
Under review as a conference paper at ICLR 2024

RETHINKING THE SMOOTHNESS OF NODE FEATURES
LEARNED BY GRAPH CONVOLUTIONAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

It has been proved that graph convolutional layers (GCLs) using ReLU or leaky
ReLU activation function smooth node features. Such a smoothing process is bene-
ficial for node classification using a few GCLs. However, deep graph convolutional
networks (GCNs) tend to learn homogeneous node feature vectors over the graph,
making nodes indistinguishable. In this paper, we develop a new understanding of
the smoothness of node features learned by GCNs by establishing a fine-grained
analysis of how ReLU or leaky ReLU affects the smoothness of its input vectors.
First, we establish a geometric relationship between the input and output of ReLU
or leaky ReLU. Then we show that if one ignores the magnitude of the feature
vectors, ReLU and leaky ReLU smooth their input feature vectors, echoing existing
theory. We further show that taking the magnitude of feature vectors into account,
ReLU and leaky ReLU can increase, decrease, or preserve the smoothness of their
input vectors. Our theory informs the design of a simple yet effective approach to
let GCN learn node features with a desired smoothness that improves its empirical
performance for graph node classification.

1 INTRODUCTION

Let G = (V,E) be an undirected graph where V = {vi}ni=1 is the set of nodes and E is the set of
edges. Let A ∈ Rn×n be the adjacency matrix of the graph G with Aij = 1(i,j)∈E , where 1 is the
indicator function. Also, let G be the (augmented) normalized adjacency matrix, given by

G := (D + I)−
1
2 (I +A)(D + I)−

1
2 = D̃− 1

2 ÃD̃− 1
2 , (1)

where I is the identity matrix, D is diagonal with Dii =
∑n

j=1 Aij , and Ã := A+I and D̃ := D+I
are the adjacency matrix and degree matrix augmented with self-loops, respectively. Starting from the
initial features H0 := [(h0

1)
⊤, . . . , (h0

n)
⊤]⊤ ∈ Rd×n with h0

i being the ith node feature, the graph
convolutional layer (GCL) [22] learns node representations using the following transformation:

H l = σ(W lH l−1G), (2)

where σ is the activation function, and W l ∈ Rd×d is learnable. GCL smooths feature vectors of the
neighboring nodes. The smoothness of node features has been argued to help node classification; see
e.g. [24; 33; 6]; resonating with the idea of classical semi-supervised learning approaches [43; 40].
Besides graph convolutional networks (GCNs) that stack GCLs, many other graph neural networks
(GNNs) have been developed based on different mechanisms, including spectral methods [4; 11],
spatial methods [14; 32], sampling methods [15; 38], and the attention mechanism [32]. Many other
GNN models can be found in recent surveys or monographs; see, e.g. [17; 2; 35; 41; 16].

Deep neural networks can have better predictive performance than shallow ones; an example is
convolutional neural networks [23; 18]. However, such a property does not hold for GCNs; it has
been observed that deep GCNs that consist of multiple GCLs perform significantly worse than
shallow models with only a few GCLs [6]. In particular, the feature vectors learned by deep GCNs
tend to be identical to each other over each connected component of the graph; this phenomenon is
referred to as over-smoothing; see e.g. [24; 27; 28; 5; 6; 34], which not only occurs for GCN but
also for many other GNNs, e.g. GraphSage [15] and MPNN [14]. Intuitively, each GCL smooths
neighboring node features, which benefits node classification [24; 33; 6]; however, simply stacking
these smoothing layers will inevitably make node features homogeneous. Algorithms have been
developed to alleviate the over-smoothing of GNNs, including decoupling prediction and message
passing [13], skip connection and batch normalization [20; 9; 7], graph sparsification [31], jumping

1

Under review as a conference paper at ICLR 2024

knowledge [36], scattering transform [26], PairNorm normalization layer [39], and controlling the
Dirichlet energy of node features [42]. Besides over-smoothing, the authors of [1] suggest that
over-squashing causes the underperformance of deep GCNs.

From a theoretical perspective, [28; 5] prove that deep GCNs using ReLU or leaky ReLU tend to
make features indistinguishable. In particular, [28] shows that the distance of node features to the
eigenspace M – corresponding to eigenvalue 1 of the matrix G in equation (1) – goes to zero when
the depth of GCN with ReLU activation goes to infinity. Moreover, [5] proves that the Dirichlet
energy of the node features goes to zero when the depth of GCN with ReLU or leaky ReLU activation
goes to infinity. A crucial step in the proofs in [28; 5] is that ReLU and leaky ReLU reduces the
distance of feature vectors to M and the Dirichlet energy of feature vectors. However, [5] points
out that over-smoothing – measured by the distance of node features to the eigenspace M or the
Dirichlet energy – is a misnomer, and the real smoothness of a graph signal should be characterized
by a normalized smoothness, e.g., normalizing the Dirichlet energy by the magnitude of the features.
Nevertheless, analyzing the normalized smoothness of node features learned by GCN with ReLU or
leaky ReLU activation remains an open problem. Moreover, it is interesting to ask if analyzing the
normalized smoothness can bring in any new understanding of features learned by GCN.

1.1 OUR CONTRIBUTION

This paper aims to reexamine how each GCL with ReLU or leaky ReLU activation function smooths
node features using both normalized and unnormalized smoothness notions, i.e. the smoothness
of feature vectors both with and without considering their magnitude. In particular, we focus on
studying how ReLU and leaky ReLU in GCNs affect the smoothness of node features. Based on our
theoretical study, we also design an effective algorithm that can control the smoothness of learned
node features in GCNs. We summarize our main contributions – especially theoretical results to ease
the reading of our paper – as follows:
• We prove that the projection of the output of ReLU/leaky ReLU onto the eigenspace M⊥ –

corresponding to eigenvalue 1 of matrix G in equation (1) – lies in a high-dimensional sphere,
whose center only depends on the input but the radius depends on both input and output of
ReLU/leaky ReLU. This geometric characterization not only implies theories in [28; 5] but also
informs that adjusting the projection of input onto the eigenspace M can effectively change the
smoothness of the output. See Section 3 for details.

• We show that both ReLU and leaky ReLU reduce the distance of node features to the eigenspace
M, i.e. ReLU and leaky ReLU smoothness their input without considering the magnitude of feature
vectors. In contrast, we show that when considering the magnitude of feature vectors, ReLU and
leaky ReLU can increase, decrease, or preserve the smoothness of each dimension of their input
vectors; see Sections 3 and 4.

• Inspired by our established geometric relationship between the input and output of ReLU or
leaky ReLU, we study how adjusting the projection of input onto the eigenspace M affects the
smoothness of the output. We show that the distance of the output to the eigenspace M is always
no greater than that of the original input – no matter how we adjust the input by changing its
projection onto M. In contrast, adjusting the projection of input onto M can effectively change
the normalized smoothness of output to any desired value. The details can be found in Section 4.

• Based on our theory, we propose a learnable smoothness control term (SCT) to let GCN and
related networks adjust the projection of input onto the eigenspace M automatically. The resulting
feature vectors learned by GCNs have a desired smoothness that can empirically improve the
node classification accuracy. We comprehensively validate the benefits of our proposed SCT in
improving node classification – for both homophilic and heterophilic graphs – using a few of the
most representative GCN-style architectures. See Sections 5 and 6 for more details.

As far as we know, our work is the first thorough study of how ReLU and leaky ReLU affect the
smoothness of node features both with and without considering their magnitude. Moreover, our
theory informs a new practical algorithm to improve GCN for graph node classification.

1.2 ADDITIONAL RELATED WORKS

Controlling the smoothness of node features to improve the performance of GCNs is another line
of related works. For instance, [39] designs a normalization layer to prevent node features from
becoming too similar to each other, and the authors of [42] constrain the Dirichlet energy to control
the smoothness of node features without a complete consideration of the activation function. While
there has been effort on understanding and alleviating the over-smoothing of GCNs and controlling the

2

Under review as a conference paper at ICLR 2024

smoothness of node features, there is a shortage of theoretical examination of how activation functions
affect the smoothness of node features, specifically accounting for the magnitude of features.

1.3 NOTATION

We denote scalars by lower- or upper-case letters and vectors and matrices by lower- and upper-case
boldface letters, respectively. We denote the ℓ2-norm of a vector u as ∥u∥. For vectors u and v, we
use ⟨u,v⟩, u⊙ v, and u⊗ v to denote their inner, Hadamard, and Kronecker product, respectively;
see Appendix A for details. For a matrix A, we denote its (i, j)th entry, transpose, and inverse as
Aij , A⊤, and A−1, respectively. We denote the trace of A ∈ Rn×n as Trace(A) =

∑n
i=1 Aii. For

two matrices A and B, we denote the Frobenius inner product as ⟨A,B⟩F := Trace(AB⊤) and
the Frobenius norm of A as ∥A∥F :=

√
⟨A,A⟩.

