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Abstract

The objective of this paper is a model that is able to discover, track and segment
multiple moving objects in a video. We make four contributions: First, we introduce
an object-centric segmentation model with a depth-ordered layer representation.
This is implemented using a variant of the transformer architecture that ingests
optical flow, where each query vector specifies an object and its layer for the
entire video. The model can effectively discover multiple moving objects and
handle mutual occlusions; Second, we introduce a scalable pipeline for generating
multi-object synthetic training data via layer compositions, that is used to train
the proposed model, significantly reducing the requirements for labour-intensive
annotations, and supporting Sim2Real generalisation; Third, we conduct thorough
ablation studies, showing that the model is able to learn object permanence and
temporal shape consistency, and is able to predict amodal segmentation masks;
Fourth, we evaluate our model, trained only on synthetic data, on standard video
segmentation benchmarks, DAVIS, MoCA, SegTrack, FBMS-59, and achieve state-
of-the-art performance among existing methods that do not rely on any manual
annotations. With test-time adaptation, we observe further performance boosts.

1 Introduction

Humans have the ability to discover and segment moving objects in videos. This ability is present
even in young infants, together with notions of object permanence through occlusions, and temporal
shape constancy [4, 5, 50, 54]. Achieving this ability by machine has long been a goal of the field [7–
9, 14, 27, 33, 45, 58, 59, 65, 67, 68], and modern methods are now able to reliably discover and
segment single moving objects using both appearance (RGB) and motion (optical flow) streams of
the video. However, success is limited in the case of multiple moving objects and occlusion.

Our goal in this paper is to develop and study a model that can discover multiple moving objects
and also handle their mutual occlusions. To this end, we propose a layered object-centric model that
predicts amodal segmentation masks [73] for each object throughout the video. Note that, given
amodal segmentations, the depth ordering of the object layers can be determined from occlusions in
the observed (modal) frames when the objects overlap. See Figure 1. Our innovation is to build this
mechanism into the representation: when objects overlap in a frame, the model has to maintain the
amodal shapes through temporal consistency, and can thus infer depth ordering.

To achieve this goal we use only optical flow as our primary information stream. There are benefits
and drawbacks to this choice. The benefits are two fold: first, the information that we are after,
the segmentation masks, are directly available from discontinuities in the flow field; second, a key
advantage of using solely optical flow is that the domain adaptation problem is largely avoided [15, 32]
– and this means that the model can be trained on synthetic sequences and applied directly to real
sequences without a significant Sim2Real disparity. However, the drawbacks are also two fold: first,
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Figure 1: Multiple-object Discovery and Segmentation. We develop a layered model for segmenting
and tracking multiple objects by their motion, even under mutual occlusion. The model takes only
optical flow as its input, and predicts an amodal segmentation (whole physical structure) for each
object, and associating an object to the same layer throughout the video. The resultant modal
masks (visible parts) can be constructed by overlaying layers based on the inferred depth ordering (in
this case, layer 0-1-2 from front to back). From left to right: RGB sequence, estimated (imperfect)
optical flows, amodal mask inferences from our model and resultant modal masks.

unlike the appearance stream, objects can be invisible in flow when they are not moving, thereby
requiring the model to build a concept of object permanence; and second, but more subtly, flow is not
like appearance in that we cannot expect constancy even when the object is moving (for example, due
to camera shake that affects the flow but not the appearance), and thus the model cannot strongly use
flow coherence as a cue but must instead learn to model the segmentation mask shape.

We make four contributions: (i) we introduce an Object-Centric Layered Representation (OCLR)
model for discovering and segmenting multiple moving objects and inferring their mutual occlusions
from optical flow alone. The architecture of the model is based on a transformer, with DETR like
learnable queries, where each query determines the amodal segmentation mask for an object and its
layer order throughout the video. (ii) we introduce a layer-based synthetic pipeline to generate multi-
object training sequences that cover the variability of the target real sequences in terms of: multiple
deforming objects, overlapping objects in some frames, moving cameras, and non-static backgrounds.
(iii) We demonstrate that the model trained on flow from the synthetic videos is able to learn object

permanence and temporal shape constancy – even if an object is partially occluded in many frames,
the model is still able to predict an amodal mask. (iv) Finally, we evaluate the model (trained only on
synthetic sequences) on multiple real video segmentation benchmarks, DAVIS, MoCA, SegTrack,
and FBMS-59; and demonstrate strong Sim2Real generalisation, achieving superior segmentation
performance compared to other human-label-free methods. The addition of a test-time adaptation
to include appearance from a self-supervised DINO model boosts the performance further, even
outperforming some supervised approaches that are finetuned on real data sequences.

2 The Object-Centric Layered Representation (OCLR) Model

This section describes our object-centric layered representation model that ingests optical flow for the
frames of a video, and outputs the segmentation masks and tracks of the moving objects it contains.
The model also determines the number of moving objects and their depth order. Specifically, the
model predicts amodal (i.e. complete) segmentation masks and associates each object with a layer.
The layers are composed to form the modal segmentations in the observed optical flow. The model is
trained on synthetic sequences to learn temporal coherence and maintain the object shape even under
occlusion, and as a consequence, develops a notion of object permanence.

