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ABSTRACT

The growth of the Internet of Things (IoT) and the increasing demand for real-
time networking have brought about a growing necessity for multiple reinforce-
ment learning (RL) agents to collaboratively train within a shared environment,
all working towards common objectives. The multi-agent Advantage Actor-Critic
(A2C) algorithm is gaining popularity in Multi-Agent Reinforcement Learning
(MARL) systems. However, this approach requires agents to share policy compo-
nents among neighboring agents due to observations being only partially available
to each agent. This practice increases communication overhead and raises privacy
concerns. Federated learning (FL), recognized as a privacy-preserving machine
learning method, can be applied in the MARL context with a central server aggre-
gating the weights of the agents’ actor and critic models. However, this technique
assumes that all agents are capable of executing identical actions, which may be
impractical. To overcome the aforementioned shortcomings, we introduce a novel
FL A2C algorithm called ”Advantage Actor Federated Critic (A2FC)”. The pro-
posed algorithm streamlines the aggregation of agents’ critic models while of-
floading the training of actor models to the individual agents’ local machines. An
empirical experiment conducted in an adaptive traffic signal control (ATSC) sys-
tem demonstrates the method’s effectiveness in personalizing agents’ actions, pre-
serving agents’ privacy during training, and mitigating communication overhead
issues.

1 INTRODUCTION

RL is a systematic mathematical framework for self-guided learning driven by experiences, defined
within the context of a Markov Decision Process (MDP). RL aims to train autonomous agents to
acquire optimal behaviors in interactive environments. Deep reinforcement learning (DRL), first
introduced in (Mnih et al., 2015), extends RL’s capabilities by integrating deep learning models and
RL techniques. RL can be categorized into value-based methods, policy-based methods, and actor-
critic methods. Q learning (Watkins & Dayan, 1992), a prime example of a value-based method,
uses a state-action value function that is updated incrementally based on experiences. However, such
methods are ”off-policy”, updating policies using one-step temporal differences, which assumes
stationary MDP transitions. In contrast, policy-based methods like REINFORCE (Williams, 1992)
are ”on-policy”, updating policies using sampled episodic returns. Actor-critic methods (Konda &
Tsitsiklis, 1999) combine aspects of both value-based and policy-based methods. They separate the
policy function from the value function, thus reducing bias and variance compared to policy-based
approaches. An advancement is A2C (Mnih et al., 2016), which introduces an estimated advantage
value, indicating how superior an action is at the current state.

With the proliferation of IoT and smart devices, there is a growing demand for multiple RL agents to
collaboratively train in shared environments to achieve global objectives. These environments can
be characterized as cooperative MARL systems. For example, consider an adaptive traffic signal
control (ATSC) system where multiple RL agents work together to dynamically adjust traffic signal
timings, aiming to reduce traffic congestion across the entire area. Each RL agent is responsible for
controlling only one signalized intersection. Despite the potential benefits, existing MARL algo-
rithms face certain challenges. Traditional MARL algorithms, based on Q-learning, distribute the
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global Q-function to local agents (Guestrin et al., 2002; Kok & Vlassis, 2006). These approaches
rely on strict rules to balance scalability and optimality. In contrast, Independent Q-learning (Tan,
1993) enhances scalability as each local agent independently trains its policy, treating others as parts
of the observable environment. However, Q-learning’s reliance on tabular structures limits its scal-
ability, particularly in real-world applications with resource-constrained devices. Moreover, tabular
structures struggle to leverage previous experiences or shared knowledge in similar states.

The A2C algorithm is considered a simpler approach than Q-learning in a large-scale MARL system.
RL agents apply the A2C algorithm within the multi-agent framework to achieve quicker and more
straightforward convergence in MARL (Chu et al., 2019). The introduction of FL (Konečnỳ et al.,
2016a;b; McMahan et al., 2016), a concept that has gained considerable attention in the field of
privacy-preserving machine learning, has expanded the potential applications of algorithms like
A2C, which rely on neural networks. FL involves the coordination of multiple clients, including
computers, processing devices, or smart sensors, by a central server to collectively train a machine
learning model. There have been efforts to combine FL with DRL to enhance its robustness to
similar but previously unseen states (Wang et al., 2020a; Ye et al., 2021). However, these approaches
also raise concerns about the required communication overhead and privacy leakage. From the
perspective of communication, agents are required to send and receive others’ policies as parts of
inputs in the multi-agent setting, or send and receive neural networks parameters of both actor and
critic in the FL setting, which creates a heavy communication load, especially when agents need to
make rapid responses. Meanwhile, privacy leakage is the second concern when multiple agents are
required to share their trained policies with others.

