 2024; Misu et al., 2024) and con-
tains 78 programs from the original MBPP dataset (Austin
et al., 2021). HumanEval-Verus is sourced from a concur-
rent open-source effort (The HumanEval-Verus Contribu-
tors, 2024) to translate existing HumanEval programs to
Verus. For brevity, we refer to HumanEval and MBPP as
their respective verified versions throughout this paper.

Baselines. Our primary evaluation is performed on verified
code generation. Since no existing baselines exist for the
task, we use few-shot variants (Listing C) of base models.
We tried our best to adapt AutoVerus (Yang et al., 2024)
to verified code generation, but due to the complexity of
its hand-written prompts, we were not able to achieve non-
trivial performance. Hence, we compare AlphaVerus
on the MBPP proof annotation task against SAFE++ (Chen
et al., 2024) and AutoVerus (Yang et al., 2024).

We refer readers to Appendix A.2 for more details.

5. Results and Analysis
AlphaVerus translation success monotonically in-
creases. Figure 3 shows the number of successful trans-
lations over each iteration. We see a steady increase in the
number of translations as the iterations increase. The results
indicate that AlphaVerus learns to translate and gener-
ate more complex programs over iterations. Altogether,
AlphaVerus translates around 45% of DafnyBench into
Verus programs that are verified by Verus and aligned ac-
cording to the critique models. Listings 2, 3, and 4 in the
Appendix show example translations.

The exemplars generated during the translation process are
collected into the DAFNY2VERUS-COLLECTION, totaling
247 translated programs, 102 error trajectories, and 579
exploit pairs. We use these exemplars for downstream tasks.

AlphaVerus enables verified code generation. Table 1
shows the verified code generation performance for the
AlphaVerus model obtained from the final translation

6

AlphaVerus

64 128 192 256 320 384 448 512
Number of Generations

0.20

0.25

0.30

Ac
cu

ra
cy

Exploration
Tree Search

Figure 4: Treefinement vs. exploration (HumanEval).
Treefinement leads to a jump in performance that cannot
be obtained by additional parallel sampling (exploration).

0 1 2 3 4 5 6 7
Iteration

30

40

50

60

70

Sc
or

e

Exploration@32
Exploration@256
AlphaVerus

Figure 5: Translation iteration (x-axis) vs. downstream
task performance on HumanEval (y-axis). Performance of
pass@32 continues to improve, with pass@256 leveling off.

Method HumanEval MBPP

Baselines

GPT-4o 27.1% 35.9%
Llama 3.1 70B 11.8% 26.9%

Ablations (Treefinement Variants)

Single-Turn Linear Self-Refine 29.4% 61.5%
Multi-Turn Linear Self-Refine 29.4% 62.8%
Best-First Search 28.2% 61.5%

AlphaVerus (Llama 3.1 70B)

Exploration 27.1% 59.1%
+ Treefinement (Rebase) 32.9% 65.7%

Table 1: Verified code generation performance on the
HumanEval and MBPP benchmarks (pass@256).

iteration. AlphaVerus leads to a substantial increase over
its underlying Llama 3.1 70B model and a prompted GPT-
4o model. Moreover, Treefinement leads to an additional
increase in performance over the exploration stage. Listings
1, 5, and 6 show example generations. Next, we analyze the
impact of the various components in AlphaVerus.

Treefinement leads to a jump in performance. We eval-
uate the effectiveness of tree search compared to further
scaling the parallel sampling (exploration) budget without
refinement. Figure 4 shows the percentage of solved prob-
lems versus the generation budget for both approaches. Tree-
finement leads to a substantial jump in performance over
exploration. Notably, exploration plateaus while tree search
continues improving as the generation budget is increased.

Critique is crucial for preventing reward hacking. With-
out the critique phase, our analysis of 100 DafnyBench
examples reveals the model learns to game the verification
system by using assume(false) statements, leading to

trivially verified but incorrect implementations. We observe
a snowballing effect where this behavior spreads across all
programs (see Figure 6). While such cases can be disal-
lowed as done by our rule-based critic model, we find more
complicated reward hacking instances, such as incomplete
specifications and degenerate translations (detailed in Fig-
ure 7). The results show the need for our 3-model critique
phase for preventing reward hacking.

Treefinement outperforms linear refinement. We com-
pare Treefinement against standard refinement that refines
linearly, either by performing one step of refinement across
multiple parallel branches or performing several steps of
refinement across branches. Using equivalent generation
budgets, we adjust the breadth and depth parameters accord-
ingly. We also evaluate the best-first search as a baseline.
As seen in Table 1, all methods improve upon initial ex-
ploration, demonstrating Treefinement’s compatibility with
various search algorithms, and tree-search based refinement
outperforms linear refinement. For the tree search, using
REBASE outperforms the best-first search. Also note that
the linear refinement variants are special cases of REBASE
(depth = 1 with large breadth, and temperature =∞).

AlphaVerus exemplars transfer to other models. A key
advantage of AlphaVerus is its ability to transfer learned
exemplars without model weight updates. Concretely,
we use the exemplars collected during AlphaVerus’s
translation phase, which used Llama 3.1 70B (i.e., the
DAFNY2VERUS-COLLECTION), to enable verified code
generation on various models using the same few-shot
prompting strategy outlined in §3.2. Table 2 shows suc-
cessful transfer to both smaller and larger models, yielding
significant improvements in verified code generation. No-
tably, we set a new state-of-the-art on both HumanEval,
using GPT-4o but without finetuning.

AlphaVerus enables strong proof annotation. Unlike
prior works that focus on the proof annotation task (gen-

7

AlphaVerus

0 1 2 3 4
Iterations

0

20

40

60

80

Nu
m

be
r o

f T
ra

ns
la

tio
ns

Total Number of Translations
Correct Number of Translations
Reward Hacked Solutions

Figure 6: Impact of removing the critique models. Without
filtering mechanisms, the model learns to exploit verification
by increasingly using assume(false) statements. This
snowballing effect shows the importance of critique models
in preventing reward-hacked solutions.

Figure 7: Illustration of reward hacking without the critique
models. In particular, the agent first learns to use debug
statements and uses them continuously. After fixing, it learns
other hacks such as generating trivial specifications or explor-
ing rare debug statements such as allowing infinite loops.

erating proofs given correct code), our method tackles the
harder task of formally-verified-code generation, where the
model must generate both code and proofs. Despite this, we
outperform SAFE (Chen et al., 2024) and AutoVerus (Yang
et al., 2024) by 17% and 10% respectively on the proof
annotation task (see Table 3). This is notable given that
AutoVerus was specifically designed for this task while us-
ing significantly more engineering effort and task-specific
prompts. Moreover, we achieved these results using just
562 Dafny programs and an open 70B model, compared
to SAFE’s month-long GPT-4 invocations and training on
thousands of programs. Overall, the results point to the ef-
fectiveness of AlphaVerus, along with its flexibility and
data efficiency. Appendix D.1 contains additional details.

Other experiments. We manually inspect translations from
each iteration of AlphaVerus to understand what the
model learns over iterations. Figure 8 shows the new con-

HumanEval

Llama 8B - Few Shot 11.8%
+ DAFNY2VERUS-COLLECTION 18.8%

Qwen-32B - Few Shot 14.1%
+ DAFNY2VERUS-COLLECTION 27.1%

GPT-4o - Few Shot 27.1%
+ DAFNY2VERUS-COLLECTION 37.7%

Table 2: Transfer of DAFNY2VERUS-COLLECTION to other
language models without finetuning. All models show sig-
nificant improvements over their few-shot variants.

MBPP

SAFE 59.0%
AutoVerus 65.4%

AlphaVerus 75.7%

Table 3: Comparison of proof annotation generation tasks
against baselines on the MBPP dataset.

cepts learned over iterations, showcasing how the model
starts by learning how to translate basic syntax, followed by
numeric algorithms, and array-related concepts.

Further, Listing 2, 3, 4 show example Dafny-to-Verus trans-
lations from AlphaVerus, indicating that AlphaVerus
is capable of complex translations often spanning mul-
tiple specifications, helper functions, and proof annota-
tions reaching over 100 lines of Verus code. For for-
mally verified code generation, Listing 1 shows an exam-
ple generated by AlphaVerus; more examples showcas-
ing AlphaVerus’s ability to generate multi-function pro-
grams, and non-trivial lemmas are shown in Appendix D.2.

Finally, in Figure 9, we show that for lower budgets, us-
ing smaller models such as LLaMA-3.1-8B performs bet-
ter than larger LLaMA-3.1-70B at the same cost. How-
ever, LLaMA-3.1-70B achieves higher asymptotic perfor-
mance, analogous to prior work (Wu et al., 2024).