2.1 Layered representation

For a given video with T frames, we can represent its motion by optical flows, Vflow =
{F1, F2, . . . , FT }, we aim to segment the moving objects in videos by adopting a layered model,
where each object is segmented and consistently associated to one layer throughout the video:

{(Â1, r̂1), . . . , (ÂT , r̂T )} = Φ(Vflow) (1)
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Figure 2: OCLR Model architecture. The model is a U-Net architecture with a Transformer
bottleneck. It takes optical flow as input and extracts spatial features by CNN encoders. A transformer
encoder jointly processes spatio-temporal features across all frames, followed by a transformer
decoder that determines the layer representations. Each learnable query vector in the transformer
decoder is associated to one object and used to infer its layer depth. Additionally, the cross-attention
maps from the last transformer decoder are extracted and upsampled by CNN decoders to infer
amodal segmentation for the moving objects. Note, the skip connections from the CNN encoders to
decoders are not shown.

where Âi ∈ RH×W×K refers to the binary amodal segmentation of the i-th frame, together with a
predicted layer depth r̂i ∈ RK . H,W refer to the input height and width, and K denotes the number
of object layers. Note that, the layer depth value here does not have a true meaning, but only indicates
the layer ordering. By definition, at all time steps, the same layer would remain empty or always bind
to the same object throughout the video, i.e. objects can be effectively tracked by the considered
layered representation.

Modal mask generation. Given the predicted amodal segmentation and layer depth, we describe
the composition procedure to generate the modal segmentation for moving objects. In specific, we
permute the index of layers (amodal segmentations) based on their depth values, such that, Âk−1 is
always in front of Âk. Note that, pixels in amodal masks defined here are binary-valued, i.e. either 0
or 1. For the i-th frame, its modal segmentation can thus be computed via an iterative, front-to-back
blending procedure :

M̂k
i = (1− αk

i )⊙ Âk
i (2)

where αk
i = clip(αk−1

i + M̂k−1
i , 0, 1), denoting an accumulated opacity layer with α0

i = 0.

2.2 Architecture

In order to accommodate the layered representation, we introduce an architecture that takes optical
flows as input, and outputs a set of layers and their depths, see Figure 2. We adopt a U-Net architecture
with a Transformer-based bottleneck, the queries in transformer decoder play the role as layers in our
proposed representation, each is either empty or encoding the amodal shape of one moving object
along the video.

CNN backbone. Given a sequence of optical flow inputs, a U-Net encoder is used to compute
frame-wise features, V = {v1, . . . , vT } = {Φenc(F1), . . . ,Φenc(FT )}, where vi ∈ Rh×w×c refers
to the feature maps, with height h, width w and number of feature channels c. Following [67], we
use Instance Normalisation (IN) [60] after each convolution, which encourages the separation of
foreground motions from background.

Transformer encoder. We flatten the outputs from the ConvNets in both temporal and spatial
dimensions, and inject the positional information by adding a set of learnable spatio-temporal
embeddings. As a consequence, the video features are converted into a sequence of vectors, and
passed into Transformer Encoder to model the temporal relationship across multiple frames.

Transformer decoder. We pass the vector sequence to transformer decoder, where K learnable
embeddings are used as object queries for individual layers. We broadcast the queries along the
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temporal dimension, and supply positional information with learnable temporal embeddings, Qobj ∈
RTK×c. The queries that only differ in temporal embeddings will be associated to the same moving
object along the video.

As outputs from transformer decoder, we extract the last cross-attention maps and recover their spatial
dimensions, ρ ∈ RTK×h×w×nheads, which will be progressively upsampled with skip connections
from the ConvNets encoders, resulting in binary amodal segmentation for the object queries in each
frame, {Â1, . . . , ÂT } = Φdec(ρ).

Layer ordering. Apart from amodal segmentations, the model will also infer the depth of the layers.
We assume a global layer ordering that remains fixed across frames. As shown in Figure 2, output
object queries from transformer decoder are maxpooled along the temporal dimension and passed
through two feed-forward layers, to get the output r̂ ∈ R1×K , indicating the depth for each of the K
layers. Intuitively, this is equivalent to reason the layer depth based on one selected key occlusion
frame from the whole sequence. By defining the lowest depth value as corresponding to the top
layer, we then obtain a depth order prediction between layers. Note that, for layers that are empty or
contain non-interacting objects, the ordering is not strictly defined, thus any prediction should not be
penalised.

2.3 Training objectives

In this section, we describe the training procedure for the proposed architecture, with groundtruth
supervision on both amodal segmentation and layer ordering.

Amodal segmentation loss. In addition to the conventional pixelwise binary classification (Lbce)
on each of the K layers, we also adopt a pixelwise classification loss defined only on a strip region
around object boundaries, termed as the boundary loss Lbound. This additional loss further emphasises
the boundary regions, forcing the model to maintain shape information. During training, since the
predicted amodal segmentations are permutation invariant, we use Hungarian matching to match their
corresponding ground truth [12], and then compute the amodal loss :

Lamodal =
1

KT

K∑
k=1

T∑
i=1

(
λbce · Lbce(Âk

i ,Ak
i ) + λbound · Lbound(Âk

i ,Ak
i )
)

(3)

where λbce and λbound are loss weights.

Layer ordering loss. For layers with mutual occlusions, we train the order prediction module with
ranking losses on all K! pairs of layers, formally,

Lorder =
1

K!

∑
i̸=j

− log

(
σ

(
r̂i − r̂j

τ

))
(4)

where σ is the sigmoid function with a temperature factor τ , and the ground-truth ordering indicates
a relative depth relationship r̂i > r̂j between layer i and j.

Total loss. The overall loss for training is a combination of amodal Lamodal and ordering loss Lorder:

Ltotal = Lamodal + λorder · Lorder (5)

where λorder is the weight factor for the layer ordering loss.

