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Abstract

Visual Question Answering (VQA) models play a crit-001
ical role in enhancing the perception capabilities of au-002
tonomous driving systems by allowing vehicles to analyze003
visual inputs alongside textual queries, fostering natural in-004
teraction and trust between the vehicle and its occupants005
or other road users. This study investigates the attention006
patterns of humans compared to a VQA model when an-007
swering driving-related questions, revealing disparities in008
the objects observed. We propose an approach integrating009
filters to optimize the model’s attention mechanisms, prior-010
itizing relevant objects and improving accuracy. Utilizing011
the LXMERT model for a case study, we compare atten-012
tion patterns of the pre-trained and Filter Integrated mod-013
els, alongside human answers using images from the NuIm-014
ages dataset, gaining insights into feature prioritization. We015
evaluated the models using a Subjective scoring framework016
which shows that the integration of the feature encoder filter017
has enhanced the performance of the VQA model by refining018
its attention mechanisms.019

1. Introduction020

Visual Question Answering (VQA) models are integral to021
autonomous driving systems as they enable vehicles to per-022
ceive and understand their surroundings by analyzing visual023
inputs alongside textual queries, thereby enhancing their024
perception capabilities. VQA models facilitate natural in-025
teraction between the vehicle and its occupants or other road026
users, fostering trust in autonomous technology. By en-027
abling natural language interaction, VQA models assist in028
making the autonomous vehicle more transparent and un-029
derstandable to the driver. When the vehicle can effectively030
communicate its actions, intentions, and reasoning in a lan-031
guage that humans understand, it fosters a sense of trans-032
parency and predictability, which are crucial for building033
trust.034

For instance, if the vehicle encounters a challenging driv-035

Why did you stop here?

It is an intersection and the
traffic light is red, which
means we need to stop

Response to the driver's queries 

Scene on the roadCar approaching junction VQA Model

Can I go straight from here?

No

Scene processed by the VQA model 

Is there snow on the road?

Yes

Figure 1. A demo of how VQA models work in a driving scenario

ing scenario, it can better explain its decision-making pro- 036
cess to the driver using the VQA model. This allows the 037
driver to better comprehend the situation and feel more con- 038
fident in the vehicle’s capabilities. Moreover, in situations 039
where the driver needs clarification or wants to ask ques- 040
tions about the vehicle’s actions or the environment, the 041
VQA model can provide immediate responses, helping to 042
alleviate uncertainties and concerns. 043

This study is focused on comparing the explanation 044
given for object detection patterns of humans and atten- 045
tion patterns of a Visual Question Answering (VQA) model 046
when answering questions related to driving. Our survey in- 047
dicated that humans concentrate on objects like road lines, 048
signboards, vehicles in the ego lane, etc when it comes to 049
answering questions related to driving. However, when we 050
looked at the objects observed by a VQA model, it wasn’t 051
restricted to only objects related to driving. There were ob- 052
jects like trees, sky, tower, etc which were irrelevant to an- 053
swer a question like, “How many vehicles are in the ego 054
lane?”. The approach here is to streamline the features and 055
objects that the VQA model is taking into consideration by 056
adding a filter when asking a driving-related question. This 057
will optimize the model’s attention mechanisms to priori- 058
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tize relevant objects and improve its accuracy in answering059
questions.060

It also addresses a disparity between human attention061
patterns and those of the VQA model, aiming to enhance the062
model’s performance in the domain of driving. We are per-063
forming a case study with a VQA model- LXMERT where064
we look at how the pretrained model with all its features an-065
swers a driving question and how a ‘filter’ integrated model066
answers the same question while also comparing them with067
the Human Answers that were provided by human annota-068
tors. By comparing the attention patterns of the pretrained069
and streamlined model, we can gain insights into how dif-070
ferent features and objects are prioritized when answering071
driving-related questions. This analysis can help in identi-072
fying the factors that contribute to the models’ performance073
differences.074

By examining attention mechanisms, we aim to elucidate075
how VQA models prioritize visual stimuli in their decision-076
making processes which will help us in the finetuning pro-077
cess of our experiments.078

