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Abstract

High sample complexity hampers the successful application of reinforcement learning meth-
ods, especially in real-world problems where simulating complex dynamics is computation-
ally demanding. Influence-based abstraction (IBA) was proposed to mitigate this issue by
breaking down the global model of large-scale distributed systems, such as traffic control
problems, into small local sub-models. Each local model includes only a few state variables
and a representation of the influence exerted by the external portion of the system. This
approach allows converting a complex simulator into local lightweight simulators, enabling
more effective applications of planning and reinforcement learning methods. However, the
effectiveness of IBA critically depends on the ability to accurately approximate the influ-
ence of each local model. While there are a few examples showing promising results in
benchmark problems, the question of whether this approach is feasible in more practical
scenarios remains open. In this work, we take steps towards addressing this question by
conducting an extensive empirical study of learning models for influence approximations in
various realistic domains, and evaluating how these models generalize over long horizons.
We find that learning the influence is often a manageable learning task, even for complex
and large systems. Additionally, we demonstrate the efficacy of the approximation mod-
els for long-horizon problems. By using short trajectories, we can learn accurate influence
approximations for much longer horizons.

1 Introduction

Controlling large distributed systems is a key challenge in artificial intelligence with the potential to impact
many fields of application, including computing and information technology (Coulouris et al., 2001), energy
systems (Järventausta et al., 2010; Nweye et al., 2023) and transportation (Dimitrakopoulos & Demestichas,
2010). Reinforcement learning (RL) could be promising for such problems as it provides a framework for
studying how agents learn and plan under uncertainty in sequential decision making problems. Despite
recent successes for large sequential decision-making problems (Kaelbling et al., 1998; Sutton & Barto, 2018;
Mnih et al., 2015; Silver et al., 2016), RL techniques still suffer from high sample complexity (Kakade,
2003; Botvinick et al., 2019), which means that agents typically require many trajectories sampled from a
simulator to achieve optimal performance. This sample inefficiency becomes a significant hurdle in real-world
scenarios characterized by large, structured environments with complex dynamics. In these contexts, running
computationally expensive simulators to collect a sufficient sample of trajectories can be unfeasible.

To mitigate this, influence-based abstraction (IBA) (Oliehoek et al., 2012) offers a principled framework for
decomposing the global model of a large factored multiagent problem into small local models, which support
lightweight simulations. This approach has proven to be a powerful tool for accelerating online planning
(He et al., 2020; 2022), deep RL (Suau et al., 2022b;c), and deep multiagent RL (Suau et al., 2022a). The
core idea is to leverage the factored structure of the environment to build a local model for each single
agent, assuming that the other agents’ policies are fixed. In this way, each agent has a local best response
model, which it can use to compute a best response, in terms of local rewards, to the other agents. 1 By

1Note that such a collection of local problems is subject to the prize of anarchy. That is, it is not guaranteed to lead to
optimal system level behavior in terms of total rewards. Nevertheless, it may allow us to deal with a complex optimization
system in a tractable way, which is one of the core motivations that sparked the interest in multiagent systems (Shoham &
Leyton-Brown, 2008).
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abstracting away a large portion of the environment, only a few state variable, referred to as the local factors,
are retained in each local model. To overcome information loss due to the abstraction process, each local
model is complemented with a representation of the influence, capturing the effects of external factors and
policies of other agents on the dynamics of the local factors.

This abstraction approach has the potential to substantially reduce the state space of the best response
problem without any loss in value. In other words, the local agent achieves the same performance when
looking for solutions in the smaller local model as in the global model (Oliehoek et al., 2021). However, when
part of the system is abstracted away, the local factors no longer preserve the Markov property. To restore
Markov transitions, the state of the local model needs to be augmented with the history of appropriate state
and action variables. Unfortunately as the number of local histories grows exponentially with time, computing
the influence (a conditional marginal inference problem) becomes unfeasible, even for small systems or short-
horizon problems. This motivates the idea of employing machine learning methods, which have shown
excellent results in sequence modeling (Goodfellow et al., 2016; Gamboa, 2017; Ismail Fawaz et al., 2019),
to learn approximate representations of the influence. Intuitively, the more accurate the influence learning
models are, the smaller the value loss. Congeduti et al. (2021) prove formally that the value loss is bounded
by the approximation error. Therefore, obtaining accurate approximations is crucial for the effectiveness of
the entire approach.

Even though influence approximation has been successfully applied in a variety of benchmarks, showing
improvements in terms of planning and RL performance (He et al., 2022; Suau et al., 2022b), there exists
no systematic analysis of how difficult the influence learning task is in complex scenarios and which learning
methods are most effective for this purpose. In addition, maintaining accurate approximations might become
particularly difficult for long-horizon tasks. In fact, methods for sequence modeling often struggle with
capturing long-term dependencies (Pascanu et al., 2013; Gu & Dao, 2024). Even when advanced techniques
prove effective, they might not be computationally feasible, as training could require running costly long
simulations. To address this gap and understand for which problems IBA can be successfully applied, we
investigate the learning of accurate influence models across various realistic scenarios. We examine which
learning aspects are crucial for this purpose. Thus, our aim is not to propose a novel algorithmic approach.
Instead, we seek to empirically evaluate existing learning methods for approximating the influence in scenarios
that may present challenges, such as complex dynamics and long-horizon problems. As key contributions of
our work we show that:

• Approximating the influence might typically be an easy learning task, even for complex and large
systems. In fact, small recurrent and temporal convolutional neural networks can learn accurate
influence approximations across the investigated benchmarks.

• Learning models can be trained on short-horizon sequences and then deployed to approximate the
influence over much longer horizons while maintaining high accuracy. Additionally, we propose a
method to estimate the accuracy of the models over long horizons using the short training sequences.

In this way, we give positive evidence that influence-based abstraction might provide a feasible approach to
dealing with decision making in certain real-life complex systems.

2 Background

Here we give a concise introduction to decision making problems formalized as partially observable Markov
decision processes (POMDPs), as well as influence-based abstraction.

2.1 Factored POMDPs and best response problems

Formally, a POMDP (Kaelbling et al., 1998) is a tuple M = (S, A, T , R, Ω, O, b0, h), where S is the finite
state space of the environment, A is the finite space of available actions, Ω the observation space, and h
the horizon of the problem. Note that, assuming finite state and action space, we restrict our work to
discrete state and action variables. Initially, a state s0 ∈ S is drawn from the initial distribution s0 ∼ b0

2



Under review as submission to TMLR

2. At any discrete time step t ≥ 0, the agent chooses an action at ∈ A, and the state changes according
to the distribution st+1 ∼ T (· | st, at). The agent then receives a reward modeled as rt = R(st, at) and an
observation ot+1 ∼ O(· | st+1, at). A policy π encodes the agent’s behaviour, mapping the action-observation
histories ht = (a0, o1, . . . , at−1, ot) into probability distributions over the action space, i.e. π(ht) ∈ ∆(A).
The goal of the agent is to optimize the expected cumulative reward for employing a policy π given the
action-observation history ht: Vπ(ht) = E

[∑h
k=t rk | π, ht

]
. The policy attaining the maximum value V∗ is

called optimal policy and is denoted by π∗. We focus on specific domains where the state space S can be
decomposed into state variables or factors, known as factored POMDPs (Hansen & Feng, 2000).

In line with the concept of joint equilibrium-based search for policies (Nair et al., 2003), we adopt the
perspective of a protagonist agent i in problems with multiple interacting agents. This approach is commonly
used to solve multiagent problems, as many solution methods rely on finding the best response policies for
individual agents (Nair et al., 2003; Hansen et al., 2004; Oliehoek et al., 2014). Specifically, by fixing the
policies of all other agents π−i, the best response problem for agent i can be formulated as a factored POMDP
where the actions of the other agents a−i are included into the state space as factors. For the rest of the
paper, we will omit the subscript i and assume to address a best response problem for a single agent modeled
as a factored POMDP and denoted as Mglobal = (S, A, T , R, Ω, O, b0, h).