6. Related Work
Automated Formal Verification. Automated formal ver-
ification has a long-standing history in interactive theo-
rem provers like Coq (Coq Development Team, 2020),
Lean (Lean FRO), and Isabelle (Isabelle), with approaches
generating step-by-step proofs (Redmon & Sanchez-Stern,
2016; Kaliszyk et al., 2018; Polu & Sutskever, 2020; First
et al., 2020; Lu et al., 2023; Li et al., 2024). While successful
for mathematical theorems, application to code verification
remains limited to existing project theorems (First et al.,

8

AlphaVerus

Listing 1: AlphaVerus implementation of the unique sorted function, which removes duplicates from a sorted vector.
1 // ----- Function signature and specification (given to model) -----
2 fn unique_sorted(s: Vec<i32>) -> (result: Vec<i32>)
3 requires
4 forall|i: int, j: int| 0 <= i < j < s.len() ==> s[i] <= s[j],
5 ensures
6 forall|i: int, j: int| 0 <= i < j < result.len() ==> result[i] < result[j],
7 forall|i: int| #![auto] 0 <= i < result.len() ==> s@.contains(result[i]),
8 forall|i: int| #![trigger s[i]] 0 <= i < s.len() ==> result@.contains(s[i]),
9 {// ----- Model generation starts here -----

10 let mut result = Vec::new();
11 let mut i: usize = 0;
12 while i < s.len()
13 invariant
14 result.len() <= i,
15 i <= s.len(),
16 forall|j: int| 0 <= j < result.len() ==> s@.contains(result[j as int]),
17 forall|j: int| 0 <= j < i ==> s@[j as int] == s[j as int],
18 {
19 if i == 0 || s[i] != s[i - 1] {
20 result.push(s[i]);
21 }
22 i += 1;
23 }
24 proof {
25 assert(forall|i: int, j: int| 0 <= i < j < result.len() ==> result[i] < result[j]) by {
26 assert(forall|i: int, j: int| 0 <= i < j < s.len() ==> s@[i] <= s@[j]);
27 assert(result.len() == s.len());
28 assert(result@.len() as int == s@.len() as int);
29 assert(result@.to_multiset() =˜= s@.to_multiset());
30 }
31 }
32 result
33 }

2023) or simple properties (Lohn & Welleck, 2024). Inte-
grating language models with verification languages such
as Dafny (Leino, 2010; Sun et al., 2024a; Loughridge et al.,
2025) and F* (Swamy et al., 2016; Chakraborty et al., 2025)
face real-world applicability challenges.

Rust Verification & Concurrent Work. Verus (Lat-
tuada et al., 2023) brings verification to Rust but suffers
from data scarcity. Recent concurrent works address this
through GPT-4 pipelines (AutoVerus (Yang et al., 2024),
requiring significant human effort) and dataset translation
(SAFE++ (Chen et al., 2024), using month-long GPT-4
generation). AlphaVerus differs by using open mod-
els, 100× less data, and introducing tree-search refinement
with critique for verified code generation (implementation +
proofs), outperforming their linear refinement strategies.

Inference-Time Strategies. Meta-generation strate-
gies (Welleck et al., 2024) boost reasoning via parallel sam-
pling (Wang et al., 2022; Aggarwal et al., 2023; Sun et al.,
2024b), tree search (Yao et al., 2024; Wu et al., 2024), and
refinement (Welleck et al., 2023; Madaan et al., 2023; Snell
et al., 2025). Unlike previous methods that perform stepwise
verification (Wu et al., 2024) with a separate reward model,
Treefinement combines different verification sources such
as scalar values, language feedback and refines complete
programs, addressing the non-local nature of error fixes.

Self-Improvement in LLMs. Recent work explores im-
proving language models through self-generated data and
external feedback (Zelikman et al., 2022; Wang et al., 2025;
Hosseini et al., 2024), using expert iteration or rejection

sampling strategies. Unlike these sample-and-filter strate-
gies, AlphaVerus self-improves using different feedback
sources, with data collected from multiple modules.

We refer readers to Appendix B for a more detailed discus-
sion of related work.

7. Conclusion
We introduced AlphaVerus, a novel self-improving
framework for generating formally verified code in main-
stream programming languages. By leveraging iterative
translation from a higher-resource language (Dafny) to
Verus and utilizing verifier feedback through our Explo-
ration, Treefinement, and Critique stages, AlphaVerus
overcomes the challenges of scarce training data, reward
hacking and the complexity of formal proofs. We hope
that the methods proposed in our work, such as the cri-
tique models and treefinement, may evolve to handle more
complex cases of reward hacking and search with LLMs.
Our approach operates without human intervention, hand-
engineered prompts, or extensive computational resources,
yet achieves significant performance improvements on ver-
ified versions of the HumanEval and MBPP benchmarks
where prior methods fail. We also contribute a new dataset
of formally verified Verus programs, providing valuable re-
sources for future research. AlphaVerus opens up new
avenues for grounding code generation and developing trust-
worthy AI-assisted programming tools.

9

AlphaVerus

Acknowledgements
We thank Convergent Research and the OpenAI Researcher
Access program. We also thank Alex Bai, Jay Bosamiya,
Edwin Fernando, Md Rakib Hossain, Jay Lorch, Shan Lu,
Natalie Neamtu, Bryan Parno, Amar Shah, Elanor Tang for
their contributions to the version of the HumanEval-Verus
benchmark we used in our experiments. This work was
funded in part by a gift from VMware, the Future Enterprise
Security initiative at Carnegie Mellon CyLab (FutureEnter-
prise@CyLab), and AFRL and DARPA under Agreement
FA8750-24-9-1000.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Aggarwal, P., Madaan, A., Yang, Y., and Mausam.

Let’s sample step by step: Adaptive-consistency for
efficient reasoning and coding with LLMs. In
Bouamor, H., Pino, J., and Bali, K. (eds.), Proceedings
of the 2023 Conference on Empirical Methods in
Natural Language Processing, pp. 12375–12396, Sin-
gapore, December 2023. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2023.emnlp-main.
761. URL https://aclanthology.org/2023.
emnlp-main.761/.

Akyürek, A. F., Akyürek, E., Madaan, A., Kalyan, A., Clark,
P., Wijaya, D., and Tandon, N. Rl4f: Generating natural
language feedback with reinforcement learning for re-
pairing model outputs. arXiv preprint arXiv:2305.08844,
2023.

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski,
H., Dohan, D., Jiang, E., Cai, C., Terry, M., Le, Q.,
et al. Program synthesis with large language models.
https://arxiv.org/abs/2108.07732, 2021.

Chakraborty, S., Ebner, G., Bhat, S., Fakhoury, S.,
Fatima, S., Lahiri, S., and Swamy, N. Towards
Neural Synthesis for SMT-assisted Proof-Oriented
Programming. In 2025 IEEE/ACM 47th International
Conference on Software Engineering (ICSE), pp. 13–25,
Los Alamitos, CA, USA, May 2025. IEEE Computer
Society. doi: 10.1109/ICSE55347.2025.00002. URL
https://doi.ieeecomputersociety.org/
10.1109/ICSE55347.2025.00002.

Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto,
H. P., Kaplan, J., Edwards, H., Burda, Y., Joseph, N.,

Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov,
M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray,
S., Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavar-
ian, M., Winter, C., Tillet, P., Such, F. P., Cummings, D.,
Plappert, M., Chantzis, F., Barnes, E., Herbert-Voss, A.,
Guss, W. H., Nichol, A., Paino, A., Tezak, N., Tang,
J., Babuschkin, I., Balaji, S., Jain, S., Saunders, W.,
Hesse, C., Carr, A. N., Leike, J., Achiam, J., Misra,
V., Morikawa, E., Radford, A., Knight, M., Brundage,
M., Murati, M., Mayer, K., Welinder, P., McGrew, B.,
Amodei, D., McCandlish, S., Sutskever, I., and Zaremba,
W. Evaluating large language models trained on code.
https://arxiv.org/abs/2107.03374, 2021.

Chen, T., Lu, S., Lu, S., Gong, Y., Yang, C., Li, X., Misu,
M. R. H., Yu, H., Duan, N., Cheng, P., Yang, F., Lahiri,
S. K., Xie, T., and Zhou, L. Automated proof generation
for Rust code via self-evolution, 2024. URL https:
//arxiv.org/abs/2410.15756.

Chen, X., Lin, M., Schärli, N., and Zhou, D. Teaching
large language models to self-debug. arXiv preprint
arXiv:2304.05128, 2023.

Chern, I., Chern, S., Chen, S., Yuan, W., Feng, K., Zhou,
C., He, J., Neubig, G., Liu, P., et al. FacTool: Factuality
detection in generative AI–a tool augmented framework
for multi-task and multi-domain scenarios. arXiv preprint
arXiv:2307.13528, 2023.

Coq Development Team. The Coq Proof Assistant. https:
//coq.inria.fr/, 2020.

Denison, C., MacDiarmid, M., Barez, F., Duvenaud, D.,
Kravec, S., Marks, S., Schiefer, N., Soklaski, R., Tamkin,
A., Kaplan, J., Shlegeris, B., Bowman, S. R., Perez, E.,
and Hubinger, E. Sycophancy to subterfuge: Investigating
reward-tampering in large language models. https:
//arxiv.org/abs/2406.10162, 2024.

Elgedawy, R., Sadik, J., Dutta, S., Gautam, A., Georgiou,
K., Gholamrezae, F., Ji, F., Lim, K., Liu, Q., and Ruoti,
S. Occasionally secure: A comparative analysis of code
generation assistants. https://arxiv.org/abs/
2402.00689, 2024.

First, E., Brun, Y., and Guha, A. Tactok: semantics-
aware proof synthesis. Proc. ACM Program. Lang., 4
(OOPSLA), Nov 2020. doi: 10.1145/3428299. URL
https://doi.org/10.1145/3428299.

First, E., Rabe, M., Ringer, T., and Brun, Y. Baldur: Whole-
proof generation and repair with large language mod-
els. In Proceedings of the 31st ACM Joint European
Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/FSE

10

https://aclanthology.org/2023.emnlp-main.761/
https://aclanthology.org/2023.emnlp-main.761/
https://arxiv.org/abs/2108.07732
https://doi.ieeecomputersociety.org/10.1109/ICSE55347.2025.00002
https://doi.ieeecomputersociety.org/10.1109/ICSE55347.2025.00002
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2410.15756
https://arxiv.org/abs/2410.15756
https://coq.inria.fr/
https://coq.inria.fr/
https://arxiv.org/abs/2406.10162
https://arxiv.org/abs/2406.10162
https://arxiv.org/abs/2402.00689
https://arxiv.org/abs/2402.00689
https://doi.org/10.1145/3428299

AlphaVerus

2023, pp. 1229–1241, New York, NY, USA, 2023. Asso-
ciation for Computing Machinery. ISBN 9798400703270.
doi: 10.1145/3611643.3616243. URL https://doi.
org/10.1145/3611643.3616243.

