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ABSTRACT

Invariance learning algorithms that conditionally filter out domain-specific ran-
dom variables as distractors, do so based only on the data semantics, and not the
target domain under evaluation. We show that a provably optimal and sample-
efficient way of learning conditional invariances is by relaxing the invariance cri-
terion to be non-commutatively directed towards the target domain. Under domain
asymmetry, i.e., when the target domain contains semantically relevant informa-
tion absent in the source, the risk of the encoder φ∗ that is optimal on average
across domains is strictly lower-bounded by the risk of the target-specific opti-
mal encoder Φ∗

τ . We prove that non-commutativity steers the optimization to-
wards Φ∗

τ instead of φ∗, bringing the H-divergence between domains down to
zero, leading to a stricter bound on the target risk. Both our theory and exper-
iments demonstrate that non-commutative invariance (NCI) can leverage source
domain samples to meet the sample complexity needs of learning Φ∗

τ , surpass-
ing SOTA invariance learning algorithms for domain adaptation, at times by over
2%, approaching the performance of an oracle. Implementation is available at
https://github.com/abhrac/nci.

1 INTRODUCTION
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Figure 1: Dogs and giraffes may not
be fully distinguishable in the free-hand
sketch domain due to shared geometric
structures. However, they are clearly
separable in the photo domain based
on color and texture. Thus, mapping
photos and sketches to the same invari-
ant representation loses out such critical
domain-specific, but useful information
when inference has to be performed in
the photo domain at test time.

The idea of learning robust representations by identifying
invariants across domains/views has found applications in
several areas of machine learning including domain adap-
tation (Ganin & Lempitsky, 2015; Arjovsky et al., 2019),
self-supervised learning (Federici et al., 2020; Chavhan
et al., 2023), and causal inference (Pogodin et al., 2023;
Peters et al., 2016) to name a few. The traditional way of
learning such representations is based on the assumption
that domain shifts are semantically irrelevant transforma-
tions T applied to a shared, underlying concept φ(x)
(Nguyen et al., 2021; Qiao et al., 2020; Volpi et al., 2018).
The process of invariance learning would thus be formu-
lated as identifying the marginal distribution P (φ(xd))
that matches across all training domains d (Ganin & Lem-
pitsky, 2015; Rosenfeld et al., 2021).

A number of works, however, also identified that esti-
mating the above marginal is not sufficient, as different
classes have different invariance requirements. Instead, a
conditional form of invariance that matches the distribu-
tion of P (φ(xd)|y) for all labels y across domains is a
more realistic solution, an idea which came to be known
as conditional invariance (Li et al., 2018; Long et al.,
2018; Samarin et al., 2021). This was further studied by
Stojanov et al. (2021), who narrowed down the reason
for the requirement of conditional invariance as follows –
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tasks not only depend on the shared information across domains, but also domain specific attributes,
that can be retained only when the representation learning is conditioned as P (φ(x)|y), as opposed
to the traditional marginal-only learning of P (φ(x)). This reason was also echoed in the work
of Eastwood et al. (2022), based on the fact that encoders that perform better on average across
domains do not do well on specific domains (Eastwood et al., 2022), due to the No Free Lunch
Theorem (Wolpert & Macready, 1997). Despite its promise, the idea of retaining domain-specific
features for identifying meaningful invariants has remained relatively unexplored since Stojanov
et al. (2021), with some applications to tasks like cross-modal retrieval (Chaudhuri et al., 2022).

The necessity of conditional invariance is observable when the target domain contains more seman-
tically relevant information than the source domain, a condition we refer to as Asymmetry (Assump-
tion 1). This phenomenon is depicted with an example in Figure 1 from the PACS dataset (Li et al.,
2017). In the free hand sketch domain, dogs and giraffes may look very similar in scenarios where
the full body is not drawn. But in real photos, they can be easily distinguished based on colors and
textures. Mapping photos and sketches to an unconditionally invariant representation space gets rid
of such useful domain-specific information, retaining only the shared aspects like object geometry.
This significantly harms prediction performance when the target domain is that of photos, which can
potentially provide asymmetrically greater semantic information relative to sketches.

We provide a novel learning-theoretic view based on commutativity that establishes why uncondi-
tionally invariant representations exhibit such limitations. We do so by framing the process of in-
variance learning as discovering operators, the choice of which determines whether the set of source
and target domains form a commutative group. As a consequence of our formulation, we observe
that a significantly simpler and efficient approach to achieving conditional invariance is by relaxing
the invariance criterion (in approaches that learn the shared marginal P (φ(x)) such as Domain Ad-
versarial Training (Ganin & Lempitsky, 2015)) to be non-commutatively directed towards the target
domain. One of the primary bases of our results is that, for a hypothesis class Hφ, the risk of the
encoder φ∗ ∈ Hφ that is optimal across domains is lower bounded by the risk of the target-specific
encoder Φ∗

τ that is optimal for the target, but not necessarily for other domains. When training sam-
ples from the source domain are semantically complementary to the ones in the target domain (for
example, photos and sketches of different objects, rather than that of the same object), we find that
non-commutative invariance (NCI) can leverage source domain samples to meet the sample com-
plexity needs of learning Φ∗

τ . NCI provides a stricter upper bound on target risk relative to existing
unconditional (Ganin et al., 2016) and conditional (Gulrajani & Lopez-Paz, 2021; Stojanov et al.,
2021) paradigms through a lower value of H-divergence (Ben-David et al., 2006; 2010; Kifer et al.,
2004; Ganin et al., 2016).

Intuitively, NCI produces representations such that samples from the source domain get mapped to
the representation space of the target domain, while those from the target domain continue to live
in the representation space of the target domain. This allows the retention of task-relevant target
domain features, while still being able to leverage the semantic augmentations from the training
source domains. As inference needs to be performed in the target domain at test-time, this is a
desirable property. We back our theory with a number of empirical results which establish how NCI
can leverage semantic complementarity across domains to achieve SOTA performance in domain
adaptation, approaching an oracle that has access to both source and target domains at test time.

In summary, we (1) show that conditional invariance can be achieved by simply relaxing the in-
variance operator to be non-commutative; (2) derive stricter and efficient generalization and sample
complexity bounds for learning the optimal target encoder; (3) conduct experiments demonstrating
that with the right direction of invariance, non-commutativity can leverage complementary semantic
information across domains to achieve SOTA performance in domain adaptation.

2 RELATED WORK

Invariance Learning and Domain Adaptation: State-of-the-art in domain adaptation can be pri-
marily classified into approaches that (1) learn invariant features that are robust to domain shifts
(Ganin & Lempitsky, 2015; Ganin et al., 2016); (2) represent domains as learnable transformations
of the shared, underlying semantics (Nguyen et al., 2021; Qiao et al., 2020; Volpi et al., 2018);
and (3) smoothen the loss landscape (Rame et al., 2022; Rangwani et al., 2022; Wortsman et al.,
2022), or by penalizing localized features (Wang et al., 2019). Our work primarily belongs to (1),
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which is what we will focus on in this section. The idea of learning invariant features for domain
adaptation (DA) was first proposed in Ganin & Lempitsky (2015); Ganin et al. (2016) via gradi-
ent reversal. A causal take on invariance learning was proposed by Peters et al. (2016) with the
view that the underlying causal factors remain the same under domain shift, which also constitutes
the foundation for probable domain generalization (Eastwood et al., 2022). Arjovsky et al. (2019)
concretely instantiated this idea through Invariant Risk Minimization (IRM), which was followed
by several subsequent extensions (Wang et al., 2022; Lu et al., 2022). However, Rosenfeld et al.
(2021) showed that when the training and test distributions sufficiently diverge, nothing is funda-
mentally better than vanilla Empirical Risk Minimization (ERM), a claim that was experimentally
supported by Gulrajani & Lopez-Paz (2021). Other promising approaches to invariance learning
involve imposing various regularizers based on the information bottleneck principle (Tishby et al.,
2000; Federici et al., 2020; Ahuja et al., 2021). However, the above approaches discard all domain-
specific information, retaining only the shared features. It was consequently discovered that learning
a task dependent, conditional form of invariance instead of marginal invariance is much more ben-
eficial, as certain domain-specific features may actually be helpful for downstream tasks (Pogodin
et al., 2023; Stojanov et al., 2021; Chavhan et al., 2023; Quinzan et al., 2022). Our work further
explores this idea through the lens of commutativity of domains under the invariance operator, and
presents a simple and efficient approach for conditional invariance learning. We also show that our
approach can leverage source domain samples to meet the sample complexity needs of generaliza-
tion to the target domain (Theorem 2). So, we provide an extended literature review on approaches
that endeavour to achieve the same in Appendix A.1.