2. Background Study079

Vision transformers in a Visual Question Answering (VQA)080
model work by dividing the image into patches and repre-081
senting them as embeddings [5]. These embeddings, along082
with the text embeddings of the question, are then fed into a083
transformer architecture [5]. The transformer processes the084
embeddings by attending to both visual and textual infor-085
mation, enabling the model to understand the image and the086
question simultaneously. Finally, the model generates an087
answer based on the learned representations from the trans-088
former layers. In [5], the authors argue that uncertainty089
in vision is a dominating factor preventing the successful090
learning of reasoning in vision and language problems. By091
integrating a filter that focuses on driving-related features,092
our approach aims to mitigate this uncertainty by providing093
a VQA model with more relevant visual information tai-094
lored to the context of driving-related questions.095

In [12], they focus on improving the efficiency of visual096
transformers by removing redundant calculations in trans-097
former networks. Considering that the attention mechanism098
in a transformer architecture aggregates different patches099
layer-by-layer, the authors Yehui Tang et al. present a novel100
’patch slimming’ approach that discards useless patches in101
a top-down paradigm. Initially, the effective patches in the102
last layer are identified and then used to guide the patch103
selection process of previous layers. For each layer, the im-104
pact of a patch on the final output feature is approximated105
and patches with less impact will be removed [12]. While106
this could work for a vision transformer model, it is not107
necessarily good to implement for a VQA model. Patch108
slimming aims to improve the efficiency of the model by109
removing redundant patches throughout the image and the110

filter focuses on extracting driving-related features from the 111
image before passing it through the vision transformer, to 112
enhance the model’s ability to answer driving-related ques- 113
tions more effectively [12]. The impact of patch slimming 114
on performance can be more general, affecting the overall 115
efficiency of the model but potentially risking loss of task- 116
specific information [12]. However, integrating a filter fo- 117
cusing on driving-related features directly aims to enhance 118
performance on driving-related questions by ensuring that 119
the model receives relevant visual information. Patch slim- 120
ming is a more general approach that may not adapt specifi- 121
cally to the requirements of the VQA task, which can result 122
in a loss of task-specific information. Integrating a filter 123
specifically designed for driving-related questions ensures 124
that the model prioritizes relevant features for this task, 125
leading to improved performance on driving-related ques- 126
tions while maintaining task specificity. 127

In [7], a novel object detection framework is proposed 128
that attempts to extract meaningful and representative fea- 129
tures across different image scales. The authors do so 130
by unifying atrous convolutions with a vision transformer 131
(DIL-ViT). The proposed model uses atrous convolutions 132
to generate rich multi-scale feature maps and employs a 133
self-attention mechanism to enrich important backbone fea- 134
tures [7]. This framework enhances object detection perfor- 135
mance which could be an excellent feature to add to a VQA 136
model. However, in our case, the VQA model in question 137
has to enhance its performance on driving-related questions 138
by ensuring that the model receives relevant visual infor- 139
mation. The filter proposed in our work specifically ex- 140
tracts driving-related features from the input image before 141
passing it through the vision transformer component of the 142
VQA model. While both the framework proposed in [7] and 143
the filter integration approach aim to enhance model perfor- 144
mance, they differ in their focus, purpose, task applicability, 145
feature extraction methods, training objectives, and adapta- 146
tion requirements. 147

In [14], the authors argue that the existing methods suf- 148
fer from bias in understanding the image and insufficient 149
knowledge to solve the problem of VQA. The authors pro- 150
pose a novel knowledge-based VQA framework (PROOF- 151
READ) that uses LLM to obtain knowledge explicitly and 152
the vision language model which can see the image to get 153
the knowledge answer and a knowledge perceiver that fil- 154
ters out knowledge that is deemed harmful for getting the 155
correct final answer [14]. PROOFREAD processes textual 156
knowledge obtained by a language model, filtering out ir- 157
relevant or harmful information before combining it with 158
the visual information [14] whereas our filter focuses on 159
processing visual information from the image, extracting 160
driving-related features, and integrating them into the VQA 161
model’s processing pipeline before combining them with 162
textual information. The framework in [14] is designed to 163
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address biases in understanding images and insufficiencies164
in knowledge to solve VQA problems in general whereas165
the filter proposed is tailored for improving VQA perfor-166
mance on driving-related questions specifically, focusing167
on extracting features relevant to driving scenarios from the168
image input.169

