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Abstract—We study the Gaussian multiple access channel with
random user activity, in the regime where the number of users
is proportional to the code length. The receiver may know some
statistics about the number of active users, but does not know
the exact number nor the identities of the active users. We
first derive achievability bounds on the error probabilities by
analyzing Gaussian random codebooks with maximum-likelihood
decoding. We then propose an efficient CDMA-type scheme based
on a spatially coupled signature matrix and approximate message
passing (AMP) decoding. Rigorous asymptotic guarantees on the
error performance of the AMP decoder are derived. A numerical
comparison indicates that the asymptotic error guarantees of
the spatially coupled scheme are significantly better than those
obtained via the finite-length achievability bounds.

I. INTRODUCTION

We study the Gaussian multiple access channel (GMAC)
with output of the form

y =

L∑
ℓ=1

cℓ + ε, (1)

where L is the number of users, cℓ ∈ Rn is the codeword of
user ℓ, ε ∼ Nn(0, σ

2I) is random channel noise with spectral
density N0 = 2σ2, and n is the number of channel uses.
Motivated by applications such as the Internet of Things, there
has been much interest in the many-user regime, where the
number of users L grows with the code length n [1]–[5].

In this paper, we consider the many-user regime where the
number of users L grows proportionally with n; the ratio µ :=
L/n is called the user density [3]. Each user transmits a fixed
number of bits k (payload) under a constant energy-per-bit
constraint ∥cℓ∥22/k ≤ Eb. A key question in this regime is to
characterize the tradeoff between user density µ, the signal-
to-noise ratio Eb/N0 and the error probability in decoding
the codewords {cℓ} from y. The standard error metric is the
per-user probability of error PUPE := 1

L

∑L
ℓ=1 P(cℓ ̸= “cℓ)

where “cℓ denotes the decoder estimate of cℓ. Achievability and
converse bounds were derived in [3], [4], [6] in terms of the
minimum Eb/N0 needed to achieve a given target PUPE for a
given user density µ. Efficient coding schemes were proposed
in [7] in an attempt to approach the converse bound.

In practical GMAC settings, the users are seldom consis-
tently active. Instead, they are active in a sporadic and unco-
ordinated manner. Motivated by recent work in this direction
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[1], [8]–[11], we study the GMAC with random user activity.
Letting Ka ≤ L denote the (random) number of active users,
we consider the proportional regime with E[Ka]/L → α and
E[Ka]/n→ µa, where α and µa are both fixed constants. The
receiver may know the distribution of Ka or some statistics,
but it does not know the identities of the active users nor
the exact value of Ka. We study the tradeoff between the
active user density µa, the signal-to-noise ratio Eb/N0 and the
decoding performance, measured in terms of the probabilities
of misdetection (MD), false alarm (FA), and active user error
(AUE) (see Section II).

We emphasize that our GMAC setting is different from
unsourced random-access [3], [11]–[14], where all the users
share the same codebook, and a subset of them are active.
In our setting, each user has a separate codebook. While
unsourced random-access is particularly relevant for grant-
free communication systems, coding schemes based on sparse
regression for the standard AWGN channel and the GMAC
[15] form the basis of several recent schemes for unsourced
random-access [13], [14].

Our main contributions are two-fold:
1) In Theorem 1, we derive finite-length achievability

bounds on the probabilities of misdetection, false alarm,
and active user error. These are obtained by analyzing ran-
dom Gaussian codebooks with (computationally infeasible)
maximum-likelihood decoding, and are similar to the bounds
obtained by Ngo et al. [11] for unsourced multiple-access with
random user activity. However, the results are not comparable
because we place different assumptions on the codebooks.