3 NON-COMMUTATIVE INVARIANCE

3.1 PRELIMINARIES

Overview: We provide the complete set of general notations in Appendix A.2. We start by intro-
ducing the notion of commutativity, which is an abstract generalization of a large family of marginal
invariance learning paradigms like Domain Adversarial Neural Networks (DANNs) (Ganin & Lem-
pitsky, 2015), Invariant Risk Minimization (Arjovsky et al., 2019; Ahuja et al., 2021), and several
of their derivatives under DomainBed (Gulrajani & Lopez-Paz, 2021). The idea of commutativity
allows us to identify useful, domain-specific features that may be discarded by such marginal invari-
ance learning algorithms. As a remedy, we define the dual notion of Non-Commutative Invariance
(NCI), which we find to has stronger theoretical properties in terms of (1) a stricter generalization
bound on the target risk under an asymmetry condition; and (2) the ability to meet the sample com-
plexity for learning the optimal target domain encoder Φ∗

τ with samples from the source domain.
Associated preliminaries and proofs are provided in Appendix A.3 and Appendix A.4 respectively.

Definition 1 (Asymmetry). Domains Ds and Dτ are said to be asymmetric iff :

xs = Ts(x) and xτ = Tτ (x) ≠⇒ I(Φ∗
s(xs);y) = I(Φ∗

τ (xτ );y)

where xs ∼ Ds, xτ ∼ Dτ , and Ts and Tτ are transformations applied on the underlying concept
x ∼ X to derive such domain-specific instantiations.

Even though xs and xτ may be derived as transformations of the same underlying concept x
(Nguyen et al., 2021; Qiao et al., 2020; Volpi et al., 2018), it is not necessary that the two domains
would contain the same amount of label information y. This is because different transformations
Ts(x) and Tτ (x) may differ in the degree to which they preserve the label information in x. The
optimal encoder Φ∗

s/τ of the respective domain s/τ would be able reflect this asymmetry by cap-
turing different amounts of label information. As a result, performing a downstream task with the
optimal encoding would result in different accuracies across the two domains. In other words, the
domain-specific optimal encoding Φ∗(x)s/τ is not invariant to the domain information.

Assumption 1. For the remainder of our analysis, we assume that the target domain contains more
semantically relevant information than the source domain, i.e.,

I(Φ∗
τ (xτ );y) > I(Φ∗

s(xs);y),

thus warranting the preservation of target domain specific information. This assumption quantifies
the example illustration in Figure 1.
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𝑠 𝜏 𝑠 𝜏

Commutative Invariance Non-Commutative Invariance

𝜑(𝑠) 𝜑(𝜏)

𝜑(𝑠 ∩ 𝜏)

𝜑(𝜏 ∪ 𝜑(𝑠 ∩ 𝜏))

Figure 2: Abstract comparison of commutative and non-commutative invariance (NCI) learning.
Commutative invariance aims to capture components that are shared across both the source Ds and
target Dτ domains (simplified in the diagram as s and τ respectively) by mapping samples from
one domain to the semantic space φ(·) of the other. NCI, on the other hand, captures components
that the source domain shares with the target domain by mapping source samples to the target’s
representation space, but retains all the components in the semantic space of the target domain
unchanged. NCI is thus invariant to the domain-specific, semantically relevant components of the
source domain, but not the target domain.

Definition 2 (Commutative and Non-Commutative Invariance). Let xs ∼ Ds and xτ ∼ Dτ be
domain-specific samples for an instance x. We call the operator ⊗ commutatively invariant iff :

xs ⊗ xτ = xτ ⊗ xs = φ∗(x),

i.e., ⊗ produces the same output as φ∗(·) that is optimal when the downstream task is performed
on the the joint distribution (Ds,Dτ ) (but not necessarily optimal in the individual domains, due
to the No Free Lunch Theorem Wolpert & Macready (1997)), and hence is independent of the
order of the operands. Algorithms that try to recover the marginal distribution P (X), eliminating
all domain-specific information across both Ds and Dτ in the process (Ganin & Lempitsky, 2015;
Arjovsky et al., 2019; Ahuja et al., 2021) fall in this category. Essentially, they induce a commutative
semigroup on the set of domains under ⊗ (Theorem 4). Now, the operator ⊗ is right-invariant iff :

xs ⊗ xτ = φ∗
s(x) and xτ ⊗ xs = φ∗

τ (x)

⊗ is right-invariant as it always returns an encoding of x that is optimal in the domain of the left
operand, no matter what domain the right operand comes from. A notion of left-invariance can be
symmetrically defined. We call such operators that are invariant to the domain of one operand, but
is sensitive to the domain of the other, non-commutatively invariant (NCI). Figure 2 graphically
depicts an abstract comparison between commutative invariance and NCI. An associated notion is
that of the discrepancy between the domains that ⊗ aims to reduce, which we discuss below.

Hη-divergence and generalization bound on the target risk: The Hη-divergence between Ds and
Dτ is a measure of the capacity of the discriminator hypothesis class Hη to distinguish between the
source and the target sample representations. It has found use in a number of formal treatments of
domain adaptation (Ben-David et al., 2006; 2010; Kifer et al., 2004; Ganin et al., 2016). It is used
to quantify the discrepancy between domains, often in the representation space of an encoder φ(·),
and is proportional to the difference in domain-specific information between Ds and Dτ . Primarily,
it was used by Ben-David et al. (2006) to derive an upper bound for the target risk RDτ

(·) (test-time
error in the target domain) of an encoder φ(·) that is trained with labelled source and unlabelled
target samples. The complete definition of H-divergence, along with its empirical estimate, and
the associated generalization bound on the target risk are provided in Definition 5 and Theorem 3
respectively. Below, we show that the bound in Theorem 3 can achieve a stricter form under a
non-commutatively invariant encoding of the domains.

3.2 TARGET RISK UNDER NON-COMMUTATIVITY

Result 1. If the VC (Vapnik–Chervonenkis) dimension (Vapnik & Chervonenkis, 1971) of Hφ,
V C(Hφ) ≥ N , the total number of training samples, then the target risk of the optimal NCI encoder
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RDτ
(φ∗

τ ) is related to the target risk of the commutatively invariant encoder RDτ
(φ∗) as:

RDτ (φ
∗
τ ) ≤ RDτ (φ

∗)− d̂Hη (S, T, φ
∗) < RDτ (φ

∗),

where d̂Hη
is the empirical Hη-divergence between source and target samples S and T respectively.

The proof of Result 1 is based on the observation that d̂H(S, T, φ) does not reach 0 if φ(·) is trained
with commutative invariance. Commutative invariance maps data from the source to the target
domain and vice versa thereby solving a swapped prediction problem. That way, although the “min”
part of Equation (5), which quantifies the generalization error (Definition 6), takes a value of 0, the
overall Hη-divergence does not become 0. To bring d̂Hη (S, T, φ) down to 0, the objective in the
“min” part has to evaluate to 1. One way to achieve that is by finding a φ(·) that maps all the data to
the source domain. Although Result 1 provides a stricter generalization bound on the target risk, it
does not establish the practicality of non-commutativity. Below, we show that it is possible to give
further guarantees for the optimality of non-commutativity when test-time evaluation is performed
in the target domain. We establish that training with NCI results on samples from the source domain
being treated as augmentations in the target domain. As a consequence, as the number of source
samples increase, the NCI encoder φ∗

τ (·) approaches the optimal encoder for the target domain,
which we denote by Φ∗

τ .

3.3 SAMPLE COMPLEXITY OF NCI AND ITS OPTIMALITY

We start this section by exploring the relationship between the target risks of the global encoder
φ∗ that is optimal on average in Hφ, and the optimal encoder for the target domain Φ∗

τ . We show
that R(φ∗) is no less than the risk of the optimal encoder for the target domain R(Φ∗

τ ). We finally
demonstrate how non-commutativity surpasses this bound and achieves the optimal risk for the target
domain R(Φ∗

τ ), by meeting its sample-complexity needs with source domain samples.
Theorem 1. Let the Hη-divergence between the source (s) and the target (τ ) domains be ∆, i.e.,
s = τ +∆ (Appendix A.3.1). Under asymmetry (Assumption 1), i.e., I(Φ∗

s(xs);y) < I(Φ∗
τ (xτ );y),

the risk of the optimal-on-average encoder R(φ∗) for predicting Y across all domains up to a
distance ∆ from the domain τ admits the following upper bound:

R(φ∗) = min
φ∗∈Hφ

1

∆

τ+∆∫
θ=τ

l (φ∗(Dθ), Y ) dP (θ, Y ) ≥ l (Φ∗
τ (Dτ ), Y ) ,

where l(·, ·) calculates the encoding risk of a domain, and Φ∗
τ (·) is the optimal encoder for τ .

