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ABSTRACT

Transformer and its variants have shown great potential for various vision tasks
in recent years, including image classification, object detection and segmenta-
tion. Meanwhile, recent studies also reveal that with proper architecture design,
convolution networks (ConvNets) also achieve competitive performance with trans-
formers, e.g., ConvNeXt. However, no prior methods have explored to utilize pure
convolution to build a Transformer-style Decoder module, which is essential for
Encoder-Decoder architecture like Detection Transformer (DETR). To this end, in
this paper we explore whether we could build query-based detection and segmenta-
tion framework with ConvNets instead of sophisticated transformer architecture.
We propose a novel mechanism dubbed InterConv to perform interaction between
object queries and image features via convolutional layers. Equipped with the
proposed InterConv, we build Detection ConvNet (DECO), which is composed of
a backbone and convolutional encoder-decoder architecture. We compare the pro-
posed DECO against prior detectors on the challenging COCO benchmark. Despite
its simplicity, our DECO achieves competitive performance in terms of detection
accuracy and running speed. Specifically, with the ResNet-18 and ResNet-50 back-
bone, our DECO achieves 40.5% and 47.8% AP with 66 and 34 FPS, respectively.
The proposed method is also evaluated on the segment anything task, demonstrating
similar performance and higher efficiency. We hope the proposed method brings
another perspective for designing architectures for vision tasks.

1 INTRODUCTION

Object detection and segmentation are among the most foundational computer vision tasks and
are essential for many real-world applications (Ren et al., 2015; Redmon & Farhadi, 2017; 2018;
Bochkovskiy et al., 2020). The object detection pipeline has been developed rapidly, especially
in the era of deep learning. Faster R-CNN (Ren et al., 2015) is one of the most typical two-stage
object detectors, which utilizes a coarse-to-fine framework for bounding box prediction. Meanwhile,
one-stage detectors like SSD (Liu et al., 2016), YOLO series (Redmon & Farhadi, 2017; 2018;
Bochkovskiy et al., 2020) or FCOS (Tian et al., 2019) etc.simplify the detection pipeline by directly
predicting the objects of interest from the image features. Most of the above object detectors are
built upon convolutional neural networks (CNNs or ConvNets) and typically the Non-maximum
Suppression (NMS) strategy is utilized for post-processing to remove duplicated detection results.

The advancement of deep neural architectures have been benefiting the task of object detection. For
example, more powerful architectures usually bring considerably significant improvement for the
detection performance (Li et al., 2018; Liu et al., 2020; Gao et al., 2019; Guo et al., 2020). Recently
the emergence of vision transformer and its variants (Dosovitskiy et al., 2021; Liu et al., 2021;
Touvron et al., 2021; Wang et al., 2021b) have shown prominent performances on image classification
tasks and have built a solid foundation for the object detection field. Carion et al. (Carion et al.,
2020) proposes the Detection Transformer (DETR) that refactors the object detection pipeline as a
set prediction problem and directly obtains a fixed set of objects via a transformer encoder-decoder
architecture. This design enables DETR to get rid of the complicated NMS post-processing module
and results in a query-based end-to-end object detection pipeline. There are quite a lot of variants to
improve DETR via different aspects, e.g., training convergence (Meng et al., 2021; Gao et al., 2021),
multi-scale features and deformable attention (Zhu et al., 2021) or better query strategy (Li et al.,
2022; Liu et al., 2022a; Wang et al., 2022; Zhang et al., 2022), etc..
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Figure 1: Comparisons of our proposed Detection ConvNets (DECO) and recent detectors on COCO
val set. The latency is measured on a NVIDIA V100 GPU.

Despite the strong performance of transformer, it does introduce more challenges for AI chips (Tu
et al., 2022). More specifically, attention layers introduce dynamic memory access whose weights
and inputs are both generated during runtime. On contrast, convolutional layers have static memory
access since weights do not change during inference. Therefore, it is still common that certain
operators like attention module is not well supported in some AI chips, which is a big challenge in
industry.

Meanwhile, some recent work rethinks the strong performance and reveal that the pure ConvNets
could also achieve competitive performance via proper architecture design (Liu et al., 2022b; Yu
et al., 2022). For example, ConvNeXt (Liu et al., 2022b) competes favorably with vision transformers
like Swin Transformer (Liu et al., 2021) in terms of accuracy and computational cost. However, these
methods mainly focus on Encoder part of transformer, in which self-attention is utilized and could be
replaced by convolution with careful design. These motivate us to explore one important question in
this paper: could we obtain an architecture via pure ConvNets but still enjoys the excellent properties
similar to attention?