1.4 ORGANIZATION

We provide preliminaries and review existing results in Section 2. In Section 3, we establish a
geometric characterization of how ReLU and leaky ReLU affect the smoothness of their input vectors.
We study the smoothness of each dimension of node features and take their magnitude into account
in Section 4. Our proposed SCT is presented in Section 5. We comprehensively verify the efficacy
of the proposed SCT for improving node classification using three most representative GCN-style
models in Section 6. Technical proofs and more experimental results are provided in the appendix.

2 PRELIMINARIES AND EXISTING RESULTS

From the spectral graph theory [10], we know that the eigenvalues of G in equation (1) can be sorted
in descending order 1 = λ1 = . . . = λm > λm+1 ≥ . . . ≥ λn > −1, where m is the number of
connected components of the graph G, i.e. we can decompose the vertex set V = {vk}nk=1 into m
connected components V1, . . . , Vm. Let ui = (1{vk∈Vi})1≤k≤n be the indicator vector of the ith

component Vi, i.e. the kth coordinate of ui is one if the kth node vk lies in the connected component
Vi; otherwise, is zero. Moreover, let ei be the eigenvector associated with λi, then {ei}ni=1 forms an
orthonormal basis of Rn. Notice that {ei}mi=1 spans the eigenspace M – corresponding to eigenvalue
1 of matrix G, and {ei}ni=m+1 spans the orthogonal complement of M, denoted by M⊥.

In [28], the authors connect the indicator vectors uis with the space M. In particular, we have
Proposition 2.1 ([28]). All eigenvalues of G lie in the interval (−1, 1]. Furthermore, the nonnegative
vectors {D̃ 1

2ui/∥D̃
1
2ui∥}1≤i≤m form an orthonormal basis of M.

Notice that we have the decomposition H = HM +HM⊥ for any matrix H := [h1,h2, . . . ,hn] ∈
Rd×n with HM =

∑m
i=1 Heie

⊤
i and HM⊥ =

∑n
i=m+1 Heie

⊤
i s.t. ⟨HM,HM⊥⟩F =

Trace(
∑m

i=1 Heie
⊤
i (
∑n

j=m+1 Heje
⊤
j)

⊤) = 0, which implies ∥H∥2F = ∥HM∥2F + ∥HM⊥∥2F .

2.1 EXISTING SMOOTHNESS NOTIONS OF NODE FEATURES

Distance to the eigenspace M. The paper [28] studies the smoothness of node features H :=
[h1, . . . ,hn] ∈ Rd×n using their distance to the eigenspace M as a smoothness notion.
Definition 2.2 ([28]). Let Rd ⊗M be the subspace of Rd×n consisting of the sum

∑m
i=1 wi ⊗ ei

where wi ∈ Rd and {ei}mi=1 is an orthonormal basis of the eigenspace M. Then we define ∥H∥M⊥

– the distance of node features H to the eigenspace M – as follows:

∥H∥M⊥ := inf
Y ∈Rd⊗M

∥H − Y ∥F =
∥∥∥H −

m∑
i=1

Heie
⊤
i

∥∥∥
F
.

With the decomposition H = HM +HM⊥ , ∥ · ∥M⊥ can be related to ∥ · ∥F as follows:
∥H∥M⊥ = ∥H −HM∥F = ∥HM⊥∥F . (3)

Dirichlet energy. [5] studies the smoothness of node features using Dirichlet energy, defined as:

Definition 2.3 ([5]). Let ∆̃ = I −G be the (augmented) normalized Laplacian, then the Dirichlet
energy ∥H∥E of node features H is defined by ∥H∥2E := Trace(H∆̃H⊤).

Normalized Dirichlet energy. [5] points out that the smoothness of node features H should be
measured by the normalized Dirichlet energy Trace(H∆̃H⊤)/∥H∥2F . This normalized measure-
ment is essential when data comes from various sources with diverse measurement units or scales.
By normalizing the measurement, we can mitigate biases resulting from these different scales.

3

Under review as a conference paper at ICLR 2024

2.2 TWO EXISTING THEORIES OF OVER-SMOOTHING

Let λ = max{|λi| | λi < 1} be the second largest magnitude of G’s eigenvalues, and sl be the
largest singular value of W l – the weight matrix of the lth GCL. The authors of [28] show that
∥H l∥M⊥ ≤ slλ∥H l−1∥M⊥ under equation (2) when σ is ReLU. Therefore, ∥H l∥M⊥ → 0 as
l → ∞ provided slλ < 1 for each l, indicating the node feature converges to the eigenspace M and
results in over-smoothing. A crucial step in the analysis in [28] is that ∥σ(Z)∥M⊥ ≤ ∥Z∥M⊥ for
any matrix Z when σ is ReLU, i.e. ReLU reduces the distance to eigenspace M. The authors of [28]
have mentioned that it is hard to extend the above result to even leaky ReLU.

Instead of considering ∥H∥M⊥ , the paper [5] shows that ∥H l∥E ≤ slλ∥H l−1∥E under equation (2)
when σ is ReLU or leaky ReLU. Hence, ∥H l∥E → 0 as l → ∞, implying over-smoothing of GCNs.
Note that ∥H∥M⊥ = 0 or ∥H l∥E = 0 means the feature vectors are homogeneous across all graph
nodes. In particular, the proof in [5] applies to GCN with both ReLU and leaky ReLU activation
functions by establishing the inequality that ∥σ(Z)∥E ≤ ∥Z∥E for any matrix Z.

3 EFFECTS OF ACTIVATION FUNCTIONS: A GEOMETRIC CHARACTERIZATION
In this section, we present a geometric relationship between the input and output vectors of ReLU or
leaky ReLU. We use ∥H∥M⊥ as the smoothness notion for all subsequent analyses since we observe
that ∥H∥M⊥ and ∥H∥E are equivalent as seminorms:

Proposition 3.1. ∥H∥M⊥ and ∥H∥E are two equivalent seminorms, i.e. there exist two constants
α, β > 0 s.t. α∥H∥M⊥ ≤ ∥H∥E ≤ β∥H∥M⊥ for any H ∈ Rd×n.

ReLU. Let σ(x) = max{x, 0} be the ReLU activation function. The first main result of this paper is
that there is a high-dimensional sphere underlying the input and output of ReLU:

Proposition 3.2 (ReLU). For any Z = ZM + ZM⊥ ∈ Rd×n, let H = σ(Z) = HM + HM⊥ .
Then HM⊥ lies on the high-dimensional sphere centered at ZM⊥/2 with radius

r :=
(
∥ZM⊥/2∥2F − ⟨HM,HM −ZM⟩F

)1/2
.

In particular, HM⊥ lies inside the ball centered at ZM⊥/2 with radius ∥ZM⊥/2∥F and hence we
have ∥H∥M⊥ ≤ ∥Z∥M⊥ .

Leaky ReLU. Now we consider leaky ReLU σa(x) = max{x, ax}, where 0 < a < 1 is a positive
scalar. Similar to ReLU, we have the following result for leaky ReLU:

Proposition 3.3 (Leaky ReLU). For any Z = ZM + ZM⊥ ∈ Rd×n, let H = σa(Z) = HM +
HM⊥ . Then HM⊥ lies on the high-dimensional sphere centered at (1 + a)ZM⊥/2 with radius

ra :=
(
∥(1− a)ZM⊥/2∥2F − ⟨HM −ZM,HM − aZM⟩F

)1/2
.

In particular, HM⊥ lies inside the ball centered at (1 + a)ZM⊥/2 with radius ∥(1− a)ZM⊥/2∥F
and hence we see that a∥Z∥M⊥ ≤ ∥H∥M⊥ ≤ ∥Z∥M⊥ .

3.1 IMPLICATIONS OF THE ABOVE GEOMETRIC CHARACTERIZATIONS

Propositions 3.2 and 3.3 imply that the precise location of HM⊥ (or the smoothness ∥HM⊥∥F =
∥H∥M⊥) depends on the center and the radius, r or ra, of the spheres described in the respective
propositions. Given a fixed ZM⊥ , the center of the spheres remains unchanged, and their radii r and
ra are only affected by changes in ZM. This observation motivates us to investigate how changes in
ZM impact ∥H∥M⊥ , i.e. the smoothness of node features.

However, from Propositions 3.2 and 3.3, we see that both ReLU and leaky ReLU reduce the distance
of node features to the eigenspace M, i.e. ∥H∥M⊥ ≤ ∥Z∥M⊥ . Moreover, the above inequality is
independent of ZM; consider two node features Z,Z ′ ∈ Rd×n s.t. ZM⊥ = Z ′

M⊥ but ZM ̸= Z ′
M.