To address the above challenges, we propose a new federated A2C framework called ”Advantage
Actor Federated Critic (A2FC)”. Unlike a traditional application of FL in the MARL system where
a central server averages the weights of the agents’ actor and critic models separately and sends
the average weights back to the agents, the proposed framework only aggregates the weights of
agents’ critic models. Our proposed framework is especially suited to MARL systems where agents
have heterogeneous action spaces. Also, the framework does not require any communication among
agents, which significantly reduces the communication overhead as well as protects the privacy of
agents’ policies in MARL systems.

The main contributions of this paper can be summarized as follows: we propose a novel federated
A2C algorithm for MARL systems with agents having heterogeneous action spaces. The proposed
method averages the agents’ critic neural network models only. It has the added benefit of 1) the
personalization of agents’ optimal actions; 2) reducing the communication overhead as agents in the
MARL system do not need to communicate with each other; 3) privacy preservation as agents do not
share their trained policies with others. We demonstrate the effectiveness of our proposed method
in a comprehensive experiment in an ATSC system.

2 PRELIMINARIES AND CHALLENGES

2.1 POLICY-BASED RL ALGORITHMS

The Policy Gradient method, also known as REINFORCE, enhances a parameterized model πθ by
employing gradient descent to maximize the cumulative reward over the long term. The parameters θ
are iteratively adjusted to increase the likelihood of selecting a sequence of optimal actions, utilizing
sampled total rewards. Assuming a trajectory (s1, a1, r1, s2, a2, r2, · · · , rT ) on the parameterized
model πθ, the loss function is formulated as follows:

L(θ) = R̂t

T∑
t=1

log πθ(at|st) (1)

Here, the estimated total reward is denoted as R̂T =
∑T

t=1 γ
trt.

The A2C algorithm integrates the characteristics of Q-learning into the features of the policy gradient
method. It introduces a value function Vω to estimate the expected reward Eπ[R

π
t |st = s]. The

estimated total reward is revised to R̃T = R̂T + γtVω(sT ). The algorithm defines the Advantage
function as At = R̃t − Vω(st), which is utilized to update the neural network parameters of both
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the Actor (θ) and the Critic (ω). The Advantage function effectively assesses the performance of the
agent’s action in the current step by comparing it to other possible actions.

2.2 MULTI-AGENT REINFORCEMENT LEARNING

MARL focuses on studying the behavior of multiple agents within a shared environment, where all
agents collectively observe the environment’s state and receive rewards based on their joint actions.
Let’s consider a network G(V, E) that represents interactions among multiple agents in a MARL sys-
tem. Each agent i ∈ V can take discrete actions ai ∈ Ai, communicate with a neighbor represented
by edge i, j ∈ E , and share a global reward r(s, a). Many MARL algorithms are grounded in the
context of Q learning. These algorithms allow agents to observe the global state and collaboratively
take actions that contribute to a decomposable global Q function Q(s, a) =

∑
i∈V Qi(si, ai). How-

ever, merely combining MARL with Q learning disregards agent interactions, resulting in worse con-
vergence at the global state. Coordinated Q learning strikes a balance between optimality and scala-
bility through iterative message passing and control synchronization among neighboring agents. In
this approach, Qi(s, a) ≈

∑
j∈N i Mj(s, aj , aN j), where N i refers to the set of neighbors of agent

i, and Mj represents the message from neighbor j of agent i. Independent Q learning is a fully
scalable strategy that omits message passing. In this case, all local Q functions are dependent solely
on the local action: Qi(s, a) ≈ Qi(s, ai). Each agent must possess knowledge of other agents’
policies and implicitly consider their behavior as part of the environment dynamics in continuous
policy training.