2.2 A traffic example

We will use as a running example a traffic light control problem represented in Figure 1. A protagonist agent
manages the traffic light at intersection 1 within a large road network. The goal of the agent is to minimize

Figure 1: Traffic example. The red square delimits the road segments included in the local model for the
traffic light agent 1. The blue arrow represents the effect of the non-local part of the network on the local
model and the red arrow the effect of the local traffic on the external part of the system.

traffic congestion at the local intersection by leveraging the information from traffic observations from the
surrounding area that is delimited by the red box. This traffic example can be represented as a factored
POMDP where the state of the system is represented by the variables that measure the traffic levels at differ-
ent road stretches as, for instance, the variables sn↓, sw←, ssrc highlighted in Figure 2(a). Factored POMDP

2To ease the notation, we use small letters to denote both random variables and their realizations. Capital letters denote sets
and functions. For instance, s0 ∼ b0 denotes that the random variable representing the state at time 0 is distributed according
to b0.
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can be more compactly represented by exploiting conditional independence between factors. Specifically,
the transitions and observation probabilities can be represented by specific forms of Bayesian networks, the
two-stage dynamic Bayesian networks (2DBNs) (Boutilier et al., 1999), as illustrated in Figure 2(b).
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Figure 2: Local model for intersection 1 of the traffic network example. (a) graphical representation of the
local state variables and dependencies on external factors; (b) 2DBN representations of the local and external
state variables (left) and the abstract I-ALM (right).

Achieving optimal control at intersection 1 does not require simulating all the state variables. For instance,
the decisions made at intersection 3 affect indirectly the observations of the agent through the car inflow
from the north end (blue arrow). By abstracting away those factors that have only indirect effects on the
local intersection, a smaller model can be constructed, as depicted in the red box Figure 2(a). In particular,
the local factors highlighted in red, sn↓, sw←, represent the incoming and outgoing traffic flows from the
north and west ends, respectively. The north end inflow denoted by ssrc and depicted in blue is a so-called
influence source (to be defined formally alter) as it influences directly the local traffic measured by sn↓. The
influence source captures the only information about the external portion of the system necessary to define
the local transitions for the north end traffic sn↓.

2.3 Influence-based abstraction

As we saw in the example, the factorization of the state space allows to leverage the conditional independence
between factors. By abstracting away factors that do not directly affect the agent’s reward and observations,
we can construct a much smaller local model. For instance, in the traffic example the state variables that
measure the traffic outside of the area delimited by the red box can be discarded. Thus, the state of the
environment can be considered as consisting of three components defined as follow.

Definition 1 The state s can be decomposed as s = (sext, ssrc, slocal), where slocal represents the local factors
retained in the model. ssrc denotes all the external state variables that directly influence the local factors and
are called the influence sources. All the remaining factors form an external portion of the state, sext.

In Figure 2(a), the local factors are depicted in red and the influence source that affects directly the local
inflow of cars from the north end is depicted in blue. All the factors that do not affect directly the local
traffic are depicted in grey and form sext. To reduce the complexity of the problem, we want to construct
the local model, corresponding to the red area in Figure 2(a), which therefore only contains the local factors.
The 2DBN in the left-hand side of Figure 2(b) represents the factorization of the global model state into
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local factors, influence source and external factors. Note that only the local factors affect the agent’s reward
and observations. The blue arrow highlight the dependency of the local factor from the external influence
sources.

In general the transitions of the local factors depend on the influence sources as P (st+1
loc |st

loc, st
src, at) which

are not part of the local model. For instance, the distribution of sn↓ depends on the north traffic inflow
represented by ssrc. One possible solution is to condition on history. Specifically, we can use the local history
to predict the influence source distribution P (st

src|s0
loc, a0, . . . , st

loc). Interestingly, however, it may not be
necessary to condition on the full local state-action history. Oliehoek et al. (2021) show that one can retain
the history of only a subset of variables, the d-set. Formally, the d-set is uniquely defined by the minimal
set of local variables that d-separate the local factors from the external factors, according to the definition
of d-separation for causal graphs in a 2DBN (Boutilier et al., 1999). In other words, the d-set dt

set includes
precisely those local factors and actions necessary to infer the influence sources at time t, st

src.

In the traffic scenario, the history of the outgoing local traffic measured at the west end sw← affects the
future traffic volumes measured by the influence source ssrc and thus is part of the d-set. To predict the
influence sources, we augment the local state with the local history of west end outflow sw←. For the sake of
illustration, we will assume that the d-set consists only of those factors, i.e., dt

set = (s0
w←, . . . , st

w←). In the
left-hand side of Figure 2(b), the red arrow represents the influence, that is the distribution of the influence
source ssrc given the dset, I(st

src | dt
set) ≜ P (st

src | s0
w←, . . . , st

w←). We can now provide the formal definition.

Definition 2 (Influence) We define the influence I as the conditional probability distribution of the influ-
ence sources given the d-set at time t, I(st

src|dt
set) ≜ P (st

src|dt
set), defined for any time step t < h.

With these notions, we can define a local model as a POMDP.

Definition 3 (I-ALM) An influence-augmented local model (I-ALM) corresponds to the factored POMDP,
Mlocal = (Saugm, A, Tlocal, R, Ω, O, b0, h), where the augmented state space Saugm comprises the local factors
and the d-sets, i.e., (slocal, dset) ∈ Saugm. A is the action space of the agent. The local transitions Tlocal,
which model the distributions of the local factors, are defined through the influence I by marginalization over
all the possible influence sources ssrc. Precisely,

Tlocal(st+1
local| st

local, dt
set, at) =

∑
st

src

P (st+1
local|s

t
local, st

src, at)I(st
src|dt

set). (1)

Note that we assume that the local factors encompass all the variables that directly affect the agent’s reward
and observations. As a consequence, the reward R and observation O are the same functions as those defined
for the global model.

Assuming that we can derive the exact influence I, the I-ALM Mlocal defines a problem equivalent to the
global model Mglobal. That is, the two problems share the same optimal policies. Consequently, solving the
smaller I-ALM yields an optimal policy π∗, which also maximizes the value of the original global problem.
We refer to Oliehoek et al. (2021) for a formal proof of this equivalence and an extensive discussion of the
IBA concepts introduced in this section. However, deriving the influence for any possible d-set requires
solving an exponential number of inference problems in the horizon h. For instance, to define the influence
for the local traffic model, we would need to compute a number of conditional probability distributions of
the order of (max sw←)h, which corresponds to the cardinality of the d-set. This task is practically infeasible
even for small values of the variables. This challenge leads to the idea of learning approximations of the
influence Î.

2.4 Approximate influence-based abstraction

Given a representation Î, an approximate influence-augmented local model, a Î-ALM is defined following the
same structure of Definition 3 as the factored POMDP M̂local = (Saugm, A, T̂local, R, Ω, O, b0, h), with local
transitions T̂local defined by replacing the exact influence I in equation 1 with the approximate influence Î. To
construct an Î-IALM, we need to learn Î. For this task, we first simulate n trajectories of influence sources
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and d-sets from the global simulator to form the training set Dh =
{

(d0
set, s0

src)i, . . . , (dh
set, sh

src)i

}
i=1,...,n

.
Now, we define the learning task.

Definition 4 (Influence learning task) Given a training set of influence sources and d-sets trajectories
Dh, the influence learning task consists of learning a predictor for the conditional distribution of the influence
sources st

src given the local history in the d-set dt
set, Î(st

src|dt
set) for any t = 0, . . . , h − 1.