From Lemma 3, we know, the average risk is greater than the shared risk, i.e., R(φ∗) ≥
minφ∗∈Hφ

l(φ∗(Ds ∩ Dτ ), Y ). Now, the shared risk has to be greater than or equal to the max-
imum of the source risk and the target risk. If the target risk is greater than the source risk, then the
shared risk is at least large as the target risk. If the source risk is greater than the target risk, then the
shared risk is strictly greater than the target risk. In other words, the optimal-on-average predictor
φ∗ across all domains up to a distance ∆ from the target domain τ cannot do any better than the
optimal predictor of the target domain φ∗

τ . This means that learning the globally optimal predictor
is a sub-optimal solution when the downstream task has to be performed in a single target domain τ .
The bound for R(φ∗) in Theorem 1 becomes strictly greater when the transformation T from which
the target domain τ was obtained preserves the causal factors for the label y of x, and there exists
some domain in the distance d ≤ ∆ from τ where the causal factors are not preserved, i.e.:

xτ = Tτ (x) | I(x,y) = I(xτ ,y) and ∃Ts ∈ [τ, τ + d] | xs = Ts(x), I(x,y) > I(xs,y), (1)

where x lies in the ground-truth concept basis C (Lemma 1). Hence, looking for the optimal pre-
dictor specifically for the target domain is always guaranteed to give at least as good a solution for
domain adaptation, if not better. The below theorem establishes that NCI solves this very problem
by leveraging samples from the source domain to meet the sample complexity needs of learning the
optimal target encoder Φ∗

τ , and exhibits the same error bound on Dτ as that of Φ∗
τ .

Theorem 2. Consider a function class T of transformations that defines target domains such that
τ ∼ T ,xτ = τ(x),xτ ∼ Dτ . Let Φ∗

τ (·) be the optimal encoder for the target domain with
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sample complexity for incurring an error of ϵ with probability δ. From Haussler’s theorem, the
error incurred by the optimal target domain encoder Φ∗

τ with probability δ and M target domain
samples is given by:

ϵ ≥
ln |T |+ ln 1

δ

M
,

With mτ target domain samples and ms source domains samples, such that M ≤ ms +mτ ,M >
mτ , the optimal NCI encoder φ∗

τ (·) achieves the same error bound ϵ with probability δ.

Note that the constraints on the sample size in Theorem 2 requires the number of source samples
to be > 0. When mτ samples from the target alone cannot attain the sample complexity M for
achieving the optimal error bound ϵ of Φ∗

τ , NCI can leverage ms novel samples from the source
domain to achieve the same error bound ϵ as that of Φ∗

τ . This suggests that NCI treats the additional
samples from the source domain as augmentations in the target, a property that is also reflected in the
proof of Theorem 2. Note that the constraints on the sample size in Theorem 2 requires the number
of both source and target samples to be > 0, and the total number of source and target samples must
at least add up to achieve the sample complexity of Φ∗

τ . Thus, the source and target samples must
each come from a unique support in order to qualify as distinct. We empirically validate this fact in
Section 4 by varying degrees of complementary (and shared) information between the source and
the target domains, and tracking its effects on classification accuracy.

With the above results, although we can guarantee the optimality of NCI, we cannot guarantee its
uniqueness under the given semantic constraints. This is because there could be multiple ways
to bring the source-target Hη-divergence down to 0, which may be dependent on the constraints
imposed by the downstream task. A related finding by Volpi et al. (2018) shows that domain-shifted
augmentations penalize deviations from the parameter vector corresponding to that of the true label
instead of regularizing towards zero unlike classic regularizers. We conjecture that this property also
applies to NCI, and can be an alternative approach to proving Theorem 2, and perhaps, understanding
the uniqueness of the solution.

3.4 TRAINING WITH NCI

Below we provide an example of converting a commutative invariance objective into its non-
commutative form. We choose the Domain Adversarial Neural Network (Ganin & Lempitsky, 2015)
as the candidate for this example because of its simplicity and ubiquity across the conditional invari-
ance learning literature (Long et al., 2018; Li et al., 2018; Stojanov et al., 2021). The discriminator
η(·) is trained to distinguish between the source and the target domain from the representation space
of φτ by minimizing the following:

Lη = y log η(φτ (x)) + (1− y) log(1− η(φτ (x))) (2)

The encoder for the target domain φτ is trained to maximize the Lη through non-commutatively
mapping the source samples to the target domain by minimizing the following objective:

Lφ = (1− y) log(η(φτ (x))) (3)

Note that the above objective is non-commutatively invariant to the source domain because the loss
is only minimized for source domain samples with label 0, and not for the target domain samples
with label 1. In other words, φ(·) learns representations such that the discriminator sees source
domain samples as being from the target domain, but not the other way around. Optimizing the
above set of objectives should thus lead to the convergence of φ(·) towards the optimal encoder for
the target domain φ∗

τ (·) according to Theorem 2.

4 EXPERIMENTS

Datasets and Experimental Settings: We perform experiments with NCI on three standard domain
adaptation benchmarks, namely, PACS (Li et al., 2017), Office-Home (Venkateswara et al., 2017),
and DomainNet (Peng et al., 2019). We evaluate NCI on the task of multi-source domain adaptation
(Zhao et al., 2018) experiments with complementary semantics across domains. We model this
setting by not sharing the full instance support across domains. Specifically for PACS and Office-
Home, 70% of the sample supports are shared between both sources and targets, and each of the
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Method PACS Office-Home
Photo Art Cartoon Sketch Photo Clipart Product Real

ERM (Wiley 1998) 81.33 77.60 88.76 78.30 49.15 45.66 54.32 60.60
DANN (ICML’15) 78.86 75.32 90.37 80.66 47.31 46.15 54.79 58.17
CDANN (ECCV’18) 78.95 76.72 90.02 80.00 47.64 46.02 54.50 59.45
MDAN (NeurIPS’18) 79.37 77.05 88.90 79.15 48.00 45.77 54.45 60.90
MDD (ICML’19) 79.55 77.62 87.61 79.48 47.99 45.31 54.37 59.16
CICyc (GCPR’21) 80.02 76.67 89.35 78.86 48.96 45.50 55.11 60.02
IB-IRM (NeurIPS’21) 77.01 75.11 90.78 80.95 45.40 46.91 55.25 57.96
EQRM (NeurIPS’22) 80.35 78.00 90.11 78.10 49.55 45.10 55.21 60.90
CIRCE (ICLR’23) 80.78 79.48 89.72 80.55 48.20 44.97 54.21 60.75
SDAT+ELS (ICLR’23) 81.25 80.21 89.32 80.27 48.50 45.43 55.39 60.97

NCI (Ours) 83.40 81.55 91.05 81.37 50.02 47.90 56.00 63.50

Table 1: Comparison with SOTA invariance learning approaches on PACS and Office-Home.

Method PACS Office-Home
Photo Art Cartoon Sketch Photo Clipart Product Real

Fishr (ICML’22) 81.19 80.06 89.05 79.68 48.25 45.15 54.39 59.92
+ NCI 84.90 82.22 92.00 82.55 51.37 48.07 56.86 64.02

SDAT (ICML’22) 81.00 79.95 88.11 79.32 48.07 45.20 54.55 60.37
+ NCI 83.80 82.06 91.92 82.07 51.44 48.05 56.95 64.22

Model Soups (ICML’22) 81.26 79.37 89.76 79.05 48.55 45.71 54.48 60.91
+ NCI 85.09 82.56 92.77 82.62 51.95 48.49 57.20 64.50

Table 2: Accuracy gains from NCI on top of flat-minima based OoD generalization algorithms.

3 targets provide 10% unique data support instances. For DomainNet, 75% of the instances are
shared across domains, and each of the 5 source domains provide 5% novel support instances. For
comparing NCI against an oracle that has access to all the domains at test time, we perform a
separate set of experiments on the multi-modal material segmentation task introduced by Liang
et al. (2022) on their proposed dataset. For all our experiments, we use the NCI version of Domain
Adversarial Neural Networks (DANN) (Ganin & Lempitsky, 2015), as described in Section 3.4, with
all hyperparameters and experimental settings based on the DomainBed (Gulrajani & Lopez-Paz,
2021) version of DANN, as that provides a fair ground for comparison with existing arts. Through
our experiments, we not only aim to verify the domain adaptation performance of NCI relative to
SOTA, but also our theory (Theorem 2) on the ability of NCI to leverage samples of complementary
semantics from source domains to learn the optimal target encoder, along with our Asymmetry
assumption (Assumption 1). We also wish to understand how NCI compares with an oracle that has
the liberty to optimally choose useful features from all domains at test time.