In this paper, we propose a novel mechanism dubbed InterConv to perform interaction between
object queries and image features via convolutional layers. It works similar with attention mechanism
but simply built with pure convolution. We abstract the general architecture of decoder and divide it
into two components, i.e., Self-Interaction Module (SIM) and Cross-Interaction Module (CIM). In
transformer-based models, the SIM and CIM are implemented with multi-head self-attention and
cross-attention mechanism, while they are obtained with our proposed InterConv in our method. The
Self-InterConv is stacked with simple depthwise and 1× 1 convolutions. We further carefully design
a novel Cross-InterConv mechanism to perform interaction between object queries and image features
via convolutional layers as well as simple upsampling and pooling operations.

Equipped with the proposed InterConv, we develop Detection ConvNet (DECO), which is a simple
yet effective query-based end-to-end object detection framework. Our DECO model enjoys the
similar favorable attributes as DETR. For example, using the mechanism of object query, our DECO
directly obtains a fixed set of object predictions and also discards the NMS procedure. Moreover, it
is stacked with only standard convolutional layers and does not rely on any sophisticated attention
modules. To achieve this goal, we first carefully revisit the design of DETR and propose the DECO
encoder and decoder architectures as shown in Fig. 3. The DECO encoder is built upon ConNeXt
blocks and no positional encodings are necessary since ConvNets are variant to input permutation.

We evaluate the proposed DECO on the challenging object detection benchmark, i.e., COCO (Lin
et al., 2014). Experimental results demonstrate that our DECO achieves competitive performance in
terms of detection accuracy and running speed, as shown in Fig. 1. Specifically, with the ResNet-18
and ResNet-50 backbone (He et al., 2016), our DECO achieves 40.5% and 47.8% AP with 66 and 34
FPS, respectively and outperforms the DETR model. Extensive ablation studies are also conducted to
provide more discussions and insights about the design choices. We also apply the proposed method
into the popular segment anything task. Our DECO-TinySAM obtains quite similar performance and
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higher efficiency on mobile phone with the TinySAM baseline, demonstrating the effectiveness of
our proposed method.

The main contributions can be summarized as follows: (1) In this paper, we propose a novel
mechanism dubbed InterConv to perform interaction between object queries and image features via
convolutional layers. (2) Equipped with the proposed InterConv, we propose a novel query-based end-
to-end object detection framework built with standard convolutions, i.e., Detection ConvNet (DECO),
which is simple yet effective. (3) The proposed method also demonstrates excellent performance on
segment anything task.

2 RELATED WORK

Object Detection. Object detection is one of the most foundational computer vision task and has
attracted large amount of research interest from the computer vision community. The object detection
pipeline has been developed rapidly, especially in the era of deep learning. Faster R-CNN (Ren et al.,
2015) is one of the most typical two-stage object detectors, which first generates region proposal and
extracts regional features for final bounding box prediction. Two-stage detection pipeline has been
improve from various aspects (Pang et al., 2019; Cai & Vasconcelos, 2018). Meanwhile, one-stage
detectors like SSD (Liu et al., 2016), YOLO series (Redmon et al., 2016; Redmon & Farhadi, 2017;
2018; Bochkovskiy et al., 2020), CenterNet (Zhou et al., 2019; Duan et al., 2019) or FCOS (Tian
et al., 2019) simplify the detection pipeline by directly predicting the objects of interest from the
image features (Li et al., 2019; Lu et al., 2019; Zhu et al., 2019; Kong et al., 2019; Zhu et al., 2020;
Law et al., 2020; Zhang et al., 2020).

Transformer-based End-to-End Detectors. The pioneering work DETR (Carion et al., 2020)
utilizes a transformer encoder-decoder architecture and models the object detection as a set prediction
problem. It directly predicts a fixed number of objects and get rid of the need for hand-designed
non-maximum suppression (NMS) (Neubeck & Van Gool, 2006). More follow-up studies (Meng
et al., 2021; Gao et al., 2021; Dai et al., 2021a; Wang et al., 2022) have made various optimizations
and extensions based on the original DETR and achieve strong detection performance. For example,
Deformable DETR (Zhu et al., 2021) only attends to a small set of key sampling points by introducing
multi-scale deformable self/cross-attention to improve the detection accuracy as well as the training
convergence. DAB-DETR (Liu et al., 2022a) improves DETR by using box coordinates as queries in
decoder. DN-DETR and DINO (Li et al., 2022; Zhang et al., 2022) introduce several novel techniques,
including query denoising, mixed query selection etc., to achieve strong detection performance. RT-
DETR (Lv et al., 2023) designs the first real-time end-to-end detector, in which an efficient multi-scale
hybrid encoder and an IoU-aware query selection are proposed. One of the most important properties
for DETR-based detectors is the query-based scheme for producing the final predictions, which
streamlines the detection pipeline and make it an end-to-end detector.