Gou, Z., Shao, Z., Gong, Y., Shen, Y., Yang, Y., Duan,
N., and Chen, W. Critic: Large language models can
self-correct with tool-interactive critiquing, 2024. URL
https://arxiv.org/abs/2305.11738.

Hendler, J. Understanding the limits of AI coding. Science,
379(6632):548–548, 2023.

Hosseini, A., Yuan, X., Malkin, N., Courville, A., Sordoni,
A., and Agarwal, R. V-STaR: Training verifiers for self-
taught reasoners, 2024. URL https://arxiv.org/
abs/2402.06457.

Isabelle. Isabelle. https://isabelle.in.tum.
de/.

Jesse, K., Ahmed, T., Devanbu, P. T., and Morgan, E.
Large Language Models and Simple, Stupid Bugs.
In 2023 IEEE/ACM 20th International Conference on
Mining Software Repositories (MSR), pp. 563–575,
Los Alamitos, CA, USA, May 2023. IEEE Computer
Society. doi: 10.1109/MSR59073.2023.00082. URL
https://doi.ieeecomputersociety.org/
10.1109/MSR59073.2023.00082.

Jimenez, C. E., Yang, J., Wettig, A., Yao, S., Pei, K., Press,
O., and Narasimhan, K. R. SWE-bench: Can language
models resolve real-world GitHub issues? In The Twelfth
International Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=VTF8yNQM66.

Kaliszyk, C., Urban, J., Michalewski, H., and Olšák,
M. Reinforcement learning of theorem proving. In
Proceedings of the 32nd International Conference on
Neural Information Processing Systems, NIPS’18, pp.
8836–8847, Red Hook, NY, USA, 2018. Curran Asso-
ciates Inc.

Kamoi, R., Zhang, Y., Zhang, N., Han, J., and Zhang,
R. When can LLMs actually correct their own mis-
takes? A critical survey of self-correction of LLMs.
Transactions of the Association for Computational
Linguistics, 12:1417–1440, 2024. doi: 10.1162/tacl
a 00713. URL https://aclanthology.org/
2024.tacl-1.78.

Langley, P. Crafting papers on machine learning. In
Langley, P. (ed.), Proceedings of the 17th International
Conference on Machine Learning (ICML 2000), pp.
1207–1216, Stanford, CA, 2000. Morgan Kaufmann.

Lattuada, A., Hance, T., Cho, C., Brun, M., Subasinghe,
I., Zhou, Y., Howell, J., Parno, B., and Hawblitzel, C.
Verus: Verifying Rust programs using linear ghost types.
Proc. ACM Program. Lang., 7(OOPSLA1), April 2023.
doi: 10.1145/3586037. URL https://doi.org/10.
1145/3586037.

Lattuada, A., Hance, T., Bosamiya, J., Brun, M., Cho, C.,
LeBlanc, H., Srinivasan, P., Achermann, R., Chajed, T.,
Hawblitzel, C., Howell, J., Lorch, J., Padon, O., and
Parno, B. Verus: A practical foundation for systems
verification. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), November 2024.

Lean FRO. Lean theorem prover. https://
leanprover.github.io/.

Leino, K. R. M. Dafny: An automatic program verifier for
functional correctness. In Proceedings of the Conference
on Logic for Programming, Artificial Intelligence, and
Reasoning (LPAR), 2010.

Li, R., Allal, L. B., Zi, Y., Muennighoff, N., Kocetkov,
D., Mou, C., Marone, M., Akiki, C., Li, J., Chim, J.,
Liu, Q., Zheltonozhskii, E., Zhuo, T. Y., Wang, T., De-
haene, O., Davaadorj, M., Lamy-Poirier, J., Monteiro, J.,
Shliazhko, O., Gontier, N., Meade, N., Zebaze, A., Yee,
M.-H., Umapathi, L. K., Zhu, J., Lipkin, B., Oblokulov,
M., Wang, Z., Murthy, R., Stillerman, J., Patel, S. S.,
Abulkhanov, D., Zocca, M., Dey, M., Zhang, Z., Fahmy,
N., Bhattacharyya, U., Yu, W., Singh, S., Luccioni, S.,
Villegas, P., Kunakov, M., Zhdanov, F., Romero, M.,
Lee, T., Timor, N., Ding, J., Schlesinger, C., Schoelkopf,
H., Ebert, J., Dao, T., Mishra, M., Gu, A., Robinson,
J., Anderson, C. J., Dolan-Gavitt, B., Contractor, D.,
Reddy, S., Fried, D., Bahdanau, D., Jernite, Y., Ferrandis,
C. M., Hughes, S., Wolf, T., Guha, A., von Werra, L., and
de Vries, H. StarCoder: May the source be with you!
https://arxiv.org/abs/2305.06161, 2023.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrit-
twieser, J., Leblond, R., Eccles, T., Keeling, J., Gi-
meno, F., Lago, A. D., Hubert, T., Choy, P., de Mas-
son d’Autume, C., Babuschkin, I., Chen, X., Huang,
P.-S., Welbl, J., Gowal, S., Cherepanov, A., Mol-
loy, J., Mankowitz, D. J., Robson, E. S., Kohli, P.,
de Freitas, N., Kavukcuoglu, K., and Vinyals, O.
Competition-level code generation with AlphaCode.
Science, 378(6624):1092–1097, 2022. doi: 10.1126/
science.abq1158. URL https://www.science.
org/doi/abs/10.1126/science.abq1158.

Li, Z., Sun, J., Murphy, L., Su, Q., Li, Z., Zhang, X., Yang,
K., and Si, X. A survey on deep learning for theorem
proving. In First Conference on Language Modeling,
2024. URL https://openreview.net/forum?
id=zlw6AHwukB.

11

https://doi.org/10.1145/3611643.3616243
https://doi.org/10.1145/3611643.3616243
https://arxiv.org/abs/2305.11738
https://arxiv.org/abs/2402.06457
https://arxiv.org/abs/2402.06457
https://isabelle.in.tum.de/
https://isabelle.in.tum.de/
https://doi.ieeecomputersociety.org/10.1109/MSR59073.2023.00082
https://doi.ieeecomputersociety.org/10.1109/MSR59073.2023.00082
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://aclanthology.org/2024.tacl-1.78
https://aclanthology.org/2024.tacl-1.78
https://doi.org/10.1145/3586037
https://doi.org/10.1145/3586037
https://leanprover.github.io/
https://leanprover.github.io/
https://arxiv.org/abs/2305.06161
https://www.science.org/doi/abs/10.1126/science.abq1158
https://www.science.org/doi/abs/10.1126/science.abq1158
https://openreview.net/forum?id=zlw6AHwukB
https://openreview.net/forum?id=zlw6AHwukB

AlphaVerus

Lin, H., Sun, Z., Welleck, S., and Yang, Y. Lean-
STar: Learning to interleave thinking and proving. In
The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.
net/forum?id=SOWZ59UyNc.

Liu, J., Xia, C. S., Wang, Y., and Zhang, L. Is
your code generated by ChatGPT really correct? rig-
orous evaluation of large language models for code
generation. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=1qvx610Cu7.

Lohn, E. and Welleck, S. miniCodeProps: A minimal
benchmark for proving code properties. In Neurips Safe
Generative AI Workshop 2024, 2024. URL https:
//openreview.net/forum?id=6QFe3vPbYZ.

Loughridge, C. R., Sun, Q., Ahrenbach, S., Cassano, F., Sun,
C., Sheng, Y., Mudide, A., Misu, M. R. H., Amin, N.,
and Tegmark, M. DafnyBench: A benchmark for formal
software verification. Transactions on Machine Learning
Research, 2025. ISSN 2835-8856. URL https://
openreview.net/forum?id=yBgTVWccIx.

Lu, P., Qiu, L., Yu, W., Welleck, S., and Chang, K.-
W. A survey of deep learning for mathematical rea-
soning. In Rogers, A., Boyd-Graber, J., and Okazaki,
N. (eds.), Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers), pp. 14605–14631, Toronto, Canada,
July 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.acl-long.817. URL https:
//aclanthology.org/2023.acl-long.817.

Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao, L.,
Wiegreffe, S., Alon, U., Dziri, N., Prabhumoye, S., Yang,
Y., Gupta, S., Majumder, B. P., Hermann, K., Welleck,
S., Yazdanbakhsh, A., and Clark, P. Self-refine: Iter-
ative refinement with self-feedback. In Thirty-seventh
Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?
id=S37hOerQLB.

Misu, M. R. H., Lopes, C. V., Ma, I., and Noble, J. To-
wards AI-assisted synthesis of verified Dafny methods.
Proceedings of the ACM on Software Engineering, 1
(FSE):812–835, July 2024. ISSN 2994-970X. doi:
10.1145/3643763. URL http://dx.doi.org/10.
1145/3643763.

Pan, A., Bhatia, K., and Steinhardt, J. The effects of
reward misspecification: Mapping and mitigating mis-
aligned models. In International Conference on Learning
Representations, 2022. URL https://openreview.
net/forum?id=JYtwGwIL7ye.