Comparison with SOTA invariance learning approaches: We report the performance of NCI
compared to existing SOTA invariance learning algorithms in Table 1 (PACS and Office-Home) and
Table 4 (DomainNet). We provide a discussion on the algorithms that we compare NCI with, as
well as the results on DomainNet in Appendix A.5. The observations agree with our premise that
invariance to all domain-specific information may or may not be helpful depending on the target
domain. For instance, in Table 1, although DANN outperforms ERM in Cartoon and Sketch in
PACS, it lags behind in Photo and Art by similar margins. This indicates that the domain-specific
information it “discards” is somehow helpful for classification of Photos and Art paintings. This
happens because the Cartoon and the Sketch domains can be expressed as approximate subsets of
Photo and Art. So, discarding information that is specific to Photo and Art helps the classifier to be
robust when applied to Cartoon or Sketch. However, this backfires when the evaluation is performed
on Photo and Art, as the invariant representation is unable to capture the semantic diversity that their
domain-specific information introduces. This effect can also be seen to be amplified in IB-IRM,
which imposes a stronger commutative invariance across domains via information bottleneck.

Orthogonality to flat-minima based algorithms: Methods like Fishr (Rame et al., 2022; Rangwani
et al., 2022), and Model Soups (Wortsman et al., 2022), all aim to achieve generalization across do-
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Figure 3: Effects of increasing the number of semantically complementary source samples (horizon-
tal axis) on classification accuracy (vertical axis) across different complementary source domains.

mains by smoothing the loss landscape. For such algorithms, the domain asymmetry property, that
the commutative invariance learning algorithms do not utilize as described above, do not seem to
have a clear effect as illustrated in Table 2. Their performance is generally close to, or in some
cases, better than the best of both classes of algorithms – ones that do (eg. DANN) and the ones that
do not (eg. ERM) learn any form of invariance. Our conjecture is that loss landscape smoothing
has the effect of mapping all the domains to a unified landscape with a prominent global minimum,
which aids performance across all domains. When combined with NCI, the gains obtained on top
of such algorithms do not seem to depend upon the degree of shared / domain-specific information,
suggesting that the idea of commutativity is orthogonal to the flatness of the loss landscape. Specifi-
cally, if one were to choose domain-specific / shared information as the criterion, the gains provided
by these methods seem to be random. This, however, is in addition to NCI providing non-trivial
accuracy boosts when combined with the loss landscape smoothing algorithms, which shows that
these algorithms can also benefit from the idea of non-commutativity. The a priori reasons behind
these observations, unfortunately, fall outside of the scope of this work; something we would like to
leave as an open problem at the intersection of invariance learning and function smoothness.

Varying degrees of complementarity across domains: Theorem 2 shows that NCI is particularly
helpful when the semantic information provided by different domains is complementary to each
other, enabling source domain samples to act as augmentations for meeting the sample complexity
needs of learning the optimal target domain encoder. To evaluate this empirically, we conduct ex-
periments on the PACS dataset with “Photo” as the target domain, where we start by sharing 50% of
data support (sample IDs) across all domains. We designate one of the source domains as the “com-
plementary source”. Retaining the originally shared 50%, we progressively incorporate additional
samples from the complementary source, varying from 5-50%, while removing the same amount of
shared samples from the complementary source train set. This keeps the total number of instances
in the train set constant, while increasing the degree of complementarity between the target and the
complementary source. We repeat this experiment by assigning different domains as the comple-
mentary source, and report our results in Figure 3, where the horizontal axis represents the varying
degrees of complementarity from 5-50%, and the vertical axis shows classification accuracy.

We observe that as we increase the degree of complementarity, the classification accuracy ap-
proaches the setting where the model has access to all the corresponding samples from the target (as
well as the other source domains) (Table 1). The rise in the classification accuracy is smoother for
domains that are similar to photos, i.e., Art and Cartoon (perhaps because both have color informa-
tion), and is more abrupt for sketches, which is relatively more disjoint from photos. However, once
the total number of samples cover the full support (50% complementarity), the accuracies across all
the complementary sources are similar and close to the maximum attainable value in Table 1. This
shows that NCI can leverage semantically complementary samples from any of the source domains,
and make them act as augmentations in the representation space of the target, achieving similar
performance as that of using all target-specific samples.

Discovering semantic asymmetries: One of the conditions under which NCI has an advantage is
that of the existence of semantic asymmetries – semantically relevant factors of variation that are
present in some domain, but not in the others, as we formalize in Assumption 1. We test the exis-
tence of these factors by performing an additional set of experiments on the multi-modal material
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Backbone Standalone NCI Oracle
Image AOLP DOLP NIR Image AOLP DOLP NIR

TopFormer (CVPR’22) 45.10 33.60 29.80 28.77 48.10 39.30 35.82 29.60 48.44
DPT (ICCV’21) 37.86 30.55 23.86 23.40 42.72 32.33 27.52 25.23 43.50
SegFormer (NeurIPS’21) 41.81 24.90 29.00 22.99 46.37 34.33 36.24 35.81 47.25
FPN (CVPR’19) 30.20 28.68 33.21 26.79 39.86 32.79 41.35 29.22 41.68
DeepLabV3+ (ECCV’18) 35.86 27.76 22.56 25.87 41.96 30.76 29.82 30.50 42.90
PSPNet (CVPR’17) 27.99 25.71 32.50 23.60 37.68 30.50 39.20 27.45 40.06
UNet (MICCAI’15) 29.00 26.02 23.51 21.27 36.93 31.58 27.29 25.63 37.70

Table 3: Left: Discovering semantic asymmetries to inform the direction of invariance learning in
NCI. Right: Comparison with oracle performance.

segmentation dataset, the results of which we report in Table 3. We hypothesise that if the distri-
bution of semantic information is asymmetric across domains, then the standalone performance of
single domain training should vary across domains. This domain where the model performs the best
should be the one that contains the most domain-specific information that is semantically relevant.
Under circumstances where the cost of acquiring data from each domain is the same, this insight
can be used to determine the most optimal direction for learning non-commutative invariances. The
target domain for NCI in that case should be the domain that provides the highest accuracy with
standalone training. From Table 3, it can be seen that for a given model, the performance of NCI
correlates with standalone performance. The domain that gives the highest standalone accuracy (un-
derlined) is also the one that has the highest accuracy when it becomes the target domain for NCI.
This observation holds for all backbones and domains, indicating the validity of our hypothesis.

Comparison with oracle performance: To empirically validate whether NCI is, in fact, the correct
form of invariance to learn, we compare its performance with that of an oracle, across a number of
backbones. We choose the task of multimodal material segmentation, which is a recently emerg-
ing image segmentation task that requires leveraging material information from multiple imaging
modalities to segment material types (Liang et al., 2022; Zhang et al., 2023a). A multi-modal mate-
rial segmentation model can be viewed as an oracle, since it has access to all the domains (modalities
for a multi-modal model) at test-time, allowing it to choose from meaningful and superfluous fea-
tures that may or may not be specific to the domain. The ability of the model to make predictions
based on multiple input modalities thus provides a unique setup to simulate the oracle behavior.
Note that our setup of evaluating domain invariant features do not assume access to multiple input
modalities at test time. The ordinary (non-oracle) models of NCI only have access to the target
domain (single modality) data at test time. On the other hand, the oracle model has the advantage
of accessing information across all modalities, both source and target during test. Specifically, we
choose the model by Liang et al. (2022) to maintain consistency in terms of the network backbone.
From Table 3, the performance of NCI can be seen to approach that of the oracle with access to just
a single modality, indicating that it is able to capture the semantically meaningful invariances.