ConvNet-based End-to-End Detectors. Inspired by the success of transformer-based detector like
DETR variants, several studies also attempt to remove the post-processing NMS by introducing
one-to-one assignment strategy (Sun et al., 2021a; Wang et al., 2021a) and set prediction loss (Sun
et al., 2021b). OneNet (Sun et al., 2021a) systemically explores the importance of classification cost
in one-to-one matching and applies it on typical ConvNet-based detectors like RetinaNet (Lin et al.,
2017) and FCOS (Tian et al., 2019). DeFCN (Wang et al., 2021a) introduces a new strategy of label
assignment to enhance the matching cost. Sparse R-CNN (Sun et al., 2021b) integrates the fixed
number of learnable anchor to a two-stage detection pipeline. However, it interacts query and RoI
feature by the dynamic head which is a kind of learnable matrix multiplication.

ConvNets have been demonstrated to have competitive performance on various tasks and are
deployment-friendly in most hardware platforms (Liu et al., 2022b; Yu et al., 2022). Cheng et
al.proposed SparseInst (Cheng et al., 2022), an efficient and fully convolutional framework for
real-time instance segmentation. SparseInst utilizes a sparse set of instance activation maps to predict
objects in end-to-end style, which could be viewed as an alternative for the query-based mechanism of
DETR. In this paper we would like to design a DETR-like detection pipeline but built with standard
convolutions, which could inherit both the advantages of ConvNets and the favorable properties of the
DETR framework. Compared with SparseInst, our method follows the similar query-base mechanism
of DETR, and also demonstrates good generalization capability like segment anything models.
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Figure 2: The attention-based decoder and our proposed InterConv. We abstract the general ar-
chitecture of decoder and divide it into two components, i.e., Self-Interaction Module (SIM) and
Cross-Interaction Module (CIM). In DETR the SIM and CIM are implemented with multi-head
self-attention and cross-attention mechanism, while in our proposed DECO, the SIM is stacked with
simple depthwise and 1× 1 convolutions. We further propose a novel CIM mechanism for our DECO
to perform interaction between object queries and image features via convolutional layers as well as
simple upsampling and pooling operations.

3 APPROACH

In this section, we first introduce the design of our proposed InterConv, which works similar with
attention mechanism but simply built with pure convolution. We then provide details about utilizing
InterConv to develop efficient models for detection and segmentation.

3.1 INTERCONV: BUILDING ATTENTION-LIKE MECHANISM WITH CONVOLUTION

Given a small set of object queries, the decoder in transformer-based models like DETR or SAM aims
to reason the relations of the objects and the global image feature. As shown in Fig. 2 (a), each layer
in transformer decoder is mainly composed of a self-interaction module (SIM) and a cross-interaction
module (CIM). The self-interaction module (SIM) in original DETR is a multi-head self-attention
layer and is responsible for interacting information between the object queries. The cross-interaction
module (CIM) is the essential part for DETR decoder, which consists of cross-attention layer to
perform interaction between the image embeddings from the output of encoder and the object queries.
In this way, the object queries could attend to the global image feature and capture the essential
information for each predicted objects. In this section, we aim to explore how to build an attention-like
mechanism with ConvNets while maintaining the capability similar to attention.

Self-interaction module (SIM). Take DETR as an example, given N object queries o ∈ <N×d,
we first reshape the queries to <wq×hq×d and feed them into convolutional layers. For example,
if we have N = 100 object queries, the query embeddings are reshaped into <10×10×d. More
design choices of reshaping will be discussed in ablation studies. As shown in Fig. 2 (b), the SIM
part for DECO decoder is quite similar to the design scheme of DECO encoder, where stacking
the depthwise convolution and 1 × 1 convolution could lead to strong capability similar to the
self-attention mechanism. We utilize a large kernel convolution up to 9× 9 to perform long-range
perceptual feature extraction.

Cross-interaction module (CIM). The CIM mainly takes two features as input, e.g., the image
feature embeddings from the output of encoder (ze ∈ <d×H×W ), and the object query embeddings
produced from the SIM part (o ∈ <wq×hq×d). The cross-attention mechanism in DETR decoder
allows each object query to interact with the image features to capture necessary information for
object prediction. However, using ConvNets to perform such kind of interaction is not so intuitive.
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Figure 3: The overall architecture of DETR (Carion et al., 2020) and our proposed Detection ConvNet
(DECO). Our DECO is a simple yet effective query-based end-to-end object detection framework
and enjoys the similar favorable attributes as DETR. Moreover, it is stacked with only standard
convolutional layers and does not rely on any sophisticated attention modules.