Pearce, H. A., Ahmad, B., Tan, B., Dolan-Gavitt, B., and
Karri, R. Asleep at the keyboard? Assessing the secu-
rity of GitHub Copilot’s code contributions. 2022 IEEE
Symposium on Security and Privacy (SP), pp. 754–768,
2021. URL https://api.semanticscholar.
org/CorpusID:245220588.

Peng, B., Galley, M., He, P., Cheng, H., Xie, Y., Hu, Y.,
Huang, Q., Liden, L., Yu, Z., Chen, W., et al. Check your
facts and try again: Improving large language models
with external knowledge and automated feedback. arXiv
preprint arXiv:2302.12813, 2023.

Perry, N., Srivastava, M., Kumar, D., and Boneh, D.
Do users write more insecure code with AI assistants?
In Proceedings of the 2023 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’23.
ACM, November 2023. doi: 10.1145/3576915.3623157.
URL http://dx.doi.org/10.1145/3576915.
3623157.

Polu, S. and Sutskever, I. Generative language mod-
eling for automated theorem proving. arXiv preprint
arXiv:2009.03393, 2020.

Polu, S., Han, J. M., Zheng, K., Baksys, M., Babuschkin, I.,
and Sutskever, I. Formal mathematics statement curricu-
lum learning. arXiv preprint arXiv:2202.01344, 2022.

Redmon, J. and Sanchez-Stern, A. Proverbot 9000 : Neural
networks for proof assistance, 2016. URL https:
//api.semanticscholar.org/CorpusID:
11622595.

Rozière, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I.,
Tan, X. E., Adi, Y., Liu, J., Sauvestre, R., Remez, T.,
Rapin, J., Kozhevnikov, A., Evtimov, I., Bitton, J., Bhatt,
M., Ferrer, C. C., Grattafiori, A., Xiong, W., Défossez,
A., Copet, J., Azhar, F., Touvron, H., Martin, L., Usunier,
N., Scialom, T., and Synnaeve, G. Code llama: Open
foundation models for code. https://arxiv.org/
abs/2308.12950, 2024.

Schick, T., Dwivedi-Yu, J., Dessı̀, R., Raileanu, R., Lomeli,
M., Zettlemoyer, L., Cancedda, N., and Scialom, T.
Toolformer: Language models can teach themselves to
use tools, 2023. URL https://arxiv.org/abs/
2302.04761.

Snell, C. V., Lee, J., Xu, K., and Kumar, A. Scaling LLM
test-time compute optimally can be more effective than
scaling parameters for reasoning. In The Thirteenth
International Conference on Learning Representations,
2025. URL https://openreview.net/forum?
id=4FWAwZtd2n.

12

https://openreview.net/forum?id=SOWZ59UyNc
https://openreview.net/forum?id=SOWZ59UyNc
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=6QFe3vPbYZ
https://openreview.net/forum?id=6QFe3vPbYZ
https://openreview.net/forum?id=yBgTVWccIx
https://openreview.net/forum?id=yBgTVWccIx
https://aclanthology.org/2023.acl-long.817
https://aclanthology.org/2023.acl-long.817
https://openreview.net/forum?id=S37hOerQLB
https://openreview.net/forum?id=S37hOerQLB
http://dx.doi.org/10.1145/3643763
http://dx.doi.org/10.1145/3643763
https://openreview.net/forum?id=JYtwGwIL7ye
https://openreview.net/forum?id=JYtwGwIL7ye
https://api.semanticscholar.org/CorpusID:245220588
https://api.semanticscholar.org/CorpusID:245220588
http://dx.doi.org/10.1145/3576915.3623157
http://dx.doi.org/10.1145/3576915.3623157
https://api.semanticscholar.org/CorpusID:11622595
https://api.semanticscholar.org/CorpusID:11622595
https://api.semanticscholar.org/CorpusID:11622595
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n

AlphaVerus

Sun, C., Sheng, Y., Padon, O., and Barrett, C. Clover:
Closed-loop verifiable code generation. In Avni, G., Gi-
acobbe, M., Johnson, T. T., Katz, G., Lukina, A., Naro-
dytska, N., and Schilling, C. (eds.), AI Verification, pp.
134–155, Cham, 2024a. Springer Nature Switzerland.
ISBN 978-3-031-65112-0.

Sun, Z., Yu, L., Shen, Y., Liu, W., Yang, Y., Welleck, S., and
Gan, C. Easy-to-hard generalization: Scalable alignment
beyond human supervision. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems,
2024b. URL https://openreview.net/forum?
id=qwgfh2fTtN.

Swamy, N., Hriţcu, C., Keller, C., Rastogi, A., Delignat-
Lavaud, A., Forest, S., Bhargavan, K., Fournet, C., Strub,
P.-Y., Kohlweiss, M., Zinzindohoué, J.-K., and Zanella-
Béguelin, S. Dependent types and multi-monadic effects
in F*. 2016. ISBN 978-1-4503-3549-2.

Team, Q. Qwen2.5: A party of foundation models. https:
//qwenlm.github.io/blog/qwen2.5/,
September 2024.

The HumanEval-Verus Contributors. HumanEval-
Verus: Hand-written examples of verified Verus code
derived from HumanEval, 2024. URL https:
//github.com/secure-foundations/
human-eval-verus.git.

Wang, T., Kulikov, I., Golovneva, O., Yu, P., Yuan,
W., Dwivedi-Yu, J., Pang, R. Y., Fazel-Zarandi, M.,
Weston, J. E., and Li, X. Self-taught evaluators,
2025. URL https://openreview.net/forum?
id=I7uCwGxVnl.

Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang,
S., Chowdhery, A., and Zhou, D. Self-consistency im-
proves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Welleck, S., Lu, X., West, P., Brahman, F., Shen,
T., Khashabi, D., and Choi, Y. Generating se-
quences by learning to self-correct. In The Eleventh
International Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=hH36JeQZDaO.

Welleck, S., Bertsch, A., Finlayson, M., Schoelkopf,
H., Xie, A., Neubig, G., Kulikov, I., and Harchaoui,
Z. From decoding to meta-generation: Inference-time
algorithms for large language models. Transactions
on Machine Learning Research, 2024. ISSN 2835-
8856. URL https://openreview.net/forum?
id=eskQMcIbMS. Survey Certification.

Wu, Y., Sun, Z., Li, S., Welleck, S., and Yang, Y. An
empirical analysis of compute-optimal inference for
problem-solving with language models. https://
arxiv.org/abs/2408.00724, 2024.

Yang, C., Li, X., Misu, M. R. H., Yao, J., Cui, W.,
Gong, Y., Hawblitzel, C., Lahiri, S., Lorch, J. R., Lu,
S., Yang, F., Zhou, Z., and Lu, S. AutoVerus: Au-
tomated proof generation for Rust code, 2024. URL
https://arxiv.org/abs/2409.13082.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T. L., Cao, Y.,
and Narasimhan, K. Tree of thoughts: Deliberate problem
solving with large language models. In Proceedings of
the 37th International Conference on Neural Information
Processing Systems, NIPS ’23, Red Hook, NY, USA,
2024. Curran Associates Inc.

Yuan, Z., Yuan, H., Li, C., Dong, G., Lu, K., Tan, C., Zhou,
C., and Zhou, J. Scaling relationship on learning math-
ematical reasoning with large language models, 2023.
URL https://arxiv.org/abs/2308.01825.

Zelikman, E., Wu, Y., Mu, J., and Goodman, N. D. STaR:
Self-taught reasoner bootstrapping reasoning with reason-
ing. In Proceedings of the 36th International Conference
on Neural Information Processing Systems, NIPS ’22,
Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN
9781713871088.

Zhang, K., Li, Z., Li, J., Li, G., and Jin, Z. Self-edit: Fault-
aware code editor for code generation. arXiv preprint
arXiv:2305.04087, 2023.

Zheng, L., Yin, L., Xie, Z., Sun, C., Huang, J., Yu, C. H.,
Cao, S., Kozyrakis, C., Stoica, I., Gonzalez, J. E., Barrett,
C., and Sheng, Y. SGLang: Efficient execution of struc-
tured language model programs. In The Thirty-eighth
Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net/
forum?id=VqkAKQibpq.

Zhong, L. and Wang, Z. Can LLM replace Stack Over-
flow? a study on robustness and reliability of large
language model code generation. Proceedings of the
AAAI Conference on Artificial Intelligence, 38(19):
21841–21849, Mar. 2024. doi: 10.1609/aaai.v38i19.
30185. URL https://ojs.aaai.org/index.
php/AAAI/article/view/30185.

13

https://openreview.net/forum?id=qwgfh2fTtN
https://openreview.net/forum?id=qwgfh2fTtN
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://github.com/secure-foundations/human-eval-verus.git
https://github.com/secure-foundations/human-eval-verus.git
https://github.com/secure-foundations/human-eval-verus.git
https://openreview.net/forum?id=I7uCwGxVnl
https://openreview.net/forum?id=I7uCwGxVnl
https://openreview.net/forum?id=hH36JeQZDaO
https://openreview.net/forum?id=hH36JeQZDaO
https://openreview.net/forum?id=eskQMcIbMS
https://openreview.net/forum?id=eskQMcIbMS
https://arxiv.org/abs/2408.00724
https://arxiv.org/abs/2408.00724
https://arxiv.org/abs/2409.13082
https://arxiv.org/abs/2308.01825
https://openreview.net/forum?id=VqkAKQibpq
https://openreview.net/forum?id=VqkAKQibpq
https://ojs.aaai.org/index.php/AAAI/article/view/30185
https://ojs.aaai.org/index.php/AAAI/article/view/30185

AlphaVerus

A. Experimental Details
A.1. Translation

We use DafnyBench as our source domain Dsrc for our translation experiments. Starting with 782 programs, we filter to
562 by excluding those that verify without proof annotations. The exploration model Gexplore is initialized using a Verus
syntax file and 5 examples from the Verus repository.