A probabilistic model parameterized by θ, for example a neural network, can be used for this sequence
modelling task to approximate the influence as Î(θ) = Î(st

srt | d t
set; θ). The learning model is trained to solve

the optimization problem formulated as

θ⋆ = arg min
θ

EDh

[
CE(I(· | dt

set)||Î(· | dt
set; θ))

]
, (2)

where the expectation corresponds to the average cross entropy loss between the target influence and the
approximation model.

As mentioned in the introduction, the advantage of this approach lies in the possibility of using a small
sample D from the global simulator to build the local lightweight simulator Î-ALM, which enables more
efficient sampling and accelerate the solutions search. Moreover, Congeduti et al. (2021) provide additional
support for the approximate abstraction by demonstrating that the value loss for solving the sequential
decision-making problem defined by the Î-ALM is bounded by the worst-case KL divergence error of the
influence predictions over all the possible d-sets. This bound guarantees that any influence Î that minimizes
the mean cross entropy loss according to equation 2–and thus the mean KL divergence–is aligned with the
objective of minimizing the value loss.

2.5 State decomposition

In our work, we assume that the decomposition into local and external factors is an engineering choice and
thus given, with the constraint that the local factors include all variables that directly affect the reward and
the observations. This ensures that reward and observations remain well-defined at local level (Oliehoek
et al., 2021). Ideally, the local model should be as small as possible to enable simulation speedups. However,
in some cases a larger local model can ease the problem of predicting the influence sources. This may be
viewed as a potential limitation, since finding a good trade-off between the information included in the local
model and the model size may not be trivial. However, in practice, we have generally found it relatively
straightforward to identify sets of local variables that yield good performance (Suau et al., 2022a). Although
we recognize that different decompositions may lead to different outcomes, any choice determines uniquely
the influence sources and the d-set and thus defines an influence learning problem. We also notice that the
learning task itself is not affected by the specific state decomposition. Therefore, a comprehensive analysis
of the effect and efficiency of different choices for such decomposition is beyond the scope of this paper.

3 Empirical study of influence learning

The influence learning problem is a sequence prediction task that corresponds to modeling the temporal de-
pendencies between the local and the external factors governed by an underlying 2DBN. This structure differs
substantially from the benchmark domains typically used to test sequence modeling methods, such as speech
recognition, machine translation, audio classification, music generation, image-video caption generation (Bai
et al., 2018; Keneshloo et al., 2019). Thus, this learning problem warrants separate investigation. Given that
humans are generally quite successful in reasoning about parts of complex systems in isolation, we hypoth-
esize that the structural characteristics of the environments may render the task of learning the influence
quite feasible and manageable, even with relatively low-complexity methods for sequence predictions.

To make an impact on real problems with IBA, we need to address two important aspects. First, real-world
tasks are often large and complex, which means that we need to explore if approximating the influence is
feasible for such problems. Additionally, many real-world tasks often involve systems, such as traffic or
networks, that operate continuously, which means that the learning models should work well for very long
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(or infinite) horizons. For the entire IBA approach to be effective, we need to have sufficiently accurate
influence approximations in these situations. Therefore our investigation focuses on two key aspects:

1. Testing the hypothesis that, even for large and complex systems, the learning problem may turn
into a manageable task that does not require large or complex neural networks.

2. Investigating to what extent the representations learned from trajectories with a short training
horizon htrain can approximate well the influence over a much longer deployment horizon hdeploy ≫
htrain.

3.1 Simulation domains

Our experimental setup includes a range of realistic simulation domains, covering diverse situations in terms
of number of influence sources to predict, level of ‘uncertainty’ of their distributions, strength of the depen-
dency between local variables and influence sources, dependency over past time steps, and problem horizons.
This variety leads to different characteristics of the learning tasks. Our aim is to determine if this has an
impact on the performance of the learning models. We consider four simulation domains designed to test
the efficacy of local influence proxies on realistic tasks:

• Microgrid (MG): A realistic application of power system management in the energy engineering
sector. Similar to Vázquez-Canteli et al. (2020), in this environment a hundred prosumers (units
that both produce and consume electrical power) interact by trading energy to minimize the costs
of energy bought from an external grid while meeting the internal power demand.

• Traffic grid (TG): A traffic light control problem that models the interactions between cars and
traffic lights in a road network, as briefly introduced in Section 2.2. This scenario features many
external factors which exert a direct influence on the local model. Hence, the influence learning
problem corresponds to a high-dimensional prediction task.

• System admin (SA): A multiagent version of the system administrator domain described in
Poupart & Boutilier (2004). This environment reproduces a realistic challenge in the information
technology domain: a team of system administrators has to manage a network of potentially faulty
machines by deciding which machine to reboot.

• Grab a chair (GC): A simple gaming environment introduced by He et al. (2020), where a group
of agents competes to obtain one of the available chairs. This environment is a simplified version
of the system admin serves as a control scenario for proof-of-concept experiments and preliminary
investigations.

We refer the interested reader to Appendix B for a detailed description and visualization of the simulation
domains.

3.2 Comparison of learning models

We evaluate the performance of different classes of learning models with various degree of complexity (Roc-
chetta et al., 2023), measured as the network size or number of learnable parameters on the influence learning
task.

Models and benchmark domains used for this experiment. Many successful sequence prediction
methods for sequential predictions are based on neural network with recurrent and temporal convolution
components (Karim et al., 2017; Bai et al., 2018; Ismail Fawaz et al., 2019). We evaluate several classes of
models including recurrent models such as long short-term memory (LSTM) (Hochreiter & Schmidhuber,
1997) and gated recurrent unit (GRU)(Cho et al., 2014), as well as temporal convolution-based models like
temporal convolutional network (TCN) (Lea et al., 2017) and fully convolutional network (FullyConv) (Long
et al., 2015). To compare these advanced models with simpler alternatives, we also assess a one-layer fully
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connected linear network, which corresponds to a logistic regression (LogReg) model. We exclude more
complex and larger models, such as transformers (Vaswani et al., 2017; Wen et al., 2022), as we assume,
and demonstrate, that small and simple models can provide accurate influence representations. For each
model class, we compare different sizes, ranging from lightweight networks with less than 100 parameters
scaling up to the size a one-layer linear neural network counting more than one million parameters. For
the details of the architectures and sizes used in the different domains, we refer to Table 5, 6, and 7 in
Appendix C. The models are evaluated over three domains: microgrid, system admin, and traffic grid. For
each domain, we choose the scenario features, including the number of interacting agents N , the protagonist
agent i, the policies of the external agents π−i, the problem horizon h, the initial distribution b0 and other
domain-specific parameters that define the transition and reward functions. These scenarios are designed
to cover a range of diverse characteristics in terms of problem size, time length, prediction dimension and
stochasticity for the influence learning task. Specifically, the microgrid represents a large scenario where
100 agents interact within a power grid; the traffic grid scenario is a real-world traffic control application
that turns into a high dimensional learning task; and the influence learning problem for the system admin
simulator is a long-horizon forecasting problem.

Experimental setup. We use a random exploratory policy for the local agent πExp
i which affects only the

data distribution of the training set. We collect n = 500 trajectories of influence sources and d-sets from the
global simulator to form the training set Dh. The different models are trained to approximate the influence
as Î, using the mean cross entropy as the training loss. We employ h independent logistic regression models,
each one representing the influence Î(st

src|dt
set) for a specific time step t ∈ {0, . . . , h − 1}. We adopt standard

optimization techniques, including the ADAM optimization algorithm, linear decay of the learning rate and
grid search over the space of initial and final learning rates. For each scenario, a fixed number of epochs
and the batch size are selected. Details on the scenarios and hyperparameter configurations are provided in
Table 3 and Table 4 in Appendix C, respectively.