As shown in Fig. 2 (b), we first upsample the object queries o to obtain ô ∈ <d×H×W so that it has
the same size with image feature ze, i.e.,

ô = Upsample(o). (1)

There are also other design choices for the upsampling function, i.e., resizing both the object queries
and encoder embeddings to a fixed size before fusion, or directly upsampling the object queries to
dynamic size of encoder embeddings, which is related to the resolution of input image. We will
provide more analysis in experimental section. Then the upsampled object queries and the image
feature embeddings are fused together using Fusion(·) function, followed by a large kernel depthwise
convolution (Liu et al., 2023b; Ding et al., 2022; 2024) to allow object queries to capture the spatial
information from the image feature. An intuitive implementation for Fusion(·) is element-wise add
operation. There are also some alternatives like element-wise multiply operation, or first concatenating
two features then using convolution to reduce the number of channels. More discussions will be
presented in the ablation studies. The skip connection is all utilized, as shown in the following
equation:

ôf = ô+ dwconv(Fusion(ô, ze)). (2)
The output features further go through another FFN with skip connection. Finally, an adaptive
maxpooling is utilized to downsample the object queries back to the size of <wq×hq×d and will be
further processed by the following decoder layers.

ôp = Pooling(ôf + FFN(ôf )). (3)

The final output embeddings of the decoder will be fed into the detection head to obtain the class and
bounding box prediction, which is similar to the original DETR.

3.2 DECO: DETECTION CONVNETS EQUIPPED WITH INTERCONV

Carion et al. (Carion et al., 2020) proposes the Detection Transformer (DETR) that models object
detection as a set prediction problem and directly produces a fixed set of objects. As shown in
Fig. 3 (a), DETR first utilizes a backbone to extract image features, and feeds them into a transformer
encoder and decoder architecture. A fixed small set of learned object queries interact with the
global image context to directly output the final set of object predictions. DETR streamlines the
end-to-end object detection pipeline and has attracted great research interest due to the good accuracy
and run-time performance (Zhu et al., 2021; Zhang et al., 2022; Dai et al., 2021b;a) for object
detection. Although transformers have shown great power in computer vision tasks like image
classification, object detection, segmentation etc., there are also some recent work that reveal the
potential of ConvNet-based architecture as the common backbone, e.g., ConvNext (Liu et al., 2022b)
and ConvFormer (Yu et al., 2022). In this work we re-examine the DETR design and explore whether
a ConvNet-based object detector could inherit the good properties of DETR.

One of the most important properties for DETR-based detectors is the query-based scheme for
producing the final predictions. In this way, the object detector could directly obtain a fixed number
of objects and gets rid of any hand-designed NMS post-processing. We follow this paradigm to
design our Detection ConvNets (DECO), as shown in Fig. 3 (b). DECO also utilizes a CNN backbone

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Comparisons of our proposed DECO+ with other detectors on COCO 2017 val set. The
FPS is measured on a V100 GPU.