Discussion. As discussed in early sections, our model is trained to infer amodal (i.e. complete)
object segmentations and layer depth, even though the object itself may sometimes be invisible in
the flow field due to being temporarily static, or partially occluded by other objects. As a result, the
model is forced to always maintain the object shape internally, i.e. a notion of object permanence, as
well as infer mutual occlusions from the visible flows. In the next section, we will introduce a pipeline
for simulating video sequences, where groundtruth amodal segmentations and layer orderings can be
generated at scale to train our model.

3 Synthetic dataset generation

We introduce a scalable pipeline to synthesize videos to train the proposed layered object-centric
model. The pipeline builds on the method of Lamdouar et al. [32], but extends it to simulating videos
with multiple objects and complex inter-object occlusions through a layer composition.
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Figure 3: Overview of the synthetic data pipeline. Left: Motion simulations of polygon and real
object sprites based on homography transformations (including spatial translations) and thin-plate
spline. Right: Layer composition of frames with independently moving objects.

As shown in Figure 3, we first simulate independent motions for foreground objects and backgrounds
within each layer. To construct a frame, we overlay the layers via an iterative binary blending
procedure, and an occlusion occurs when objects in different layers reside in the same spatial position,
similar to the idea discussed in Sect. 2.1. The proposed pipeline yields rich information at frame level,
including RGB appearances, groundtruth optical flows, and modal and amodal object segmentations.
Additionally, we can also compute optical flows for the RGB sequences with an off-the-shell flow
estimator, for example, RAFT [57]. In the following sections, we describe some key procedures for
video simulation, and leave more technical details to the Supplementary Material.

Foreground objects. We generate opaque 2D sprites with random shapes and RGB textures as
foreground objects. In detail, we adopt two major shapes, namely polygons, and real object sprites.
The polygon shapes can be either convex or non-convex, with different numbers of sides. A minimum
distance between vertices is also defined to better support vertex-based deformations. On the other
hand, the real object masks are directly sourced from the silhouettes in the YouTubeVOS dataset [66].
These generated objects are then applied with textures sampled from the PASS dataset [3], which is a
large-scale image dataset with human identifiable information removed.

Non-rigid object transformations. To simulate non-rigid motions, we apply both homography
transformations and thin plate splines to the objects. Thin plate splines define a non-linear coordinate
transformation with a set of control points. For polygon-shaped objects, we consider their vertices
as control points, and spatially perturb a subset of the vertices by distances di ∈ (0, Di/2), where
Di = min (|Pi −Pj |,∀j), defines the minimum distance between the perturbed point Pi and any
other points Pj . For real object silhouettes, a uniform grid is distributed over the object, and the grid
points are defined as control points, with Di being the distance between adjacent grid points.

Backgrounds and artificial occluders. To simulate the camera motions, we randomly sample
images from the PASS dataset, and apply random homography transformations and color jitterings.
Additionally, we replace backgrounds with real videos cropped from copyright-free sources to
simulate the complex background motions and depth variations. For cases with objects being
occluded, we introduce artificial occluders superimposed as the top layer. These occluders are
designed to have the same motion as the background.

Summary. The proposed simulation pipeline enables an arbitrary number of videos to be generated,
together with multiple types of groundtruth annotation; for example, amodal segmentation and layer
ordering. We prepare 4k synthetic sequences (around 120k frames) for training, the video sequences
contain 1, 2, or 3 objects in equal proportions. In the following, we train all models on this synthetic
video dataset unless otherwise specified.

4 Experiments

4.1 Datasets

To evaluate our multi-layer model, we benchmark on several popular datasets for video object segmen-
tation tasks. A brief overview of the datasets is given below, with full details in the Supplementary
Material.
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For single object video segmentation, we evaluate the model on DAVIS2016 [49], SegTrackv2 [34],
FBMS-59 [46] and MoCA [33]. Note that, despite the fact that multiple objects may be annotated, the
community often treats SegTrackv2 and FBMS-59 as a benchmark for single object segmentation [25,
68] by grouping objects in the foreground.

To benchmark motion-based segmentation for multiple objects, we introduce a synthetic validation
dataset (Syn-val) and a curated dataset (DAVIS2017-motion). The former is generated with the same
parameters as our synthetic training set (Sect. 3), containing over 300 multi-object sequences (around
10k frames) with 1, 2, 3 objects at equal proportions, and controllable occlusions for evaluating modal
and amodal segmentations in the ablation studies. Moreover, as objects in common motion cannot
be distinguished purely from motion cues, we re-annotate the original DAVIS2017 [51] dataset by
grouping jointly moving objects to form a new DAVIS2017-motion dataset. We will release our
modified annotations for future research.

4.2 Evaluation metrics

Following the common practice [49], we adopt region similarity (J ), aka. intersection-over-union, in
single object segmentation tasks. While for multiple object segmentation, we additionally consider
the contour similarity (F) [44]. As for MoCA dataset, since only bounding box annotations are
provided, we follow the same metric used in [37, 67], and report a mean object detection success rate
averaged over different IoU thresholds {0.5, 0.6, 0.7, 0.8, 0.9}.

4.3 Implementation details

Training details. As for pre-processing, we use RAFT to estimate optical flows at ±1 frame gaps,
and resize the obtained flows to 128 × 224. During training, we split the video sequences into 30
frames per sample, each input frame is first encoded by a U-Net encoder into a feature map with
1/16 of its original spatial resolution, and passed to the transformer bottleneck. We use K = 3
learnable object queries, associating to 3 independent foreground layers. The model is trained by the
Adam optimizer [28] with a learning rate linearly warmed up to 5× 10−5 during 40k iterations, and
decreased by half every 80k iterations.