Performance metrics. The model performance is assessed on an a test set consisting of ntest independent
global model trajectories. We use the cross entropy test error, which is computed as the mean over time and
sum over the influence sources of the cross entropy estimators. Specifically, for each factor st

src,j of the influ-
ence sources st

src = (st
src,1, . . . , st

src,J), an estimator of the cross entropy error CE(I(st
src,j | dt

set), Î(st
src,j | dt

set))
at time t is computed over the test sample. Then, the sum over the J influence sources provides the error
for a given time step t according to the following formula:

CEt(I, Î) =
J∑

j=1

[
− 1

ntest

ntest∑
i=1

ln Î(st
src,j,i | dt

set,i)
]

. (3)

With a slight abuse of notation, we denote both the probability distribution of individual influence sources
as Î(st

src,j | dt
set) and the joint distribution as Î(st

src | dt
set). The cross entropy error is obtained by averaging

the errors defined per time step in equation 3 as follows:

e(h) = 1
h

h−1∑
t=0

CEt(I, Î). (4)

We also measure the wall-clock training times (WCTTs) to assess which model provides the best trade-off
between accuracy and training time.

3.3 Generalization beyond the training horizon

In many real-world applications, an approximate model Î should perform well over long horizons. Examples
of problems that require long-term simulations include long horizon planning (Simeonov et al., 2020; Pertsch
et al., 2020), episodic reinforcement learning (Dann & Brunskill, 2015) and tasks characterized by sparse
reward signals (Riedmiller et al., 2018). Although it might be feasible to gather a sufficient number of
trajectories from the global simulator to approximate well the influence, this may no longer be the case when
dealing with long horizon problems as long-term dependencies add further complexity to the learning task.
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Our approach to address this issue is to leverage learning models to generalize the influence representations
beyond the training horizon. This intuition is grounded in the ergodic theory for MDPs (Puterman, 2014;
Morton & Wecker, 1977; Kearns & Singh, 2002). Under ergodic assumptions, the Markov dynamics induced
by a joint policy π = (π1, . . . , πN ) converge to a unique stationary distribution independently of the initial
distribution. The mixing time tmix, refers to the number of time steps required for the state distribution
to approximate the stationary distribution within a specified tolerance. Such mixing time is determined
solely by intrinsic properties of the system and is independent of the initial conditions. This argument
supports the concept of a stationary influence as the limit of the conditional distributions of the sequence
{I(yt

src | dt
set)}t. In other words, when the system has sufficiently mixed, the influence approaches a time-

independent function, representing the distribution of the influence sources at equilibrium. In this scenario,
global trajectories with horizon htrain > tmix contain sufficient information to learn the stationary influence.
Therefore, if the mixing time is sufficiently short, learning models can capture the stationary influence using
short training sequences and use it to predict effectively the influence over (indefinitely) longer deployment
horizons hdeploy ≫ htrain.

How to choose an appropriate training horizon for this task remains an open question. We expect predictions
to improve as the training horizon htrain approaches the deployment horizon hdeploy. However, we aim to limit
the computational effort for running long global simulations. Therefore, the training horizon must offer a
good trade-off between the quality of approximations and the length of the training sequences. Specifically,
we seek an optimal training horizon h∗train as the minimum number of time steps required to guarantee
accurate predictions across the entire deployment horizon. Intuitively, the optimal horizon h∗train depends on
the system’s mixing properties and the ability of the learning models to capture the stationary distribution.
Specifically, we verify that it corresponds to the sum of the mixing time tmix and a few additional time steps
needed for the learning models to generalize the experience encountered after mixing.

Models and benchmark domains used for this experiment. LSTM and FullyConv networks are
employed for the experiments, as they achieve the best performance in the experiments of the previous
section on the influence learning tasks. The architectural hyperparameters are selected to ensure that the
learning models share the same size. Tables 9 and 10 in Appendix C report the optimization and network
architecture details, respectively. We use the grab a chair and traffic grid domains as described in Section
3.1. Grab a chair serves as controlled environment where a known stationary influence is reached after a
few time steps of the mixing time. Specifically, we consider two different scenarios: the first with N = 4
interacting agents denoted as GC4, and the second with N = 11 agents denoted as GC11. We assume that
the agents are ordered by index and each external agent 2, 3 . . . copies the action of the preceding agent at
previous time step (see Figure 12 in Appendix B). For instance, agent 3 at time t copies the last action of
agent 2, which is, in turn, the action of the local agent 1 at time t−2. In general, for any agent i, at

i = at−i+1
1 .

This setup ensures that after the mixing time tmix = N −1 the system converges to a stationary distribution
determined by the local agent policy, i.e. at

i ∼ πExp
1 for t ≥ N − 1. As a result, the influence is a time

independent deterministic function of the last N local actions determined by the following formula

I(at
2, at

N |a0
1, . . . , at−1

1 ) = P(at
2, at

N |at−1
1 , at−N+1

1 ) = δat−1
1

(at
2)δat−N+1

1
(at

N ) for t ≥ N − 1. (5)

where δa denotes the Dirac distribution centered on the action a. Such explicit expression for the stationary
influence allows us to analyze the model learning for the different training horizons. We also use the traffic grid
domain to validate our arguments in a more realistic environment where no prior knowledge of stationarity
and mixing time is available. Details on the scenarios, training and deployment horizons can be found in
Table 8 in Appendix C.

Experimental setup. To empirically validate these arguments, we proceed as follows. We consider a set
of K training horizons H = {h1, . . . , hK} with h1 ≤ · · · ≤ hK . We employ a random exploratory policy
πExp for the local agent and collect n global trajectories of d-sets and influence sources with horizon hK .
Then, for each model class, we train K learning models, such that the k-th model uses the training set
Dhk

, which consists of trajectories up to horizon hk, to learn the approximate influence Îk(θ). To assess the
generalization ability, we test the models over longer trajectories. For this purpose, we collect an independent
test sample of trajectories with horizon hdeploy ≫ hK denoted by Dhdeploy .

9
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Deployment, test and test-tail error. We define the function ek(h) to represent the generalization
error of the k-th model when tested over h deployment steps, as given by the following formula:

ek(h) = 1
h

h−1∑
t=0

CEt(I, Îk(θ)), (6)

where the cross entropy term for time step t is defined in equation 3. Note that for h = hdeploy, the
error ek(hdeploy) corresponds to the average error over hdeploy time steps. This error measures how well (on
average) the k-th model generalizes the influence over the entire deployment horizon. While for h = hk, the
error ek(hk) represents the average error of the k-th model over htrain = hk time steps. We refer to these
errors as the deployment error and the test error, respectively, and denote them as follows:

ek
deploy := ek(hdeploy). ek

test := ek(hk) (7)

A learning model that shows good long-term performance should maintain the deployment error close to the
test error. Additionally, increasing the training horizon should not significantly reduce the deployment error.

We are also interested in investigating how to estimate the deployment error from the short training trajec-
tories. While the test error might intuitively seem a good candidate estimator, it is significantly affected by
the error terms before the system has mixed. To illustrate this, we distinguish the cross entropy error terms
in equation 6 into two time scales: the short time scale of the mixing time and the long time scale of the
deployment horizon. This distinction allows us to break the error function into two terms as follows:

ek(h) = 1
h

[
tmix−1∑

t=0
CEt(I, Îk(θ)) +

h∑
t=tmix

CEt(I, Îk(θ))
]

. (8)

The first term accounts for the short time errors over the influence before mixing and the second for long time
errors which represent the model’s performance over the stationary influence. Given that hdeploy ≫ tmix, the
deployment error is mainly affected by the second term of equation 8, while the contribution of the short
time errors is negligible. Conversely, when the training horizon htrain is close to the mixing time, the first
time errors predominantly determine the test error. These errors do not reflect the model’s performance
on the stationary influence, causing the test error to deviate from the deployment error. The key idea for
deriving a more accurate estimator is to neglect the initial short time errors. We introduce the test-tail error,
which is computed as the average error over a window of l time steps, according to the following formula:

ek
tail = 1

l

hk+l∑
t=hk+1

CE(I, Îk(θ)). (9)

In other words, for training horizon hk, l additional time steps are collected in the test set
{((dhk+1

set , shk+1
src ), . . . , (dhk+l

set , shk+l
src ))i} ⊂ Dhdeploy and used to compute the test-tail error. We empirically

show that in our scenarios the error etail offers a good estimate of edeploy for l = 1, and can thus be used
to assess the quality of the model predictions over the deployment horizon. However, we recognize that
increasing the number of time steps, i.e. l > 1 might prevent disruptive effects of anomalies and give more
stability to the test-tail error. Additionally, we show how this error can be used to search for an optimal
training horizon h∗train.