Model Backbone GFLOPs FPS AP AP50 AP75 APS APM APL

Faster R-CNN (Ren et al., 2015) R50-FPN 180 26 40.2 61.0 43.8 24.2 43.5 52.0
Faster R-CNN (Ren et al., 2015) R101-FPN 246 20 42.0 62.5 45.9 25.2 45.6 54.6
FCOS (Tian et al., 2019) R50-FPN 201 23 38.7 57.4 41.8 22.9 42.5 50.1
FCOS (Tian et al., 2019) R101-FPN 277 19 39.1 58.3 42.1 22.7 43.3 50.3
RetinaNet (Lin et al., 2017) R50-FPN 239 21 37.4 56.7 39.6 20.0 40.7 49.7
RetinaNet (Lin et al., 2017) R101-FPN 315 17 38.5 57.6 41.0 21.7 42.8 50.4
Sparse R-CNN (Sun et al., 2021b) R50-FPN 150 23 42.8 61.2 45.7 26.7 44.6 57.6
OneNet-RetinaNet (Sun et al., 2021a) R50-FPN 239 21 37.5 55.4 40.7 21.5 40.5 47.4
OneNet-FCOS (Sun et al., 2021a) R50-FPN 206 26 38.9 57.2 42.2 23.9 41.8 49.4
DeFCN (Wang et al., 2021a) R50-FPN − 19 41.4 59.5 45.6 26.1 44.9 52.0
YOLOS-Ti (Fang et al., 2021) DeiT-Tiny 21 52 28.7 47.2 28.9 9.7 29.2 46.0
YOLOS-S (Fang et al., 2021) DeiT-Small 194 5 36.1 55.7 37.6 15.6 38.3 55.3
YOLOS-B (Fang et al., 2021) DeiT-Base 538 2 42.0 62.2 44.4 19.5 45.3 62.1
DETR (Carion et al., 2020) R50 97 28 39.5 60.3 41.4 17.5 43.0 59.1
Deformable-DETR (Zhu et al., 2021) R50 173 16 43.8 62.6 47.7 26.4 47.1 58.0
Anchor-DETR (Wang et al., 2022) R50 103 21 42.1 63.1 44.9 22.3 46.2 60.0
DAB-DETR (Liu et al., 2022a) R50 94 25 42.2 63.1 44.7 21.5 45.7 60.3
DN-DAB-DETR (Li et al., 2022) R50 94 25 44.1 64.4 46.7 22.9 48.0 63.4
Cond-DETR (Meng et al., 2021) R50 90 28 43.0 64.0 45.7 22.7 46.7 61.5
ViDT (Song et al., 2021) Swin-Nano 35 31 40.4 59.6 43.3 23.2 42.5 55.8
DINO-4scale (Zhang et al., 2022) R50 279 12 50.9 69.0 55.3 34.6 54.1 64.6
Stable-DINO (Liu et al., 2023a) R50 − 12 51.5 68.5 56.3 35.2 54.7 66.5
SpeedDETR (Dong et al., 2023) R50 − 21 46.8 66.2 50.4 28.5 50.6 63.2
DDQ-DETR (Zhang et al., 2023) R50 − 9 52.8 69.9 58.1 37.4 55.7 66.0
Lite-DINO (Li et al., 2023) R50 151 17 50.2 - 54.6 33.5 53.6 65.5
Co-DETR (Zong et al., 2022) R50 - 12 49.5 67.6 54.3 32.4 52.7 63.7
H-DETR (Jia et al., 2022) R50 280 19 50.0 68.3 54.4 32.9 52.7 65.3
Focus-DETR (Zheng et al., 2023) R50 154 20 50.4 68.5 55.0 34.0 53.5 64.4
Rank-DETR (Pu et al., 2023) R50 280 19 51.2 68.9 56.2 34.5 54.9 64.9
RT-DETR† (Lv et al., 2023) R18 40 60 41.7 61.3 45.3 25.0 44.0 56.8

DECO+ (Ours) R18 32 66 40.5 58.7 44.0 23.3 43.8 55.7
DECO+ (Ours) R50 69 34 47.8 67.1 52.4 30.6 51.9 64.2
DECO+ (Ours) ConvNeXt-B 159 20 50.6 70.7 55.0 34.4 55.3 67.8

to extract features from the input image. Specifically, given a RGB image ximg ∈ <3×H0×W0 , the
backbone generates feature map f ∈ <C×H×W and usually H,W = H0

32 ,
W0

32 . The feature map f

are then go through a CNN encoder to obtain the output embeddings fenc ∈ <Ce×H×W . The CNN
decoder takes fenc as well as a fixed number of learned object queries o ∈ <N×d as input to make
final detection prediction via a feed forward network (FFN), where d is the size of encoder output
embeddings. The detailed architectures of the decoder are elaborated in the above section. We utilize
the same prediction loss as in DETR, which uses bipartite matching to find paired predicted and
ground truth objects.

DECO Encoder. Similar to DETR, a 1 × 1 convolution is first utilized to reduce the channel
dimension of f from C to d and obtain a new feature map z0 ∈ <d×H×W . In DETR, z0 is fed
into stacked transformer encoder layers, which mainly consists of multi-head self-attention (MHSA)
and feed-forward network (FFN) to perform spatial and channel information mixing respectively.
Recent work such as ConvNeXt (Liu et al., 2022b) has demonstrated that using stacked depthwise and
pointwise convolutions could achieve comparable performance with Transformers. Therefore, we use
the ConvNeXt blocks to build our DECO encoder. Specifically, each DECO encoder layer is stacked
with a 7× 7 depthwise convolution, a LayerNorm layer, a 1× 1 convolution, a GELU acitvation and
another 1× 1 convolution. Besides, in DETR, positional encodings are necessary to be added to the
input of each transformer encoder layer, since the transformer architecture is permutation-invariant.
However, the ConvNet architecture is permutation-variant so that our DECO encoder layers could get
rid of any positional encodings.

DECO+ Equiped with Multi-scale Feature. One limitation of original DETR as well as our DECO
is the lack of multi-scale feature, which is demonstrated to be important for accurate object detection.
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Table 2: Comparisons of DECO with DETR on COCO 2017. The FPS is measured on a V100 GPU.