3. Proposed Methodology170

In Visual Question Answering (VQA) models, the model171
initially encodes the textual question into a numerical rep-172
resentation to capture its semantic meaning. As the inquiry173
pertains to a corresponding image, the model extracts vi-174
sual features using convolutional neural networks (CNNs).175
Subsequently, the feature extraction mechanism dynami-176
cally assigns weights to different regions of the image or177
words in the question based on their relevance to the in-178
quiry. This weighting enables the model to selectively fo-179
cus on informative elements while disregarding irrelevant180
ones. Integrating the weighted features from both the im-181
age and question encoding, typically through concatenation182
or element-wise multiplication, the model combines visual183
and textual information. Finally, the integrated features are184
fed into a classifier to predict the answer, leveraging the185
learned associations between input features and correspond-186
ing answers from training data. Through this process, the187
attention pattern of the VQA model adapts to the specific188
question context, facilitating accurate and contextually rel-189
evant responses across a diverse range of topics.190

While the architecture of a VQA model aims to repli-191
cate human cognition and reasoning when responding to in-192
quiries about various scenarios, there exists a gap that re-193
quires attention. Typically, during driving, humans exhibit194
focused attention on aspects directly related to driving, of-195
ten disregarding peripheral details unrelated to the task at196
hand [13]. When behind the wheel, individuals prioritize197
observing their immediate surroundings and assessing the198
next steps in their driving manoeuvres. This selective at-199
tention ensures optimal performance and safety on the road.200
For instance, if asked a question ‘Is there snow on the road?’201
while driving, the driver’s attention would primarily be di-202
rected towards assessing road conditions. They would ob-203
serve the road surface for any signs of snow, focusing solely204
on elements pertinent to their driving task. This focused205
attention highlights a fundamental distinction between hu-206
man perception during driving and the holistic scene under-207
standing performed by VQA models. Therefore, bridging208
this gap necessitates the creation of a filter that enables the209
model to prioritize relevant information similar to human210
attentional patterns, thereby enhancing its ability to discern211
and respond accurately to questions posed in diverse real-212
world driving contexts.213

3.1. Object Perception and Cognitive Processes 214

When presented with a question about a driving scenario, 215
humans instinctively assess various factors to formulate a 216
response. They consider the context, including details like 217
location, weather, and traffic conditions, while also identi- 218
fying potential hazards such as other vehicles, pedestrians, 219
or adverse road conditions [13]. Drawing on their knowl- 220
edge of traffic rules and regulations, they analyze the sce- 221
nario through the lens of right-of-way, speed limits, and 222
relevant guidelines [9]. Decision-making involves weigh- 223
ing the available options against safety, efficiency, and legal 224
considerations, with a keen spatial awareness guiding their 225
understanding of distances and relative speeds. Through- 226
out this process, safety remains the most important concern, 227
leading to actions aimed at minimizing risks and promoting 228
responsible driving behaviour [13]. 229

This complicated process has to be kept in mind while 230
designing an autonomous driving system. These learnings 231
also need to be incorporated into a VQA model if we want 232
it to answer all our questions related to driving. Achiev- 233
ing this requires a deep understanding of human attention 234
patterns, which can then be mirrored in the attention mech- 235
anisms of VQA models. We discuss in the following sec- 236
tions how aligning these attention patterns can improve the 237
effectiveness of VQA models in handling driving-related in- 238
quiries. 239