4 Results and discussion

Here, we present the empirical results for the two sections of the experiments presented.

4.1 Comparison of learning models

We start by analyzing the test error of different model classes and sizes as a function of the number of
epochs for the three domains. Together with the training curves, we look at the final test errors and wall-
clock training times. To compare the model classes, we select one network size for each class from the Pareto

10



Under review as submission to TMLR

optimal solutions (Miettinen, 1999) of the bi-objective problem of minimizing test error and training time.
Finally, we look at the progression of the test error over training time to compare the learning speed and
accuracy of the model classes.
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Figure 3: Effect of model size and class on the different benchmark problems. Each panel depicts the cross
entropy test error over the training epochs with standard error over ten iterations for different network sizes.
The columns represent the three different test environments and the rows the classes of the learning model.

Effect of model class and size. Figure 3 depicts the progression of the test errors, computed according
to equation 4 over the training epochs of the four classes of models (rows) in the three problem domains
(columns). For each class and benchmark domain the training curves for different network sizes are illustrated
as average test error with standard error over ten iterations of the experiment. The final test errors and
training times are reported in Table 1 as averages over the ten iteration of the experiment. The corresponding
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standard errors are reported for the cross entropy errors but not for the wall-clock training times, as they
are negligible.

For the microgrid, the training curves and final test errors show no significant advantages from larger model
sizes, except in the case of the TCN model class. In fact, the recurrent-based models, such as LSTM and GRU,
do not benefit from increased sizes. Conversely, increasing the TCN size from fewer than 100 parameters
to 15, 000 parameters significantly improves the performance, reducing the test error from 4.11 to 3.85. For
the FullyConv model, a bigger size leads to a slight performance improvement but triples the training time
from 0.46 to 1.55 seconds. These results align with the observation that temporal convolutional networks
typically benefit from deeper architectures and thus require more parameters than recurrent networks (Bai
et al., 2018). Especially for long sequences, convolutional networks need several layers to reach a full receptive
field, that is to ensure that the entire history-length of the input sequence is processed to make predictions.
Despite the higher number of parameters, the TCN model have typically low training times. In fact, the
TCN model with 15, 000 parameters achieves accuracy to the other model classes in about the same training
time. Figure 3 displays also the results on the system admin and traffic grid domains in the second and
third columns, respectively. In contrast with the microgrid domain, very small recurrent (LSTM, GRU)
and FullyConv models do not have enough capacity to accomplish the learning tasks. This is due to the
higher dimensionality of the space of influence sources and d-sets in the traffic domain and the longer problem
horizon for the system admin. These features increase the complexity of the two learning problems compared
to the microgrid case.

CE
number of parameters

models ≤ 100 1000 15000
LSTM 3.81 ± 0.03 3.78 ± 0.02 3.82 ± 0.03
GRU 3.77 ± 0.03 3.73 ± 0.03 3.78 ± 0.03
TCN 4.11 ± 0.03 3.98 ± 0.03 3.85 ± 0.04

FullyConv 3.85 ± 0.03 3.85 ± 0.03 3.76 ± 0.03
LogReg - - 3.85 ± 0.04

WCTT
number of parameters
≤ 100 1000 15000
0.98 1.18 2.26
0.95 1.13 2.15
0.47 0.59 1.31
0.46 0.65 1.55

- - 0.95

(a) Microgrid

CE
number of parameters

models ≤ 200 1K 10K 50K 1M
LSTM 6.2 ± 0.4 3.4 ± 0.3 3.1 ± 0.3 3.2 ± 0.3 -
GRU 6.6 ± 0.6 3.3 ± 0.2 3.1 ± 0.3 3.2 ± 0.3 -
TCN 7.4 ± 0.2 6.6 ± 0.0 4.3 ± 0.4 5.5 ± 0.5 -

FullyConv 6.3 ± 0.2 4.4 ± 0.3 3.1 ± 0.3 3.1 ± 0.3 -
LogReg - - - - 5.6 ± 0.3

WCTT
number of parameters

≤ 200 1K 10K 50K 1M
20.1 20.9 25.4 40.2 -
21.4 22.2 27.5 40.6 -
6.0 7.4 8.2 14.3 -
6.5 7.9 10.3 17.0 -
- - - - 35.3

(b) Traffic grid

CE
number of parameters

models ≤ 100 1K 10K 3M
LSTM 1.69 ± 0.04 1.06 ± 0.04 1.05 ± 0.04 -
GRU 1.68 ± 0.04 1.06 ± 0.04 1.05 ± 0.04 -
TCN 2.06 ± 0.05 1.98 ± 0.03 1.05 ± 0.04 -

FullyConv 2.01 ± 0.04 1.20 ± 0.05 1.05 ± 0.04 -
LogReg - - - 1.97 ± 0.08

WCTT
number of parameters
≤ 100 1K 10K 3M
13.7 18.5 32.4 -
13.1 18.3 33.9 -
3.6 5.1 12.7 -
3.9 5.2 12.3 -
- - - 23.2

(c) System admin

Table 1: Cross entropy test error with standard error and wall-clock training time (s) for the microgrid,
traffic grid and system admin computed over ten iterations.
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Figure 4: Left panels: Pareto fronts for the three domains. The sizes selected are represented in red and
correspond to the cells highlighted in Table 1. Right panels: Test error over wall-clock training time for the
selected sizes.

Pareto optimal sizes and learning speed. Figure 4 shows the Pareto frontiers for the model classes
(left panels) where each marker represents the test error and training time for a specific size. The dashed
lines indicate the Pareto fronts for each class, defined by the sizes that are not strictly dominated by any
other in the same class. Among the Pareto optimal solutions, we select and analyze specific sizes which
provides a good trade-off between error and training time. These are indicated by the red markers. On the
right-hand side of Figure 4, we collect the test error over training time for the selected sizes and compare
them with two baseline models: a random model and LogReg.

For the microgrid, the Pareto fronts show that the LSTM, GRU and FullyConv models achieve approximately
the same accuracy for the different sizes. Thus, the smaller sizes are selected and highlighted in grey in Table
1, as they also offer the lowest training time. Conversely, the TCN model’s error drops significantly with
larger network size, leading to the choice of size 15, 000 for that class. When comparing the training curves
of the selected models, we observe similar learning speed and final accuracy across all models. Notably, the
logistic regression model achieves comparable performance to the other more complex learning models. One
explanation for this result is that, despite the complex nature of the realistic microgrid scenario, the corre-
sponding influence learning task is relatively simple: a low-dimensional forecasting problem with influence
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Figure 5: Test error per time steps for the system administration problem

sources weakly dependent on the local history. Even scaling up the microgrid to include many more units
would still result in a low dimensional and simple influence learning task. This situation is representative of
several complex realistic scenarios where the local model is well-decoupled from the rest of the system, with
only a few external influence sources weakly affecting the local dynamics.