A.2. Datasets

We evaluate on verified versions of the MBPP and HumanEval datasets. In particular, MBPP-verified is sourced from
(Yang et al., 2024; Misu et al., 2024) and contains 78 programs from the original MBPP dataset (Austin et al., 2021).
HumanEval-Verus is sourced from a concurrent open-source effort (The HumanEval-Verus Contributors, 2024) to translate
existing HumanEval programs to Verus. Since each task in HumanEval-Verus is typically implemented and verified
using multiple functions, we split each program into individual provable functions, ensuring that all dependent functions
needed are present. Specifically, we split 49 programs into 85 functions and evaluate methods on these 85 functions. We
use a snapshot from November 4th, 2024 with commit hash ddb9ba3. For brevity, we refer to HumanEval and MBPP as
their respective verified versions throughout this paper.

A.3. Hyperparameters

We use consistent decoding parameters, with temperature set to 0.7, top-p set to 1.0 and max tokens set to 2048. For the
translation step, we generate 256 examples per program in the translation phase. We set breadth and depth to 32 and 8 in the
treefinement stage. α is set to 0.1 and β is set to 0.03 as defined in Equation 3. We set the rebase node sampling temperature
to 0.1. We generate 32 samples for the comparison model and exploit model. We use the same setting in both inference and
translation. For stochastic sampling as described in Equation 3.1, we randomly choose k/2 examples from the pool of k
exemplars. All sampling is done with a batch size of 32. We do not tune hyperparameters and use the conventional settings
throughout. We use the ‘gpt-4o-2024-08-06’ version for GPT-4o modal.

A.4. Contamination Analysis

Despite independent development of HumanEval and MBPP, we observe significant overlap between these datasets and
DafnyBench programs. To mitigate contamination in downstream evaluations, we employ GPT-4 for systematic filtering
of collected exemplars. Specifically, we prompt GPT-4 with each collected exemplar paired against individual programs
from HumanEval and MBPP, requesting the identification of similar programs. We generate 4 independent evaluations per
pair and flag contamination when similarity is detected in more than two evaluations. Flagged examples are excluded from
the in-context examples during evaluation of the corresponding program. The prompt used is in Listing C.

Manual analysis confirms this approach significantly outperforms traditional n-gram analysis and aligns well with human
assessment of contamination. We recommend future work adopt similar contamination detection methods rather than relying
solely on n-gram analysis for program similarity. Notably, existing baseline methods for proof annotations in Verus (Yang
et al., 2024; Chen et al., 2024) lack such contamination analysis.

A.5. Hardware and Software

We use L40S GPUs for inference. We use SgLang for inference (Zheng et al., 2024). We design a scalable and parallel
version of the translation and inference stage, where each program is run on a separate node. We release the complete
codebase and our DAFNY2VERUS-COLLECTION for reproducibility.

B. Related Work
Automated Formal Verification. Automated formal verification has a long-standing history in interactive theorem
provers (Redmon & Sanchez-Stern, 2016; Kaliszyk et al., 2018; Polu & Sutskever, 2020; First et al., 2020; Lu et al., 2023;
Li et al., 2024), such as Coq (Coq Development Team, 2020), Lean (Lean FRO), and Isabelle (Isabelle). These approaches
typically generate step-by-step proof statements for a given problem, with the theorem prover providing feedback on
intermediate steps. While these methods have achieved significant success in proving complex mathematical theorems, their
application to formal verification of code is typically limited to theorems from existing projects (e.g., First et al. (2023))

14

AlphaVerus

or simple program properties (Lohn & Welleck, 2024) rather than end-to-end verified code generation. An alternative
paradigm integrates language models with languages that offload proving to automated reasoning tools (e.g., SMT), including
Dafny (Leino, 2010; Sun et al., 2024a; Loughridge et al., 2025) and F* (Swamy et al., 2016; Chakraborty et al., 2025).
However, enabling verified code generation in these research languages may have limited applicability to real-world software
and workflows.

Automated Formal Verification in Rust. In contrast, Verus (Lattuada et al., 2023) offers a verification framework for Rust,
a widely adopted programming language. However, unlike in formal theorem proving or long-standing verification languages,
there is a substantial lack of data for Verus. Two existing works, released during the development of AlphaVerus, attempt
to overcome data scarcity. First, AutoVerus (Yang et al., 2024) prompts GPT-4 with a pipeline of hand-engineered prompts
tailored to specific errors and programs. This allows for refining some errors but requires human expertise to support new
strategies through additional prompts. In contrast, our Treefinement method learns new refinement strategies automatically.
Second, the concurrent work SAFE++ (Chen et al., 2024) proposes translating an existing Rust dataset to Verus and training
generation and refinement models on the collected data. However, the translation process in Chen et al. (2024) was initialized
with over a month of continuous generation from GPT-4. In contrast, AlphaVerus relies only on a single openly available
model, without an expensive GPT-4 initialization. AlphaVerus also incorporates a new tree-search refinement strategy
that outperforms the linear strategy used in SAFE++, and a critique phase to ensure the generated specifications are high
quality. These innovations contribute to better results, despite our method using open models and 100 times less data.
Finally, these two existing works study the simplified task of proof generation, while we study the more general setting of
verified code generation: generating the implementation and its proofs.

Inference-Time Strategies. Recent studies have shown that increasing inference-time compute can improve performance
in reasoning, mathematics, and code generation via meta-generation strategies (Welleck et al., 2024) such as parallel
sampling (Wang et al., 2022; Aggarwal et al., 2023; Sun et al., 2024b), tree search (Yao et al., 2024; Wu et al., 2024), and
refinement (Welleck et al., 2023; Madaan et al., 2023; Snell et al., 2025). Our Treefinement algorithm can be viewed as a
hybrid meta-generator that combines tree search and refinement, following initial parallel sampling (exploration). A variety
of tree search methods generate one step of a mathematical solution at a time, with a verifier guiding the search process by
assigning a score to the current state (Wu et al., 2024). In contrast, Treefinement uses verifier feedback on the complete
solution, modeling tree nodes as full programs and edges as refinement steps. Our strategy addresses the non-local nature of
error fixes, and does not need an additional trained scoring model.

Various refinement strategies use external feedback from knowledge bases (Peng et al., 2023; Chern et al., 2023), code
interpreters (Chen et al., 2023; Zhang et al., 2023), tool outputs (Gou et al., 2024; Schick et al., 2023), or separately trained
reward models (Akyürek et al., 2023). Our Treefinement algorithm uses a diverse set of feedback sources, including scalar
and binary values, language feedback, and an exploit model. Moreover, whereas prior methods typically operate in a linear
fashion–i.e., starting with an output and repeatedly refining it–our approach structures refinement as a tree search. This
allows for prioritizing certain branches of refinement, which we find perform better.

Self-Improvement in LLMs. Various algorithms aim to improve a language model using data generated by the model
along with an external feedback source (Zelikman et al., 2022; Wang et al., 2025; Hosseini et al., 2024), which is colloquially
termed self-improvement. Common approaches rely on variants of expert iteration or rejection finetuning (Polu et al., 2022;
Zelikman et al., 2022; Yuan et al., 2023; Lin et al., 2025), where multiple solutions are sampled, and an external signal
selects the positive ones for model fine-tuning. Our approach, AlphaVerus, builds upon these concepts but moves beyond
the simple sample-and-filter strategy. Our method additionally uses refinement and tree search to collect data, and the data
is collected using multiple modules (e.g., outputs from Treefinement may be used to improve exploration). Additionally,
AlphaVerus uses various forms of feedback–such as trinary, scalar, language, and verifier outputs–rather than just binary
filtering. Conceptually, we can view AlphaVerus as a meta-generation algorithm (i.e., a combination of parallel sampling,
refinement, and tree search) that improves over time, rather than a model trained on filtered outputs.

C. Methodology
Components Table 4 summarizes the components of our method at different stages, the feedback sources used, the models
employed, and the data collected for bootstrapping.

15

AlphaVerus

Stage Feedback Model Data Collected

Exploration Verifier (errors) LLM + Parallel Sampling Verified Translations

Treefinement Verifier (value), Verifier (errors) LLM + Tree Search + Refinement Error Fix Triplets, Veri-
fied Translations

Critique Module Rules, Trivial Programs, Verifier (bi-
nary), Comparison LLM

Regex, String Manipulation,
Prompted LLM, Exploit LLM

Exploit Pairs

Table 4: Different components used in iterative translation in AlphaVerus

Alorithm and Prompts We detail the complete algorithm for AlphaVerus in Algorithm 1. We list the prompt used for
Exploration stage in Listing C, prompt used for Treefinement stage in Listing C, prompt used for exploit and comparison
model in Listing C and Listing C, and for inference in Listing C. Unless specified in the prompt, we use user, assistant pairs
to simulate few-shot examples.

Verus Code Completion

Consider the following incomplete Verus code:

‘‘‘
{program}
‘‘‘

The code contains the relevant spec functions and the preconditions (requires) and postconditions (ensures)
for the main function. Your goal is to complete the function by adding the necessary procedure, along with proof
statements (such as invariants, asserts, proof blocks, etc.) to prove the program.
Only output the new program and not the entire code. You are not allowed to create new functions; however, you can
use any functions already defined if they are within the scope.