Q learning is inherently reliant on tabular structures, which limits the number of states and actions
due to real-world device storage and computation constraints. Independent Advantage Actor-Critic
(A2C) extends the principles of independent Q learning to the actor-critic framework where agents
still share the global state and reward. Each agent individually trains its policy πθi and the corre-
sponding value function Vωi

, estimating the local return as Rt,i = R̂t+ γtV ωi(sT |πθi). Federated
A2C further extends Independent A2C from the multi-agent environment to the FL scenario using
the FedAvg algorithm. In this approach, each agent updates its policy θi and value function ωi pa-
rameters locally, which are then aggregated on a centralized server. The server computes the mean
parameters, i.e., θ = 1

|V|
∑

i∈V θi and ω = 1
|V|

∑
i∈V ωi, and sends them back to the agents for

training in the next round.

2.3 CHALLENGES

While MARL algorithms have shown significant progress over the past decade and have found
widespread practical applications, they still face several challenges and limitations. One of the key
issues is that existing MARL algorithms often rely on partial observations of the system through
communication with neighboring agents. This can lead to slow convergence and hinder the system
from reaching global optimality through joint actions of the agents. As each agent’s policy might
only converge locally, the global optimality is not guaranteed. Moreover, the communication among
agents can cause high latency and communication overhead, rendering these algorithms less suitable
for applications requiring low latency. Additionally, the assumption that agents can freely commu-
nicate and share states and trained policies doesn’t always hold in practice. Agents might only be
able to train their policies independently based on their own observations, making the assumption
of full communication unrealistic. The sharing of policies also raises privacy concerns, particularly
in scenarios where sensitive data is involved. This makes it challenging to implement MARL in
contexts where data privacy is a priority. While the FL framework offers a solution by allowing
agents to upload model parameters for aggregation on a central server without requiring direct com-
munication, the current federated A2C approach necessitates the transmission of both policy and
value function parameters. This introduces significant communication overhead and latency, which
could be impractical in applications where real-time decision-making is crucial. In summary, while
MARL algorithms have made strides, these challenges of partial observation, slow convergence,
communication overhead, privacy concerns, and latency need to be addressed for their broader and
more effective application in various domains.
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3 ADVANTAGE ACTOR FEDERATED CRITIC (A2FC)

3.1 OVERVIEW OF METHOD

To address the aforementioned challenges, we propose a novel framework called Advantage Actor
Federated Critic (A2FC). In this framework, agents are required to upload only the parameters of
their value functions (critic models) to a central server for aggregation, rather than transmitting both
policy model (actor model) and value function parameters. The schematic overview of our proposed
framework is illustrated in Figure 1.
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Figure 1: Overview of A2FC Figure 2: A 5× 5 traffic grid

Consider a scenario with M agents working collaboratively within an environment. At each step,
every agent observes the current state of the environment and selects an action that advances the
system to the subsequent state. The environment subsequently provides each agent with a reward
based on its chosen action, which is then used to update both the agent’s critic and actor models.
The critic model approximates the expected reward using the obtained reward and subsequently
guides the actor model towards making optimal decisions. Once agents have iteratively updated
their models for a predetermined number of iterations, they transmit their value function parameters
to a central server designated for aggregation. At the central server, the parameters of the agents’
critic models are averaged, and the resulting average parameters are sent back to all agents and then
used to initialize the next training iteration. This iterative process continues, thereby enabling the
collaborative refinement of the agents’ critic models within the A2FC framework.

Our proposed approach offers several key advantages over previous MARL algorithms. First, un-
like traditional federated A2C methods, our approach accommodates agents within MARL systems
that possess heterogeneous action spaces. This flexibility allows agents to have distinct action op-
tions, which is a departure from the conventional assumption of uniform action spaces. Secondly,
our method streamlines communication, necessitating agents to interact solely with the centralized
server, as is characteristic of FL techniques. There is no requirement for agents to communicate
with one another or possess knowledge about the system’s topology or neighborhood. This sim-
plifies model optimization processes and reduces overall complexity. Thirdly, the approach also
minimizes communication overhead significantly. Agents are solely tasked with uploading their
value function parameters to the server and retrieving the averaged parameters subsequently. This
streamlined communication process ensures efficient information exchange, improving system effi-
ciency. Our approach also aligns with the privacy-preserving principles of the FL framework Shen
et al. (2022). Agents retain their individual policies and do not communicate these policies with
other agents. This design ensures privacy and safeguards sensitive information.