A different situation arises in the traffic grid and the system admin domains which induce more complex
influence learning tasks in terms of dimensionality and problem horizon, respectively. In these domains, the
linear regression and TCN models show their limitations. In the right panels of Figure 4), the red training
curves show that the logistic regression fails to achieve good accuracy levels. Although the green training
curves for the TCN model have not yet reached convergence, the learning is much slower compared to the
FullyConv, LSTM and GRU models. However, even for these problems characterized by higher dimension
or longer horizons, relatively small architectures for LSTM, GRU and FullyConv models (between 1000 and
10000 parameters) achieve good performance.

Error over time steps. To further analyze the limitation of LogReg model for long horizon problems, we
plot in Figure 5 the test error per time step of the logistic regression compared to LSTM for the system admin
domain. While the LSTM error remains relatively constant, the error for logistic regression increases over
the time steps. This suggests that the logistic regression’s ability to represent the influence diminishes with
longer horizons. One possible explanation is that linear models struggle to accurately capture increasingly
nonlinear relationships between local variables and influence sources as the problem horizon becomes longer.

4.2 Generalization beyond the training horizon

First, we look at the deployment errors for specific training horizons to show that it is possible to generalize
the influence approximations over long deployment horizons. Then, we analyze the effect of the training
horizon on the accuracy of the long-term approximations by looking at the deployment error and training
curves for different training horizons. Finally, we compare deployment, test and tail-test error for different
training horizons to identify which error serves as a reliable proxy for the deployment error.

learning model
scenario LSTM FullyConv Random htrain hdeploy

GC4 0.002 ± 0.002 0.027 ± 0.026 1.38 6 200
GC11 0.002 ± 0.001 0.025 ± 0.01 1.38 22 200
TG 3.68 ± 0.06 3.98 ± 0.07 8.32 30 500

Table 2: Mean and standard error of the deployment error over ten iterations.
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Table 2 shows the average deployment errors edeploy with corresponding standard errors for specific choices
of htrain, estimated over ten iterations of the entire experiment. The performance of the models in the three
scenarios is compared with the error of a random classifier. The choice of a suitable training horizon is
domain-dependent: in the grab a chair scenario with 4 agents, htrain = 6 training steps are sufficient to get
deployment error close to 0 while for 11 agents, the models require a longer training horizon htrain = 22.
Such choices have been driven by the idea that the training horizons need to be longer than the mixing
times, which corresponds to tmix = 3 and tmix = 10, respectively. The results show that a training horizon
slightly longer than the mixing time ensures cross entropy errors close to zero over a much longer deployment
horizon. In other words, few training time steps of experience after mixing are sufficient for the models to
generalize the deterministic stationary influence over 200 deployment time steps. For the traffic grid domain,
the results are less straightforward to interpret. In fact, the cross entropy error depends on the entropy of
the target influence sources distributions, which are unknown. However, for htrain = 30 the average errors
over 500 deployment time steps in Table 2 are significantly lower than the random classifier error. Also,
they are quite close to the errors computed over a much shorter test horizon and reported in Table 1b.
This leads to conclude that 30 training steps are sufficient to learn good long-term influence approximations.
In summary, for every scenario considered, we found a sufficient number of training steps htrain to learn
influence approximations for much longer deployment horizon hdeploy ensuring small deployment error.
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Figure 6: Top panels: deployment error over training horizons for the LTSM and FullyConv network. Bottom
panels: deployment, test and tail-test error for increasing training horizon for the LTSM model. The vertical
dashed line marks the mixing time of the system, if known.

Optimal training horizon. The top panels of Figure 6 display the deployment errors ek
deploy of the LSTM

and FullyConv models computed for increasing training horizons hk ∈ H for the three scenarios. Notably,
for GC4 and GC11 the deployment errors drop significantly when htrain ≥ 3 and htrain ≥ 10, respectively
(see top left and central panels). Clearly, this drop correlates with the mixing times of the systems that
correspond to tmix = 3 for GC4 and tmix = 10 for GC11. Essentially, both learning models exhibit improved
accuracy as soon as some experience of the steady state is recorded in the training trajectories. However, to
achieve error close to zero a few additional training time steps are needed, precisely htrain ≥ 6 for CG4 and
htrain ≥ 20 for CG11.

To better understand the impact of the mixing time on the model learning, we compare the deployment and
test errors progression over training epochs of the LSTM for different training horizons on the CG4 domain
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in Figure 7. Before the mixing time for htrain = 2, no experience of the steady state is stored in the training
set. Thus, all the predictions are solely based on the influence experienced in the first 2 time steps. As a
consequence, Figure 7(a) shows an overfitting effect: the test error improves over the training epochs and
tends quickly to zero as the approximations are very accurate for the first time steps; on the other hand, the
deployment error becomes larger for increasing training epochs. After mixing, for htrain = 4 the deployment
error has a significant decrease. Yet Figure 7(b) shows the same overfitting effect for more training epochs.
The reason is that the experience of stantionary influence in the training sequences is still very limited and
not sufficient for the learning model to generalize it over the deployment horizon. For htrain = 6, Figure 7(c)
shows that the deployment error quickly tends to zero together with the test error. Moreover, no significant
differences are detected for additional training time steps (see Figure 7(d) for htrain = 8). This motivates
the choice of optimal training horizon as h∗train = 6. Similarly for GC11, the training curves in Figure 8
Appendix A show that the deployment error starts to decrease for htrain = 12 > 10 = tmix to tend to zero
when the training horizon is around 22 time steps. More training time steps do not improve significantly the
predictions. Thus, we select as training horizon h∗train = 22. In the traffic grid domain, as illustrated in the
top right panel of Figure 6, the deployment error of both learning models decreases substantially between
10 and 20 time steps. The model performance improves for training horizon ranging from 20 and 30 time
steps. However, increasing further htrain does not lead to performance improvement. This is confirmed by
the training curves collected in Figure 9 in Appendix A. Although the mixing time of the traffic grid is
unknown, these results suggest that the system reaches a stationary influence between 10 and 30 time steps
and tmix should be chosen within those values.

Deployment error estimate. The bottom panels of Figure 6 depict the deployment, test and test-tail
errors of the LSTM model for different training horizons. The results from all three scenarios confirm
uniformly the theoretical intuition presented in Section 3.3. When htrain ≥ tmix, the test-tail error (green)
reflects the deployment error (blue) trend much better than the test error (orange). Specifically in the two
grab a chair scenarios, we observe that after the mixing time, marked by the dashed vertical line, the test-tail
error presents the same descending trend of the deployment error. Contrarily, the test error is always very
close to zero, indicating that the model learns very well the influence over the training horizon. For the
traffic domain, Figure 6 suggests that after approximately 15 time steps the system reaches the equilibrium.
Thus, the deployment error and the test-tail error become very close and decrease quickly to converge to the
test error. This analysis shows that the test-tail error provides a good estimate of the deployment error and
can therefore be used to assess the performance of the learning model using the training set and to choose
the optimal training horizon h∗train as the smallest horizon that yields a low test-tail error.

4.3 Key observations and limitations

The results of our empirical study show that, even in many complex real-life situations, the task of learning
influence can often be quite simple and computationally manageable. This was especially evident in the
case of microgrids, where a logistic regression model performs just as well as more advanced models. The
complexity of the influence learning problem is affected by the dimensionality and horizon of the forecasting
task. For high dimensional or long horizon problems, linear models or vanilla temporal convolutional networks
typically fail to provide accurate influence approximations. However, relatively small recurrent and fully
convolutional networks have proven to learn good approximations with efficient training times in all domains
and thus be the most suitable models for the influence learning task. Additionally, the experiments show
that suitable learning models can generalize the influence from a short horizon training trajectories well
beyond the training horizon. In general, a good choice for such training horizon depends mostly on the
mixing time of the system and it is independent of the learning model. In essence, an optimal training
horizon corresponds to the mixing time plus a few additional time steps to collect enough experience of the
stationary influence in the training set. The test-tail provides a better estimate of the deployment error and
therefore can be used to assess the quality of the learning models and select an optimal horizon.