Let H,H ′ be the output of Z,Z ′ via ReLU or leaky ReLU, respectively. Then we have the
inequalities ∥H∥M⊥ ≤ ∥Z∥M⊥ and ∥H ′∥M⊥ ≤ ∥Z ′∥M⊥ . Since ZM⊥ = Z ′

M⊥ implies that
∥Z∥M⊥ = ∥Z ′∥M⊥ , we deduce that ∥H ′∥M⊥ ≤ ∥Z∥M⊥ . In other words, when ZM⊥ = Z ′

M⊥ is
fixed, changing ZM to Z ′

M can change the smoothness of the output features but can not change
the fact that ReLU and leaky ReLU smooth node features; we demonstrate this result in Fig. 1a) in
Section 4.1. In contrast, if one considers the normalized smoothness, we find that adjusting ZM
can result in a less smooth output; we will discuss this in Section 4.1.

4

Under review as a conference paper at ICLR 2024

4 HOW ADJUSTING ZM AFFECTS THE SMOOTHNESS OF THE OUTPUT

Throughout this section, we let Z and H be the input and output of ReLU or leaky ReLU. The
smoothness notions based on the feature vectors’ distance to the eigenspace M or their Dirichlet
energy do not account for the magnitude of each dimension of the learned node features; the authors of
[5] point out that analyzing the normalized smoothness of feature vectors Z, ∥Z∥E/∥Z∥F , remains
an open problem. Furthermore, these two smoothness notions aggregate the smoothness of node
features across all feature dimensions; when the magnitude of some dimensions is much larger than
others, the smoothness will be dominated by these dimensions.

Motivated by the discussion in Section 3.1, we study the disparate effects of adjusting ZM on the
normalized and unnormalized smoothness in this section. For the sake of simplicity, we assume
the graph is connected (m = 1); all the following results can be extended to the graph with multiple
connected components easily. Due to the equivalence between seminorms ∥ · ∥M and ∥ · ∥E , we
introduce the following definition of the dimension-wise normalized smoothness of node features.

Definition 4.1. Let Z ∈ Rd×n be the features over n nodes with z(i) ∈ Rn (i = 1, . . . , d) being
the ith row vector of Z, i.e. the ith dimension of the features over all nodes. Then we define the
normalized smoothness of z(i) as s(z(i)) := ∥z(i)

M∥/∥z(i)∥ with z
(i)
M being the projection of z(i) onto

the eigenspace M, where we set s(z(i)) = 1 when z(i) = 0.

The graph is connected (m = 1) implies that z(i)
M = ⟨z(i), e1⟩e1 and ∥z(i)

M∥ = |⟨z(i), e1⟩|, which
will be used in the following analysis. Without ambiguity, we drop the index and simply write z for
z(i) and e for e1 – the only eigenvector of G associated with the eigenvalue 1. Moreover, we have

s(z) =
∥zM∥
∥z∥ =

|⟨z, e⟩|
∥z∥ =

|⟨z, e⟩|
∥z∥ · ∥e∥ ⇒ 0 ≤ s(z) ≤ 1, (4)

It is evident that the larger the value s(z) is, the smoother the node feature z is1. In fact, we have

s(z)2 +
(∥z∥M⊥

∥z∥

)2

=
∥zM∥2

∥z∥2 +
∥zM⊥∥2

∥z∥2 = 1,

where we see ∥z∥M⊥/∥z∥ decreases as s(z) increases.

To discuss how the smoothness s(h) = s(σ(z)) or s(σa(z)) can be adjusted by changing zM, we
consider the function z(α) = z − αe where z(0) = z. It is clear that

z(α)M⊥ = zM⊥ and z(α)M = zM − αe,

where we see that α only alters zM while preserves zM⊥ . Moreover, it is evident that

s(z(α)) =

√
1− ∥z(α)M⊥∥2

∥z(α)∥2 =

√
1− ∥zM⊥∥2

∥z(α)∥2 .

It follows that s(z(α)) = 1 if and only if zM⊥ = 0 (include the case z = 0), showing that when
zM⊥ = 0, the vector z is the smoothest one.

4.1 THE DISPARATE EFFECTS OF α ON ∥ · ∥M⊥ AND s(·): EMPIRICAL RESULTS

1.0 0.5 0.0 0.5 1.0
Parameter ()

0

5

10

Sm
oo

th
ne

ss
 (s

)

	z	
	(z)	
	a(z)	

1.0 0.5 0.0 0.5 1.0 1.5 2.0
Parameter ()

0.0

0.5

1.0

Sm
oo

th
ne

ss
 (s

)

s(z)
s((z))
s(a(z))

a) Smoothness b) Normalized smoothness
Figure 1: Contrasting the effects of varying parame-
ter α on the smoothness and normalized smoothness
of output features σ(zα) and σa(zα). The disconti-
nuity of s(σ(zα)) in b) comes from the definition of
normalized smoothness. Note that s(z) = 1 if z = 0,
and σ(zα) can become 0 when α is large enough.

Let us conduct a simple empirical study to
investigate possible values that the (unnormalized)
smoothness ∥σ(z(α))∥M⊥ , ∥σa(z(α))∥M⊥

and the normalized smoothness s(σ(z(α))),
s(σa(z(α))) can take when α varies. We denote
zα := z(α) = z − αe. We consider a connected
synthetic graph with 100 nodes, and each node
is assigned a random degree between 2 to 10.
Then we assign an initial node feature z ∈ R100,
sampled uniformly on the interval [−1.5, 1.5],
to the graph with each node feature being a
scalar. Also, we compute e by the formula
e = D̃

1
2u/∥D̃ 1

2u∥ from Proposition 2.1 where u ∈ R100 is the vector whose entries are all ones

1Here, z ∈ Rn is a vector whose ith entry is the 1D feature associated with node i.

5

Under review as a conference paper at ICLR 2024

and D̃ is the (augmented) degree matrix of the graph. We examine two different smoothness
notions for the input node features z and the output node features σ(zα) and σa(zα), where the
smoothness is measured for various values of the smoothness control parameter α ∈ [−1.5, 1.5]. In
Fig. 1a), we study the smoothness measured by ∥ · ∥M⊥ ; we see that ∥σ(zα)∥M⊥ and ∥σa(zα)∥M⊥

are always no greater than ∥z∥M⊥ . This coincides with the discussion in Section 3.1; adjusting
the projection of z onto the eigenspace M can not change the fact that ∥σ(zα)∥M⊥ ≤ ∥z∥M⊥

and ∥σa(zα)∥M⊥ ≤ ∥z∥M⊥ . Nevertheless, an interesting result is that altering the eigenspace
projection can adjust the smoothness of the output: notice that altering the eigenspace projection
does not change its distance to M, i.e. the smoothness of the input is unchanged, but the smoothness
of the output after activation function can be changed.

In contrast, when we study the normalized smoothness measured by s(·) in Fig. 1b), we find that
s(σ(z(α))) and s(σa(z(α))) can be adjusted by α to the values smaller than s(z). More precisely,
we see that by adjusting α, s(σ(z(α))) and s(σa(z(α))) can achieve most of the values in [0, 1]. In
other words, both smoother and less smooth features can be obtained.

4.2 THEORETICAL RESULTS ON THE SMOOTH EFFECTS OF RELU AND LEAKY RELU
In this subsection, we establish theoretical understandings of the above empirical findings on
the achievable smoothness of σ(z(α)) and σa(z(α)) by adjusting α – shown in Fig. 1. Notice
that if zM⊥ = 0, the inequalities presented in Proposition 3.2 and Proposition 3.3 indicate that
∥σ(z(α))∥M⊥ and ∥σa(z(α))∥M⊥ vanish. So we have s(σ(z(α))) = 1 for any α when zM⊥ = 0.
Then we may assume zM⊥ ̸= 0 for the following study.
Proposition 4.2 (ReLU). Suppose zM⊥ ̸= 0. Let h(α) = σ(z(α)) with σ being ReLU, then

min
α

s(h(α)) =

√∑
xi=maxx di∑n

j=1 dj
and max

α
s(h(α)) = 1,

where x := D̃− 1
2 z, maxx = max1≤i≤n xi, and D̃ is the augmented degree matrix with diagonals

d1, d2, . . . , dn. In particular, the normalized smoothness s(h(α)) is monotone increasing as α

decreases whenever α < ∥D̃ 1
2un∥maxx and it has range [minα s(h(α)), 1].