3.1.1 Human Answer Explanation Patterns 240

To gain an insight into the factors humans consider when 241
given a driving scenario and posed with a question, we sur- 242
veyed ten individuals with a minimum of five years of driv- 243
ing experience. Participants were asked to provide answers 244
to questions depicted in Figures Tab. 1 and Sec. 5. The re- 245
sponses with the highest number of votes were selected as 246
the definitive answers. 247

The features observed via answers to these questions 248
were all cumulated together by asking the humans about 249
the features observed using the same questionnaire. This 250
explanation of features observed while making the decision 251
to answer the given question helped us understand the recur- 252
ring attention patterns in human observation and also com- 253
pile a list of features that are commonly useful in answering 254
driving-related questions. 255

3.1.2 Attention Patterns of VQA models 256

The attention mechanism in a Visual Question Answering 257
(VQA) model typically shows the focus or weight assigned 258
to different regions of an image. Specifically, it indicates 259
which parts of the input (such as image features or words in 260
the question) are deemed most relevant or informative for 261
answering the given question. By visualizing the attention 262
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Figure 2. Refining VQA architecture: Integration of the filter into a general VQA architecture

weights, we can discern which areas of the image or words263
in the question the model prioritizes in its decision-making264
process. This helps in understanding the reasoning behind265
the model’s responses and provides insights into how it pro-266
cesses and interprets visual and textual information to gen-267
erate answers.268

3.2. Human-Guided Feature Filter269

We cumulated the features that are being observed by hu-270
mans when answering driving-related questions and incor-271
porated them in the construction of a filter aimed at cap-272
turing pertinent visual information. The objects like roads,273
lines, curbs, sidewalks, crosswalks, bikes, cars, trucks, etc.,274
are recurring features in any given driving scenario which275
were used when creating the filter. This filter is designed276
to be integrated before the vision transformer component277
of the VQA model, ensuring that it focuses solely on rel-278
evant driving-related features as shown in Figure 2. This279
approach mimics human attention patterns, thereby enhanc-280
ing the model’s ability to effectively answer questions about281
driving scenarios by prioritizing the most relevant visual282
cues.283

Filtering out irrelevant visual data reduces computational284
complexity and memory requirements, making the model285
more efficient and faster in processing information. This286
filter aligns the model’s attention with human observation287
patterns, and the reasoning behind its predictions becomes288
more interpretable and aligned with human intuition. By289

emphasizing commonly observed features, it is observed in 290
Case Studies (Section 4) that a VQA model can generalize 291
better to new or unseen driving scenarios, enhancing its ro- 292
bustness and applicability in real-world settings. Prioritiz- 293
ing relevant visual cues related to driving can improve the 294
safety and reliability of autonomous driving systems, ensur- 295
ing they focus on critical information for making informed 296
decisions on the road. 297

3.3. Filter: Algorithm and Need 298

The holistic approach typically employed by VQA models 299
to capture and utilize intricate data patterns appears inef- 300
fective when narrowing the focus solely to driving-related 301
questions. Thus, a filter is necessary to prevent the VQA 302
model from expending computational resources on irrele- 303
vant learnings. 304

Integrating a filter before the vision transformer compo- 305
nent of the VQA model helps to improve the model’s per- 306
formance when asked driving-related questions, as detailed 307
further in Section 4. The advantages of this filter are listed 308
as follows: 309

• Feature Relevance: By incorporating a filter specifically 310
designed to capture driving-related features, the model 311
can prioritize and emphasize information relevant to driv- 312
ing tasks. This can help the model to better focus on im- 313
portant visual cues such as road signs, vehicles, lanes, 314
traffic lights, and road conditions, which are crucial for 315
understanding and answering driving-related questions. 316
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• Reduced Noise: Filtering out irrelevant visual informa-317
tion can help reduce noise in the input data, providing the318
model with cleaner and more focused inputs. This can319
prevent the model from being distracted by non-driving-320
related elements in the image, leading to more accurate321
predictions for driving-related questions.322

• Improved Attention Mechanism: By pre-processing the323
input with a filter targeting driving-related features, the at-324
tention mechanism within the vision transformer compo-325
nent can be guided to attend more effectively to relevant326
regions of the image. This can enhance the model’s abil-327
ity to extract and leverage important visual information328
when generating answers to driving-related questions.329