Translation: Exploration Prompt

Consider the following dafny code:

‘‘‘
{program}
‘‘‘

Your goal is to convert the code to Verus code. Based on the syntax I gave you, convert the code to Verus. Note that
you may need to make some datatype-related changes for it to work in Verus. Specifically, use the most appropriate
ones from the syntax and code examples provided earlier. However, do not change invariants or specifications (ensures
and requires clauses). Make sure to include the use statements, proper start of code using verus!, and empty fn main()
as done in the examples.

16

AlphaVerus

Translation Treefinement Prompt

SYSTEM: Here are some examples of fixing verus code based on compiler error message:

Verus Error Fixing Example {i+1}:
Incorrect Code:
‘‘‘rust
{incorrect_code}
‘‘‘
Error Message:
‘‘‘
{error_message}
‘‘‘
Corrected Code after fixing the errors:
‘‘‘rust
{corrected_code}
‘‘‘

<Other Examples>

USER:
Given a Verus program with function signature, preconditions, postconditions, and code, fix the errors present in the
code. Effectively return the complete verys program by fixing all proof statements or adjusting the code, such that the
code compiles correctly. Do no modify function signatures requires, ensures or specs. Repeat: Do not ever modify
those lines in ensures clause, requires clause, function signatures. Just edit the proof. **Only in case of overflow
errors**, you can make reasonable relaxations on the size of the input variables. For instance, considering the input
length of array to be any value less than 10 is not reasonable. Similarly for integer inputs, considering them to be small
numbers is not reasonable. Choose bigger bounds for relaxation. You can also use spec functions, to estimate the max
value, and impose a condition accordingly. For instance, if error is integer overflow while doing multiplication, you can
add requires statement such as:

1 forall|k: int| 0 <= k < nums.len() ==> (0 <= #[trigger] nums[k] * #[trigger]
nums[k] < i32::MAX)

However, absolutely no other changes to precondition and postcondition are permitted! Below is the program::

‘‘‘
{program}
‘‘‘

The program has following error message:

‘‘‘
{error_messsage}
‘‘‘

Solution Format:

[Thoughts on Error Message]
[Thoughts on Error Resolution]
[Thoughts on Corner Cases, such as Overflow etc.]
‘‘‘rust
[Complete Code]
‘‘‘

17

AlphaVerus

Translation: Exploit Model Prompt

You are a Verus exploit agent that finds trivial solutions for incomplete and inaccurate preconditions and postconditions.
Your goal is to complete the code by proposing trivial solutions that pass all verification conditions. Here are some
examples:
Input Problem:

1 use vstd::prelude::*;
2

3 verus! {
4

5 // Define a function to calculate the nth power of 2
6 fn power(n: u32) -> (result: u32)
7 [Code Truncated]
8 }
9

10 // Define the function ComputePower to calculate 2ˆn for a given n
11 fn compute_power(n: u32) -> (result: u32)
12 requires
13 n >= 0,
14 n <= 10000, // arbitrary bound, verus can’t handle infinite recursion
15 ensures
16 result == result,
17 {

Trivial Solution:

1 let mut result: u32 = 1;
2 let mut x: u32 = 0;
3 // invariant: 0 <= x <= n, and result == Power(x)
4 while x!= n
5 invariant
6 0 <= x && x <= n,
7 result == result, // result == Power(x),
8 {
9 x += 1;

10 result = result.wrapping_add(result);
11 }
12 result
13 }
14

15 // Main function, empty for now
16 fn main() {}
17

18 } // verus!

<Other Examples>

Charactersitics of a trivial solution:
1. Usually 1-5 lines of code
2. Does not use any complex data structures
3. Usually returns constant values, that passes all test cases.
Your task is to provide only the trivially completed code, given a new program. Only output the new program and not
the entire code.

18

AlphaVerus

Translation: Comparison Model Prompt

Consider the following function:

‘‘‘rust
{rust_code}
‘‘‘

and

‘‘‘dafny
{dafny_code}
‘‘‘

Consider the preconditions and postconditions of the various functions in the two programs along with the spec
functions if present, that need to be proven.
Are the preconditions and postconditions from both the programs same? Note, since they are from different
programming languages, minor changes are to be ignored. Minor changes include, adding extra preconditions to limit
size of input in rust code, so as to ensure overflows are not encountered, or reformulating implication statements. Such
changes are not to be considered, and the answer should be yes, if they are same. Further, preconditions on size of input
is reasonable, if there is a possibility of overflow. For instance, for computing fibonacci numbers, using something like
n¡=47 is reasonable, and answer should be yes. However, using n¡=5 would be incorrect, and answer should be no.
Remember, you have to focus on ensures and requires clause of the main function as postconditions and preconditions
respectively.
Follow the following format:
[What Preconditions and Postconditions of Program 1]
[What Preconditions and Postconditions of Program 2]
[Step by Step Thoughts on comparison between conditions. Minor differences can be ignored]
Finally, answer in format to the question if they are same: T̈herefore, both programs are same /not same, the final
answer is Yes/No.̈

Contamination Check Prompt

Consider the following set of program database:

‘‘‘json
<in context exemplars>
‘‘‘

Task: Your task is to find the program that is same or very similar (≥50%) to this program:

‘‘‘
{Program from dataset}
‘‘‘

You should start the solution, by first thinking which programs would be closest and why. Then, you should output the
json, containing the same keys as above: prog num, program text. It is possible that none of the programs is closest, or
even similar. In that case return empty json object.

D. Results
D.1. Reward Hacking

Next, we analyze the quality of translations without the critique phase. Figure 6 shows the effect of removing the critique
models and continuing the self-improvement process on 100 examples from DafnyBench. Without the critique phase,
the model is able to translate a large fraction of programs, but it is primarily because of learning to use assume(false)
which renders any implementation trivially verified. This is primarily used by human developers to debug their proofs.
However, here AlphaVerus figures out how to game the system by generating trivial proofs.

19

AlphaVerus

0 1 2 3 4 5
0

10

20

30

40

Basic Syntax

Basic NT Algos:
Fibo, Prime

mutable array

Sets

Iteration

Pe
rc

en
ta

ge
Tr

an
sl

at
ed

Translation Progress

Figure 8: Translation Progress by Concept. The graph shows the incremental progress in translation capabilities as
different programming concepts are mastered.

There is also a snowballing effect, where initially the model generates a single program with assume(false), then learns
to use it in all programs. This is evident from the leveling off of correct translations in the figure. While an obvious way is to
disallow such statements (as done by our rule-based verifier), we see even more complicated cases of reward hacking, such
as leaving small gaps in translated specifications or even generating degenerate translations, as illustrated in Figure 7. We
conclude that the critique phase is critical for filtering out misaligned programs and preventing reward hacking.

AlphaVerus enables strong proof annotation. Unlike our work which evaluates methods on the difficult task of
formally-verified-code generation that requires generating both code and proof, concurrent work on Verus evaluates on the
task of proof annotation: generating proofs given correct code. This is a simpler task since the code is already known to be
correct. We compare against SAFE (Chen et al., 2024) using their reported results with DSCoder-33B at Pass@110, as
their implementation is not publicly available. We also evaluate against AutoVerus (Yang et al., 2024) using their default
configuration with a 70B model.

As shown in Table 3, AlphaVerus outperforms SAFE by 17% and AutoVerus by 10%. This is notable since AlphaVerus
was not designed for the proof annotations task, while AutoVerus has correction prompts specifically engineered for the task.
Their engineering also results in reduced generalizability; for instance, AutoVerus cannot be evaluated on HumanEval
as it doesn’t support multi-function programs. Second, SAFE used over a month of GPT-4o invocations and thousands of
programs, contrasting with our use of 562 Dafny programs and an openly available 70B model.

AlphaVerus learns new concepts over iterations. Next, our goal is to understand what the model learns over iterations
that improves its ability to translate more complex programs and improve downstream performance. We manually inspect
translations from each iteration of AlphaVerus in an attempt to qualitatively characterize the kinds of programs that the
system gradually learns to translate. Figure 8 depicts the new concepts that we identified across iterations, starting with the
ability to translate basic syntax, then basic numeric algorithms, and then the ability to work with mutable arrays and sets.

Cost-optimal model for inference. Next, we compare the performance of different models as we increase the inference
cost. We compare LLaMA-3.1-8B and LLaMA-3.1-70B, using a cost ratio of 1:8 based on current API pricing. That is,
generating 8 outputs with LLaMA-3.1-8B has the same cost as generating 1 output with LLaMA-3.1-70B. We show
the accuracy of each model as a function of cost in Figure 9. LLaMA-3.1-8B achieves faster initial gains, reaching
an accuracy of 0.55 with 128 units of cost, while LLaMA-3.1-70B requires about 4 times more cost to reach similar
performance. In other words, for cost-constrained scenarios, it is preferable to use the smaller model with more samples, but

20

AlphaVerus

0 200 400 600 800 1000
Cost-adjusted Generations

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56
Ac

cu
ra

cy

Llama-3.1 8B
Llama-3.1 70B

Figure 9: Performance scaling of LLaMA-3.1-8B and LLaMA-3.1-70B with cost. LLaMA-3.1-8B shows better cost
efficiency at lower compute budgets, while LLaMA-3.1-70B shows higher asymptotic performance.

the larger model has better asymptotic performance. Our findings echo those of Wu et al. (2024) and Snell et al. (2025).