5 CONCLUSION

We presented the idea of learning non-commutative invariances (NCI), an invariance learning ap-
proach that is conditioned upon the target domain of inference. Along with the shared concepts
across domains, NCI preserves domain-specific information for the target only. We prove this ap-
proach to be theoretically beneficial for domain adaptation when - (1) the target domain contains
semantically relevant information that is not present in the source domain, a condition that we call
Asymmetry (Assumption 1); and (2) the source domain samples are semantically complementary to
those from the target domain, which allows NCI to satisfy the sample complexity needs for the op-
timal target domain encoder, with additional samples from the source domain (Theorem 2). Under
these conditions, we empirically showed that NCI achieves SOTA performance in domain adapta-
tion relative to existing invariance learning objectives. NCI is a novel conditional invariance learning
paradigm, and as such, leaves room for a number of open questions: (1) Is the NCI solution of learn-
ing Φ∗

τ unique? (2) Does φ∗
τ → Φ∗

τ in a measure theoretic sense, and not just in terms of sample
complexity or error bound? (3) What is the relationship between class-conditional invariance learn-
ing and NCI? (4) Is NCI provably orthogonal to flat-minima based algorithms? We believe that these
can be explored as both theoretical and empirical research problems on invariant representations.
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Han Zhao, Shanghang Zhang, Guanhang Wu, José M. F. Moura, Joao P Costeira, and Geoffrey J
Gordon. Adversarial multiple source domain adaptation. In NeurIPS, 2018.

Chuanxia Zheng, Tat-Jen Cham, and Jianfei Cai. T2net: Synthetic-to-realistic translation for solving
single-image depth estimation tasks. In ECCV, 2018.

12

https://openreview.net/forum?id=GPTjnA57h_3


Published as a conference paper at ICLR 2024

A APPENDIX

A.1 EXTENDED LITERATURE REVIEW

Augmentations with Domain Shift: A number of works have leveraged domain adaptation to use
easy-to-acquire source domain samples as data augmentations while training with target domain
data. This is one of the primary modes of data-augmentation in the task of robotic grasping (Tobin
et al., 2017; Bousmalis et al., 2018; Tanwani, 2021), where simulated data are used as an augmen-
tation source along with real data, which is the target domain. This idea of leveraging simulated
samples as source-side augmentations has also found application in a number of vision problems
such as classification (Gan et al., 2021; Mishra et al., 2022), object detection (Peng et al., 2015;
Tobin et al., 2017; Prakash et al., 2019; Tanwani, 2021), segmentation (Ros et al., 2016; Wang et al.,
2020; Hoyer et al., 2023), and depth estimation (Zheng et al., 2018; Chen et al., 2019; Akada et al.,
2022). Most training objectives for such applications can be classified into the self-supervised (Li
et al., 2019; Hoyer et al., 2023) or the adversarial invariance learning (Tsai et al., 2018; 2019) cate-
gories, some of which can provide gains that are complementary to existing task-specific algorithms
(Tsai et al., 2019). Via Theorem 2, we show that our proposed NCI can provably leverage source
domain samples as augmentations in the target domain, and hence, can possibly benefit all of these
application areas.

A.2 NOTATIONS

• Ds: Source domain, only available during training.

• Dτ : Target domain in which the model is to be evaluated.

• X,Y, P (X,Y ): Inputs, outputs, and their probability distribution respectively.

• Hη: Hypothesis class (set of learnable functions) of domain discriminators.

• Hφ: Hypothesis class of encoders for domain adaptation.

• η: Domain discriminator that distinguishes between source and target domains.

• Φτ : Encoder trained and evaluated in the target domain.

• Φs: Encoder trained and evaluated in the source domain.

• Φ∗
τ : Optimal encoder for the target domain (trained only with target domain data).

• φ: Encoder trained with data from multiple domains.

• φ∗: Encoder that is optimal-on-average across domains (trained with multi-domain data).

• φτ : Encoder trained with multi-domain data, but evaluated on domain Dτ .

• φ∗
τ : Optimal encoder for Dτ , trained with multi-domain data.

Note that we have separate symbols for Φ∗
τ and φ∗

τ only to distinguish that the former only sees
samples from the target domain during training, while the latter can be trained on samples from
multiple domains (including the target). Under certain circumstances like NCI, φ∗

τ ≡ Φ∗
τ .

A.3 ADDITIONAL PRELIMINARIES

A.3.1 METRIC SPACE OF DOMAINS

The set of domains D form a metric space under a hypothesis class of domain discriminators Hη .
The associated distance metric between any two points (domains) s, τ ∈ D is their corresponding
Hη-divergence (Definition 5). It can be verified from Equation (4) that under any arbitrary encoder
φ that preserves the semantics of the input, Hη-divergence satisfies the axioms for being a metric in
D, i.e., for all domains s,m, τ ∈ D:

• Positivity: ∀x ̸= y,Hη(s, τ, φ) > 0

• Symmetry: Hη(s, τ, φ) = Hη(τ, s, φ)

• Triangle inequality: Hη(s, τ, φ) = Hη(s,m, φ) +Hη(m, τ, φ)
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Hence, the distance ∆ between any pair of source (s) and target (τ ) domains in the representation
space of an encoder φ can be measured via their Hη-divergence as:

∆ = s− τ = Hη(s, τ, φ)

A.3.2 OPERATOR-ENCODER DUALITY

We introduce the notion of operators to summarize a learning objective in the form of an expression
in terms of domains. This allows us to make statements about (e.g., Theorem 4) and invoke (e.g.,
Theorem 2) group-theoretic properties that are induced by an invariance learning algorithm on the
set of domains. In our analysis, an operator corresponds to a function that can be applied to one
or more domains for performing some downstream task. In practical implementation, the operator
would simply correspond to the data encoder network φ that produces feature representations given
an input x as φ(x). The operator expression corresponding to the encoder summarizes the behaviour
of that encoder when applied to data from different domains, which therefore establishes a duality
between an encoder and its corresponding operator. In other words, the kind of function that is
learned by the algorithm can be expressed via its operator expression. For instance, the learning
objective of Domain Adversarial Neural Networks or DANNs (Ganin et al., 2016) can be written as
a duality between a commutatively invariant operator ⊗ operating on samples from multiple domains
(say, Ds and Dτ ), and an optimal encoder φ∗ for the shared concept x between the domains as:

xs ⊗ xτ = xτ ⊗ xs = φ∗(x)

The above equality means that the function learned by a DANN is invariant to both the source and
the target domain, producing the same output that corresponds to a domain-invariant encoding of
the underlying concept x. The fact that DANNs treat both the source and the target domains as the
same is reflected through the commutative nature of ⊗ – the same output is produced irrespective
of the position of xs and xτ around ⊗. It also indicates (via φ∗) that a model trained with DANN
is optimal on the shared concept x across the input domains in the operand list (xs and xτ ) of
the expression. On the other hand, the operator expression for NCI could be written in terms of a
non-commutatively right invariant operator as:

φ∗
s(xs) = xs ⊗ xτ ̸= xτ ⊗ xs = φ∗

τ (xτ )

Note that unlike DANN, ⊗ represents a non-commutatively right invariant operator for NCI. The
above expression indicates that an encoder φ∗

s/τ trained with NCI is invariant to the domain that
appears to the right of ⊗, but is sensitive to the domain that appears to the left. It also says that the
encoder that NCI produces is optimal in the domain that the left operand comes from.

In summary, the operator expression summarizes the invariance properties of a learning algorithm,
whereas the encoder is the actual function (say, a neural network) that computes such invariants,
given the input data.

A.3.3 RISKS

In general, our theoretical analysis (for instance, in Lemma 3, Theorem 1, and Theorem 3) deals
with the empirical risk (Vapnik, 1991) defined as:

R(f) =
1

N

N∑
i=1

l (f (xi) ,yi) ,

where f could be an encoder φ or a discriminator η, and N is the number of train set samples in
Ds ∪Dτ . The complete expansion of l(·, ·) depends on the nature of f . As described in Section 3.4,
l(·, ·) takes the form of Equation (3) for encoders φ, and that of Equation (2) for discriminators η.