The work presented has different limitations that warrant further exploration. First, we did not investigate
the scalability of the environments. Scalability of influence prediction is mostly dependent on the number of
influence sources that need to be predicted. As long as this is limited, the learning and use of influence can
scale very well, as for instance demonstrated by Suau et al. (2022a) that employ influence-based abstraction,
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Figure 7: Deployment and test errors for LSTM in GC4 scenario. The dashed line represent the baseline
accuracy of the random classifier.

in parallel, to a traffic control task with 100 intersections. Additionally, our approach relies on the manual
specification of local states and d-sets, focusing on the feasibility of influence prediction under these condi-
tions. As discussed in Section 2.5, there are trade-offs between the predictability of influence sources and
the size of the resulting local model. Future research could explore automated methods for identifying good
decomposition choices to optimize the overall performance. Furthermore, even though the IBA framework
can be naturally extended to continuous state variables, our study is limited to discrete state variables, and
does not address the more realistic challenge of learning continuous influence sources. Lastly, although the
chosen domains are inspired by realistic scenarios, they still represent simplifications of actual real-world
cases.

5 Conclusions

In this paper we investigated learning models and techniques for the influence learning task in realistic
scenarios. We run an extensive empirical investigation of the performance of different learning models in a
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variety of domains. We conclude that complex scenarios may still induce manageable influence learning task.
We showed that relatively small recurrent models can achieve the same performance levels as state-of-the
art fully convolutional neural networks. Moreover, we explored how to leverage learning models to build
local simulators for long horizons using short training trajectories. In particular, we showed that there exists
a training horizon which is sufficient to learn good influence approximations for long (or infinite) horizon
problems and how to use suitable error metrics to search for such horizon.
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A Additional results

Figure 8 and Figure 9 show the test and deployment errors of an LSTM learning model for the influence over
the different training horizons in GC11 and traffic grid domain, respectively. See experiments in Section 3.3.
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Figure 8: Deployment and test errors for LSTM in GC11 scenario. The dashed line represent the baseline
accuracy of the random classifier.
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Figure 9: Deployment and test errors for LSTM in traffic grid domain. The dashed line represent the baseline
accuracy of the random classifier.
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B Experimental domains

Microgrid In this case study, inspired by previous works (Nweye et al., 2023; Li et al., 2012; Vlachogiannis
& Hatziargyriou, 2004), we model realistic interactions in an energy district (a microgrid) as a multi-agent
problem. A hundred autonomous agents, referred to as prosumer units, manage the energy flexibility of
the microgrid. Each agent decides whether to discharge stored energy or trade based on local demand and
supply with the goal to minimize costs while ensuring energy balance and independence of the microgrid
from the external power grid. Solar and wind energy sources are utilized. The problem focuses on a single
unit within a lattice network, with neighboring actions influencing decisions. The task is to predict influence
sources based on historical actions. The local states vector is given by, slocal = (PRES , Pd, SOC), where
PRES is the renewable power production, Pd the stochastic power demand assumed normally distributed as
in Hong & Fan (2016), and SOC is the state of the charge of the battery. The PRES includes solar and wind
energy. The former is modeled using hourly solar radiation data in https://openweathermap.org/api/
solar-radiation and the photovoltaic power generation model introduced by Skoplaki & Palyvos (2009).
The wind power generation is calculated by transforming the kinetic energy of the wind speed modelled
via the Markov chain model in (Shamshad et al., 2005) and assuming linear relationships with the power
produced as in Kuznetsova et al. (2013). The energy produced by an agent may be used to meet the demand
Pd, or stored in a battery to increase the SOC. At any time step ∆t (one hour), the agents may decide
to discharge the stored energy to meet the demand Pd, or trade energy with neighboring units. When buy
and sell orders match, the power from the batteries is exchanged at a small cost/revenue for the buying and
selling agents respectively. After the local trading is cleared, to satisfy the power balance of single units,
every agent is forced to buy residual power an external power distribution gird. A cost Cext is assigned to

(a) Unit controlled by a single
agent in the microgrid. The lo-
cal variables observed by the agent
include the state of the charge,
the power produced by renewable
sources and the power demand.

(b) Multi-agent low-voltage grid. For each unit in the lattice, the state
of charge (in percentage) is represented by the gray scale. Directed edges
represent a power exchanged between prosumers (agents).

Figure 10: Microgrid.

23

https://openweathermap.org/api/solar-radiation
https://openweathermap.org/api/solar-radiation


Under review as submission to TMLR

the energy not supplied ENS = (Pd −Pdeployed) ·∆t, where Pdeployed corresponds to the sum of the renewable
power deployed and the power discharged from the battery. The cost Cext for buying from the external grid is
much higher than the fixed operational costs of internal trade Cint. A schematic representation of a MG unit
is depicted in Figure 10(a). The individual reward for each agent is modeled as the sum of the cost/income
for the internal trade (if any) and the negative costs of buying the energy not supplied from the external
grid (if any) r = ±Cint1trade − CextENS. Thus, the team of agents share the common objective to manage
local resources to minimize the electricity costs constrained to satisfying the energy balance, generation
limits and storage capacity. We take the perspective of a single unit in a lattice network highlighted in red
in Figure 10(b). The initial distribution of the battery is uniformly sampled at random and we consider
h = 40 hours as the horizon of the problem. We assume that all the other agents act by storing or trying to
buy power when the storage is scarce and discharging or trying to sell when power is abundant. Note that
besides the problem size can be arbitrarily large, the influence experienced by the local agent only directly
depends on the neighboring nodes in the network. Precisely, the only relevant information on the external
portion of the system that an agent needs is whether the neighboring north, west, south and east agents
will decide to sell or buy power. Besides the distributions of influence sources ssrc = (aN, aW, aS, aE) are
affected (indirectly) by all the agents in the microgrid, the history of local actions a provides a sufficient
statistics to predict the influence sources. The resulting problem consists of finding a function approximator
for I(at

N, at
W, at

S, at
E | a0, . . . , at−1).

Traffic grid In this implementation of a traffic network as described in Section 1 and Section 2, we simulate
the vehicle traffic in a 9 intersections grid, schematically represented in Figure 11. The sensors of each traffic
light capture the vehicles in the 5 × 5 local grid at each intersection. The local model is represented as a red
square for the selected protagonist agent. The other traffic lights employ hand-coded policies that prioritize
lanes with higher car volumes. At time t = 0 the grid is initially empty, i.e. the initial state encodes no
cars in the network. At any time step, a vehicle will enter the network with a certain probability. The
horizon is set to h = 100. The state of the environment is represented by binary state variables detecting
the presence/absence of a car in a point of the traffic grid. The goal of the agent is to minimize the total
number of vehicles waiting at the local intersection. That is, the reward corresponds to the negative number
of cars in the local model. To act optimally, the local agent needs to predict if there will be incoming cars
from the north end sn↓ and the east end se←. Moreover, the local dynamics is affected by traffic congestion
at intersection 2 and 4. In fact, traffic jams can prevent vehicles to move out of the local model from the
west and south ends. For this reason, the state variables for the outgoing ends and the actions of agents 2
and 4 are included in the set of influence sources. Thus, in addition to the factors encoding cars inflows, the

Figure 11: Traffic grid. The local model is delimited by the red square. The blue triangles represent the
vehicles and the green bars the traffic lights.
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influence sources encompass 4 variables for the west outflow sw←, 4 variables for the south outflow ss↓, the
action a2 and a4, that is ssrc = (sn↓, se←, sw←, ss↓, a2, a4). The local information necessary to predict the
influence sources includes the entire collection of local variables and actions. The influence that the agent
needs to predict is therefore I(st

n↓, st
e←, st

w←, st
s↓, at

2, at
4 | s0

local, a0
1, . . . , at−1

1 , st
local).