3.2 MULTI-AGENT ENVIRONMENT FORMULATION

To provide a comprehensive understanding of our proposed approach, we initially establish the
framework of a MARL system and introduce key notations. In this context, consider a network de-
noted as G(V), which embodies a MARL system featuring a set of |V| agents. Within this network,
each individual agent i ∈ V engages in individual RL task, characterized by an underlying MDP tu-
ple ⟨Si,Ai, Ti,Ri⟩. Within this MARL system, each agent’s observation capabilities are confined to
its localized environment, encompassing only a portion of the complete environment. While agents’
regions of influence might overlap with one another, their combined coverage must encompass the
entire system’s environment. Throughout each time step, all agents collaboratively explore their
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respective accessible environments and concurrently make decisions. Notably, an individual agent’s
choices can impact the observable environment and conditions for other agents. During exploration,
agent i obtains a feedback reward ri from the environment, which serves as a feedback of this action.
This exploration experience is then logged as a tuple within the agent’s memory.

In this defined MARL system, the agents employ A2C algorithms to accomplish their respective
RL tasks. Each agent i owns an actor model neural network governed by parameters θi and a
value function neural network governed by parameters ωi. The role of value functions is twofold:
they enhance agents’ comprehension of the environment dynamics and reward structure, while also
assisting actor models in optimal action selection. Thus, each agent’s objective revolves around
updating both the actor and value function neural networks with information learned from their
exploration experiences. This adaptation process aims to facilitate the acquisition of optimal policies
πθi , resulting in the selection of actions that align with the encountered environmental states or their
analogs.

3.3 PERSPECTIVE OF SINGLE AGENT

In contrast to previous MARL systems that assume sharing of global rewards and states among
agents, we adopt a more flexible approach to address communication overhead and privacy con-
cerns in specific applications. In our approach, agents can access their local rewards derived from
the actions they execute. This approach eliminates the need for sharing a global reward, while
maintaining a global reward function. Specifically, agents estimate local returns using the following
expression:

R̃t,i = R̂t,i + γtVωi
(sT |πθi) (2)

Importantly, the gradient of the value function ∆L(ωi) remains consistent for each agent. This
consistency arises from the fact that R̂t,i is sampled using the same stationary policy πθ−

i
for each

agent i. The value function Vωi
: S × Ai → R is responsible for estimating the future return for

the policy πθi, and this estimation plays a crucial role in computing the gradient of the actor model
∆L(θi).
In the proposed MARL system, each agent’s local policy and value function are solely dependent on
the input state st. The loss function for the value function is formulated as follows:

L(ωi) =
1

2|T |

T∑
t=1

(R̃t,i − Vωi
(st,i))

2. (3)

Here, |T | represents the total number of steps, R̃t,i is the locally estimated return for agent i at time
t, and Vωi(st,i) stands for the value function’s prediction for the state st,i.

The advantage value is defined as At,i = Rt,i − Vω−
i
(st), and based on this definition, the loss

function for the actor model is given by:

L(θi) =
1

2|T |

T∑
t=1

log πθi(at,i|st,i) ·At,i. (4)

In this equation, πθi(at,i|st,i) represents the probability assigned by the actor model to the action
at,i in state st,i. The loss function seeks to maximize the probability-weighted advantage value,
which essentially encourages the policy to prefer actions that lead to higher advantages.

However, the abilities of agents in this system are limited to observing only a portion of the en-
vironment. Consequently, they may struggle to collectively optimize global performance without
a form of communication. This can lead to agents only achieving local optimization, rather than
reaching the global optimum. To overcome this challenge and enable the merging of agents’ local
observations in a way that respects privacy, we propose using FL framework.

Traditional FL methods typically involve aggregating agents’ actor models and value functions.
However, this approach assumes that all agents have the the same set of actions, denoted as
|Ai| = |Aj| for any two agents i and j. This requirement stems from the necessity for the agents’
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neural network structures to match in order to aggregate weights effectively. In practical scenarios,
such as in smart traffic control systems, agents may have differing action spaces due to individual
variations—like traffic intersections with unique permissible signals. This diversity of action spaces
poses a challenge to traditional FL methods in MARL systems.