Model Backbone GFLOPs FPS AP AP50 AP75 APS APM APL

DETR (Carion et al., 2020) R34 88 34 31.6 47.6 33.3 13.3 34.1 49.1
DETR (Carion et al., 2020) R50 97 28 39.5 60.3 41.4 17.5 43.0 59.1
DETR (Carion et al., 2020) ConvNeXt-T 104 25 42.1 63.6 44.3 18.8 45.5 62.8
DECO (Ours) R50 103 35 38.6 58.8 41.1 19.5 43.3 55.0
DECO (Ours) ConvNeXt-T 110 28 40.8 61.5 43.5 20.5 45.7 58.4

Deformable DETR (Zhu et al., 2021) utilizes the multi-scale deformable attention module to aggregate
multi-scale features, but this mechanism can not be directly applied to our DECO framework. To
equip DECO with multi-scale feature capability, we utilize the cross-scale feature-fusion module
in RT-DETR (Lv et al., 2023) after obtaining the global feature from our DECO encoder. The
features are then mapped to the same scale and concatenated along the channels followed by a linear
projection layer to get the final encoder embeddings. More modern techniques for DETRs would also
be compatible with DECO, which we leave for future exploration.

3.3 DECO-TINYSAM: INTERCONV FOR SEGMENT ANYTHING MODEL

The mechanism of InterConv could have great potential for applying to other architectures and tasks,
especially for those involving interaction across domains. As a proof of concept, we replace the mask
decoder in Segment Anything Model (SAM) with our DECO decoder. The motivation is that as a
prompt-based segmentation model, SAM interacts between prompt tokens and image embeddings
through the mask decoder which consists of self- and cross-attentions, sharing similar spirits of
our proposed SIM and CIM. More specifically, we repeat the one-dimensional queries into two
dimensional features, instead of reshaping queries as in object detection task discussed above. It
is mainly due to the fact that the query tokens in SAM contains learnable output tokens and a few
prompt tokens, which are not reasonable to simply be reshaped into two dimensions. We utilize
TinySAM (Shu et al., 2023) as the baseline model and replace the decoder to our proposed DECO
architecture.

4 EXPERIMENTS

In this section, we first evaluate our proposed model on object detection benchmark and compare
it against state-of-the-art methods. Extensive ablation studies are also conducted to provide more
discussions and insights about the design choices.

4.1 EXPERIMENTAL SETTING

Dataset. All experiments are conducted on the challenging COCO 2017 (Lin et al., 2014) detection
benchmark, which contains about 118K training images and 5K validation samples.

Training. For the vanilla DECO, we follow similar training settings as DETR (Carion et al., 2020).
We train the proposed DECO models for 150 epochs using AdamW optimizer, with weight decay of
10−4 and initial learning rates as 10−4 and 10−5 for the encoder-decoder and backbone, respectively.
The learning rate is dropped by a factor of 10 after 100 epochs. The augmentation scheme is the
same as DETR, which includes random horizontal flipping, random crop augmentation, and scale
augmentation. The input image shorter side is resized to a random size between 480 and 800 pixels in
the scale augmentation while restricting the longer size to at most 1333. As to DECO+ that equipped
with multi-scale feature fusion, the training image size is selected between 480 and 800 with 32 stride
following the RT-DETR baseline. The inference size is set to 640× 640.

4.2 COMPARISONS WITH STATE-OF-THE-ARTS

We evaluate the proposed DECO and DECO+ on COCO benchmark and compare with recent
competitive object detectors, including DETR (Carion et al., 2020), YOLOS (Fang et al., 2021),
FCOS (Tian et al., 2019), and DETR variants with strong performance, e.g., Anchor-DETR (Sun et al.,
2021b), Conditional-DETR (Sun et al., 2021a) and ViDT. (Wang et al., 2021a) etc.. Experimental
results in terms of detection AP and FLOPs/FPS are shown in Table 1. The FPS we report is the
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Fusion Method GFLOPS AP

Element-wise Mult. 103 37.8
Concat-Conv 106 38.6
Element-wise Add 103 38.6

Table 3: Effect of different fusion methods.

#layers GFLOPS FPS AP

5 101 35 38.3
6 103 35 38.6
7 105 34 38.9

Table 4: Effect of number of layers in decoder.
Table 5: Ablation studies for different kernel sizes in decoder.

kernel size 5×5 7×7 9×9 11×11 13×13 15×15

AP (%) 37.8 37.9 38.6 38.6 38.4 38.6
GFLOPs 103.35 103.47 103.58 103.70 104.11 104.27

average number of the first 100 images in the COCO 2017 val set on a NVIDIA V100 GPU. The
FLOPs are computed with the input size of (640, 640) for RT-DETR and the proposed DECO+, while
(1280, 800) for others. A more intuitive comparison of the trade-off between AP and latency is also
shown in Fig. 1.