2) We propose an efficient coded-division multiple access
(CDMA)-type coding scheme for the GMAC with random
user activity, and rigorously characterize its asymptotic error
performance for given values of Eb/N0, µa and α (Theorem
2). The scheme uses a spatially coupled Gaussian matrix
(whose columns are the users’ signature sequences), and an
iterative approximate message passing (AMP) algorithm for
decoding. The AMP algorithm, which aims to recover a
matrix-valued signal, can be viewed as a generalization of the
spatially coupled AMP in [16] for vector-valued signals. To
our knowledge, this is the first application of spatial coupling
to random linear models with matrix-valued signals, which
may be of independent interest. A numerical comparison
indicates that the asymptotic error guarantees of the spatially
coupled scheme are significantly better than those obtained via



the finite-length achievability bounds.
Related work: AMP, a class of iterative algorithms first

proposed for estimation in random linear models [17], [18],
has been applied to a variety of high-dimensional estimation
problems [19]. Two appealing features of AMP are: i) it
can be tailored to take advantage of the signal prior, and
ii) under suitable model assumptions, its estimation perfor-
mance in the high-dimensional limit can be characterized by
a simple deterministic recursion called state evolution. Coding
schemes based on spatially coupled random linear models
with AMP decoding have been studied for communication
over both point-to-point channels [20]–[22] and the many-user
GMAC [7]. These works show that spatially coupled designs
significantly improve on the performance of i.i.d. designs in
certain regimes. More generally, spatially coupled designs with
AMP decoding have been shown to achieve the Bayes-optimal
estimation error for both linear models [16] and generalized
linear models [23].

Notation: The indicator function of an event A is denoted
by 1{A}. For positive integers a and b, [a] := {1, ..., a} and
[a : b] = {a, a+1, . . . , b}. We use boldface letters for vectors
and matrices and plain font for scalars. The ℓ-th row of a
matrix A is denoted by Aℓ and is treated as a row vector;
Aij denotes the (i, j)-th entry. Let x+ = max{x, 0}. We
write Nd(µ,Σ) for a d-dimensional Gaussian with mean µ
and covariance Σ.

II. PERFORMANCE METRICS

Let C(ℓ) = {c(ℓ)1 , c
(ℓ)
2 , . . . , c

(ℓ)
M } denote the codebook of user

ℓ. Each active user transmits k bits, so M = 2k. Let wℓ ∈
{∅, 1, 2, . . . ,M} denote the index of the codeword chosen by
user ℓ, where wℓ = ∅ indicates that the user is silent (not
active). We use index pair (i, j) to refer to the jth codeword
of the ith codebook. Then the set of transmitted codewords
can be defined as W := {(ℓ, wℓ) : wℓ ̸= ∅}, and the GMAC
channel output can be written as

y =
∑

ℓ:(ℓ,wℓ)∈W

c(ℓ)wℓ
+ ε, (2)

where the number of active users is Ka = |W| ≤ L.
Given the channel output y and the codebooks {C(ℓ)}, the

decoder aims to recover the set of transmitted codewords. Let“wℓ ∈ {∅, 1, 2, . . . ,M} denote the decoded codeword in the
ℓth codebook, and let ”W := {(ℓ,“wℓ) : “wℓ ̸= ∅} denote the set
of decoded codewords, or the decoded set in short, with size
|”W| =:”Ka.

Such a decoder can make three types of errors, which we
call misdetection (MD), false alarm (FA) and active user error
(AUE). MD refer to an active user declared silent, and FA to
a silent user declared active. An AUE occurs when an active
users is correctly declared active, but the decoded codeword is
incorrect. The error probabilities corresponding to these events
are defined as follows:

pMD := E

1{Ka ̸= 0} · 1

Ka

∑
ℓ:(ℓ,wℓ)∈W

1{ŵℓ = ∅}

 , (3)

pFA := E

1{”Ka ̸= 0} · 1”Ka

∑
ℓ:(ℓ,ŵℓ)∈”W 1{wℓ = ∅}

 , (4)

pAUE := E

1{Ka ̸= 0} · 1

Ka

∑
ℓ:(ℓ,wℓ)∈W

1{ŵℓ ̸= wℓ}

 . (5)

III. RANDOM CODING ACHIEVABILITY BOUND

In this section, we derive achievability bounds on pMD, pFA
and pAUE using a random coding scheme under maximum-
likelihood decoding, assuming the number of active users Ka

is drawn from a known distribution pKa
and given the signal-

to-noise ratio Eb/N0. Without loss of generality, we take σ2 =
N0/2 = 1, so the constraint on Eb/N0 is enforced via Eb.