A.3.4 DEFINITIONS

The generalization of a model across multiple domains is governed by the No Free Lunch Theorem
(Wolpert & Macready, 1997). As such, it is well known that models that perform well on average
are not optimal for specific domains, and vice versa (Eastwood et al., 2022). Inspired by this, we
present the following domain-specific and domain-agnostic notions of optimality.
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Definition 3 (Domain-Specific Optimality). An encoder Φ∗ is said to be optimal for the domain Dτ

iff, for all Φ ∈ HΦ (hypothesis class of domain-specific encoders) operating on Dτ , the following
holds:

R(Φ∗) =

∫
X,Y

l(Φ∗(x),y) dP (x,y) ≤
∫

X,Y

l(Φ(x),y) dP (x,y),

where the samples x ∼ X , y ∈ Y are all drawn from the domain τ . In other words, there exits no
other encoder Φ ∈ HΦ with a true risk lower than what is achieved by Φ∗ when operating in Dτ .
Definition 4 (Optimal-on-average). An encoder φ∗ is said to be optimal on average across domains
[τ, τ +∆] iff, for all φ ∈ Hφ, the following holds:

R(φ∗) =
1

∆

τ+∆∫
θ=τ

l(φ∗(Dθ), Y ) dP (θ, Y ) ≤ 1

∆

τ+∆∫
θ=τ

l(φ(Dθ), Y ) dP (θ, Y ),

where we use φ(Dθ) to denote the application of φ to all elements of Dθ for notational simplicity.
In other words, all encoders φ ∈ Hφ should have a true risk that is at least as high as R(φ∗) when
averaged across [τ, τ +∆].
Definition 5 (Hη-divergence (Ben-David et al., 2006; 2010; Kifer et al., 2004; Ganin et al., 2016)).
The Hη-divergence between Ds and Dτ is a measure of the capacity of the discriminator hypothesis
class Hη to distinguish between the source and the target sample representations. It is quantified as:

dHη (Ds,Dτ , φ) = 2 sup
η∈Hη

∣∣∣∣ Pr
x∼Ds

[η(φ(x)) = 1]− Pr
x∼Dτ

[η(φ(x)) = 1]

∣∣∣∣ (4)

In other words, the H-divergence is a measure of the capacity of H to distinguish between samples in
φ(Ds) from the samples in φ(Dτ ). An empirical estimate of the Hη-divergence was also developed
by Ben-David et al. (2006; 2010), which is defined when Hη is symmetric 1, with samples S ∼
(Ds)

n and T ∼ (Dτ )
n, as:

d̂Hη
(S, T, φ) = 2

(
1− min

η∈Hη

[
1

n

n∑
i=1

I[η(φ(xi)) = 0] +
1

n′

N∑
i=n+1

I[η(φ(xi)) = 1]

])
(5)

where I[a] is the indicator function that takes a value of 1 when the predicate a is true, and 0
otherwise, and S = {x1,x2, ...,xn}, T = {xn+1,xn+2, ...,xN}.
Definition 6 (A-distance Ben-David et al. (2006); Ganin et al. (2016)). The A-distance between
domains DX

S and DX
T is an empirical approximation of the H-divergence given by:

d̂A(DX
S ,DX

T ) = 2 sup
A∈A

∣∣∣∣∣PrDX
S

(A)− Pr
DX

T

(A)

∣∣∣∣∣
≈ 2(1− ϵ) =⇒ ϵ = 1− d̂A(DX

S ,DX
T )

2
where A is a subset of X , and ϵ, which approximates the “min” part of Equation (5), can be viewed
as the generalization error Ganin & Lempitsky (2015).
Theorem 3 (Generalization Bound on the Target Risk (Ben-David et al., 2006)). Let the VC (Vap-
nik–Chervonenkis) dimension (Vapnik & Chervonenkis, 1971) of Hη be d. With probability 1 − δ
over the choice of samples S ∼ Ds and T ∼ Dτ , for every η ∈ Hη:

RDτ
(φ) ≤ RS(φ)+

√
4

n
(d log

2en

d
+ log

4

δ
)+ d̂Hη

(S, T, φ)+4

√
1

n
(d log

2n

d
+ log

4

δ
)+β (6)

with β ≥ infφ∗∈Hφ
[RDs

(φ∗) +RDτ
(φ∗)], n = |S| = |T |, and

RS(φ) =
1

n

n∑
i=1

I[φ(xi) ̸= yi]

is the empirical source risk.
1A hypothesis class H is symmetric iff ∀h ∈ H and any permutation of labels c : Y → Y , we have

c(h) ∈ H (Ganin et al., 2016).
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Ganin et al. (2016) minimized the RHS of the bound by minimizing d̂Hη
via domain adversarial

training (a form of commutative invariance learning), which achieves a lower bound of 0 on the
generalization error ϵ (Definition 6). However, we show in the section below, that such a solution
is not optimal, as there exists an η, for which, although the generalization error ϵ is not 0, the Hη-
divergence is 0, without affecting the source risk Rs.

A.4 PROOFS

Result 1. If the VC (Vapnik–Chervonenkis) dimension (Vapnik & Chervonenkis, 1971) of Hφ,
V C(Hφ) ≥ N , the total number of training samples, then the target risk of the optimal NCI encoder
RDτ

(φ∗
τ ) is related to the target risk of the commutatively invariant encoder RDτ

(φ∗) as:

RDτ (φ
∗
τ ) ≤ RDτ (φ

∗)− d̂Hη (S, T, φ
∗) < RDτ (φ

∗)

Proof. If the VC (Vapnik–Chervonenkis) dimension (Vapnik & Chervonenkis, 1971) of Hφ,
V C(Hφ) ≥ N , then for the optimal commutative adversarial hypothesis φ∗(·) acting against the
optimal discriminator η∗ 2 obtained via the minimization criterion in Equation (5), we have:

1

n

n∑
i=1

I[η∗(φ∗(xi)) = 0] +
1

n′

N∑
i=n+1

I[η∗(φ∗(xi)) = 1] = 0

In other words, φ∗(·) would produce representations such that all samples from the source domain
would be misclassified as being from the target domain and vice versa. So, under commutativity
samples from both domains are equally likely to get misclassified by the domain classifier, as for
example in Ganin & Lempitsky (2015); Arjovsky et al. (2019); Ahuja et al. (2021). Hence, the best
possible H-divergence that can be obtained with φ′(·) by substituting the above in Equation (5) is:

d̂Hη
(S, T ) = 2(1− [0 + 0]) = 2

However, for the optimal encoder φ∗
τ ∈ Hφ that is non-commutatively invariant towards the target

domain τ , the samples from the source would be classified as being from the target, but not the other
way around. We would thus have:

1

n

n∑
i=1

I[η∗(φ∗
τ (xi)) = 1] = 1 and

1

n′

N∑
i=n+1

I[η∗(φ∗
τ (xi)) = 1] = 0

Substituting the above in Equation (5):

d̂Hη
(S, T ) = 2(1− [1 + 0]) = 0

Hence, under non-commutativity, i.e., when the adversary forces only the misclassification of the
domain labels of samples from the source domain, the theoretical limit of the Hη-divergence is lower
than that of the commutative setting, and in fact degenerates to 0, giving a stricter upper bound on
the target risk in Theorem 3. Under NCI, Equation (6) thus becomes:

RDτ
(φ∗

τ ) ≤ Rs(φ
∗
τ ) +

√
4

n
(d log

2en

d
+ log

4

δ
) + 4

√
1

n
(d log

2n

d
+ log

4

δ
) + β

=⇒ RDτ
(φ∗

τ ) ≤ RDτ
(φ∗)− d̂Hη

(S, T, φ∗) < RDτ
(φ∗)

as Rs(φ
∗
τ ) = Rs(φ

∗) (non-commutativity does not affect the source risk as source samples still get
mapped to the target domain, as with commutativity), and d̂H(S, T ) = 0, thereby bringing down
the upper-bound on the target risk of the optimal NCI encoder to R(φ∗) − d̂Hη

(S, T, φ∗). This
completes the proof.

Lemma 1. Let Ds and Dτ be separated by dHη
> 0. Then, the bases of Ds and Dτ can be factorized

as Ds = [C Ds] and Dτ = [C Dτ ] such that:

Ds · Dτ = 0

2An optimal discriminator η∗ maximizes Equation (5), while an optimal commutative adversarial encoder
φ∗ minimizes Equation (5).
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Proof. Although Ds and Dτ are separated by dHη
(Ds,Dτ ) > 0, they share the same support,

(X,Y ). Hence, they must have a subspace that corresponds to the shared concept, which is C.

Now, let the complements of C in Ds be Ds, and that in Dτ be Dτ . Since a concept, and a domain-
specific expression of the concept, can vary independently, Ds and Dτ must be subspaces that are
intrinsic to the domains, and hence, not shared between the domains (the extreme case is the scenario
when the two domains share only the concept and no domain-specific components, for example, in
texts and images (Federici et al., 2020)). Since the Hη-divergence between Ds and Dτ > 0, it means
that they are distinct domains. This implies that the distinctness of Ds and Dτ , which is expressed
via their positive Hη divergence, must be a result of the fact that their respective domain-specific
components, namely Ds and Dτ , do not share any bases. Hence, Ds and Dτ must be independent
=⇒ Ds · Dτ = 0. This completes the proof of the lemma.