• Enhanced Generalization: Focusing the model’s atten-330
tion on driving-related features during pre-processing can331
help improve its generalization capabilities, allowing it to332
handle better variations in driving scenarios, lighting con-333
ditions, and camera perspectives. This can lead to more334
robust performance across different driving-related ques-335
tion types and real-world conditions.336

3.3.1 Algorithm337

The filter proposed is shown in Algorithm ??. It filters out338
irrelevant predictions based on predefined classes, extracts339
relevant information from the filtered predictions, converts340
the data to suitable types, and returns the filtered features.341

Algorithm 1: Feature filter for Vision Transformer
block in a VQA model

1 Input: Extract predicted classes, scores, bounding
boxes, normalized bounding boxes, and ROI
features from outputs tensor;

2 Output: Filtered features for VQA;
3 Initialize empty lists for filtered boxes, classes,

labels, indices, normalized bounding boxes, and
ROI features;

4 if predicted class is in a predefined list of classes
then

5 Append the box, class, label, index, normalized
bounding box, and ROI feature to the
corresponding lists;

6 Convert filtered boxes, normalized bounding boxes,
and ROI features to suitable data types;

7 Return: filtered boxes, classes, labels, indices,
normalized bounding boxes, and ROI features;

This process helps in focusing the model’s attention on342
the most relevant visual features for answering questions,343
thereby improving the overall performance of the VQA344
model.345

4. Case Study 346

We perform a case study by incorporating the filter into a 347
VQA model and observing the different answers before and 348
after the filter is integrated. By comparing the model’s re- 349
sponses before and after the filter’s integration, we gain a 350
clear understanding of the enhancements brought about by 351
focusing on relevant driving-related features. We examine 352
how the model’s attention patterns evolve post-filter integra- 353
tion and can discern whether they align more closely with 354
human observation patterns in driving scenarios. It is ob- 355
served that this alignment enhances the model’s ability to 356
answer driving-related questions accurately along with their 357
interpretability and generalization capabilities. 358

4.1. Dataset 359

The images collected to test the filter’s performance are 360
from the nuImages dataset. nuImages is a dataset of 93000 361
2d annotated images from a larger pool of data (nuScenes 362
dataset). The images we used are randomly selected sam- 363
ple images from nuImages. We chose two images per cam- 364
era as it allows us to evaluate the VQA model’s ability to 365
comprehend changes in perspective resulting from differ- 366
ent camera angles. This approach ensures a diverse range 367
of viewpoints, enabling a comprehensive assessment of the 368
model’s performance across various perspectives. 369

4.2. VQA Model: LXMERT 370

LXMERT (Learning Cross-Modality Encoder Represen- 371
tations from Transformers) is a large-scale Transformer 372
model that consists of three encoders: an object relationship 373
encoder, a language encoder, and a cross-modality encoder 374
[11]. The model uses the Adam optimizer with a linear- 375
decayed learning rate schedule and a peak learning rate at 376
1e – 4. The model is trained for 20 epochs which is roughly 377
670K4 optimization steps with a batch size of 256. The 378
pretraining of VQA tasks, however, is only for the last 10 379
epochs because this task converges faster and empirically 380
needs a smaller learning rate [11]. An illustration of the 381
networks in LXMERT is shown in Figure 4. 382