RGB-based test-time adaptation. To alleviate the drawbacks from using purely flow informa-
tion (e.g. stationary objects over a long period of time), we investigate the benefits of test-time
adaptation with appearance features. For this we use the self-supervised DINO-pretrained vision
transformer [13] (ViT-S/8, patch sizes 8× 8). The model is adapted by using the per-frame object
masks obtained from the flow-based model predictions as noisy annotations. These annotations are
used to finetune the last two layers of the vision transformer by supervised contrastive learning.

The finetuned model for each sequence is then applied for mask propagation in the same manner
as [24]. Instead of propagating from the first frame of the sequence, we formulate a heuristic selection
process that picks a single key frame based on temporal coherence between OCLR segmentation
predictions. Object masks in this selected frame are then bi-directionally propagated across the whole
sequence. Apart from the starting frame information, flow-predicted masks in other frames are also
selectively introduced during the mask propagation process as a form of dynamic refinement. Finally,
we adopt CRF as a post-processing step to refine the resultant mask predictions. More technical
details can be found in the Supplementary Material.

4.4 Ablation study

Here, we present a series of ablation studies on training details and pipeline for data simulation
however, due to the space limitation, we can only summarise some key findings, we refer the reader
to Supplementary Materials for all details.

As shown in Table 1, we can make the following observations: First, Instance Normalisation in
CNN encoder is indispensable for training the network, as indicated by Ours-A vs. Ours-C; Second,
training on only modal mask degrades model performance on all datasets, especially on Syn-Val
with multiple objects and occlusions, suggesting that explicit amodal supervision are critical for
learning object permanence, as indicated by Ours-B vs. Ours-D; Third, a longer temporal input (Ours-
C vs. Ours-D) tends to result in slightly higher overall performance; Fourth, applying boundary
loss (Ours-C vs. Ours-E) leads to a noticeable performance boost. This validates our assumption that
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Table 1: Settings for training parameters. IN: Instance Normalisation; Amodal: Training on
amodal mask (vs. modal mask); λbound: weight on boundary loss; T : number of input frames.
Syn-Val (M|A) corresponds to modal and amodal results on synthetic dataset.

Training Settings J (Mean) ↑
Model IN Amodal λbound T Syn-Val (M | A) DAVIS2016 DAVIS2017-motion

Ours-A ✗ ✓ 0.2 30 83.5 | 83.0 67.6 48.7
Ours-B ✓ ✗ 0.2 30 81.1 | 76.9 69.2 50.5
Ours-C ✓ ✓ 0.2 30 85.6 | 84.7 72.1 54.5

Ours-D ✓ ✓ 0.2 15 82.8 | 83.0 71.3 53.5
Ours-E ✓ ✓ 0 30 80.9 | 81.6 71.5 54.1

focusing on object boundaries can help the model to learn the information regarding object shapes
and layer orders from optical flows.

4.5 Single object video segmentation

In this section, we compare our model with state-of-the-art methods on various single object segmen-
tation benchmarks. Note that, we mainly compare with the self-supervised approaches, as both lines
share the same spirit in the sense that training does not require any manual annotation, nor fine-tuning
on the target dataset. As shown in Table 2, our flow-only model demonstrates superior performance
over all other human-label-free approaches. Figure 4 provides qualitative illustrations of the model,
in comparison with other state-of-the-art methods. It can be seen that our predictions are temporally
consistent and not affected by noticeable background distractors in flow signals. Furthermore, our
model is capable of handling complex scenarios including heavy object deformations and occlusions.
The other methods are not able to maintain the object shape consistently, and consequently their
performance is weaker.

Table 2: Quantitative comparison on single object video segmentation benchmarks. “HA” stands
for human annotations, and “SR” refers to the detection success rate on MoCA. In column Sup.
(supervision), “None”, “Syn.”, “Real” represent self-supervision, synthetic data supervision, and
real data supervision, respectively. Bold represents the state-of-the-art performance (excluding our
test-time adaptation results, which are labelled as blue instead).

Training Settings J (Mean) ↑ SR (Mean) ↑
Model HA Sup. RGB Flow DAVIS2016 SegTrackv2 FBMS-59 MoCA

NLC [17] ✗ None ✓ ✓ 55.1 67.2 51.5 −
CIS (w. post-process.) [68] ✗ None ✓ ✓ 71.5 62.0 63.5 0.363

Motion Grouping [67] ✗ None ✗ ✓ 68.3 58.6 53.1 0.484
SIMO [32] ✗ Syn. ✗ ✓ 67.8 62.0 − 0.566

OCLR (flow-only) ✗ Syn. ✗ ✓ 72.1 67.6 65.4 0.599
OCLR (test. adap.) ✗ Syn. ✓ ✓ 80.9 72.3 69.8 0.559

FSEG [25] ✓ Real ✓ ✓ 70.7 61.4 68.4 −
COSNet [42] ✓ Real ✓ ✗ 80.5 49.7 75.6 0.417
MATNet [72] ✓ Real ✓ ✓ 82.4 50.4 76.1 0.544

D2Conv3D [53] ✓ Real ✓ ✗ 85.5 − − −

The RGB-based test-time adaptation gives a further performance boost on most of the benchmarks,
and is even competitive to some supervised approaches that have been finetuned on the target video
data. Note that the test-time adaptation is actually detrimental to performance on MoCA. This is not
unexpected though, as MoCA has many camouflage sequences where the objects are not visually
distinguishable in appearance from their background environment, and motion provides crucial cues
for discovering them.