Recall that each active user transmits k bits using a
length n codeword. For ℓ ∈ [L], we construct the codebook
C(ℓ) with codewords c

(ℓ)
j = c̃

(ℓ)
j 1{∥c̃(ℓ)j ∥22 ≤ Ebk}, where

c̃
(ℓ)
j

i.i.d.∼ Nn(0, E
′
bk/nI) and E′

b ≤ Eb. The indicator function
ensures the codewords c(ℓ)j satisfy the energy-per-bit constraint
∥c(ℓ)j ∥22/k ≤ Eb. Note that the codewords across codebooks
are distinct almost surely.

Given y is the realisation of y, the decoder first computes
the maximum-likelihood estimate K ′

a of the number of active
users Ka, via

K ′
a = argmax

K∈[κl:κu]

py|Ka
(y|K), (6)

where κl, κu are deterministic values between 0 and L, chosen
such that P(Ka /∈ [κl, κu]) is small (e.g., 10−6). This step is
similar to the scheme in [11].

The decoder then estimates the codewords c
(ℓ)
ŵℓ

for ℓ ∈ [L]
via a combinatorial least squares problem. Define dummy
variables w′

ℓ ∈ {∅, 1, 2, . . . ,M} for ℓ ∈ [L], and the set
W ′ := {(ℓ, w′

ℓ) : w′
ℓ ̸= ∅}. Let c(W ′) :=

∑
j:(j,w′

j)∈W′ c
(j)
w′

j
.

The decoder computes:

{ŵ1, ŵ2, . . . ,”wL} = argmin
{w′

1,w
′
2,...,w

′
L}:

K′
a≤|W′|≤K′

a

∥c(W ′)− y∥22 (7)

where K ′
a = max{κl,K ′

a − r},K ′
a = min{κu,K ′

a + r},
with r ≥ 0 being the decoding radius. In words, the decoder
searches over all decoded sets W ′ with size between K ′

a and
K ′

a, which contain at most one codeword from each codebook,
to minimize the distance between the sum of the codewords
in the decoded set c(W ′) and the observed channel output y.
The complexity of this decoder grows exponentially with n,
making it computationally infeasible.

Theorem 1. Assume the distribution of the number of active
users pKa

is known. Given P = Ebk/n, P ′ = E′
bk/n,

Eb ≥ E′
b, r ≥ 0, κl, κu such that 0 ≤ κl ≤ κu ≤ L,

κ′a = max{κl, κ′a − r} and κ′a = min{κu, κ′a + r}, the
random coding scheme with the decoder described in (6)–(7)



has error probabilities that satisfy: pMD ≤ εMD, pFA ≤ εFA
and pAUE ≤ εAUE, where

εMD =

κu∑
κa=κl

pKa
(κa)

κu∑
κ′
a=κl

∑
t∈T

∑
t̂∈“Tt

min{pt,t̂, ξ(κa, κ
′
a)}

·
ψu∑
ψ=0

ν(tmin, ψ)

ν(tmin)

(κa − κ′a)
+ + (t− t̂)+ + ψ

κa
+ p̃

(8)

εFA =

κu∑
κa=κl

pKa(κa)

κu∑
κ′
a=κl

∑
t∈T

∑
t̂∈“Tt

min{pt,t̂, ξ(κa, κ
′
a)}

·
ψu∑
ψ=0

ν(tmin, ψ)

ν(tmin)
∆FA + p̃ (9)

∆FA =
(κ′a − κa)

+ + (t̂− t)+ + ψ

κa − t− (κa − κ′a)
+ + t̂+ (κ′a − κa)+

εAUE =

κu∑
κa=κl

pKa(κa)

κu∑
κ′
a=κl

∑
t∈T

∑
t̂∈“Tt

min{pt,t̂, ξ(κa, κ
′
a)}

·
ψu∑
ψ=0

ν(tmin, ψ)