Figure 12: Grab a chair. Figure 13: System admin.

System admin We use a multiagent version of the System administrator domain from Poupart & Boutilier
(2004). A team of system administrators are responsible for the upkeep of a network of machines. Each node
has a probability of failing at any time step which increases when a neighboring machine in the network is
down. Each agent only observes the status of the machines in its proximity. Consequently it may decide
to intervene by trying to reboot the system of one of these nodes. With a certain probability, the process
will succeed, resulting in a working node at the next time step. When more than one agent decides to
reboot one machine, the process has full rate of success. The goal of the admins team is to secure the
highest number of working machines. Precisely, any agent receives a penalty for each faulty machine which
lies under its control. We consider a network of N = 20 machines organized in a ring configuration as
depicted in Figure 13. Each admin agent i is responsible for the maintenance of two neighboring nodes
whose states, denoted by xi, xi+1, can be fully observed. We take the perspective of a single administrator,
for instance agent 1 in Figure 13, whose local model includes only the states (faulty or working) of the
two neighboring machines slocal = (x1, x2) and its action a1. The problem horizon is set to h = 500 time
steps, and initially a random state is sampled for each machine. To act optimally, agent 1 needs to know if
agents 2 and 20 will decide to reboot one of the two machines over which they share the control. Also, it
needs to reason about the neighboring machine status x3, x20 as they may contribute to the higher chances
to turn down the machines in its local model. Then, according to the influence formalism introduced in
Section 2, the sources of influence correspond to ssrc = (x3, x20, a2, a20). The local information at the
disposal of the agent 1 to predict the sources of influence consists of the entire collection of local variables,
that is, (x1, x2, a1). Thus, the influence problem consists of finding an approximation for the distribution
I(xt

3, xt
20, at

2, at
20 | x0

1, x0
2, a0

1, . . . , at−1
1 , xt

1, xt
2).

Grab a chair In this simplified version of the SA problem, introduced by He et al. (2020), N agents
disposed in a ring fashion decide at every time step to grab the chair on their left or right side, as shown in
Figure 12. They obtain the chair and thus get the reward only if the neighboring agent has not targeted that
chair too. After taking an action, each agent only observes whether it managed to grab the chair, ignoring
the action of the neighboring agents. The local agent, numbered by 1 and depicted in red in Figure 12, has
no access to other information rather than its own actions and rewards which form the local model. The
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horizon is set to h = 200 and initially every agent chooses deterministically the chair on its right side. After
that, all the non-local agents act by copying the previous action of the following agent in counterclockwise
order. For the decision making problem of the local agent, the only information required to act optimally
consists of the decisions of its neighboring agent 2 and N as they directly influence the possibility to secure
a chair. Contrarily, the other agents only affect the local model indirectly. Therefore, the local agent needs
to predict the influence sources corresponding to the actions st

src = (at
2, at

N ) given the local information of
the d-set dt

set = (a0
1, . . . , at−1

1 ). Therefore the influence to predict corresponds to I(at
2, at

N |a0
1, . . . , at−1

1 ).

C Implementation details

Domain h #Agents Policies b0 #Influence Sources D-set dimension
Microgrid 40 100 ranges uniform 4 1

Traffic grid 100 9 priority zeros 12 9
System admin 500 20 mixed uniform 4 3

Table 3: Setting of the scenarios and features of the influence learning tasks.

Optimization
Domain Sample size Batch size #Epochs Alg Loss LR Decay Valid
Microgrid 500 100 15 Adam Entropy Linear Split90%

Traffic grid 500 100 20 Adam Entropy Linear Split90%
System admin 500 100 20 Adam Entropy Linear Split90%

Table 4: Optimization hyperparameters for the learning models.

Architecture
Models #Layers #Units Kernel #Params Activate Regularize

(size ≤100 )
LSTM 1 2 - 88 Tanh None
GRU 1 2 - 78 Tanh None
TCN 2 2,2 8 100 ReLU None

FullyConv 2 1 8 52 ReLU Dropout
(size 1000 )

LSTM 1 13 - 1056 Tanh None
GRU 1 14 - 954 Tanh None
TCN 4 6,6,6,6 8 1048 ReLU None

FullyConv 4 6,6 8 1084 ReLU Dropout
(size 15000 )

LSTM 1 56 - 14128 Tanh None
GRU 1 64 - 13904 Tanh None
TCN 5 20,20,20,20,20 8 13396 ReLU None

FullyConv 8 15,15,15,15 8 13246 ReLU Dropout
LogReg - - - 13104 None None

Table 5: Microgrid. Architectures of the learning models.
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Architecture
Models #Layers #Units Kernel #Params Activate Regularize

(size ≤200 )
LSTM 1 2 - 176 Tanh None
GRU 1 2 - 150 Tanh None
TCN 2 2,2 4 164 ReLU None

FullyConv 2 2 4 188 ReLU Dropout
(size 1000 )

LSTM 1 9 - 960 Tanh None
GRU 1 11 - 1014 Tanh None
TCN 4 4,4,4,4 10 976 ReLU None

FullyConv 4 4,4 10 1032 ReLU Dropout
(size 10000 )

LSTM 1 42 - 9936 Tanh None
GRU 1 49 - 10020 Tanh None -
TCN 4 16,16,16,16 10 9592 ReLU None

FullyConv 4 16,16 10 9816 ReLU Dropout
(size 50000 )

LSTM 1 104 - 50360 Tanh None
GRU 1 120 - 50064 Tanh None -
TCN 6 [30]x6 10 48624 ReLU None

FullyConv 6 [30,30,30] 10 49104 ReLU Dropout
(size 1M)
LogReg - - - 1093200 None None

Table 6: Traffic grid. Architectures of the learning models.

Architecture
Models #Layers #Units Kernel #Params Activate Regularize

(size ≤100 )
LSTM 1 2 - 80 Tanh None
GRU 1 2 - 66 Tanh None
TCN 2 2,2 4 68 ReLU None

FullyConv 2 2 4 80 ReLU Dropout
(size 1000 )

LSTM 1 12 - 920 Tanh None
GRU 1 14 - 918 Tanh None
TCN 4 6,6,6,6 8 1088 ReLU None

FullyConv 4 6,6 8 1136 ReLU Dropout
(size 10000 )

LSTM 1 48 - 10568 Tanh None
GRU 1 54 - 9998 Tanh None
TCN 6 [16] x6 8 10856 ReLU None

FullyConv 6 16,16,16 8 11016 ReLU Dropout
(size 3M)
LogReg - - - 2.9M None None

Table 7: System admin. Architectures of the learning models.
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Domain H hdeploy #Agents Policies b0

GC4 {2, . . . , 14} 200 4 copy Deterministic - right chair
GC11 {5, . . . , 30} 200 11 copy Deterministic - right chair
TG {10, . . . , 100} 500 9 priority Deterministic - zero vehicles

Table 8: Setting of the scenarios for long horizon tasks.

Domain Batch size #Epochs LR Init LR Final LR Decay Train size n Test size m

GC4 10 25 10−2 10−5 linear 500 100
GC11 10 30 10−2 10−5 linear 500 100
TG 10 20 10−2 10−5 linear 500 100

Table 9: Optimization choices for long horizon tasks.

Architecture
Domain Model #Layers #Units Kernel #Params Activate Regularize

GC4 LSTM 1 10 - 564 Tanh None
FullyConv 4 [6,6] 4 544 ReLU Dropout

GC11 LSTM 1 32 - 4612 Tanh None
FullyConv 8 [10,10,10,10] 6 4484 ReLU Dropout

TG LSTM 1 32 - 2136 Tanh None
FullyConv 4 [8,8] 6 1944 ReLU Dropout

Table 10: Architectures of the learning models for long horizon tasks.
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