Lemma 2. For source and target domains Ds and Dτ respectively with dHη (Ds,Dτ ) > 0, the
following holds for a commutatively invariant encoder φ∗(·):

φ∗(Ds · DT
τ ) = φ∗(Ds) · φ∗(Dτ )

T

Proof. Let φ∗(C) = ŷ. Since φ∗ is commutatively invariant to all domains, let φ∗(D1) = φ∗(D2) =
k. Without loss of generality, let both ŷ and k be idempotent under self dot-product, i.e., ŷn = ŷ
and kn = k. Now, from Lemma 1, we can right the RHS in the lemma as,

φ∗(Ds) · φ∗(Dτ ) = φ∗([C Ds]) · φ∗([C Dτ ])
T = [φ∗(C) φ∗(Ds)] · [φ∗(C) φ∗(Dτ )]

T = [ŷ k]

and the LHS as,

φ∗(Ds · Dτ ) = φ∗([C Ds][C Dτ ]
T ) = φ∗([CCT DsD

T
τ ]) = [φ∗(CCT ) φ∗(DsD

T
τ )]

However, since CCT is in the same concept basis, namely that of C, and should hence induce the
same label prediction

=⇒ φ∗(C) = φ∗(CCT ) = ŷ

Now, D′ = DsD
T
τ corresponds to the domains-specific components shared between Ds and Dτ .

Given that φ∗(·) is invariant to any domain-specific information, if φ∗(Ds) = φ∗(Dτ ) = k,

D′ = DsD
T
τ =⇒ φ∗(DsD

T
τ ) = k

We can therefore rewrite φ∗(Ds · Dτ ) as:

φ∗(Ds · Dτ ) = [φ∗(CCT ) φ∗(DsD
T
τ )] = [ŷ k] = φ∗(Ds) · φ∗(Dτ )

This completes the proof of the lemma.

Lemma 3. Let the Hη-divergence between the source (s) and the target (τ ) domains be ∆, i.e.,
s = τ +∆. The risk of the optimal-on-average encoder φ∗(·) across domains is lower-bounded by
its prediction error on the shared semantics between the source and the target domains given by:

R(φ∗) = min
φ∗∈Hφ

1

∆

τ+∆∫
θ=τ

l (φ∗(Dθ), Y ) dP (θ, Y ) ≥ min
φ∗∈Hφ

l(φ∗(Ds ∩ Dτ ), Y ),

where l(·, ·) is the loss function for measuring prediction error.

Proof. Following from Lemma 1, for a given instance x ∈ X , the shared semantics between do-
mains must lie in the concept subspace, i.e., Ds ∩ Dτ ∈ C. Hence, the risk on the shared semantics
can be written as:

l(φ∗(Ds ∩ Dτ ), Y ) = l(φ∗(C), Y ) (7)

Let the integral in the lemma be denoted by J . Assuming the simplest case of domain discrepancy,
where Ds and Dτ are linearly related, considering the path on the domain manifold connecting the
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two, J can be lower-bounded by the risk on the dot-product between Ds and Dτ under φ∗(·) which
computes their similarity as follows:

J =

τ+∆∫
θ=τ

l (φ∗(Dθ), Y ) dP (θ, Y ) ≥ l(φ∗(Dτ ) · φ∗(Dτ+δ), Y )

The linearization follows from the simplest form that the manifold can assume, and a dot-product in
this regime would be an estimate of the similarity, i.e., the degree of shared information between Ds

and Dτ , which are nothing but domain-specific expressions of the support (X,Y ). Now, applying
the factorization of D1 and D2 from Lemma 1 to the form of J in Equation (8), we have:

J ≥ l(φ∗([C D1]) · φ∗([C D2]
T ), Y ) = l(φ∗([C · CT D1 · DT

2 ]), Y ) = l(φ∗([CCT 0]), Y ), (8)

where the distributive property of φ∗(·) under the dot-product follows from Lemma 2. Combining
Equation (7) and Equation (8), we get:

R(φ∗) = min
φ∗∈Hφ

1

∆
J ≥ l(φ∗([CCT 0]), Y ) ≡ l(φ∗(C), Y ) = min

φ∗∈Hφ

l(φ∗(Ds ∩ Dτ ), Y ),

since C and CCT represent the same concept subspace. This completes the proof of the lemma.

Theorem 1. Let the Hη-divergence between the source (s) and the target (τ ) domains be ∆, i.e.,
s = τ + ∆. Under asymmetry (Assumption 1), i.e., I(φ∗

s(xs);y) < I(φ∗
τ (xτ );y), the risk of the

optimal-on-average encoder R(φ∗) for predicting Y across all domains up to a distance ∆ from the
domain τ admits the following upper bound:

R(φ∗) = min
φ∗∈Hφ

1

∆

τ+∆∫
θ=τ

l (φ∗(Dθ), Y ) dP (θ, Y ) ≥ l (φ∗
τ (Dτ ), Y ) ,

where l(·, ·) calculates the encoding risk of a domain, and φ∗
τ (·) is the optimal encoder for τ .

Proof. From Lemma 3, we know:

R(φ∗) ≥ min
φ∗∈Hφ

l(φ∗(Ds ∩ Dτ ), Y ),

i.e., the risk of the globally optimal encoder R(φ∗) is upper-bounded by the information shared
between the source and the target domains l(φ∗(Ds ∩ Dτ ), Y ). Also, the global risk of φ∗(·) must
be at least as large as the maximum risk in the individual domains, i.e.,

min
φ∗∈Hφ

l(φ∗(Ds ∩ Dτ ), Y ) ≥ max[Rs(φ
∗), Rτ (φ

∗)], (9)

where Rs(·) and Rτ (·) are risks evaluated in the source and target domains respectively. Since we
are operating under asymmetry (Assumption 1) of I(φ∗

s(xs);y) < I(φ∗
τ (xτ );y), we also have:

I(φ∗
s(xs);y) < I(φ∗

τ (xτ );y) =⇒ l(φ∗(Ds), Y ) > l(φ∗(Dτ ),y) =⇒ Rs(φ
∗) > Rτ (φ

∗)
(10)

Now, since φ∗(·) can do only as good as I(Ds, Y ), and I(Dτ , Y ) > I(Ds, Y ) from the asymmetry
assumption, it must be the case that:

∃ φ∗
τ ∈ Hϕ | l(φ∗(Dτ ), Y ) > l(φ∗

τ (Dτ ), Y ) =⇒ Rτ (φ
∗) > Rτ (φ

∗
τ ) = l (φ∗

τ (Dτ ), Y ) (11)

Therefore, putting Lemma 3, Equation (9), Equation (10), and Equation (11) together, we get:

R(φ∗) ≥ min
φ∗∈Hφ

l(φ∗(Ds ∩ Dτ ), y) ≥ max[Rs(φ
∗), Rτ (φ

∗)]

= Rs(φ
∗) > Rτ (φ

∗) > Rτ (φ
∗
τ ) = l (φ∗

τ (Dτ ), Y ) ,

which completes the proof of the theorem.
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Theorem 2. Consider a function class T of transformations that defines target domains such that
τ ∼ T ,xτ = τ(x),xτ ∼ Dτ . Let Φ∗

τ (·) be the optimal encoder for the target domain with sample
complexity for incurring an error of ϵ with probability δ. From Haussler’s theorem, the error incurred
by the optimal target domain encoder Φ∗

τ with probability δ and M target domain samples is given
by:

ϵ ≥
ln |T |+ ln 1

δ

M
,

With mτ target domain samples and ms source domains samples, such that M ≤ ms +mτ ,M >
mτ , the optimal NCI encoder φ∗

τ (·) achieves the same error bound ϵ with probability δ.

Proof. Let {·}sn and {·}τn denote sets of n source and target domain samples respectively. When
using Φ∗

τ , given a fixed sample size M , the only variability in ϵ comes from the size of the function
class T . Now, |T | directly models the number of domain-specific parameters in Dτ . Hence, the train
set samples must provide information specific to Dτ , for which purpose, they must be sampled from
Dτ . Thus, to prove the theorem, one needs to effectively show that, under the given constraints on
the number of available samples, with NCI, the source domain samples can be leveraged to bridge
the sample complexity needs of the target domain.