4.6 Multiple object video segmentation

To the best of our knowledge, no existing unsupervised approaches have reported performance
segmenting multiple objects purely based on optical flow. Apart from re-running the original
self-supervised Motion Grouping [67] method (with three foreground queries) as a baseline on
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Figure 4: Qualitative results of single object video segmentation on DAVIS2016 and MoCA.

DAVIS2017-motion, we also train a variant of the Motion Grouping model directly supervised
by our synthetic dataset, namely Motion Grouping (sup.). As an additional baseline, we train a
Mask R-CNN [22] model with only optical flow inputs on our synthetic data, and refer to this as
Mask R-CNN (flow-only). We also compare with existing semi-supervised approaches, where the
first-frame ground-truth segmentation is provided, and the model only needs to propagate the masks
through the video, thus an easier task than ours which requires to simultaneously discover the objects
and track them.

As shown in Table 3, our proposed flow-only model outperforms both the Motion Grouping and Mask
R-CNN baselines. This is because our OCLR model exploits a layered representation to maintain
the object shape through the video, which enables to segment the objects that are under occlusion or
having unnoticeable motion. In contrast, Motion Grouping only predicts per-frame segmentations, i.e.
not forced to preserve temporal relations between objects. This conjecture can also be confirmed by
the qualitative results in Figure 5, for example, despite the person and one dog (4th column) are not
visible in the flow, our model still correctly recovers them. Moreover, after RGB-based test-time
adaptations, the performance can be further boosted both quantitatively and qualitatively, for example,
the boundary of the pig mask in 1st column, the person in the 5th column.

Table 3: Quantitative comparison of multi-object video segmentation on DAVIS2017-motion. Note
that, the compared methods here are trained without using any human annotations during training,
in particular, Motion Grouping (sup.), Mask R-CNN (flow-only) and OCLR models are supervised
by only synthetic data, and other approaches are trained with self-supervision. Bold represents the
state-of-the-art performance (excluding our test-time adaptation results, which are labelled as blue
instead).

Training settings DAVIS2017-motion performance

Model 1st-frame-GT RGB Flow J&F ↑ J (Mean) ↑ F (Mean) ↑
Motion Grouping [67] ✗ ✗ ✓ 35.8 38.4 33.2

Motion Grouping (sup.) ✗ ✗ ✓ 39.5 44.9 34.2
Mask R-CNN (flow-only) ✗ ✗ ✓ 50.3 50.4 50.2

OCLR (flow-only) ✗ ✗ ✓ 55.1 54.5 55.7
OCLR (test. adap.) ✗ ✓ ✓ 64.4 65.2 63.6

CorrFlow [31] ✓ ✓ ✗ 54.0 54.2 53.7
UVC [36] ✓ ✓ ✗ 65.5 66.2 64.7

MAST [30] ✓ ✓ ✗ 70.9 71.0 70.8
CRW [24] ✓ ✓ ✗ 73.4 72.9 74.1
DINO [13] ✓ ✓ ✗ 78.7 77.7 79.6
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Figure 5: Qualitative results of multi-object video segmentation on DAVIS2017-motion.

5 Related Work

Video object segmentation has been a longstanding task in computer vision, two protocols have
attracted increasing interest in the recent literature [6, 9, 11, 14, 18, 19, 25–27, 30, 31, 43, 45, 47, 48,
51, 59, 61, 62, 66, 69], namely, semi-supervised video object segmentation (semi-supervised VOS),
and unsupervised video object segmentation (unsupervised VOS). The former aims to re-localize
one or multiple targets that are specified in the first frame of a video with pixel-wise masks, and
the latter considers automatically segmenting the object of interest (usually the most salient one)
from the background in a video sequence. Despite being called unsupervised VOS, in practice, the
popular methods address such problems by supervised training on large-scale external datasets, this
is in contrast to our proposed approach that does not rely on human annotations whatsoever.
Motion segmentation focuses on discovering the moving objects in videos. In the literature, [9, 27,
45, 65] proposed to cluster the pixels with similar motion patterns; [14, 58, 59] train deep networks
to map the motions to segmentation masks. In [68], adversarial training was adopted to leverage the
independent motions between the moving object and its background; In [7, 8, 33], the authors propose
to highlight the independently moving object by compensating for the background motion, either by
registering consecutive frames, or explicitly estimating camera motion. In [67], a Transformer-like
architecture is used to reconstruct the input flows, and the segmentation masks can be generated as
a side product. In contrast to the existing approaches that primarily focus on single moving object
segmentation, we focus on segmenting multiple moving objects, even under mutual occlusions.
Layered representation was originally proposed by Wang and Adelson [63], to represent a video
as a composition of layers with simpler motions. Recently, the layer decomposition ideas have
been adopted for novel view synthesis [55, 71], separating reflections and other semi-transparent
effects [1, 2, 20, 40, 41], or foreground/background estimation [20]. Unlike these approaches that
primarily focus on graphics applications, we propose a layered representation to handle the occlusion
problems in multi-object discovery purely from their motions.
Object-centric representation decomposes the scenes into “objects”, normally, visual frame re-
construction has been widely used as training objective, for example, IODINE [21] uses iterative
variational inference to infer a set of latent variables recurrently, with each representing one object in
an image. Similarly, MONet [10] and GENESIS [16] also adopt multiple encoding-decoding steps,
[29, 39] propose a slot attention mechanism, which enables the iterative binding procedure. In this
paper, we also adopt a Transformer variant, but focus on discovering objects in videos by motions.