Proposition 4.3 (Leaky ReLU). Suppose zM⊥ ̸= 0. Let h(α) = σa(z(α)) with σa being leaky
ReLU, then 1) minα s(h(α)) = 0, and 2) supα s(h(α)) = 1. In particular, s(h(α)) has range [0, 1).
Remark 4.4. Proposition 4.3 also holds for other variants of ReLU, like ELU2 and SELU3. Please
see Appendix C for details.
As a brief summary of Propositions 3.2, 3.3, 4.2, and 4.3, we provide the following Corollary, which
qualitatively explains the empirical results in Figure 1.
Corollary 4.5. Suppose zM⊥ ̸= 0. Let h(α) = σ(z(α)) or σa(z(α)) with σ being ReLU and σa

being leaky ReLU. Then we have ∥z∥M⊥ ≥ ∥h(α)∥M⊥ for any α ∈ R; however, s(h(α)) is not
always smaller than s(z). In particular, s(h(α)) can be smaller than, larger than, or equal to s(z)
for different values of α.

Propositions 4.2 and 4.3, as well as Corollary 4.5, provide a theoretical basis for the empirical results
presented in Fig. 1. Moreover, our results indicate that for any given vector z, altering its projection
zM can effectively change both the unnormalized and the normalized smoothness of the output
vector h = σ(z) or σa(z). In particular, the normalized smoothness of the output vector h = σ(z)
or σa(z) can be adjusted to any value in the range shown in Proposition 4.2 and 4.3. This provides
us with insights to design algorithms to control the smoothness of feature vectors to improve the
performance of GCN and we will discuss this in the next section.

5 CONTROLLING SMOOTHNESS OF NODE FEATURES

For a given graph node classification task, we usually do not know how smooth features are ideal,
which has been empirically confirmed in [28] by studying a smoothness-related quantity. Nevertheless,
our established theory indicates that both the normalized and unnormalized smoothness of the output
of each GCL can be adjusted by altering the input’s projection onto the eigenspace M. Motivated by
our theory, we propose the following learnable smoothness control term to modulate the smoothness
of each dimension of the learned node feature vectors:

2The ELU function is defined by f(x) = max(x, 0) + min(0, a · (ex − 1)) where a > 0.
3The SELU function is defined by f(x) = c(max(x, 0) + min(0, a · (ex − 1))) where a, c > 0.

6

Under review as a conference paper at ICLR 2024

Bl
α =

m∑
i=1

αl
ie

⊤
i , (5)

where l is the layer index, {ei}mi=1 is the orthonormal basis of the eigenspace M, and αl := {αl
i}mi=1

is a collection of learnable vectors with αl
i ∈ Rd being approximated by a multi-layer perceptron

(MLP). The detailed configuration of αl
i will be specified in each experiment later. One can see that

Bl
α always lies in Rd ⊗M. We integrate SCT into GCL, resulting in

H l = σ(W lH l−1G+Bl
α). (6)

We call the corresponding model GCN with a smoothness control term (GCN-SCT). Again, the idea
is that we change the component in eigenspace to control the smoothness of node features. In
particular, each dimension of the output H l can be smoother, less smooth, or the same as that of
H l−1 in terms of normalized smoothness, though H l gets closer to the eigenspace M than H l−1.

Next, we provide some details about the proposed SCT. To design SCT, we introduce a learnable
matrix Al ∈ Rd×m for layer l, whose columns are αl

i, where m is the dimension of the eigenspace
M and d is the dimension of the features. We observed in our experiments that the SCT performs
best when informed by degree pooling over the subcomponents of the graph. The matrix of the
orthogonal basis vectors, denoted by Q := [e1, . . . , em] ∈ Rn×m, is used to perform pooling H lQ
for input H l. In particular, we let Al = W ⊙ (H lQ), where W ∈ Rd×m is learnable and performs
pooling over H l using the eigenvectors Q. The second architecture uses a residual connection with
hyperparameter βl = log(θ/l + 1), following GCNII [7], and learnable matrices W0,W1 ∈ Rd×d

and the softmax function ϕ. Resulting in Al = ϕ(H lQ)⊙ (βlW0H
0Q+ (1− βl)W1H

lQ). In
Section 6, we use the first architecture for GCN-SCT because GCN uses only H l information at each
layer. We use the second architecture for GCNII-SCT and EGNN-SCT which use both H0 and H l

information at each layer.

5.1 INTEGRATING SCT INTO OTHER GCN-STYLE MODELS

In this subsection, we present other usages of the proposed SCT. Due to the page limit, we carefully
select two other most representative usages of the proposed SCT. The first example is GCNII [7],
GCNII extends GCN to express an arbitrary polynomial filter rather than the Laplacian polynomial
filter and has been shown to achieve state-of-the-art performance among GCN-style models on
various benchmark tasks [7; 25], and we aim to show that the proposed SCT can even benefits
node classification for the GCN-style model that achieves state-of-the-art performance on many
node classification tasks. The second example is energetic GNN (EGNN) [42], which controls the
smoothness of node features by constraining the lower and upper bounds of the Dirichlet energy of
node features and assuming the activation function is linear. In this case, we aim to show that our
established theoretical understanding of the role of activation functions and the proposed SCT can
boost the performance of EGNN with consideration of nonlinear activation functions.

GCNII: Each GCNII layer uses a residual connection to the initial layer H0 and given as follows:

H l = σ
(
((1− αl)H

l−1G+ αlH
0)((1− βl)I + βlW

l)
)
, where αl, βl ∈ (0, 1) are learnable.

We integrate SCT Bl
α into GCNII, resulting in the following GCNII-SCT layers:

H l = σ
(
((1− αl)H

l−1G+ αlH
0)((1− βl)I + βlW

l) +Bl
α

)
,

where the residual connection and identity mapping are consistent with GCNII.

EGNN: Each EGNN layer can be written as follows:

H l = σ
(
W l(c1H

0 + c2H
l−1 + (1− cmin)H

l−1G)
)
, (7)

where c1, c2 are learnable weights that satisfy c1 + c2 = cmin with cmin being a hyperparameter. To
constrain Dirichlet energy, EGNN initializes trainable weights W l as a diagonal matrix with explicit
singular values and regularizes them to keep the orthogonality during the model training. Ignoring
the activation function σ, H l – node features at layer l of EGNN satisfies:

cmin∥H0∥E ≤ ∥H l∥E ≤ cmax∥H0∥E ,

where cmax is the square of the maximal singular value of the initialization of W 1.

Similarly, we modify EGNN to result in the following EGNN-SCT layer:

H l = σ
(
W l((1− cmin)H

l−1G+ c1H
0 + c2H

l−1) +Bl
α

)
,

where everything remains the same as EGNN except that we add our proposed SCT Bl
α.

7

Under review as a conference paper at ICLR 2024

6 EXPERIMENTS
In this section, we comprehensively demonstrate the effects of SCT – in the three most representative
GCN-style models discussed in Section 5 – using various node classification benchmarks. The
purpose of all experiments in this section is to verify the efficacy of the proposed SCT – motivated
by our theoretical results – for GCN-style models. Exploring the effects of SCT on non-GCN-style
models and pushing for state-of-the-art accuracy is an interesting future direction. We consider the
citation datasets (Cora, Citeseer, PubMed, Coauthor-Physics, Ogbn-arxiv), web knowledge-base
datasets (Cornell, Texas, Wisconsin), and Wikipedia network datasets (Chameleon, Squirrel). We
provide additional dataset details in Appendix D.1. We implement baseline GCN and GCNII (without
weight sharing) using PyG [12]. Baseline EGNN is implemented using the public code4.

6.1 NODE FEATURE TRAJECTORY

a) α = −0.25 b) α = 0.0 c) α = 1.0

Figure 2: Node feature trajectories, with colorized
magnitude, for varying smoothness control param-
eter α. For classical GCN b), the node features
converge to the eigenspace M (red dashed line).

We visualize the trajectory of the node features,
following [28], for a graph with two nodes con-
nected by an edge and 1D node feature. In this
case, equation (6) becomes h1 = σ(wh0G + bα),
where w = 1.2 in our experiment, h0,h1, bα ∈
R2, and G ∈ R2×2. We use a matrix G =
[0.592, 0.194; 0.194, 0.908] whose largest eigenvalue
is 1. Twenty initial node feature vectors h0 are sam-
pled evenly in the domain [−1, 1]× [−1, 1]. Fig. 2 shows the trajectories in relation to the eigenspace
M (red dashed line). In Fig 2a), one can see that some trajectories do not directly converge to M. In
Fig. 2b) when α = 0.0, GCL is recovered and all trajectories converge to M. In Fig. 2c), large values
of α enable the features to significantly deviate from M initially. We observe that the parameter α
can effectively change the trajectory of features.