ν(tmin)

tmin − ψ

κa
+ p̃ , (10)

for which

p̃ = P
(
Ka /∈ [κl, κu]

)
+ E[Ka]

Γ(n2 ,
nP
2P ′ )

Γ(n2 )

pt,t̂ = exp
(
−n
2
E(t, t̂)

)
E(t, t̂) = max

ρ,ρ1∈[0,1]
−ρρ1t̂R1 − ρ1R2 + E0(ρ, ρ1)

R1 =
2

n
lnM, R2 =

2

n
ln

Ç
min{κa, κ′a}

t

å
E0(ρ, ρ1) = max

λ
ρ1a+ ln(1− ρ1P1b)

P1 = 1 +
Ä
(κa − κ′a)

+ + (κ′a − κa)
+
ä
P ′

a = ρ ln(1 + P ′t̂λ) + ln(1 + P ′tµ)

b = ρλ− µ

1 + P ′tµ
, µ =

ρλ

1 + P ′t̂λ

T =
[
0 : min{κa, κ′a}

]“Tt = [¶
t+ (κa − κ′a)

+ − (κa − κ′a)
+
©+

: tu

]
tu = min

¶
κ′a − (κ′a − κa)

+,

t+ (κ′a − κa)
+ − (κ′a − κa)

+
©

tmin = min{t, t̂}
R = L− κa + tmin − (κ′a − κa)

+ − (t̂− t)+ > 0

ψu = min {tmin,R− tmin}

ν(tmin, ψ) =

Ç
R− tmin

ψ

å
Mψ ·

Ç
tmin

tmin − ψ

å
(M − 1)tmin−ψ

ν(tmin) =

ψu∑
ψ=0

ν(tmin, ψ)

L columns (users)

aℓ:
signature of user ℓ

k

Xℓ: bipolar

message

of user ℓ

L

ñ = n/k

k

n channel uses

Y A X E= +

Figure 1. Linear coding scheme.

ξ(κa, κ
′
a)

= min
κ∈[κl:κu]\κ′

a

®
1{κ < κ′a}

Γ(n2 , ζ)

Γ(n2 )
+ 1{κ > κ′a}

γ(n2 , ζ)

Γ(n2 )

´
ζ =

n

2(1 + κaP ′)
ln

Å
1 + κP ′

1 + κ′aP
′

ãï
1

1 + κ′aP
′ −

1

1 + κP ′

ò−1

.

The proof of Theorem 1 is provided in the longer version
of this paper. It is analogous to the proof of the bounds in [11,
Theorem 1], involving union bounds over error events via a
change of measure, Chernoff bound and Gallager’s ρ-trick.

Remark: Theorem 1 reduces to the achievability bound
in [3, Sec. IV] when Ka = K ′

a = L with probability 1 and
the decoding radius is r = 0, i.e., when all users are active
and the number of users is known and fixed.

IV. EFFICIENT CDMA-TYPE CODING SCHEME

In this section, we describe an efficient coding scheme and
obtain performance guarantees that can be compared with the
achievability bound in Theorem 1.

Coding Scheme: Let the row vector Xℓ ∈ Rk denote
the length-k message of user ℓ ∈ [L], recalling that k (the
number of bits transmitted by each active user) is fixed, and
does not grow with n and L. To construct the codeword
of user ℓ, we first left-multiply Xℓ with a column vector
(signature sequence) aℓ ∈ Rn

k to obtain the matrix Cℓ =
aℓXℓ ∈ Rn

k ×k. The codeword of user ℓ is then obtained as
cℓ = vectorize(Cℓ) ∈ Rn.

For simplicity, we let ñ = n
k , and define the matrices A =

[a1, . . . ,aL] ∈ Rñ×L and X = [X⊤
1 , . . . ,X

⊤
ℓ ]

⊤ ∈ RL×k.
Then the GMAC channel output in (1) can be rewritten in
matrix form as

Y =

L∑
ℓ=1

Cℓ + E = AX + E, (11)

where E ∈ Rñ×k is the channel noise with Eij
i.i.d.∼ N (0, σ2).