D.2. Qualitative Analysis

Listing 2, Listing 3, and Listing 4 show example Dafny-to-Verus translations from AlphaVerus, indicating that
AlphaVerus is capable of complex translations. In particular, the translations can involve multiple specifications, helper
functions, and proof annotations, and individually reach up to 100 lines of Verus code. For formally verified code generation,
Listing 1 shows a generated implementation and proofs for a function that removes duplicates from a sorted vector while
maintaining its sorted order. The model is given the function signature and the specification (the requires and ensures
clauses). AlphaVerus generates a Rust implementation and proof annotations (e.g., invariant, proof, assert
statements) that pass the verifier. Listing 5 shows a multi-function example, in which a helper function is prime is fol-
lowed by a largest prime factor function. In addition to function implementations, Listing 6 shows AlphaVerus
completing a nontrivial lemma.

Listing 2, Listing 3, Listing 4 show example Dafny-to-Verus translation from AlphaVerus.

Listing 5, Listing 6 show example formally verified code generations from AlphaVerus.

E. Limitations and Future Work
Our results show promising performance and potential for scaling the methods proposed in this work. In particular, we
achieved state-of-the-art performance without any fine-tuning. However, moving forward, exploring fine-tuning models
and RL algorithms guided by verifier feedback would be a promising and important direction. Further, while our analysis
shows the critique module being effective in preventing reward hacking, we believe investigating better methods for filtering
misaligned specifications remains an important future direction. Finally, we believe that treefinement can be extended to
other domains, and better search strategies can be developed for even better performance in this important task of verified
code generation.

21

AlphaVerus

Listing 2: Translation example.
1 // ---- Dafny program (input to AlphaVerus) ----
2 function R(n: nat): nat {
3 if n == 0 then 0 else if R(n-1) > n then R(n-1) - n else R(n-1) + n
4 }
5

6 method calcR(n: nat) returns (r: nat)
7 ensures r == R(n)
8 {
9 r := 0;

10 var i := 0;
11 while i < n
12 decreases n-i
13 invariant 0 <= i <= n
14 invariant r == R(i)
15 {
16 i := i + 1;
17 if r > i {
18 r := r - i;
19 }
20 else {
21 r := r + i;
22 }
23 }
24 }

1 // ---- Verus program (all model-generated) ----
2 use vstd::prelude::*;
3

4 verus! {
5

6 fn calc_r(n: usize) -> (r: usize)
7 requires
8 n < 100000, // added relaxation to prevent overflow
9 n * (n + 1) / 2 < usize::MAX, // added check to prevent overflow

10 ensures
11 r == n * (n + 1) / 2,
12 {
13 let mut r: u128 = 0;
14 let mut i = 0;
15 while i < n
16 invariant
17 0 <= i && i <= n,
18 true,
19 decreases
20 n - i,
21 {
22 i = i + 1;
23 }
24 assert(i == n);
25 let temp: u128 = n as u128 * (n as u128 + 1) / 2;
26 assert(temp <= usize::MAX as u128);
27 let r: usize = temp as usize;
28 r
29 }
30

31 fn main() {}
32

33 } // verus!

22

AlphaVerus

Listing 3: Translation example.
1 // ---- Dafny program (input to AlphaVerus) ----
2 method SearchRecursive(a: seq<int>, i: int, j: int, x: int) returns (k: int)
3 decreases j-i;
4 requires 0 <= i <= j <= |a|;
5 ensures i <= k < j || k == -1;
6 ensures k != -1 ==> a[k] == x;
7 ensures k != -1 ==> forall r | k < r < j :: a[r] != x;
8 ensures k == -1 ==> forall r | i <= r < j :: a[r] != x;
9 {

10 if j == i
11 {
12 k := -1;
13 return;
14 }
15 if a[j-1] == x
16 {
17 k := j-1;
18 return;
19 }
20 else
21 {
22 k := SearchRecursive(a, i, j-1, x);
23 }
24 }
25

26 method SearchLoop(a: seq<int>, i: int, j: int, x: int) returns (k: int)
27 requires 0 <= i <= j <= |a|;
28 ensures i <= k < j || k == -1;
29 ensures k != -1 ==> a[k] == x;
30 ensures k != -1 ==> forall r | k < r < j :: a[r] != x;
31 ensures k == -1 ==> forall r | i <= r < j :: a[r] != x;
32 {
33 if i == j
34 {
35 return -1;
36 }
37

38 var t := j;
39 while t > i
40 decreases t;
41 invariant forall p | t <= p < j :: a[p] != x;
42 {
43 if a[t-1] == x
44 {
45 k := t-1;
46 return;
47 }
48 else
49 {
50 t := t - 1;
51 }
52 }
53 k := -1;
54 }

23

AlphaVerus

1 // ---- Verus program (all model-generated) ----
2 use vstd::prelude::*;
3
4 verus! {
5
6 /// Searches for an element in a sequence using recursion.
7 fn search_recursive(a: &Vec<i32>, i: usize, j: usize, x: i32) -> (k: i32)
8 requires
9 0 <= i && i <= j && j <= a.len(),

10 j - i < 100000, // added precondition
11 j <= i32::MAX as usize, // added precondition
12 ensures
13 i <= k && k < j || k == -1,
14 k != -1 ==> a[k as int] == x,
15 k != -1 ==> forall|r: nat| k < r && r < j ==> a[r as int] != x,
16 k == -1 ==> forall|r: nat| i <= r && r < j ==> a[r as int] != x,
17 decreases
18 j - i,
19 {
20 if j == i {
21 -1
22 } else if a[j - 1] == x {
23 assert(j - 1 <= i32::MAX as usize);
24 if j - 1 <= i32::MAX as usize {
25 (j - 1) as i32
26 } else {
27 -1
28 }
29 } else {
30 search_recursive(a, i, j - 1, x)
31 }
32 }
33
34 /// Searches for an element in a sequence using a loop.
35 fn search_loop(a: &Vec<i32>, i: usize, j: usize, x: i32) -> (k: i32)
36 requires
37 0 <= i && i <= j && j <= a.len(),
38 j - i < 100000, // added precondition
39 j <= i32::MAX as usize, // added precondition
40 ensures
41 i <= k && k < j || k == -1,
42 k != -1 ==> a[k as int] == x,
43 k != -1 ==> forall|r: nat| k < r && r < j ==> a[r as int] != x,
44 k == -1 ==> forall|r: nat| i <= r && r < j ==> a[r as int] != x,
45 {
46 if i == j {
47 return -1;
48 }
49 let mut t: usize = j;
50 while t > i
51 invariant
52 0 <= i <= t && t <= j,
53 t <= a.len(),
54 forall|p: nat| t <= p && p < j ==> a[p as int] != x,
55 t <= i32::MAX as usize, // added invariant
56 decreases
57 t,
58 {
59 assert(t <= a.len());
60 if a[t - 1] == x {
61 if t - 1 <= i32::MAX as usize {
62 return (t - 1) as i32;
63 } else {
64 return -1;
65 }
66 } else {
67 assert(t > i);
68 t = t - 1;
69 }
70 }
71 -1
72 }
73
74 fn main() {}
75
76 } // verus!

24

AlphaVerus

Listing 4: Translation example. We collapse some whitespace and lines with brackets due to space.
1 // ---- Dafny program (input to AlphaVerus) ----
2 module OneSpec {
3 datatype Variables = Variables(value: int)
4
5 predicate Init(v: Variables) { v.value == 0 }
6
7 predicate IncrementOp(v: Variables, v’: Variables) { && v’.value == v.value + 1 }
8
9 predicate DecrementOp(v: Variables, v’: Variables) { && v’.value == v.value - 1 }

10
11 datatype Step =
12 | IncrementStep()
13 | DecrementStep()
14
15 predicate NextStep(v: Variables, v’: Variables, step: Step)
16 {
17 match step
18 case IncrementStep() => IncrementOp(v, v’)
19 case DecrementStep() => DecrementOp(v, v’)
20 }
21
22 predicate Next(v: Variables, v’: Variables)
23 { exists step :: NextStep(v, v’, step) }
24 }
25
26 module OneProtocol {
27 datatype Variables = Variables(value: int)
28
29 predicate Init(v: Variables) { v.value == 0 }
30
31 predicate IncrementOp(v: Variables, v’: Variables) { && v’.value == v.value - 1 }
32
33 predicate DecrementOp(v: Variables, v’: Variables) { && v’.value == v.value + 1 }
34
35 datatype Step =
36 | IncrementStep()
37 | DecrementStep()
38
39 predicate NextStep(v: Variables, v’: Variables, step: Step)
40 {
41 match step
42 case IncrementStep() => IncrementOp(v, v’)
43 case DecrementStep() => DecrementOp(v, v’)
44 }
45
46 predicate Next(v: Variables, v’: Variables)
47 { exists step :: NextStep(v, v’, step) }
48 }
49
50 module RefinementProof {
51 import OneSpec
52 import opened OneProtocol
53
54 function Abstraction(v: Variables) : OneSpec.Variables {
55 OneSpec.Variables(v.value)
56 }
57
58 lemma RefinementInit(v: Variables)
59 requires Init(v)
60 ensures OneSpec.Init(Abstraction(v)) { }
61
62 lemma RefinementNext(v: Variables, v’: Variables)
63 requires Next(v, v’)
64 ensures OneSpec.Next(Abstraction(v), Abstraction(v’))
65 {
66 var step :| NextStep(v, v’, step);
67 match step {
68 case IncrementStep() => {
69 assert OneSpec.NextStep(Abstraction(v), Abstraction(v’), OneSpec.DecrementStep());
70 }
71 case DecrementStep() => {
72 assert OneSpec.NextStep(Abstraction(v), Abstraction(v’), OneSpec.IncrementStep());
73 }
74 }
75 }
76 }