Layers 2 4 16 32
GCN/GCN-SCT 81.1/82.9 80.4/82.8 64.9/71.4 60.3/67.2

Cora GCNII/GCNII-SCT 82.2/83.8 82.6/84.3 84.6/84.8 85.4/85.5
EGNN/EGNN-SCT 83.2/84.1 84.2/84.5 85.4/83.3 85.3/82.0

GCN/GCN-SCT 70.3/69.9 67.6/67.7 18.3/55.4 25.0/51.0
Citeseer GCNII/GCNII-SCT 68.2/72.8 68.9/72.8 72.9/73.8 73.4/73.4

EGNN/EGNN-SCT 72.0/73.1 71.9/72.0 72.4/72.6 72.3/72.9
GCN/GCN-SCT 79.0/79.8 76.5/78.4 40.9/76.1 22.4/77.0

PubMed GCNII/GCNII-SCT 78.2/79.7 78.8/80.1 80.2/80.7 79.8/80.7
EGNN/EGNN-SCT 79.2/79.8 79.5/80.4 80.1/80.3 80.0/80.4

GCN/GCN-SCT 92.4/92.6 ± 1.6 92.1/92.5 ± 5.9 13.5/50.9 ± 15.0 13.1/43.6 ± 16.0
Coauthor-Physics GCNII/GCNII-SCT 92.5/94.4 ± 0.4 92.9/94.2 ± 0.3 92.9/93.7 ± 0.7 92.9/94.1 ± 0.3

EGNN/EGNN-SCT 92.6/93.9 ± 0.7 92.9/94.1 ± 0.4 93.1/94.0 ± 0.7 93.3/93.8 ± 1.3
GCN/GCN-SCT 70.4/72.1 ± 0.3 71.7/72.7 ± 0.3 70.6/72.3 ± 0.2 68.5/72.3 ± 0.3

Ogbn-arxiv GCNII/GCNII-SCT 70.1/72.0 ± 0.3 71.4/72.2 ± 0.2 71.5/72.4 ± 0.3 70.5/72.1 ± 0.3
EGNN/EGNN-SCT 68.4/68.5 ± 0.6 71.1/71.3 ± 0.5 72.7/72.8 ± 0.5 72.7/72.3 ± 0.5

Table 1: Accuracy for models of varying depth. We notice that vanishing gradients occur but not over-smoothing
for the accuracy drop using GCN-SCT with 16 or 32 layers. For Cora, Citeseer, and PubMed, we use a fixed
split with a single forward pass following [7]; only test accuracy is available in these experiments. For Coauthor-
Physics and Ogbn-arxiv, we use the splits from [42]; both test accuracy and standard deviation are reported. The
baseline results are copied from [7; 42], in which the standard deviation was not reported. (Unit:%)

6.2 BASELINE COMPARISONS FOR NODE CLASSIFICATION

Citation networks. We compare the three representative models discussed in Section 5, of different
depths, with and without SCT in Table 1. This task uses the citation datasets with fixed splits from [37]
for Cora, Citeseer, and Pubmed and 10 fixed cross-validation splits from [42] for Coauthor-Physics
and Ogbn-arxiv; a detailed description of these datasets and splits are provided in Appendix D.
We report the cross-validation mean and standard deviation for Coauthor-Physics and Ogbn-arxiv.
Following [7], we minimize the negative log-likelihood loss using the Adam optimizer [21], with
1500 maximum epochs, and 100 epochs of patience. A grid search for possible hyperparameters is
listed in Table 6 in Appendix D. We accelerate the hyperparameter search by applying a Bayesian
meta-learning algorithm [3] which minimizes the validation loss, and we run the search for 200
iterations per model. In particular, Table 1 presents the best test accuracy between ReLU and leaky
ReLU for GCN, GCNII, and all three models with SCT5. For the baseline EGNN, we follow [42]
using SReLU, a particular activation used for EGNN in [42]. These results show that SCT can boost
the classification accuracy of baseline models; in particular, the improvement can be remarkable for
GCN and GCNII. However, EGNN-SCT (using ReLU or leaky ReLU) performs occasionally worse

4https://github.com/Kaixiong-Zhou/EGNN
5A comparison of the results using ReLU and leaky ReLU is presented in Appendix D.

8

Under review as a conference paper at ICLR 2024

than EGNN (using SReLU), and this is because of the choice of activation functions. In Appendix D.3,
we report the results of EGNN-SCT using SReLU, showing that EGNN-SCT outperforms EGNN in
all tasks. In fact, SReLU is a shifted version of ReLU, and our theory for ReLU applies to SReLU as
well. The model size and computational time are reported in Table 5 in the appendix.

Table 1 also shows that even with SCT, the accuracy of GCN drops when the depth is 16 or 32. This
motivates us to investigate the smoothness of the node features learned by GCN and GCN-SCT.
Fig. 3 plots the heatmap of the normalized smoothness of each dimension of the learned node
features learned by GCN and GCN-SCT with 32 layers for Citeseer node classification. In these
plots, the horizontal and vertical dimensions denote the feature dimension and the layer of the model,
respectively. We notice that the normalized smoothness of each dimension of the features – from
layers 14 to 32 learned by GCN – closes to 1, confirming that deep GCN learns homogeneous
features. In contrast, the features learned by GCN-SCT are inhomogeneous, as shown in Fig. 3b).
Therefore, we believe the performance degradation of deep GCN-SCT is due to other factors. In
particular, compared to GCNII/GCNII-SCT and EGNN/EGNN-SCT, GCN-SCT does not use skip
connections, which is known to help avoid vanishing gradients in training deep neural networks
[18; 19]. In Appendix D.3, we show that training GCN and GCN-SCT does suffer from the vanishing
gradient issue; however, the other models do not. Besides Citeseer, we notice similar behavior
occurs for training GCN and GCN-SCT for Cora and Coauthor-Physics node classification tasks.

1 8 16
dim

1

16

32

La
ye

r

0.0

0.2

0.4

0.6

0.8

1.0

1 8 16
dim

1

16

32

La
ye

r

0.0

0.2

0.4

0.6

0.8

1.0

a) GCN b) GCN-SCT

Figure 3: The normalized smoothness – of
each dimension of the feature vectors at a
given layer – for a) GCN and b) GCN-SCT
on the Citeseer dataset with 32 layers and 16
hidden dimensions. GCN features become
entirely smooth since layer 14, while GCN-
SCT controls the smoothness for each feature
at any depth. Horizontal and vertical axes
represent the index of the feature dimension
and the intermediate layer, respectively.

Other datasets. We further compare different models
trained on different datasets using 10-fold cross-validation
and fixed 48/32/20% splits following [29]. Table 2 com-
pares GCN and GCNII with and without SCT, using leaky
ReLU, for classifying five heterophilic node classification
datasets. We exclude EGNN as these heterophilic datasets
are not considered in [42]. We report the average test ac-
curacy of GCN and GCNII from [7]. We tune all other
models using a Bayesian meta-learning algorithm to max-
imize the mean validation accuracy. We report the best
test accuracy for each model of depth searched over the
set {2, 4, 8, 16, 32}. SCT can significantly improve the
classification accuracy of the baseline models. Table 2
also contrasts the computational time (on Tesla T4 GPUs
from Google Colab) per epoch of models that achieve the
best test accuracy; the models using SCT can even save
computational time to achieve the best accuracy which is
because the best accuracy is achieved at a moderate depth
(Table 11 in Appendix D.4 lists the mean and standard de-
viation for the test accuracies on all five datasets. Table 12
in Appendix D.4 lists the computational time per epoch for each model of depth 8, showing that
using SCT only takes a small amount of computational overhead.

Cornell Texas Wisconsin Chameleon Squirrel
52.70/55.95 (0.7/1.8) 52.16/62.16 (0.7/0.8) 45.88/54.71 (0.7/0.8) 28.18/38.44 (0.6/0.7) 23.96/35.31 (1.6/4.0)
74.86/75.41 (2.0/2.0) 69.46/83.34 (3.1/2.0) 74.12/86.08 (2.0/1.5) 60.61/64.52 (1.5/1.3) 38.47/47.51 (5.5/3.7)

Table 2: Mean test accuracy and average computational time per epoch (in the parenthesis) for the WebKB
and WikipediaNetwork datasets with fixed 48/32/20% splits. First row: GCN[7]/GCN-SCT. Second row:
GCNII[7]/GCNII-SCT. (Unit:% for accuracy and ×10−2 second for computational time.)