The VQA architecture in LXMERT facilitates compre- 383
hensive question-answering by integrating language and vi- 384
sual inputs. Using transformer layers of self-attention and 385
cross-attention respectively, the model encodes contextual 386
information from both textual queries and holistic visual 387
features extracted from images. Through the collaborative 388
operation of these components, with Lxmert Visual Feature 389
Encoder and Lxmert Encoder, the model achieves a holistic 390
understanding of the interplay between language and visual 391
information to generate answers. However, the holistic ap- 392
proach of visual features is not necessarily a great idea when 393
we want the model to only answer driving-related queries 394
(examples in Supplementary Material). 395
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When we look deeper into the architecture of LXMERT,396
the input dimensions start with the image input, sized at 900397
x 1600 pixels with 3 channels (RGB). The feature extraction398
of the image inputted to LXMERT is done using Faster R-399
CNN [2], where features are taken in 36 x 2048 x 1 and the400
boxes are taken in 36 x 4 dimensions. The filter we pro-401
pose takes outputs from Faster R-CNN used in LXMERT402
along with parameters like device and detection threshold.403
It processes these outputs to extract relevant information404
such as predicted classes, scores, bounding boxes, normal-405
ized bounding boxes, and region of interest (ROI) features.406
It filters out predictions based on a predefined set of classes407
(e.g., signs, curbs, people, vehicles, etc.) using a detec-408
tion threshold (circled in Red), which is 17 x 2048 x 1 di-409
mensions. The function then returns the filtered informa-410
tion including filtered bounding boxes, classes, labels, in-411
dices, normalized bounding boxes, and ROI features which412
becomes the input for the Lxmert Visual Feature Encoder413
as shown in the Figure 3. These dimensions undergo trans-414
formations through convolutional layers and pooling lay-415
ers resulting in higher-level feature representations (eg: 17416
x 2048 and 3072 x 1) while reducing spatial dimensions417
to 768 x 1 as shown in Visual Feature Encoder and Ob-418
ject Relationship Encoder. This approach allows for the419

model to learn complex and abstract representations in the 420
intermediate layers with 3072 features, potentially captur- 421
ing more nuanced information or patterns. Then, by reduc- 422
ing the dimensionality back to 768 in the subsequent lay- 423
ers (R Layers), the model can consolidate and distil this in- 424
formation into a more compact representation suitable for 425
further processing or downstream tasks. Therefore, even 426
though the input to the Cross modality Encoder has fewer 427
features (768), the attention mechanism can still effectively 428
capture relationships and dependencies across the input se- 429
quence. 430

Meanwhile, the question input is initially represented as 431
word embeddings by taking tokens, positions, and token 432
types as the input. It undergoes text processing in the Lan- 433
guage Encoder block to capture the semantic information 434
of the question. This process transforms the input ques- 435
tion into a fixed-length vector representation. After sepa- 436
rate processing of the image and question inputs, their fea- 437
tures are combined in the Cross Modality Encoder enabling 438
the model to leverage both visual and textual information. 439
This joint representation retains relevant information from 440
both modalities, facilitating the capture of complex patterns 441
in the data. Subsequent layers, including the Vision Out- 442
put layer (768 x 1), further process these combined features 443
to capture intricate relationships between visual and textual 444
cues. Finally, a probability distribution over possible an- 445
swers, with dimensions corresponding to the number of an- 446
swer classes in the dataset (1536) is processed in the An- 447
swer Head block. The final output answer with the most 448
probability is chosen using argmax(). 449

Table 1 is intended to show the difference in answers be- 450
tween an LXMERT model with and without the filter for 451
better readability. The column features correspond to the 452
features observed by the model when it generated that re- 453
spective answer. 454
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Table 1. Analyzing Feature Detection: LXMERT Pretrained Model with and without Filter vs. Human Observations

How many vehicles are there? 3 cars or bikes 1 0

Which camera is this image from? Back Camera car behind front unknown

Are there any vehicles in ego lane? No vehicles in the lane Yes No

Is it safe to initiate a lane change? unable to tell
not enough 
information Yes No

Which camera is this image from? unable to tell Road Signs front top

Is it okay to initiate a lane change? No continuous white line Yes No

Are there any vehicles coming 
behind? unable to tell

not enough 
information Yes No

Which street is this? Summer Street Name plate unknown unknown

Which camera is this image from? Back Right road edges and 
markings

unknown unknown

Do I need to stop? No already halfway in the 
turn

No No

Are there any pedestrians on the 
sidewalk ?