3.4 A2FC ALGORITHM

The A2FC algorithm we propose brings forward a notable departure from the conventional meth-
ods. Unlike previous approaches, A2FC doesn’t require agents to possess matching action spaces
or an equal number of actions. Its innovation lies in the integration of the FedAvg algorithm, taken
from FL, into MARL systems where we only aggregate the weights of agents’ critic models in-
stead of both actor and critic models. This unique design allows agents to independently train their
actor models, enabling personalized action improvement within their distinct exploration domains.
Simultaneously, the aggregation of critic models tackles the issue stemming from agents having ac-
cess to partial observations. The averaged critic model weights encapsulate all agents’ experienced
states and their understanding of the environment’s reward setting. Algorithm 1 provides a concise
overview of our proposed A2FC framework within the context of a MARL system.

Algorithm 1 A2FC Algorithm
Require: T , E, ηω , ηθ

1: Initialize s0 = {s01, ..., s0i}, B = {B1 = ϕ, ..., Bi = ϕ}, π0 = {π01, ..., π0i}, t← 0, e← 0,
2: repeat
3: t← t+ 1
4: for i ∈ V do
5: Select action at,i ← πt,i; Obtained reward rt,i ← Ri(s, at,i)
6: The next state s′t,i ← Ti; Bi ← Bi ∪ {(t, st,i, πt,i, at,i, rt,i, s

′
t,i)}

7: end for
8: if t = T then
9: for i ∈ V do

10: Estimate R̃τ,i, R̂τ,i,∀τ ∈ T ; Update ωi with ηω∇L(ωi); Update θi with ηθ∇L(θi)
11: si ← s0i, πi ← π0i, t← 0
12: end for
13: e← e+ 1
14: end if
15: if e = E then
16: ω = 1

|V|
∑

i∈V ωi; ωi ← ω, ∀i ∈ V
17: e← 0
18: end if
19: until Training Ends

3.5 METHOD DISCUSSION

The critic model plays a crucial role in helping agents comprehend the reward structure of the en-
vironment. By taking an agent’s current state or observations as input, the critic model predicts an
expected reward achievable through the agent’s chosen action. The primary objective of a critic
model is to maximize this expected reward within the given state. In a MARL environment, the re-
ward function remains consistent across all agents, even though their exploration is limited to certain
parts of the environment. Agents’ training experiences can contribute to each other’s understanding
of the global environment. The FedAvg algorithm proves to be a suitable approach for enhancing
agents’ awareness in a MARL system. It accomplishes this by averaging the critic model weights
from all agents. This aggregation incorporates agents’ past training experiences and their collective
comprehension of the reward mechanism from a diverse range of visited states. When the central-
ized server provides agents with the averaged model, they gain insights into the global environment
through others’ experiences. This averaged critic model offers improved generalization for agents,
especially when encountering unfamiliar states that other agents have previously encountered. As a
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result, the loss function in Eq. 3 transforms to:

L(ωi) =
1

2|T |

T∑
t=1

(R̃t,i − Vω(st,i))
2, (5)

where ω = 1
|V|

∑
i∈V ωi. This average critic model enhances agents’ ability to cope with new

scenarios, thus contributing to more effective learning in a cooperative MARL system.

In contrast, agents’ actor models need to retain a more personalized character in order to determine
their optimal policies. The actor model operates by taking the agent’s current state or observations
as inputs and generating a probability distribution across the agent’s action space. Given that agents
typically possess distinct action spaces, traditional MARL methods that employ FL cannot directly
aggregate agents’ actor models with varying structures. Furthermore, it is crucial to preserve the
personality of agents’ actor models, as this enables them to take optimal actions within their specific
environment. A straightforward aggregation of agents’ actor models by assuming a shared action
space among all agents would lead to reduced model personalization and consequently result in
worse performance. Therefore, addressing the personalized nature of actor models is essential for
successful and effective learning in a cooperative MARL system.

From a privacy preservation perspective, our proposed method ensures that agents’ trained policies
remain private. Since our approach doesn’t necessitate direct communication among agents, our
method enhances the security of agents’ actor models by enabling them to be trained individually
without any policy sharing. We consider that an agent’s actor model contains a more substantial
portion of private information compared to their critic model. An actor model updates based on
the agent’s exploration experiences, encompassing tuples involving visited states, chosen actions,
acquired rewards, and ensuing states stored in the agent’s memory. Consequently, the actor model
directly exposes the agent’s learned policy, raising privacy concerns. On the contrary, while a critic
model also depends on agents’ states or observations as inputs, its focus is centered on estimating
the broader environmental reward structure, which is publicly available to all agents. Therefore,
the aggregation of critic models doesn’t result in any private information leakage from the agents.
By design, our approach mitigates privacy risks related to policy exposure, making it a promising
solution for secure MARL systems.