Without loss of generality, consider the most conservative case where the number of training samples
M = ms + mτ . Then, the process of applying non-commutative invariance with φ∗

τ between the
source Xs and the target Xτ train sets directed towards the target domain τ can be expressed as
follows:

Xs ⊗Xτ = {x1
s,x

2
s, ...,x

ms
s }sms

⊗ {x1
τ ,x

2
τ , ...,x

mτ
τ }τmτ

Using Lemma 1, the sample vectors can be decomposed as:

Xs ⊗Xτ = {c1s ⊕ d1
s, c

2
s ⊕ d2

s, ..., c
ms ⊕ dk

s}sms
⊗ {c1τ ⊕ d1

τ , c
2
τ ⊕ d2

τ , ..., c
m
τ ⊕ dm

τ }τmτ
,

where x = c ⊕ d. The subscripts under the vectors c only represent the domains from which the
samples containing these concepts are obtained. Since concepts are domain-agnostic, they do not
contain any domain information. The concept and the domain-specific components can then be
rearranged as follows:

Xs ⊗Xτ =
(
{c1s, c2s, ..., cms

s } ⊕ {d1
s,d

2
s, ...,d

ms
s }s

)
ms

⊗
(
{c1τ , c2τ , ..., cmτ

τ }mτ
⊕ {d1

τ ,d
2
τ , ...,d

mτ
τ }τ

)
mτ

Now, since ⊗ is non-commutatively invariant to the target domain, the source domain-specific com-
ponents can be removed from the above equation:

Xs ⊗Xτ = {c1s, c2s, ..., cms
s } ⊗

(
{c1τ , c2τ , ..., cmτ

τ }mτ ⊕ {d1
τ ,d

2
τ , ...,d

mτ
τ }τ

)
mτ

Since ⊕ distributes over any invariance operator ⊗ 3, we have:

=
(
{c1s, c2s, ..., cms

s } ⊕ {d1
τ ,d

2
τ , ...,d

mτ
τ }τ

)
ms

⊗
(
{c1τ , c2τ , ..., cmτ

τ }mτ
⊕ {d1

τ ,d
2
τ , ...,d

mτ
τ }τ

)
mτ

= {c1s ⊕ di
τ , c

2
s ⊕ dj

τ , ..., c
ms ⊕ dk

τ}τms
⊗ {c1τ ⊕ d1

τ , c
2
τ ⊕ d2

τ , ..., c
m
τ ⊕ dmτ

τ }τmτ

= {c1s ⊕ di
τ , c

2
s ⊕ dj

τ , ..., c
ms ⊕ dk

τ , c
1
τ ⊕ d1

τ , c
2
τ ⊕ d2

τ , ..., c
mτ
τ ⊕ dmτ

τ }τms+mτ≥M ,

such that {i, j, ..., k} ∈ [1,mτ ]. In other words, the target domain components dτ that the source
concept vectors cs combine with, are the ones that are present in the target domain training samples.
Therefore, from the above, the total number of samples in |Xs ⊗Xτ | is:

|Xs ⊗Xτ | = ms +mτ ≥ M, (12)

all of which belong to the target domain τ . Now, according to the Haussler’s theorem as mentioned
in the statement of Theorem 2, the requirement of achieving an error bound of ϵ with probability δ
is to have at least M samples. This can be observed from the following rearrangement:

ϵ ≥
ln |T |+ ln 1

δ

M
=⇒ M ≥

ln |T |+ ln 1
δ

ϵ
3Composition of ⊕ and ⊗ should either add or remove domain specific components.
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Now from Equation (12), we know that non-commutatively combining Xs with Xτ with ⊗ effec-
tively results in ms +mτ ≥ M samples in the target domain τ . Therefore, ⊗ satisfies the sample
complexity requirement of having access to at least M samples for learning the optimal target do-
main encoder Φ∗

τ , that achieves an error bound of ϵ with probability δ, when evaluated in the target
domain τ . This completes the proof of the theorem.

Theorem 4. If an operator ⊗ is commutatively invariant, it induces a commutative semigroup on
the set of domains D = {D1,D2, ...,Dn} that it is invariant to.

Proof. Below, we show that D satisfies the axioms of a commutative semigroup under ⊗.

Commutativity: Since ⊗ is commutatively invariant, for any pair of domains Di,Dj , by Defini-
tion 2 and Lemma 1, we have,

Di ⊗Dj = Dj ⊗Di = C,
where C = [C 0] ∈ D is the domain containing only the shared concepts across all D ∈ D with no
domain-specific information, and assuming D is closed under ⊗.

Associativity: For all domains Di,Dj ,Dk ∈ D, we have,

(Di ⊗Dj)⊗Dk = C ⊗ Dk = C
Di ⊗ (Dj ⊗Dk) = Di ⊗ C = C

∴ (Di ⊗Dj)⊗Dk = Di ⊗ (Dj ⊗Dk)

This completes the proof of the theorem.

A.5 EXPERIMENTAL DETAILS AND RESULTS

Clipart Inforgraph Painting QuickDraw Real Sketch
ERM (Wiley 1998) 44.24 43.68 46.79 39.31 37.86 40.50
DANN (ICML’15) 45.21 44.00 44.86 41.86 33.32 42.77
CDANN (ECCV’18) 45.35 44.82 45.10 41.50 35.37 42.36
MDAN (NeurIPS’18) 45.20 44.31 46.10 40.02 36.65 41.15
MDD (ICML’19) 44.68 44.21 45.68 41.02 35.91 40.86
CICyc (GCPR’21) 44.60 44.42 45.06 40.20 34.33 40.80
IB-IRM (NeurIPS’21) 45.55 44.68 43.21 41.95 32.86 42.88
EQRM (NeurIPS’22) 45.22 44.37 45.96 40.98 36.00 40.02
CIRCE (ICLR’23) 45.74 45.01 46.28 40.56 36.95 40.37
SDAT+ELS (ICLR’23) 45.68 44.88 46.45 41.28 36.37 42.09

NCI (Ours) 46.31 45.82 48.00 43.05 39.10 43.41

Table 4: Comparison with SOTA invariance learning approaches on DomainNet.

Discussion on SOTA invariance learning algorithms: Empirical Risk Minimization ERM Vap-
nik (1998) is the classical domain transfer approach which uniformly minimizes the empirical risk
across all domains, still providing one of the best average performances. Ganin & Lempitsky (2015)
introduced the idea of Domain Adversarial Neural Networks (DANN), to discover features that are
shared between domains, which was extended in a number of later works including MDAN Zhao
et al. (2018) and MDD Zhang et al. (2019). IB-IRM (Ahuja et al., 2021) explores the idea of infor-
mation bottleneck for invariance learning, while EQRM (Eastwood et al., 2022) presented a proba-
bilistic approach for generalizing across domains via quantile risk minimization. However, all of the
above approaches learn some form of commutative invariance, wherein domain-specific information
from both the source and the target are treated as being irrelevant. CDANN Li et al. (2018) was one
of the earliest works that introduced the idea of conditional invariance learning into DANNs. There-
after, CICyc (Samarin et al., 2021) enhanced this paradigm via disentanglement learning through
cycle consistency. They proposed disentangling the latent representation into a property subspace
Z0 and an invariant subspace Z1 encoding information about the label Y and the domain respec-
tively to achieve the conditional invariance of X ⊥⊥ Y |Z0. This allows the generation of new X̃ of
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a specific class by keeping Z0 fixed and varying Z1. However, such a disentanglement is based on
the assumption that the property and the invariant (domain) subspaces are independent from each
other. We show via Theorem 1 that such an assumption does not necessarily hold under domain
asymmetry (Assumption 1). The empirical drawback of this assumption can be seen in Table 1
and Table 4. CICyc has strong performance for domains whose underlying transformations (Equa-
tion (1)) preserve asymmetrically high property information (e.g., Real, Photo, etc.), but relatively
weaker performance on domains that aggressively diverge from other source domains, sharing only
the concept at the abstract level (e.g., Sketch, QuickDraw). The idea of preserving domain specific
information was also explored in Environment Label Smoothing (ELS) Zhang et al. (2023b), which
is one of the most recent advancements in the domain adaptation literature to deal with environment
label noise. ELS Zhang et al. (2023b) and CIRCE Pogodin et al. (2023) are two of the most recent
advances in invariance learning for adapting to novel domains that achieve conditional invariance
through environment label smoothing, and kernel-based conditional independence learning mech-
anisms respectively. However, unlike NCI, they require significant modifications of the invariance
learning objectives, or inclusion of additional constraints that enforce conditional invariance, and do
not necessarily guarantee optimality in the target domain.

21


	Introduction
	Related Work
	Non-Commutative Invariance
	Preliminaries
	Target Risk under Non-Commutativity
	Sample Complexity of NCI and its Optimality
	Training with NCI

	Experiments
	Conclusion
	Appendix
	Extended Literature Review
	Notations
	Additional Preliminaries
	Metric Space of Domains
	Operator-Encoder Duality
	Risks
	Definitions

	Proofs
	Experimental Details and Results