7 CONCLUDING REMARKS

In this paper, we have established a geometric characterization of how ReLU and leaky ReLU affect
the smoothness of the learned graph node representations in GCNs. We further study the dimension-
wise normalized smoothness of the learned node features, showing that activation functions not only
smooth node features but also can reduce or preserve the normalized smoothness of the features.
Our theoretical findings inform the design of a simple and effective SCT for GCN. The proposed
SCT can change the smoothness, in terms of both normalized and unnormalized smoothness, of the
learned node features by GCN. Our work focuses on GCN with ReLU or leaky ReLU – the only two
cases where the over-smoothing issue has been proved. Establishing theories of over-smoothing and
controlling the smoothness of features for other activation functions is an interesting future direction.

9

Under review as a conference paper at ICLR 2024

ETHICS STATEMENT

Our paper focuses on developing new theoretical understandings of the smoothness of node features
learned by graph convolutional networks. The paper is mainly theoretical. We do not see any potential
ethical issues in our research; all experiments are carried out using existing benchmark settings and
datasets.

REPRODUCIBILITY STATEMENT

We are committed to conducting reproducible research. For the theoretical proofs, we have provided
detailed derivation to make sure it is easy to read by a broad audience. For the experiments part,
we have submitted the code with detailed documentation to make it easy to reproduce the results
reported in our paper.

REFERENCES

[1] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical
implications. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=i80OPhOCVH2.

[2] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius
Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan
Faulkner, et al. Relational inductive biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261, 2018.

[3] Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https://www.
wandb.com/. Software available from wandb.com.

[4] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and
deep locally connected networks on graphs. In 2nd International Conference on Learning
Representations, ICLR 2014, 2014.

[5] Chen Cai and Yusu Wang. A note on over-smoothing for graph neural networks. arXiv preprint
arXiv:2006.13318, 2020.

[6] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the
over-smoothing problem for graph neural networks from the topological view. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 34, pp. 3438–3445, 2020.

[7] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep
graph convolutional networks. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the
37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 1725–1735. PMLR, 13–18 Jul 2020.

[8] Tianlong Chen, Kaixiong Zhou, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, and
Zhangyang Wang. Bag of tricks for training deeper graph neural networks: A comprehensive
benchmark study. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(3):
2769–2781, 2022.

[9] Zhengdao Chen, Lisha Li, and Joan Bruna. Supervised community detection with line graph
neural networks. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=H1g0Z3A9Fm.

[10] Fan RK Chung. Spectral graph theory, volume 92. American Mathematical Soc., 1997.

[11] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. Advances in neural information processing
systems, 29, 2016.

[12] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

10

https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=i80OPhOCVH2
https://www.wandb.com/
https://www.wandb.com/
https://openreview.net/forum?id=H1g0Z3A9Fm

Under review as a conference paper at ICLR 2024

[13] Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Combining neural
networks with personalized pagerank for classification on graphs. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
H1gL-2A9Ym.

[14] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
Neural message passing for quantum chemistry. In Proceedings of the 34th International
Conference on Machine Learning - Volume 70, ICML’17, pp. 1263–1272. JMLR.org, 2017.

[15] William Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017.

[16] William L Hamilton. Graph representation learning. Morgan & Claypool Publishers, 2020.

[17] William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods
and applications. arXiv preprint arXiv:1709.05584, 2017.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for im-
age recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11–14, 2016, Proceedings, Part IV 14, pp. 630–645. Springer, 2016.

[20] Tatsuro Kawamoto, Masashi Tsubaki, and Tomoyuki Obuchi. Mean-field theory of graph neural
networks in graph partitioning. Advances in Neural Information Processing Systems, 31, 2018.

[21] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[22] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017.

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Communications of the ACM, 60(6):84–90, 2017.

[24] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In Thirty-Second AAAI conference on artificial intelligence, 2018.

[25] Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
Chang, and Doina Precup. Revisiting heterophily for graph neural networks. In Alice H.
Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural
Information Processing Systems, 2022. URL https://openreview.net/forum?id=
NjeEfP7e3KZ.

[26] Yimeng Min, Frederik Wenkel, and Guy Wolf. Scattering gcn: Overcoming oversmoothness
in graph convolutional networks. Advances in Neural Information Processing Systems, 33:
14498–14508, 2020.

[27] Hoang Nt and Takanori Maehara. Revisiting graph neural networks: All we have is low-pass
filters. arXiv preprint arXiv:1905.09550, 2019.

[28] Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for
node classification. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=S1ldO2EFPr.

[29] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geo-
metric graph convolutional networks. In International Conference on Learning Representations,
2020.

[30] Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila
Prokhorenkova. A critical look at the evaluation of GNNs under heterophily: Are we re-
ally making progress? In The Eleventh International Conference on Learning Representations,
2023.

11

https://openreview.net/forum?id=H1gL-2A9Ym
https://openreview.net/forum?id=H1gL-2A9Ym
https://openreview.net/forum?id=NjeEfP7e3KZ
https://openreview.net/forum?id=NjeEfP7e3KZ
https://openreview.net/forum?id=S1ldO2EFPr

Under review as a conference paper at ICLR 2024

[31] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep
graph convolutional networks on node classification. In International Conference on Learning
Representations, 2020.

[32] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

[33] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger.
Simplifying graph convolutional networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov
(eds.), Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pp. 6861–6871. PMLR, 09–15 Jun 2019. URL
https://proceedings.mlr.press/v97/wu19e.html.

[34] Xinyi Wu, Zhengdao Chen, William Wei Wang, and Ali Jadbabaie. A non-asymptotic analysis of
oversmoothing in graph neural networks. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=CJd-BtnwtXq.

[35] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

[36] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and
Stefanie Jegelka. Representation learning on graphs with jumping knowledge networks. In
International conference on machine learning, pp. 5453–5462. PMLR, 2018.

[37] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning
with graph embeddings. In International conference on machine learning, pp. 40–48. PMLR,
2016.

[38] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In
Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery &
data mining, pp. 974–983, 2018.

[39] Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. In Interna-
tional Conference on Learning Representations, 2020. URL https://openreview.net/
forum?id=rkecl1rtwB.

[40] Dengyong Zhou, Olivier Bousquet, Thomas Lal, Jason Weston, and Bernhard Schölkopf.
Learning with local and global consistency. Advances in neural information processing systems,
16, 2003.

[41] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and
applications. AI Open, 1:57–81, 2020.

[42] Kaixiong Zhou, Xiao Huang, Daochen Zha, Rui Chen, Li Li, Soo-Hyun Choi, and Xia Hu.
Dirichlet energy constrained learning for deep graph neural networks. Advances in Neural
Information Processing Systems, 34:21834–21846, 2021.

[43] Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi-supervised learning using gaussian
fields and harmonic functions. In Proceedings of the 20th International conference on Machine
learning (ICML-03), pp. 912–919, 2003.

12

https://proceedings.mlr.press/v97/wu19e.html
https://openreview.net/forum?id=CJd-BtnwtXq
https://openreview.net/forum?id=rkecl1rtwB
https://openreview.net/forum?id=rkecl1rtwB

Under review as a conference paper at ICLR 2024

A NOTATIONS

A.1 SUMMARY OF NOTATIONS

Notation Meaning
G = (V,E) an undirected graph with vertex set V = {vi}ni=1 and edge set E

A the adjacency matrix of the graph G with entries Aij = 1(i,j)∈E

D the degree matrix of the graph G with Dii =
∑n

j=1 Aij

G the (augmented) normalized adjacency matrix G := (D + I)−
1
2 (I +A)(D + I)−

1
2

H l node features at the lth layer of GCN where H l := [(hl
1)

⊤, . . . , (hl
n)

⊤]⊤ ∈ Rd×n

σ(·) the activation function, e.g. ReLU
σa(·) leaky ReLU
W l the learnable weights of the lth layer of GCN

M, M⊥ the eigenspace corresponding to the eigenvalue 1 of matrix G and its orthogonal complement
λi, ei the ith largest eigenvalue of matrix G and the eigenvector corresponding to ei

H l
M,H l

M⊥ the projections of H l onto M and M⊥, respectively
∥ · ∥M⊥ , ∥ · ∥E the distance of node features H to the eigenspace M and the Dirichlet energy of H

λ the second largest magnitude of G’s eigenvalues
sl the largest singular value of W l

ui the indicator vector of the ith connected component Vi of the graph G
s(·) the normalized smoothness of a feature vector
Bl

α the smoothness control term at the lth layer

Table 3: Some important notations used in our paper.

A.2 DETAILS OF NOTATIONS

For two vectors u = (u1, u2, . . . , ud) and v = (v1, v2, . . . , vd), their inner product is defined as

⟨u,v⟩ =
d∑

i=1

uivi,

their Hadamard product is defined as

u⊙ v = (u1v1, u2v2, . . . , udvd),

and their Kronecker product is defined as

u⊗ v = uv⊤ =


u1v1 u1v2 . . . u1vd
u2v1 u2v2 . . . u2vd

...
...

. . .
...

udv1 udv2 . . . udvd

 .