Comparisons with DETR variants. We consider different ConvNet-based backbones for DECO+
in the benchmarking. As shown in Table 1, our DECO+ with ResNet-50 Backbone achieves 47.8%
AP with 34 FPS on V100 GPU, which is better than most previous DETR variants considering the
accuracy-latency trade-off. The ConvNeXt (Liu et al., 2022b) based DECO+ achieves an even higher
AP at 50.6% which is 0.2% higher than Focus-DETR (Zheng et al., 2023) at the same FPS. Moreover,
ResNet-18 based DECO+ obtains 40.5% AP with 66 FPS, achieving quite similar performance with a
variant of RT-DETR (Lv et al., 2023) that we modified to not use deformable attention and denoising
training for fair comparison. Note that deformable attention and denoising training is specifically
designed for attention-based architecture, and similar improved strategies for DECO still remains for
future exploration.

Comparisons with Other End-to-End Detectors. YOLOS is an encoder-only Transformer archi-
tecture for object detection based on the vanilla pre-trained vision transformers. Our DECO+ models
show clear advantage over YOLOS and have similar detection performance while running much
faster. We also compare our DECO+ with recent end-to-end detectors with ConvNets, e.g., Sparse
R-CNN (Sun et al., 2021b), OneNet (Sun et al., 2021a) and DeFCN. (Wang et al., 2021a). As shown
in Table 1, our DECO+ outperforms Sparse R-CNN (Sun et al., 2021b) and OneNet-RetinaNet (Sun
et al., 2021a) with better accuracy and running speed. Similarly, DECO+ obtains 47.8% AP and 34
FPS while DeFCN (Wang et al., 2021a) only has 19 FPS with 41.4% AP.

Comparisons with DETR. We compare the performance of our vanilla DECO and DETR (Car-
ion et al., 2020) equipped with ResNet and ConvNeXt-Tiny in Table 2. The proposed DECO
encoder/decoder are adopted to substitute the transformer encoder/decoder in DETR for comparison.
To align the FLOPs with DETR, we modify the DECO encoder to be three stages with the number of
blocks of (2, 6, 2) and the channel dimension of (120, 240, 480), respectively. As shown in Table 2,
for both ResNet-50 and ConvNeXt-Tiny (Liu et al., 2022b) backbones, despite higher FLOPs, our
DECO obtain faster inference speed (FPS) than DETR. It demonstrates that our pure ConvNet-based
architecture is more deployment-friendly than the transformer-based DETR in GPU platform. Specif-
ically, our DECO obtains 38.6% AP at 35 FPS and is 7.0% AP better than DETR with ResNet-34
backbone for similar running speed.

4.3 ABLATION STUDIES

We conduct extensive ablation studies based on the R50-based DECO in Table 2 to provide more
discussions and insights about different design choices and justify the effectiveness of our proposed
method.

Upsampling Size in CIM. In CIM, the object queries are first upsampled and then fused with the
encoder embeddings to deal with different dimensions. Here we have different design choices, i.e.,
resizing both the object queries and encoder embeddings to a fixed size before fusion, or directly
upsampling the object queries to dynamic size of encoder embeddings, which is related to the
resolution of input image. As shown in Table 6, utilizing dynamic size achieves the best performance,
since it is more flexible for different input resolution and has no information discarding. Noted that
(25× 38) is the average size of COCO training set and it leads to 0.5 AP drop than dynamic way.
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Size GFLOPs AP

(20× 20) 97 34.8
(25× 38) 103 38.1
(40× 40) 110 37.2

Dynamic 103 38.6

Table 6: Effect of different upsampling
size of object queries in CIM.

#queries Query Shape (wq × hq) Ratio AP

100 10× 10 1:1 38.6
100 20× 5 4:1 38.3
100 5× 20 1:4 36.9

300 30× 10 3:1 38.9
300 20× 15 4:3 38.8

Table 7: Effect of different shape of queries.

Figure 4: Visualizations for box prompted segment anything for Our DECO-TinySAM (1st row) and
TinySAM (2nd row). Our method obtains quite similar performance with TinySAM.

Number of Decoder Layers. As shown in Table 4, more number of layers in decoder tends to have
better performance. However, utilizing 6 decoder layers is a good choice to balance performance and
computational cost and we keep this choice following DETR (Carion et al., 2020).

Kernel size in decoder. The motivation for using 9× 9 dwconv is to enable sufficient receptive field.
We conduct ablation experiments to explore the effect of different kernel sizes. As shown in Table 5,
using 5× 5 has unsatisfied performance due to limited receptive field, and enlarging kernel size to
11× 11 or even 15× 15 brings negligible improvement.

Different design choices of fusion method in CIM. As discussed in Section 3, the upsampled
object queries and the image feature embeddings are fused together using add operations. Here we
conduct ablation studies for other design choices of the fusion method, e.g., using concatenation
and convolution, or simple conducting element-wise multiplication for fusion. As shown in Table 3,
utilizing element-wise multiplication to fuse the object queries and the image feature embeddings
does not obtain better performance. Moreover, using add operations achieves similar detection
performance with using concatenation and convolution, but has slightly smaller FLOPs.