Amodal segmentation refers to segmenting the complete shape of objects, including the invisible
parts due to possible occlusions. Some existing approaches address this problem by applying human-
estimated [52, 56, 64] or synthetic [23] supervision, while other works generate training datasets with
synthetic occluders [35, 38, 70]. Although not specifically targeting the amodal segmentation task,
our work leverages the idea of amodal perception and grants the trained model a notion of object
permanence via synthetic amodal mask supervision.
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6 Discussion
We have achieved our design goal, in that the model is able to handle multiple objects, and their
occlusions, and to predict depth ordering of their layers. Also, the model demonstrates superior perfor-
mance, both quantitatively and qualitatively, over prior methods that rely on zero human annotations.
Nevertheless, there are of course some limitations and room for further improvements: First, the
current method may fail in very challenging real-world scenarios such as heavy object deformations,
complex mutual interactions, etc. Probably a more sophisticated data simulation pipeline with highly
articulated objects or even 3D sprites would help to further reduce this Sim2Real domain gap. Second,
our test-time adaptation has demonstrated a remarkable performance improvement benefiting from
the combination between flow inferences and RGB correlations. This overcomes, to an extent, the
problem of the flow-only model ‘forgetting’ the shape of objects when they are stationary for multiple
frames. A further direction could naturally be to incorporate RGB information into our flow-based
network in pre-training. Third, the model currently uses a global depth ordering for the sequence, so
it cannot handle situations such as order altering and mutual occlusions. Potential future studies could
work on a more sophisticated layered model by focusing on pair-wise relationships between objects.
Despite these limitations, the approach has convincingly demonstrated both the value of inferring
amodal segmentation masks, in order to handle occlusions, and the possibility of training such models
entirely on synthetic sequences.

Acknowledgements

This research is funded by EPSRC Programme Grant VisualAI EP/T028572/1, a Royal Society
Research Professorship RP\R1\191132, and a Clarendon Scholarship. We thank Tengda Han for
proof-reading.

References
[1] Jean-Baptiste Alayrac, João Carreira, and Andrew Zisserman. The visual centrifuge: Model-free layered

video representations. In CVPR, 2019.
[2] Jean-Baptiste Alayrac, Joao Carreira, Relja Arandjelovic, and Andrew Zisserman. Controllable attention

for structured layered video decomposition. In ICCV, 2019.
[3] Yuki M Asano, Christian Rupprecht, Andrew Zisserman, and Andrea Vedaldi. Pass: An imagenet replace-

ment for self-supervised pretraining without humans. In NeurIPS Track on Datasets and Benchmarks,
2021.

[4] Renée Baillargeon and Julie DeVos. Object permanence in young infants: Further evidence. Child
Development, 1991.

[5] Renée Baillargeon, Elizabeth S. Spelke, and Stanley Wasserman. Object permanence in five-month-old
infants. Cognition, 1985.

[6] Pia Bideau and Erik Learned-Miller. A detailed rubric for motion segmentation. arXiv preprint
arXiv:1610.10033, 2016.

[7] Pia Bideau and Erik Learned-Miller. It’s moving! a probabilistic model for causal motion segmentation in
moving camera videos. In ECCV, 2016.

[8] Pia Bideau, Aruni RoyChowdhury, Rakesh R. Menon, and Erik Learned-Miller. The best of both worlds:
Combining cnns and geometric constraints for hierarchical motion segmentation. In CVPR, June 2018.

[9] Thomas Brox and Jitendra Malik. Object segmentation by long term analysis of point trajectories. In
ECCV, 2010.

[10] Christopher P. Burgess, Loic Matthey, Nicholas Watters, Rishabh Kabra, Irina Higgins, Matt Botvinick,
and Alexander Lerchner. Monet: Unsupervised scene decomposition and representation. arXiv preprint
arXiv:1901.11390, 2019.

[11] Sergi Caelles, Kevis-Kokitsi Maninis, Jordi Pont-Tuset, Laura Leal-Taixé, Daniel Cremers, and Luc
Van Gool. One-shot video object segmentation. In CVPR, 2017.

[12] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers. In ECCV, 2020.

[13] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand
Joulin. Emerging properties in self-supervised vision transformers. In ICCV, 2021.

[14] Achal Dave, Pavel Tokmakov, and Deva Ramanan. Towards segmenting anything that moves. In ICCV
workshops, 2019.

[15] Carl Doersch and Andrew Zisserman. Sim2real transfer learning for 3d human pose estimation: motion to
the rescue. NeurIPS, 2019.

[16] Martin Engelcke, Adam R Kosiorek, Oiwi Parker Jones, , and Ingmar Posner. Genesis: Generative scene
inference and sampling with object-centric latent representations. In ICLR, 2020.

10



[17] Alon Faktor and Michal Irani. Video segmentation by non-local consensus voting. In BMVC, 2014.
[18] Deng-Ping Fan, Wenguan Wang, Ming-Ming Cheng, and Jianbing Shen. Shifting more attention to video

salient object detection. In CVPR, 2019.
[19] Katerina Fragkiadaki, Geng Zhang, and Jianbo Shi. Video segmentation by tracing discontinuities in a

trajectory embedding. In CVPR, 2012.
[20] Yossi Gandelsman, Assaf Shocher, and Michal Irani. “Double-DIP”: Unsupervised image decomposition

via coupled deep-image-priors. In CVPR, 2019.
[21] Klaus Greff, Raphael Lopez Kaufman, Rishabh Kabra, Nick Watters, Chris Burgess, Daniel Zoran, Loic

Matthey, Matthew Botvinick, and Alexander Lerchner. Multi-object representation learning with iterative
variational inference. In ICML, 2019.