The Kronecker product can be defined for two vectors of different lengths in a similar manner as
above.

B PROOFS IN SECTION 3

First, we prove that the two smoothness notions used in [28; 5] are two equivalent seminorms, i.e. we
prove Proposition 3.1 below.

Proof of Proposition 3.1. Notice that the matrix H can be decomposed as H =
∑n

i=1 Heie
⊤
i

where each ei is the eigenvector of G associated with eigenvalue λi defined in subsection 2. This

13

Under review as a conference paper at ICLR 2024

indicates that

H∆̃ = H(I −G)

=

n∑
i=1

Heie
⊤
i (I −G)

=

n∑
i=1

(Heie
⊤
i −Heie

⊤
i G)

=

n∑
i=1

(Heie
⊤
i −Hei(λiei)

⊤)

=

n∑
i=1

(1− λi)Heie
⊤
i

=

n∑
i=m+1

(1− λi)Heie
⊤
i .

Then using the fact that 1− λi ≥ 0 for each i, we obtain

∥H∥2E = Trace(H∆̃H⊤)

= Trace
(n∑

i=m+1

(1− λi)Heie
⊤
i (

n∑
j=1

Heje
⊤
j)

⊤
)

= Trace
(n∑

i=m+1

n∑
j=1

(1− λi)Heie
⊤
i eje

⊤
j H

⊤
)

= Trace
(n∑

i=m+1

(1− λi)Heie
⊤
i eie

⊤
i H

⊤
)

= Trace
(n∑

i=m+1

√
1− λiHeie

⊤
i eie

⊤
i H

⊤
√
1− λi

)
= Trace

(n∑
i=m+1

√
1− λiHeie

⊤
i (

n∑
j=m+1

√
1− λjHeje

⊤
j)

⊤
)

=
∥∥∥ n∑

i=m+1

√
1− λiHeie

⊤
i

∥∥∥2
F
.

That is,

∥H∥E =
∥∥∥ n∑

i=m+1

√
1− λiHeie

⊤
i

∥∥∥
F
.

On the other hand, equation (3) implies

∥H∥M⊥ = ∥HM⊥∥F =
∥∥∥ n∑

i=m+1

Heie
⊤
i

∥∥∥
F
.

We first show that both ∥H∥M⊥ and ∥H∥E are seminorms. Since ∥cH∥F = |c| · ∥H∥F for any
c ∈ R, we have ∥cH∥M⊥ = |c| · ∥H∥M⊥ and ∥cH∥E = |c| · ∥H∥E . Moreover, for any two
matrices H1 and H2 s.t. H = H1 +H2, we have

n∑
i=m+1

H1eie
⊤
i +

n∑
i=m+1

H2eie
⊤
i =

n∑
i=m+1

Heie
⊤
i ,

n∑
i=m+1

√
1− λiH

1eie
⊤
i +

n∑
i=m+1

√
1− λiH

2eie
⊤
i =

n∑
i=m+1

√
1− λiHeie

⊤
i .

14

Under review as a conference paper at ICLR 2024

Then the triangle inequality of Frobenius norm ∥·∥F implies that of ∥H∥M⊥ and ∥H∥E , respectively.

Now since 0 < 1− λm+1 ≤ 1− λi ≤ 2 for any i = m+ 1, . . . , n, we may take α =
√

1− λm+1

and β =
√
2. Then we see that

α∥H∥M⊥ =
∥∥∥α n∑

i=m+1

Heie
⊤
i

∥∥∥
F

≤
∥∥∥ n∑

i=m+1

√
1− λiHeie

⊤
i

∥∥∥
F

≤
∥∥∥β n∑

i=m+1

Heie
⊤
i

∥∥∥
F

= β∥H∥M⊥ .

The result thus follows from ∥H∥E =
∥∥∥∑n

i=m+1

√
1− λiHeie

⊤
i

∥∥∥
F

.

B.1 RELU

We present a crucial tool for characterizing how the activation function affects its input.
Lemma B.1. Let Z ∈ Rd×n, and let Z+ = max(Z, 0) and Z− = max(−Z, 0) be the (component-
wise) positive and negative parts of Z. Then 1) Z+,Z− are (component-wise) nonnegative and
Z = Z+ −Z− and 2) ⟨Z+,Z−⟩F = 0.

Proof of Lemma B.1. Notice that for any a ∈ R, we have

max(a, 0) =

{
a if a ≥ 0

0 otherwise
and max(−a, 0) =

{
0 if a ≥ 0

−a otherwise

where a is any scalar. This implies that a = max(a, 0)−max(−a, 0) and max(a, 0) ·max(−a, 0) =
0.

Let Zij be the (i, j)th entry of Z. Then Z = Z+ − Z− follows from Zij = max(Zij , 0) −
max(−Zij , 0). Also, one can deduce that

⟨Z+,Z−⟩F = Trace((Z+)⊤Z−)

=

d∑
i=1

j∑
j=1

max(Zij , 0)max(−Zij , 0)

= 0.

Before proving Proposition 3.2, we notice the following relation between Z and H .
Lemma B.2. Given Z ∈ Rd×n, let H = σ(Z) with σ being ReLU, then H lies on the high-
dimensional sphere, in ∥ · ∥F norm, that is centered at Z/2 and with radius ∥Z/2∥F . That is, H
and Z satisfy the following equation ∥∥∥H − Z

2

∥∥∥2
F
=
∥∥∥Z
2

∥∥∥2
F
. (8)

Proof of Lemma B.2. We observe that H = σ(Z) = max(Z, 0) = Z+ is the positive part of Z.
Then we have

⟨H,Z⟩F = ⟨H,Z+ −Z−⟩F
= ⟨H,Z+⟩F − ⟨H,Z−⟩F
= ⟨H,H⟩F ,

where we have used Z = Z+ −Z− and ⟨H,Z−⟩F = ⟨Z+,Z−⟩F = 0 from Lemma B.1.

15

Under review as a conference paper at ICLR 2024

Therefore, one can deduce the desired result as follows:

⟨H,H⟩F − ⟨H,Z⟩F = 0

⇒∥H∥2F − 2
〈
H,

Z

2

〉
F
+
∥∥∥Z
2

∥∥∥2
F
=
∥∥∥Z
2

∥∥∥2
F

⇒
∥∥∥H − Z

2

∥∥∥2
F
=
∥∥∥Z
2

∥∥∥2
F
.

Applying ∥H∥2F = ∥HM +HM⊥∥2F = ∥HM∥2F + ∥HM⊥∥2F , to both Z
2 and H − Z

2 , we obtain∥∥∥Z
2

∥∥∥2
F
=
∥∥∥ZM⊥

2

∥∥∥2
F
+
∥∥∥ZM

2

∥∥∥2
F
,

and ∥∥∥H − Z

2

∥∥∥2
F
=
∥∥∥HM⊥ − ZM⊥

2

∥∥∥2
F
+
∥∥∥HM − ZM

2

∥∥∥2
F
.

Then equation (8) becomes∥∥∥ZM⊥

2

∥∥∥2
F
−
∥∥∥HM⊥ − ZM⊥

2

∥∥∥2
F
=
∥∥∥HM − ZM

2

∥∥∥2
F
−
∥∥∥ZM

2

∥∥∥2
F

(9)

By direct calculation, we have ∥∥∥HM − ZM

2

∥∥∥2
F
−
∥∥∥ZM

2

∥∥∥2
F

=⟨HM,HM⟩F − 2
〈
HM,

ZM

2

〉
F

=⟨HM,HM −ZM⟩F .

(10)

Combining equation (9) and equation (10), we obtain the following result:
Lemma B.3. For any Z = ZM +ZM⊥ , let H = σ(Z) = HM +HM⊥ , then∥∥∥ZM⊥

2

∥∥∥2

F
−

∥∥∥HM⊥ − ZM⊥

2

∥∥∥2

F
= ⟨Z+

M,Z−
M⟩F .

where Z+
M =

∑m
i=1 Z

+eie
⊤
i ,Z

−
M =

∑m
i=1 Z

−eie
⊤
i .

Proof of Lemma B.3. Recall that H = σ(Z) = max(Z, 0) = Z+. Also, Z = Z+ − Z− implies
ZM = Z+

M −Z−
M = H+

M −Z−
M. Therefore, we see that

⟨HM,HM −ZM⟩F = ⟨Z+
M,Z−

M⟩F .

By using the fact that ⟨Z+
M,Z−

M⟩F ≥ 0 in Lemma B.3, we reveal a geometric relation between Z
and H mentioned in Proposition 3.2.