See Fig. 1 for an illustration. In this paper, we consider the
simple case where each user ℓ is independently active with
probability α: Xℓ ∈ {±

√
E}k when the user is active, and

Xℓ = 0 when the user is not active. This is equivalent to
considering Xℓ

i.i.d.∼ pX̄ , for ℓ ∈ [L], where

pX̄ = (1− α)δ0 + αpX̄a
. (12)

Here δ0 is the unit mass at 0, and pX̄a
is a uniform distribution

on the set of messages Xa = {±
√
E}k. Our framework can



be adapted flexibly to more complicated priors pX̄ , which will
be discussed in the extended version of this paper.

Spatially Coupled Signature Design: We use a spatially
coupled design for A, the matrix of signature sequences. The
entries of A ∈ Rñ×L are independent zero-mean Gaussian
random variables whose variances are specified by a base
matrix W ∈ RR×C. The matrix A is obtained by replacing
each entry Wr,c of the base matrix by an ñ

R × L
C block with

entries drawn i.i.d.∼ N (0,
Wr,c
ñ/R ), for r ∈ [R], c ∈ [C]. More

precisely,

Aiℓ
i.i.d.∼ N

Å
0,

1

ñ/R
Wr(i),c(ℓ)

ã
, for i ∈ [ñ], ℓ ∈ [L]. (13)

Here the operators r(·) : [ñ] → [R] and c(·) : [L] → [C] map a
particular row or column index of A to its corresponding row
block or column block index of W . See Fig. 2 for an example.
Similar designs have been used for sparse superposition codes
for communication over AWGN channels [20], [22].

As in [16], we assume that entries of the base matrix W
are scaled to satisfy:

R∑
r=1

Wr,c = 1 for c ∈ [C], κ1 ≤
C∑

c=1

Wr,c ≤ κ2, (14)

for some κ1, κ2 > 0. This scaling ensures that the columns of
A (the signature sequences aℓ) have unit norm in expectation.
The standard i.i.d. Gaussian design where Aiℓ

i.i.d.∼ N (0, 1/ñ)
is a special case of the spatially coupled design, obtained by
using a base matrix with a single entry (R = C = 1).

A. AMP Decoder and State Evolution

In this subsection, we describe an AMP decoder to recover
X from Y given the spatially coupled matrix A, and provide
asymptotic guarantees on its error performance.

Spatially Coupled AMP (SC-AMP): Starting with an
initializer X0 = 0L×k, in iteration t ≥ 0 the decoder
computes:

Zt = Y −AXt + Z̃
t
, Xt+1 = ηt

(
Xt + V t

)
. (15)

Here Xt+1 is an updated estimate of X produced using a
denoising function ηt : RL×k → RL×k, and Zt can be viewed
as a modified residual. The denoiser is assumed to be Lipschitz
and separable, acting row-wise on matrix inputs:

ηt(S) =

 ηt,c(1)(S1)
...

ηt,c(L)(SL)

 , (16)

where ηt,c : R1×k → R1×k corresponds to the denoiser for
users in block c ∈ [C]. We will specify our choice of ηt,c
shortly.

For t ≥ 0, Z̃t and V t in (15) are defined through a matrix
Qt ∈ RkR×kC, which consists of R × C submatrices, each of
size k × k. For r ∈ [R], c ∈ [C], the submatrix Qt

r,c ∈ Rd×d
is defined as:

Qt
r,c =

[
Φt

r
]−1

T t
c,

signature matrix A

ñ
R

ñ

L/C
L

base matrix W

R

C

1Figure 2. The entries of A are independent and distributed as Aiℓ ∼
N (0, 1

ñ/R
Wr(i),c(ℓ)), where W is the base matrix. The white parts of A

and W correspond to zeros.

where Φt
r ,T

t
c ∈ Rk×k are deterministic matrices defined later

in (17)–(18). The ith row of matrix Z̃
t
∈ Rñ×k then takes the

form:

Z̃
t

i = kµinZ
t−1
i

C∑
c=1

Wr(i),cQ
t−1
r(i),c

〈
η′t−1,c

(
Xt−1
ℓ + V t−1

ℓ

)〉T

c
,

where µin = µR
C and ⟨·⟩c is an average operator over the rows

in the cth block, i.e.,〈
η′t,c

(
Xt
ℓ + V t

ℓ

)〉
c
=

1

L/C

∑
ℓ∈Lc

η′t,c(ℓ)(X
t
ℓ + V t

ℓ)

with Lc = {(c − 1)L/C + 1, . . . , cL/C}. Here η′t,c(s) =
dηt,c(s)

ds ∈ Rk×k is the derivative (Jacobian) of ηt,c, and
quantities with negative iteration index are set to all-zero
matrices. The ℓth row of V t ∈ RL×k takes the form:

V t
ℓ =

ñ∑
i=1

Ai,ℓZ
t
iQ

t
r(i),c(ℓ), for ℓ ∈ [L].

State Evolution: As we shall prove in the longer version of
this paper, for t ≥ 1, in the limit as L, n→ ∞ with L/n→ µ,
the empirical distribution of the rows of Zt in the block
r ∈ [R] converges to a Gaussian Nk(0,Φ

t
r ). Furthermore,

the empirical distribution of the rows of (Xt + V t − X)
in block c ∈ [C] converges to another Gaussian Nk(0,T

t
c).

The covariance matrices Φt
r ,T

t
c ∈ Rk×k are iteratively defined

via a deterministic recursion called the spatially coupled state
evolution (SC-SE). Initialized with Ψ0

c = αEIk×k, SC-SE is
defined for t ≥ 0 as follows, for r ∈ [R] and c ∈ [C]:

Φt
r = σ2I + kµin

C∑
c=1

Wr,cΨ
t
c, (17)

Ψt+1
c = E

{[
ηt,c

(
X̄ +Gt

c
)
− X̄

]T [
ηt,c

(
X̄ +Gt

c
)
− X̄

]}
,

where Gt
c ∼ Nk(0,T

t
c), T t

c =

[
R∑
r=1

Wr,c[Φ
t
r ]
−1

]−1

. (18)

Here Gt
c is independent of X̄ ∼ pX̄ . We can interpret Ψt

c as
the asymptotic error covariance between the estimate Xt and
the true message matrix X , for the c-th block of users.



Bayes-optimal denoiser ηt: Since the empirical distribution
of the rows of (Xt +V t) in block c converges to the law of
X̄ + Gt

c, the Bayes-optimal denoiser ηBayes
t,c is the minimum

mean squared error (MMSE) estimator for recovering a vector
signal X̄ embedded in independent Gaussian noise with
covariance T t

c. This denoiser takes the following form. For
c ∈ [C] and s ∈ R1×k,

ηBayes
t,c (s) = E{X̄|X̄ +Gt

c = s} (19)

=

α
2k

∑
x′∈Xa

x′ exp
Ä
− 1

2 (x
′ − 2s)

(
T t

c
)−1

x′T
ä

(1− α) + α
2k

∑
x̃′∈Xa

exp
Ä
− 1

2 (x̃
′ − 2s)

(
T t

c
)−1

x̃′T
ä ,

where we recall Xa = {±
√
E}k. While we use the denoiser

in (19) for numerical simulations, Theorem 2 holds for any
Lipschitz denoiser. The Bayes-optimal denoiser in (19) can be
verified to be Lipschitz by direct differentiation. A limitation
of this denoiser is that its computational cost is exponential
in k, making it impractical for large k. We explore efficient
alternatives in the extended version of this paper.

Hard-decision estimate: In each iteration t ≥ 1, the
decoder can produce a hard-decision maximum a posteriori
(MAP) estimate of the message matrix, denoted by X̂t+1 =
ht(X

t + V t) ∈ RL×k . Analogous to ηt, ht acts row-
wise on matrix inputs, with ht,c denoting the function acting
on the c-th block of the matrix input, where ht,c(s) =
argmaxx′∈Xa∪0 P

(
X̄ = x′ | X̄ +Gt

c = s
)
.