4 EXPERIMENTS

This section outlines the experimental implementation of the A2FC algorithm within an ATSC en-
vironment, utilizing the microscopic traffic simulator SUMO Krajzewicz et al. (2012). Our experi-
mental setup draws inspiration from a pre-existing study Chu et al. (2019). For evaluation purposes,
we contrast our proposed approach against two cutting-edge methods in the field of ATSC, namely
Multi-Agent Advantage Actor-Critic (MA2C) and Independent Advantage Actor-Critic (IA2C).
These benchmarks provide a comprehensive comparison to gauge the effectiveness of our A2FC
algorithm within the ATSC context.

4.1 TRAFFIC GRID AND PARAMETER SETUPS

The experiment involves an MARL framework applied to an ATSC scenario within a SUMO-
simulated Krajzewicz et al. (2012) traffic environment from a pre-existing study Chu et al. (2019).
The traffic environment is designed as a 5x5 synthetic traffic grid, illustrated in Figure 2. In this
traffic grid, two-lane arterial streets have a speed limit of 20 m/s, while one-lane avenues have a
speed limit of 11 m/s. Each intersection within this grid comprises five possible phases, including
East-West straight, East-West left-turn, and three phases for straights and left-turns for East, West,
and North-South directions. Additionally, the grid incorporates four time-variant traffic flow groups,
accommodating varying levels of traffic demands.

Traffic flows in real-world scenarios are characterized by their complexity in both spatial and tem-
poral dimensions. To capture temporal dependencies in our scenario, we employ a Long Short-Term
Memory layer as the final hidden layer of the DNN. This is the most straightforward method to
involve feeding all historical states into an A2C agent. Notably, our proposed method focuses on
aggregating agents’ critic models, and thus, we train actor and critic DNN models separately. The
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experiment comprises 1 million training steps, each with a duration of 720 steps, resulting in ap-
proximately 1400 episodes. In our MDP, we set the discount factor γ to 0.99 and the exploration
factor α to 0.75. The learning rates used in Algorithm 1 are configured as ηθ = 5e − 4 for actor
models and ηω = 2.5e− 4 for critic models.

4.2 EVALUATION METRICS

In our experiment, we conducted a comparative analysis between A2FC, MA2C, and IA2C, which
are all developed based on the application of the A2C algorithm in MARL systems, particularly
for ATSC. We evaluated these methods by measuring their training rewards throughout the training
process. Additionally, we assessed the trained policies in terms of several key performance metrics,
including average queue length, average intersection delay, and average vehicle speed within the
traffic grid. Ideally, a well-trained policy should exhibit short and stable queue lengths, minimal
intersection delays, and a consistent, higher vehicle speed.

4.3 EXPERIMENTAL RESULTS

Figure 3 displays the curves representing the average training rewards of A2FC, MA2C, and IA2C
throughout the training process. These curves depict the increasing rewards that gradually converge
as the agents accumulate experience and refine their local optimal policies. The data presented in
this figure demonstrate that A2FC exhibits strong performance during the training process. While
it may have a slightly slower convergence rate compared to MA2C, mainly because the centralized
server aggregates agents’ critic models only every 720 steps, A2FC ultimately converges to a higher
reward, approximately -490. This convergence level is similar to MA2C’s convergent reward of
around -500 but significantly better than IA2C. Our method achieves a more stable convergence of
rewards at the end of the training stage compared to MA2C’s larger fluctuations.
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Our method outperforms the others primarily due to its ability to provide a global view of the en-
vironment through the aggregation of agents’ critic models. As previously explained, an agent’s
critic model encapsulates its comprehension of the reward function in the MARL system and its
past environmental observations. The aggregation of these critic models imparts a comprehensive
perspective of the environment and the reward function to all agents. Consequently, agents can
achieve convergence on a global scale.