[22] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask r-cnn. In ICCV, 2017.
[23] Yuan-Ting Hu, Hong-Shuo Chen, Kexin Hui, Jia-Bin Huang, and Alexander G. Schwing. Sail-vos:

Semantic amodal instance level video object segmentation – a synthetic dataset and baselines. In CVPR,
2019.

[24] Allan Jabri, Andrew Owens, and Alexei A Efros. Space-time correspondence as a contrastive random walk.
In NeurIPS, 2020.

[25] Suyog Dutt Jain, Bo Xiong, and Kristen Grauman. Fusionseg: Learning to combine motion and appearance
for fully automatic segmentation of generic objects in videos. In CVPR, 2017.

[26] Yeong Jun Koh and Chang-Su Kim. Primary object segmentation in videos based on region augmentation
and reduction. In CVPR, 2017.

[27] Margret Keuper, Bjoern Andres, and Thomas Brox. Motion trajectory segmentation via minimum cost
multicuts. In ICCV, 2015.

[28] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.
[29] Thomas Kipf, Gamaleldin F. Elsayed, Aravindh Mahendran, Austin Stone, Sara Sabour, Georg Heigold,

Rico Jonschkowski, Alexey Dosovitskiy, and Klaus Greff. Conditional Object-Centric Learning from
Video. In ICLR, 2022.

[30] Zihang Lai, Erika Lu, and Weidi Xie. Mast: A memory-augmented self-supervised tracker. In CVPR,
2020.

[31] Zihang Lai and Weidi Xie. Self-supervised learning for video correspondence flow. In BMVC, 2019.
[32] Hala Lamdouar, Weidi Xie, and Andrew Zisserman. Segmenting invisible moving objects. In BMVC,

2021.
[33] Hala Lamdouar, Charig Yang, Weidi Xie, and Andrew Zisserman. Betrayed by motion: Camouflaged

object discovery via motion segmentation. In ACCV, 2020.
[34] Fuxin Li, Taeyoung Kim, Ahmad Humayun, David Tsai, and James M. Rehg. Video segmentation by

tracking many figure-ground segments. In ICCV, 2013.
[35] Ke Li and Jitendra Malik. Amodal instance segmentation. In Bastian Leibe, Jiri Matas, Nicu Sebe, and

Max Welling, editors, ECCV, 2016.
[36] Xueting Li, Sifei Liu, Shalini De Mello, Xiaolong Wang, Jan Kautz, and Ming-Hsuan Yang. Joint-task

self-supervised learning for temporal correspondence. In NeurIPS, 2019.
[37] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,

and C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV, 2014.
[38] Huan Ling, David Acuna, Karsten Kreis, Seung Wook Kim, and Sanja Fidler. Variational amodal object

completion. In NeurIPS, 2020.
[39] Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold, Jakob

Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot attention. In NeurIPS,
2020.

[40] Erika Lu, Forrester Cole, Tali Dekel, Weidi Xie, Andrew Zisserman, David Salesin, William T Freeman,
and Michael Rubinstein. Layered neural rendering for retiming people in video. In SIGGRAPH, 2020.

[41] Erika Lu, Forrester Cole, Tali Dekel, Andrew Zisserman, William T Freeman, and Michael Rubinstein.
Omnimatte: Associating objects and their effects in video. In CVPR, 2021.

[42] Xiankai Lu, Wenguan Wang, Chao Ma, Jianbing Shen, Ling Shao, and Fatih Porikli. See more, know
more: Unsupervised video object segmentation with co-attention siamese networks. In CVPR, 2019.

[43] Kevis-Kokitsi Maninis, Sergi Caelles, Yuhua Chen, Jordi Pont-Tuset, Laura Leal-Taixé, Daniel Cremers,
and Luc Van Gool. Video object segmentation without temporal information. TPAMI, 2018.

[44] D.R. Martin, C.C. Fowlkes, and J. Malik. Learning to detect natural image boundaries using local
brightness, color, and texture cues. TPAMI, 2004.

[45] Peter Ochs and Thomas Brox. Object segmentation in video: a hierarchical variational approach for turning
point trajectories into dense regions. In ICCV, 2011.

[46] P. Ochs, J. Malik, and T. Brox. Segmentation of moving objects by long term video analysis. TPAMI, 2014.
[47] Seoung Wug Oh, Joon-Young Lee, Ning Xu, and Seon Joo Kim. Video object segmentation using

space-time memory networks. In ICCV, 2019.
[48] Anestis Papazoglou and Vittorio Ferrari. Fast object segmentation in unconstrained video. In ICCV, 2013.
[49] Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams, Luc Van Gool, Markus Gross, and Alexander

Sorkine-Hornung. A benchmark dataset and evaluation methodology for video object segmentation. In
CVPR, 2016.

[50] Jean Piaget. The construction of reality in the child. New York: Basic Books, 1954.
[51] Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Arbeláez, Alex Sorkine-Hornung, and Luc Van

Gool. The 2017 davis challenge on video object segmentation. arXiv preprint arXiv:1704.00675, 2017.