No sidewalk and 
pedestrians

No No

Can I park on the right? No No parking slots No No

Which camera is this image from? Front Camera road markings and 
vehicles in the front

front top

Is there snow on the road? Yes Road and kerb No No

Are there any pedestrians? Yes pedestrians No No

Can I go right in this lane? Yes junction road to the 
right

No No

Which camera is this image from? Front Left kerb and pedestrians front unknown

Can I take a left from here or should I 
go straight?

Don't know not enough 
information

Yes Yes

How many pedestrians are there? Ten Pedestrians 0 0

Do I need to stop till pedestrians cross 
to turn left? Yes

vehicle orientation 
and pedestrians No No

Can I park here? No parking slots No No

Why can't I park here? No space empty slots not 
available

parking No

Which camera is this image from? Front Right
sign boards and 

directions front unknown

Which direction can I drive in? Only straight road markings and 
kerb

right right

road, lines, line

pole, person, man, line

road, crosswalk, 
person, sign, line, man

car, sign

road, sign, man, curb, 
pole, person

road, car, line

road, pole, line, person

road, truck, crosswalk, 
sign, pole, car

road

road, lines, water, car

FeaturesPretrained 
Answers

grass, road, curb, man, tree, 
sign, sky, building

building, bus, van, circle, car, 
sign, tire, ceiling

sky, tree, pole, building, sign, 
woman, crosswalk, road, 
median, line, shirt, pants, 

man, people, person

ceiling, tree, building, pole, 
people, ground, sidewalk, line, 

man, window, person

building, tree, street, road, 
sidewalk, line, van

building, water, road, car, 
lines, street, city

stret, sidewalk, building, tree, 
road,  bike, bus, door

sky,tree, building, sign ,street, 
sidewalk, crosswalk, vent, tire, 

street, car, road, pole

tree, sky, pole, leaves, sign, 
building, grass, road, vehicle, 

line, sidewalk, bottle

sky, tree, pole, building, road, 
shadow, line, sidewalk, person

scene, sky, street, light, 
headlights, road

tree, building, clouds, truck, 
road, pole, crosswalk, lines, 

sidewalk, scene

road, pole, sign , line

truck, road, crosswalk, 
lines, sidewalk

Ba
ck

 C
am

er
a

Ba
ck

 L
ef

t C
am

er
a

Camera Image Questions Human 
Answers

Features Features Filter added

Ba
ck

 R
ig

ht
 C

am
er

a
Fr

on
t C

am
er

a
Fr

on
t L

ef
t C

am
er

a
Fr

on
t R

ig
ht

 C
am

er
a

It can be seen from the ‘Camera’ column that we tried to455
keep diverse driving scenarios in mind while designing the456
case study. The answers received from LXMERT, both pre-457
trained and when the filter has been integrated, have been458
listed along with the features extracted in each case (to the459
right of the corresponding column). It provides a visual rep-460
resentation of the model’s performance in addressing the461
posed questions, allowing for an assessment of their effec-462
tiveness based on the Human Answers. The reason for com-463
paring the outputs of three VQA models with human an-464
swers, using colour coding (green for correct, red for wrong,465
yellow for partially correct), is to visually emphasize per-466
formance and discrepancies between the models and human467
responses. This visual representation allows for a quick and468
intuitive understanding of the accuracy and effectiveness of469
the models in comparison to human performance. Further470

discussion of this rationale is considered in the paper [10] 471
and the results in the table are discussed in 5. 472

5. Results and Discussion 473

We use the subjective scoring framework for VQA mod- 474
els [1] in autonomous driving to gauge the improvement 475
of LXMERT after the filter has been added. This scoring 476
system analyses the answers provided by the VQA model 477
using multiple types of natural language processing mod- 478
els (BERT-base-uncased, NLI-distilBERT-base, all-mpnet- 479
base-v2 and GPT-2) [4] and sentence similarity benchmark 480
metrics (Cosine Similarity) [6]. The results are shown in 481
the Table 2. 482

It can be observed from Figure 5 that there is a notice- 483
able enhancement in the model’s performance after the in- 484
tegration of the filter as the MAE (Figure 5a) and RMSE 485
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(c) Pearson Correlation