In contrast, IA2C struggles to converge globally due to its limited communication, which is confined
to a small region. MA2C enhances agents’ environmental awareness by sharing more information
about neighboring policies, but it still falls short of granting access to a complete global view. This
limitation contributes to the fluctuations observed in MA2C’s convergent rewards, as mentioned
earlier. Additionally, MA2C necessitates extensive policy sharing among agents at each training
step, resulting in high communication overhead compared to A2FC. Therefore, our proposed method
excels in the training process, achieving a stable convergence to a higher reward while minimizing
communication overhead.

Figure 4 provides insight into the average queue length of all policies at each step in the experiment.
Notably, IA2C exhibits a concerning trend with a continuously increasing average queue length,
indicating its inability to effectively alleviate congestion in the system. Conversely, both A2FC and
MA2C demonstrate more stable and sustainable policies. They achieve lower congestion levels and
faster recovery. Figure 5 illustrates the average intersection delay of the three methods. This metric
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follows a similar pattern to the queue length, with all methods experiencing an initial increase due
to rising vehicle volume. However, in the later stages of testing, both A2FC and MA2C effectively
decrease the average intersection delay, signifying their capacity to achieve traffic congestion recov-
ery. In contrast, IA2C struggles to mitigate congestion throughout the testing period. Our proposed
method exhibits an advantage by achieving stability earlier and reducing the average intersection de-
lay to a slightly lower level. This demonstrates the efficacy of A2FC in handling traffic congestion
scenarios.

Figure 6 showcases the average vehicle speed achieved by the three trained policies. A2FC exhibits
the highest average vehicle speed among the three policies. Despite a general decrease in average
speed across all policies as vehicle volume increases, A2FC and MA2C demonstrate more stable
performance and converge to a slightly higher average speed. This suggests that these policies are
effective in reducing traffic congestion and improving vehicle flow. In contrast, IA2C lags behind,
displaying the poorest performance of the three methods. This is primarily attributed to its slower
convergence, resulting in a dramatic decrease in average vehicle speed and increased traffic conges-
tion. Table 1 provides a summary of the experimental results, offering a comprehensive overview
of the metrics for all three methods. It reinforces the superior performance of A2FC in mitigating
congestion and enhancing traffic flow.

Metrics Temporal Averages
MA2C IA2C A2FC

Avg. training reward -738.3 -921.5 -794.5
Con. training reward -499.4 -808.1 -492.8

Avg. queue length (veh) 2.4 2.7 2.3
Avg. intersection delay (s/veh) 31.7 40.4 34.8

Avg. vehicle speed (m/s) 1.9 1.5 2.1

Table 1: ATSC performance of all metrics in the traffic grid

5 RELATED WORK

Federated RL (FRL) can be dividied into Horizontal (HFRL) and Vertical (VFRL) depending on
environment partition (Qi et al., 2021). Numerous scholarly contributions have introduced method-
ologies within HFRL, characterized by agents’ environments operating independently, albeit with
aligned state and action spaces. Liu et al. (2019) employed a knowledge fusion algorithm based
on generative networks, whereas in the present study, a federation policy dictates the approach for
model fusion. Wang et al. (2020b) presented a federated DRL-based edge caching framework for
IoT networks, aiming to reduce redundant traffic and enhance QoS. Lim et al. (2020) introduced a
FRL scheme to control multiple real IoT devices of the same type but with slightly different dynam-
ics. Unlike HFRL, several agents engage with a shared global environment in VFRL, each having
access to a restricted subset of state information within their field of observation. VFRL presents
a more intricate and less explored challenge in the current research landscape. Zhuo et al. (2019)
considered both client models and the global model as components of a unified Q network, which
is subsequently optimized utilizing the Bellman equation. Wang et al. (2020a) combined FL and
A2C in ATSC systems. However, the method simply averages both critic and actor networks, which
results in reduced personalization and lower global performance.

6 CONCLUSION

In summary, we have introduced a novel federated A2C framework known as A2FC, designed to
address the challenges posed by agents with heterogeneous action spaces in MARL systems. A
key feature of our approach is the utilization of a centralized server within the federated learning
framework, which only aggregates agents’ critic models, eliminating the need for communication
among agents to share their policies. A2FC is well-suited for MARL systems where agents have
diverse action spaces, offering substantial reductions in communication overhead as agents only
exchange parameters related to critic models. Our method also prioritizes the privacy of agents
during the training process. Our experiments conducted in an ATSC environment have demonstrated
the effectiveness of our proposed method compared to other methods in MARL systems.
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