Different shapes of object queries. In our proposed method, the object queries should be in 2D
shape of wq × hq and there are several choices of query shape for N object queries. For example,
wq×hq could be 10×10, 20×5 or 5×20 for N = 100 queries. As shown in Table 7, using 10×10
obtains better detection performance. When N = 300, using query shape of 30× 10 achieves slightly
better performance than 20 × 15. A typical ratio of image size for COCO could be considered as
1333 : 800 ≈ 1.67 and we could conclude from Table 7 that better performance is obtained when the
query shape is approximately the ratio of input image.

4.4 EXTENSION TO SEGMENT ANYTHING TASK

Method COCO AP (%)Mobile Lat. (ms)

TinySAM (Shu et al., 2023) 41.9 34
DECO-TinySAM 41.4 29

Table 8: Zero-shot instance segmentation results for
TinySAM baseline and our DECO-TinySAM.

Our proposed DECO is original designed
for object detection. However, the mech-
anism of DECO decoder could have great
potential for applying to other architectures
and tasks, especially for those involving
interaction across domains. As a proof of
concept, we replace the mask decoder in
Segment Anything Model (SAM) with our DECO decoder. The motivation is that as a prompt-based
segmentation model, SAM interacts between prompt tokens and image embeddings through the mask
decoder which consists of self- and cross-attentions, sharing similar spirits of our proposed SIM and
CIM. More specifically, we repeat the one-dimensional queries into two dimensional features, instead
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(a) Visualization of box predictions in DETR 

(b)  Visualization of all box predictions in DECO

Figure 5: Visualizations of query slots for DETR and our DECO. We can find that both DECO and
DETR tend to make different object queries to focus on different patterns in terms of spatial areas and
box sizes. Interestingly, we could also observe that the slots of DETR for small objects are spatially
unordered while the distributions of each slot for our DECO are spatially ordered for small boxes.

of reshaping queries as in object detection task discussed above. It is mainly due to the fact that
the query tokens in SAM contains learnable output tokens and a few prompt tokens, which are not
reasonable to simply be reshaped into two dimensions.

We utilize TinySAM (Shu et al., 2023) as the baseline model and replace the decoder to our proposed
InterConv architecture. The results for zero-shot instance segmentation prompted by detected boxes
on COCO dataset are shown in Table 8. Despite without carefully tuning, our DECO-TinySAM
obtains quite similar zero-shot instance segmentation performance with that of TinySAM baseline,
with lower latency on mobile devices. We also provide some visualizations for box prompted segment
anything for our DECO-TinySAM and the TinySAM baseline, demonstrating strong performance
and generalizability to other tasks of our method.

4.5 VISUALIZATION

Visualization of Query Slots. Following the same method in DETR, we visualize the boxes predicted
by 20 out of total 100 query slots of our DECO. Each point represents one bounding box prediction
and the coordinates are normalized by each image size. Different colors indicate objects with different
scales, e.g., green, red and blue refer to small boxes, large horizontal boxes and large vertical boxes,
respectively. As shown in Fig. 5, we can find that both DECO and DETR tend to make different
object queries to focus on different patterns in terms of spatial areas and box sizes. Interestingly, we
could also observe that the slots of DETR for small objects are spatially unordered, which indicates
that the prediction of each slot is random in spatial dimension. However, things are a bit different for
our DECO, whose distributions of each slot are spatially ordered for small boxes. This observation is
most likely to be related to the cross-interaction mechanism of object queries and image features,
where cross-attention module tends to capture global information and our proposed module tends to
focus on local interaction through large kernel convolutions.

5 CONCLUSION AND DISCUSSION

In this paper, we aim to explore whether we could build query-based detection and segmentation
framework with ConvNets instead of sophisticated transformer architecture. We propose a novel
mechanism dubbed InterConv to perform interaction between object queries and image features via
convolutional layers. Equipped with the proposed InterConv, we build Detection ConvNet (DECO),
which is composed of a backbone and convolutional encoder-decoder architecture. We compare the
proposed DECO against prior detectors on the challenging COCO benchmark. Despite its simplicity,
our DECO achieves competitive performance in terms of detection accuracy and running speed.
Specifically, with the ResNet-18 and ResNet-50 backbone, our DECO achieves 40.5% and 47.8% AP
with 66 and 34 FPS, respectively. The proposed method is also evaluated on the segment anything
task, demonstrating similar performance and higher efficiency. We hope the proposed method brings
another perspective for designing architectures for vision tasks.
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