Figure 5. Assessment of LXMERT using the Subjective Scoring Framework

Table 2. Evaluation of LXMERT Performance using Subjective Scoring Framework Metrics: MAE, RMSE, and Pearson Correlation

Pretrained Filtered Pretrained Filtered Pretrained Filtered
NLI-distilBERT-base 0.5660 0.4942 0.7998 0.7712 0.7558 0.7504
all-mpnet-base-v2 0.3989 0.2802 0.6932 0.6068 0.6231 0.7370
BERT-base-uncased 0.6042 0.4840 0.8229 0.7675 0.5480 0.6968
GPT2 0.7778 0.6931 0.9344 0.9010 0.3220 0.4737

LXMERT model Root Mean Squared Error Pearson CorrelationMean Absolute Error

(Figure 5b) scores have lowered when compared to the pre-486
trained model. The increase in Pearson correlation (Fig-487
ure 5c) scores shows that the answers given by the filter-488
integrated model are closer to the human answers which is489
ultimately the goal for any VQA model. However, it has to490
be acknowledged that there are erroneous responses despite491
this enhancement. These inaccuracies are due to the inher-492
ent limitation of the VQA model, as it was not originally493
designed or trained specifically for driving-related queries.494

To address this discrepancy, fine-tuning the model with495
a driving dataset is a viable solution. This process of fine-496
tuning will equip the model with the necessary contextual497
knowledge to interpret questions from a driving perspective498
accurately, consequently refining its responses accordingly.499

After integrating the filter, it’s evident from the observed500
features (Figure 1) that the model has begun to emulate501
human attention patterns to a remarkable extent. This en-502
hancement is significant for its ability to focus on relevant503
information. By aligning more closely with human atten-504
tion patterns, the model becomes more adept at understand-505
ing nuanced context, discerning subtle cues, and prioritiz-506
ing relevant data points. This heightened cognitive align-507
ment improves the model’s interpretability and enhances its508
adaptability in driving scenarios. We further show exam-509
ples of a few cases in the Supplementary Material where510
we observe in the figures the differences in object detection511
and the model’s answers due to different filter weights at the512
Feature extraction stage.513

6. Conclusion and Future Work514

In conclusion, this study has introduced a novel filter de-515
signed to enhance the performance of VQA models specif-516
ically in driving-related tasks. Through our case study, we517
have demonstrated the efficiency of the filter in mimicking518

human attention patterns to a significant extent, thereby lay- 519
ing the groundwork for improved VQA capabilities. The 520
limitation of this approach is that we assume that the human 521
is telling what they are actually observing which is leaving 522
a scope for subjectivity in data. For future experiments, we 523
would like to use the eye tribe tracker that delivers real-time 524
data of where a person is looking on a screen similar to [8]. 525
This would potentially improve the accuracy and reliability 526
of the observations in future experiments. However, it’s es- 527
sential to acknowledge that VQA models are not inherently 528
trained for driving tasks, highlighting the need for further 529
optimization and adaptation. Our future work will focus 530
on fine-tuning at least three VQA models using an exclu- 531
sive driving dataset such as Nuscenes MQA [3], tailored to 532
the complexities of driving environments. By training VQA 533
models on annotated driving scenes and questions, we aim 534
to bolster their performance and adaptability in addressing 535
driving-related queries. Additionally, we plan to conduct a 536
thorough analysis of the fine-tuned models’ performances 537
to gain insights into the effectiveness of model adaptation. 538
We also intend to explore the integration of a layer capa- 539
ble of understanding camera information into VQA models. 540
This enhancement will enable the models to perform spatial 541
reasoning tasks more effectively, analyze object positioning 542
within the camera frame, and provide dynamic and adap- 543
tive responses to queries about the driving environment. By 544
configuring the filter so that it is capable of leveraging cam- 545
era information, we aim to bridge the gap between human 546
and machine attention patterns, thereby advancing the capa- 547
bilities of VQA models in driving scenarios. 548
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