We now present Theorem 2, which characterizes the asymp-
totic performance of SC-AMP (in terms of pMD, pFA, pAUE)
via its corresponding state evolution recursion in (17)-(18).

Theorem 2. Consider the spatially coupled coding scheme,
with the rows of the message matrix X i.i.d. according to
the prior pX̄ in (12). Assume that for t ≥ 1, the denoisers ηt
used in the AMP decoder (15) are of the form in (16), with ηt,c
Lipschitz continuous for c ∈ [C]. Let X̂t+1 = ht(X

t + V t)
be the hard-decision estimate in iteration t. In the limit as
L, n→ ∞ with L/n→ µ, the pMD, pFA and pAUE in iteration
t ≥ 1 satisfy the following almost surely:

lim
L→∞

pMD = lim
L→∞

E
[
1{Ka ̸= 0}

Ka

∑
ℓ:Xℓ ̸=0

1{X̂t+1
ℓ = 0}

]

=
1

C

C∑
c=1

P
(
ht,c

(
X̄a +Gt

c
)
= 0

)
, (20)

lim
L→∞

pFA = lim
L→∞

E
[
1{”Ka ̸= 0}”Ka

∑
ℓ:X̂t+1

ℓ ̸=0

1{Xℓ = 0}
]

=

ñ
α
∑C

c=1 P(ht,c(X̄a +Gt
c) ̸= 0)

(1− α)
∑C

c=1 P(ht,c(G
t
c) ̸= 0)

+ 1

ô−1

, (21)

lim
L→∞

pAUE = lim
L→∞

E
[
1{Ka ̸= 0}

Ka

∑
ℓ:Xℓ ̸=0

1{X̂t+1
ℓ ̸= Xℓ}

]

=
1

C

C∑
c=1

P
(
ht,c

(
X̄a +Gt

c
)
̸= X̄a

)
. (22)
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Figure 3. Minimum Eb/N0 needed to achieve target error probability
max{pMD, pFA} + pAUE < 0.01, for a range of active user densities µa.
User payload k = 6, and α = 0.7. Orange curve is the achievability bound in
Theorem 1 computed with L = 200. Blue curves correspond to the guarantees
computed via Theorem 2 with i.i.d. or SC design matrix.

Here X̄a ∼ pX̄a
and Gt

c ∼ Nk(0,T
t
c) are independent, with

their laws given in (12) and (18) respectively.

The proof is given in the longer version of this paper.

B. Numerical Results

Fig. 3 plots the achievability bound of Theorem 1 (orange
curve), along with the asymptotic guarantees of Theorem 2 for
AMP decoding with i.i.d. Gaussian (dashed blue) or spatially
coupled Gaussian design (solid blue). The user payload is
k = 6 bits, and each user is active with probability α = 0.7.
For a range of active user densities µa = αL/n, we plot the
minimum Eb/N0 required for each coding scheme to achieve
max{pMD, pFA}+pAUE < 0.01. We set the messages of active
users to be Xℓ ∈ {±1}k (E = 1) and vary Eb/N0 via the
noise variance σ2.

The achievability bound in Theorem 1 was computed with
L = 200 and decoding radius r = L. This means the
maximum-likelihood decoder in (7) searches through all pos-
sible combinations of active users out of L, which gave the
tightest achievability bounds in this setting. The curves for
AMP decoding performance are obtained using the limiting
error probabilities in Theorem 2, which can be computed using
the state evolution recursion in (17)-(18). The state evolution
depends on L, n only through the ratio µ = L/n. The spatially
coupled state evolution also depends on the parameters of the
base matrix W .

We observe that the asymptotic error probabilities of SC-
AMP are consistently lower than those obtained from the
finite-length achievability bounds. The achievability bound
depends on n and L, and is challenging to compute for large
n,L. A future direction is to derive asymptotic achievability
bounds which depend only on µ = L/n. The extended version
of this paper will provide a more in-depth simulation study,
including i) the empirical performance of the AMP decoder
at finite n,L, and ii) the tradeoff between different types of
errors FA, MD, AUE for different values of α.
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