25

AlphaVerus

1 // ---- Verus program (all model-generated) ----
2 #[allow(unused_imports)]
3 use builtin::*;
4 #[allow(unused_imports)]
5 use builtin_macros::*;
6
7 verus! {
8 struct Variables {
9 value: int,

10 }
11 spec fn init(v: Variables) -> bool { v.value == 0 }
12 spec fn increment_op(v: Variables, v_prime: Variables) -> bool { v_prime.value == v.value + 1 }
13 spec fn decrement_op(v: Variables, v_prime: Variables) -> bool { v_prime.value == v.value - 1 }
14
15 enum Step {
16 Increment,
17 Decrement,
18 }
19 spec fn next_step(v: Variables, v_prime: Variables, step: Step) -> bool {
20 match step {
21 Step::Increment => increment_op(v, v_prime),
22 Step::Decrement => decrement_op(v, v_prime),
23 }
24 }
25 spec fn next(v: Variables, v_prime: Variables) -> bool {
26 exists|step: Step| next_step(v, v_prime, step)
27 }
28
29 struct VariablesProtocol { value: int, }
30
31 spec fn init_protocol(v: VariablesProtocol) -> bool { v.value == 0 }
32 spec fn increment_op_protocol(v: VariablesProtocol, v_prime: VariablesProtocol) -> bool { v_prime.value == v.value -

1 }
33 spec fn decrement_op_protocol(v: VariablesProtocol, v_prime: VariablesProtocol) -> bool { v_prime.value == v.value +

1 }
34
35 enum StepProtocol {
36 Increment,
37 Decrement,
38 }
39 spec fn next_step_protocol(v: VariablesProtocol, v_prime: VariablesProtocol, step: StepProtocol) -> bool {
40 match step {
41 StepProtocol::Increment => increment_op_protocol(v, v_prime),
42 StepProtocol::Decrement => decrement_op_protocol(v, v_prime),
43 }
44 }
45 spec fn next_protocol(v: VariablesProtocol, v_prime: VariablesProtocol) -> bool {
46 exists|step: StepProtocol| next_step_protocol(v, v_prime, step)
47 }
48 spec fn abstraction(v: VariablesProtocol) -> Variables {
49 Variables { value: v.value }
50 }
51
52 proof fn refinement_init(v: VariablesProtocol)
53 requires
54 init_protocol(v),
55 ensures
56 init(abstraction(v)),
57 { assert(true); }
58
59 proof fn refinement_next(v: VariablesProtocol, v_prime: VariablesProtocol)
60 requires
61 next_protocol(v, v_prime),
62 ensures
63 next(abstraction(v), abstraction(v_prime)),
64 {
65 assert(abstraction(v_prime).value == abstraction(v).value + 1 || abstraction(v_prime).value == abstraction(v).

value - 1);
66 assert(exists|step: Step| next_step(abstraction(v), abstraction(v_prime), step)) by {
67 if abstraction(v_prime).value == abstraction(v).value + 1 {
68 assert(next_step(abstraction(v), abstraction(v_prime), Step::Increment));
69 } else {
70 assert(next_step(abstraction(v), abstraction(v_prime), Step::Decrement));
71 }
72 }
73 assert(next(abstraction(v), abstraction(v_prime)));
74 }
75
76 fn main() {}
77 } // verus!

26

AlphaVerus

Listing 5: Multi-function example. First, we have AlphaVerus complete the helper function it prime given its
specification and preceding code. Then we have AlphaVerus complete largest prime factor.

1 spec fn spec_prime_helper(num: int, limit: int) -> bool {
2 forall|j: int| 2 <= j < limit ==> (#[trigger] (num % j)) != 0
3 }
4

5 spec fn spec_prime(num: int) -> bool {
6 spec_prime_helper(num, num)
7 }
8

9 fn is_prime(num: u32) -> (result: bool)
10 requires
11 num >= 2,
12 ensures
13 result <==> spec_prime(num as int),
14 { // ------- Model generation 1 starts here ---------
15 let mut i = 2;
16 let mut result = true;
17 while i < num
18 invariant
19 2 <= i <= num,
20 result <==> spec_prime_helper(num as int, i as int),
21 {
22 if num % i == 0 {
23 result = false;
24 }
25 i += 1;
26 }
27 result
28 }
29

30 fn largest_prime_factor(n: u32) -> (largest: u32)
31 requires
32 n >= 2,
33 ensures
34 1 <= largest <= n,
35 spec_prime(largest as int),
36 n % largest == 0,
37 forall|p| 0 <= p < n && spec_prime(p) && n as int % p == 0 ==> p <= largest,
38 { // ------- Model generation 2 starts here ---------
39 let mut largest = 1;
40 let mut i = 2;
41 while i < n
42 invariant
43 2 <= i <= n,
44 1 <= largest <= i,
45 spec_prime(largest as int),
46 i <= largest ==> spec_prime(i as int),
47 largest <= n,
48 n % largest == 0,
49 forall|p| 0 <= p < i && spec_prime(p) && n as int % p == 0 ==> p <= largest,
50 {
51 if is_prime(i) && n % i == 0 {
52 largest = i;
53 }
54 i += 1;
55 }
56 assert(1 <= largest && largest <= n);
57 assert(spec_prime(largest as int));
58 assert(n % largest == 0);
59 assert(forall|p| 0 <= p < n && spec_prime(p) && n as int % p == 0 ==> p <= largest);
60 largest
61 }

27

AlphaVerus

Listing 6: Lemma example. AlphaVerus completes the lemma lemma step subrange.
1

2 proof fn lemma_step_subrange(substring: Seq<char>, string: Seq<char>)
3 requires
4 substring.len() > 0,
5 string.len() >= substring.len(),
6 ensures
7 (substring[0] == string.subrange(0, substring.len() as int)[0] && (substring.skip

(1)
8 =˜= string.skip(1).subrange(0, substring.skip(1).len() as int))) ==> (

substring
9 =˜= string.subrange(0, substring.len() as int)),

10 decreases substring.len(),
11 { // -------- Model generation starts here --------
12 let m = substring.len();
13 let n = string.len();
14 assert(m > 0);
15 assert(m <= n);
16 let h = string.subrange(0, m as int);
17 assert(h.len() == m);
18 assert(substring.len() == h.len());
19 if substring[0] == h[0] {
20 let k = substring.skip(1).len();
21 assert(k == h.skip(1).len());
22 let g = string.skip(1).subrange(0, k as int);
23 assert(g.len() == k);
24 assert(k == substring.len() - 1);
25 assert(k == h.len() - 1);
26 if m > 1 {
27 if substring.skip(1) =˜= g {
28 assert(substring[0] == h[0]);
29 assert(substring.len() == g.len() + 1);
30 assert(substring.len() == h.len());
31 assert(forall|i: nat| 0 <= i && i < m ==> substring[i as int] == h[i as

int]) by {
32 assert(substring[0] == h[0]);
33 assert(substring.skip(1) =˜= g);
34 assert(forall|i: nat| 1 <= i && i < m ==> substring[i as int] == g[i

as int - 1]);
35 assert(substring =˜= h);
36 }
37 assert(substring =˜= h);
38 } else {
39 assert(!(substring =˜= h));
40 }
41 } else {
42 assert(substring =˜= h);
43 }
44 } else {
45 assert(!(substring =˜= h));
46 }
47 }

28

AlphaVerus

Algorithm 1 Iterative Translation and Refinement

Input: Source programs Dsrc, initial data D
(0)
x→y, D

(0)
y→y′ , D

(0)
exploit

Output: Verified target programs Dtgt
Initialize i← 0.
while not converged do

(I) Candidate Generation & Verification:
C ← ∅: verified pairs; Sunverified ← ∅: (x, y) pairs for refinement
foreach x ∈ Dsrc do

Generate candidate translations {yj} ∼ Gexplore(x;D
(i)
x→y)

Cx ← ∅: verified pairs for this x; Sx ← ∅: syntactically correct, unverified candidates for this x
foreach yj do

if yj passes verification then
Cx ← Cx ∪ {(x, yj)}

else if yj is syntactically correct then
Sx ← Sx ∪ {yj}

C ← C ∪ Cx

if Cx = ∅ then
Sunverified ← Sunverified ∪ {(x, y)|y ∈ Sx}

(II) Refinement via Treefinement Search:
foreach (x, y) ∈ Sunverified do

Initialize a refinement tree with root node (y, e(y))
while max iterations not reached do

Select node (y′, e(y′)) by REBASE scoring
Generate refinements {y′k} ∼ Grefine(y

′, e(y′);D
(i)
y→y′)

foreach y′k do
if y′k passes verification then

C ← C ∪ {(x, y′k)}; record trajectory in Cτ

break (stop refining this candidate)
else

Add (y′k, e(y
′
k)) as a child node to the refinement tree

(III) Filtering and Data Update:

Initialize D
(i+1)
exploit ← D

(i)
exploit

foreach (x, y) ∈ C do
if critic rejects y or f(x, y) = False or z ∼ Gexploit(sy;D

(i)
exploit) finds exploit then

Discard y
if exploit z is found then

D
(i+1)
exploit ← D

(i+1)
exploit ∪ {(sy, z)}

Update D
(i+1)
x→y ← D

(i)
x→y ∪ C

Update D
(i+1)
y→y′ ← D

(i)
y→y′ ∪ {(y, e(y), y′)|(x, y′) ∈ Cτ}

i← i+ 1

return Dtgt ← {y | (x, y) ∈ D
(i)
x→y}

29