11



[52] Lu Qi, Li Jiang, Shu Liu, Xiaoyong Shen, and Jiaya Jia. Amodal instance segmentation with kins dataset.
In CVPR, 2019.

[53] Christian Schmidt, Ali Athar, Sabarinath Mahadevan, and Bastian Leibe. D2conv3d: Dynamic dilated
convolutions for object segmentation in videos. In WACV, 2022.

[54] ELIZABETH Spelke. Principles of object perception. Cognitive science, 1990.
[55] Pratul P. Srinivasan, Richard Tucker, Jonathan T. Barron, Ravi Ramamoorthi, Ren Ng, and Noah Snavely.

Pushing the boundaries of view extrapolation with multiplane images. In CVPR, 2019.
[56] Yihong Sun, Adam Kortylewski, and Alan Yuille. Amodal segmentation through out-of-task and out-of-

distribution generalization with a bayesian model. In CVPR, 2021.
[57] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow. In ECCV, 2020.
[58] Pavel Tokmakov, Karteek Alahari, and Cordelia Schmid. Learning motion patterns in videos. In CVPR,

2017.
[59] Pavel Tokmakov, Cordelia Schmid, and Karteek Alahari. Learning to segment moving objects. IJCV, 2019.
[60] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing ingredient

for fast stylization. arXiv preprint arXiv:1607.08022, 2016.
[61] Paul Voigtlaender, Yuning Chai, Florian Schroff, Hartwig Adam, Bastian Leibe, and Liang-Chieh Chen.

Feelvos: Fast end-to-end embedding learning for video object segmentation. In CVPR, 2019.
[62] Carl Vondrick, Abhinav Shrivastava, Alireza Fathi, Sergio Guadarrama, and Kevin Murphy. Tracking

emerges by colorizing videos. In ECCV, 2018.
[63] John YA Wang and Edward H Adelson. Representing moving images with layers. The IEEE Transactions

on Image Processing Special Issue: Image Sequence Compression, 1994.
[64] Yuting Xiao, Yanyu Xu, Ziming Zhong, Weixin Luo, Jiawei Li, and Shenghua Gao. Amodal segmentation

based on visible region segmentation and shape prior. In AAAI, 2021.
[65] Christopher Xie, Yu Xiang, Zaid Harchaoui, and Dieter Fox. Object discovery in videos as foreground

motion clustering. In CVPR, 2019.
[66] Ning Xu, Linjie Yang, Yuchen Fan, Dingcheng Yue, Yuchen Liang, Jianchao Yang, and Thomas Huang.

Youtube-vos: A large-scale video object segmentation benchmark. In ECCV, 2018.
[67] Charig Yang, Hala Lamdouar, Erika Lu, Andrew Zisserman, and Weidi Xie. Self-supervised video object

segmentation by motion grouping. In ICCV, 2021.
[68] Yanchao Yang, Antonio Loquercio, Davide Scaramuzza, and Stefano Soatto. Unsupervised moving object

detection via contextual information separation. In CVPR, 2019.
[69] Zhao Yang, Qiang Wang, Luca Bertinetto, Song Bai, Weiming Hu, and Philip H.S. Torr. Anchor diffusion

for unsupervised video object segmentation. In ICCV, 2019.
[70] Xiaohang Zhan, Xingang Pan, Bo Dai, Ziwei Liu, Dahua Lin, and Chen Change Loy. Self-supervised

scene de-occlusion. In CVPR, 2020.
[71] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. Stereo magnification:

Learning view synthesis using multiplane images. In SIGGRAPH, 2018.
[72] Tianfei Zhou, Shunzhou Wang, Yi Zhou, Yazhou Yao, Jianwu Li, and Ling Shao. Motion-attentive

transition for zero-shot video object segmentation. In AAAI, 2020.
[73] Yan Zhu, Yuandong Tian, Dimitris Mexatas, and Piotr Dollár. Semantic amodal segmentation. In CVPR,

2017.

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.

• Did you include the license to the code and datasets? [No] The code and the data are
proprietary.

• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

12



[Yes] In Abstract and Section 1, we have clearly included the intuitions, motivations
and contributions in our work, and briefly introduced a depth-ordered layered model
for multi-object motion segmentation by following a Sim2Real training procedure.

(b) Did you describe the limitations of your work?
[Yes] In Section 6, we reflect on several limitations and propose possible further
research directions.

(c) Did you discuss any potential negative societal impacts of your work?
[Yes] In the Supplementary Material, we have included a section discussing if our
work leads to possible negative social consequences. Overall, we reckon that our work
does not lead to noticeable detrimental effects to human rights, security, environment,
human livelihood, economics, etc.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them?
[Yes] In the Supplementary Material, we provided detailed explanation on how our
work conforms ethics review guidelines, including our effort to eliminate potential bias
and personally identifiable information in the dataset.

2. If you are including theoretical results...
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[N/A] There are no theoretical results introduced in our work.
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(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)?
[Yes] In Section 4, we have described the dataset, evaluation metrics and implemen-
tation details in our work. We also give more training details and settings in the
Supplementary Material.
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[Yes] In the Supplementary Material, we have reported the main results with error bars
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of GPUs, internal cluster, or cloud provider)?
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4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators?

[Yes] In Section 4, we have described the datasets we used with references to the
original source.

(b) Did you mention the license of the assets?
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personally identifiable information and offensive content in our curated dataset and
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(a) Did you include the full text of instructions given to participants and screenshots, if
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