Proof of Proposition 3.2. Since Z+,Z− ≥ 0 are nonnegative and all the eigenvectors ei are also
nonnegative, we see that Z+

M =
∑m

i=1 Z
+eie

⊤
i and Z−

M =
∑m

i=1 Z
−eie

⊤
i are nonnegative. This

indicates that

⟨Z+
M,Z−

M⟩F = Trace
(
Z+

M(Z−
M)⊤

)
≥ 0.

Then according to Lemma B.3, we obtain∥∥∥ZM⊥

2

∥∥∥2
F
−
∥∥∥HM⊥ − ZM⊥

2

∥∥∥2
F
= ⟨Z+

M,Z−
M⟩F ≥ 0.

So we have ∥∥∥HM⊥ − ZM⊥

2

∥∥∥
F
=

√∥∥∥ZM⊥

2

∥∥∥2
F
− ⟨Z+

M,Z−
M⟩F

=

√∥∥∥ZM⊥

2

∥∥∥2
F
− ⟨HM,HM −ZM⟩F ,

16

Under review as a conference paper at ICLR 2024

which shows that HM⊥ lies on the high-dimensional sphere that we have claimed. Furthermore, we
conclude that

0 ≤
∥∥∥HM⊥ − ZM⊥

2

∥∥∥
F
≤
∥∥∥ZM⊥

2

∥∥∥
F
. (11)

This demonstrates that HM⊥ lies on the high-dimensional sphere we have stated.

Since the sphere
∥∥∥HM⊥ − ZM⊥

2

∥∥∥2
F

=
∥∥∥ZM⊥

2

∥∥∥2
F

passes through the origin, the distance of any

HM⊥ to the origin must be no greater than the diameter of this sphere, i.e. ∥HM⊥∥F ≤ ∥ZM⊥∥F .
Also, this can be derived from

∥HM⊥∥F −
∥∥∥ZM⊥

2

∥∥∥
F
≤
∥∥∥HM⊥ − ZM⊥

2

∥∥∥
F
≤
∥∥∥ZM⊥

2

∥∥∥
F
.

One can see that the maximal smoothness ∥HM⊥∥F = ∥ZM⊥∥F is attained when HM⊥ = ZM⊥ ,
the intersection of the surface and the line passing through the center and the origin.

After all, we complete the proof by using the fact that ∥ZM⊥∥F = ∥Z∥M⊥ for any matrix Z, which
implies ∥H∥M⊥ = ∥HM⊥∥F ≤ ∥ZM⊥∥F = ∥Z∥M⊥ .

B.2 LEAKY RELU

For the leaky ReLU activation function, we have
Lemma B.4. If H = σa(Z) with σa being leaky ReLU, then H lies on the high-dimensional sphere
centered at (1 + a)Z/2 with radius ∥(1− a)Z/2∥F .

Proof of Lemma B.4. By writing Z into the sum of the positive part Z+ and negative part Z−, we
see that

H = σa(Z) = Z+ − aZ−.

Then we have H −Z = (1− a)Z− and H − aZ = (1− a)Z+. Using ⟨Z−,Z+⟩F = 0, we obtain
the following

⟨H −Z,H − aZ⟩F = 0

⇒∥H∥2F − 2
〈
H,

(1 + a)Z

2

〉
F
+ a∥Z∥2F = 0

⇒∥H∥2F − 2
〈
H,

(1 + a)Z

2

〉
F
= −a∥Z∥2F

⇒
∥∥∥H − (1 + a)

2
Z
∥∥∥2
F
=
∥∥∥ (1 + a)

2
Z
∥∥∥2
F
− a∥Z∥2F =

∥∥∥ (1− a)

2
Z
∥∥∥2
F
.

Moreover, we notice that
Lemma B.5. For any Z = ZM +ZM⊥ , let H = σa(Z) = HM +HM⊥ , then∥∥∥ (1− a)

2
ZM⊥

∥∥∥2
F
−
∥∥∥HM⊥ − (1 + a)

2
ZM⊥

∥∥∥2
F
= (1− a)2⟨Z+

M,Z−
M⟩F

Proof of Lemma B.5. Similar to the proof of Lemma B.3, the orthogonal decomposition implies that∥∥∥ (1− a)

2
ZM⊥

∥∥∥2
F
−
∥∥∥HM⊥ − (1 + a)

2
ZM⊥

∥∥∥2
F

=
∥∥∥HM − (1 + a)

2
ZM

∥∥∥2
F
−
∥∥∥ (1− a)

2
ZM

∥∥∥2
F

=⟨HM −ZM,HM − aZM⟩F
=⟨(1− a)Z−

M, (1− a)Z+
M⟩F

=(1− a)2⟨Z−
M,Z+

M⟩F .

17

Under review as a conference paper at ICLR 2024

Proof of Proposition 3.3. Similar to the proof of Proposition 3.2, we apply the fact ⟨Z−
M,Z+

M⟩F ≥ 0
to Lemma B.5 and hence obtain the geometric condition as follows:∥∥∥HM⊥ − (1 + a)

2
ZM⊥

∥∥∥
F
=

√∥∥∥ (1− a)

2
ZM⊥

∥∥∥2
F
− ⟨HM −ZM,HM − aZM⟩F .

Then we have the following inequality:

0 ≤
∥∥∥HM⊥ − (1 + a)

2
ZM⊥

∥∥∥
F
≤
∥∥∥ (1− a)

2
ZM⊥

∥∥∥
F
.

Moreover, we deduce that∣∣∣∣∣∥HM⊥∥F −
∥∥∥ (1 + a)

2
ZM⊥

∥∥∥
F

∣∣∣∣∣ ≤ ∥∥∥HM⊥ − (1 + a)

2
ZM⊥

∥∥∥
F

≤
∥∥∥ (1− a)

2
ZM⊥

∥∥∥
F
.

and hence

−
∥∥∥ (1− a)

2
ZM⊥

∥∥∥
F
≤ ∥HM⊥∥F −

∥∥∥ (1 + a)

2
ZM⊥

∥∥∥
F

≤
∥∥∥ (1− a)

2
ZM⊥

∥∥∥
F
.

Therefore, we obtain a∥ZM⊥∥F ≤ ∥HM⊥∥F ≤ ∥ZM⊥∥F . (Remark that HM⊥ achieves its
maximal norm when it is equal to ZM⊥ , the intersection of the surface and the line passing through
the center and the origin.)

By using the fact that ∥ZM⊥∥F = ∥Z∥M⊥ for any matrix Z, we conclude that a∥Z∥M⊥ ≤
∥H∥M⊥ ≤ ∥Z∥M⊥ .

C PROOFS IN SECTION 4

Throughout this section, we assume that zM⊥ ̸= 0.

Proof of Proposition 4.2. Recall that e = D̃
1
2un/c has only positive entries where D̃ is the aug-

mented degree matrix and un = [1, . . . , 1]⊤ ∈ Rn is the vector of ones and c = ∥D̃ 1
2un∥. Let di be

the ith diagonal entry of D̃. Then we have

e = [
√
d1/c,

√
d2/c, . . . ,

√
dn/c]

⊤

and c =
√∑n

i=1 di.

Note that z(α) = z − αe = z − α
c D̃

1
2un = D̃

1
2 (D̃− 1

2 z − α
cun) = D̃

1
2 (x − α

cun), where we
assume x := D̃− 1

2 z. Then we observe that when σ is the ReLU activation function,

h(α) = σ(z(α))

= σ
(
D̃

1
2 (x− α

c
un)

)
= D̃

1
2σ
(
x− α

c
un

)
,

and hence
⟨h(α), e⟩ =

〈
D̃

1
2σ
(
x− α

c
un

)
, e
〉

=
〈
σ
(
x− α

c
un

)
, D̃

1
2 e
〉

=
〈
σ
(
x− α

c
un

)
, D̃un

〉
.

18

Under review as a conference paper at ICLR 2024

We may now assume x = [x1, . . . , xn]
⊤ is well-ordered s.t. x1 ≥ x2 ≥ . . . ≥ xn. Indeed, there is a

collection of indices {k1, ..., kl} s.t.

x1 = . . . , xk1 and xk1 > xk1+1,

xkj−1+1 = . . . = xkj
and xkj

> xkj+1 for any j = 2, . . . , l − 1,

xkl−1+1 = . . . = xkl
and kl = n.

That is, x1 = x2 = . . . = xk1
> xk1+1 = . . . = xk2

> xk2+1 = . . . = xk3
> xk3+1 . . .

We first restrict the domain of α s.t. h(α) ̸= 0. Note that we have

h(α) = 0

⇔σ
(
x− α

c
un

)
= 0

⇔xi −
α

c
≤ 0 for i = 1, . . . , n

⇔x1 −
α

c
≤ 0

⇔α ≥ cx1.

So we will study the smoothness s(h(α)) when α < cx1.

Let ϵ > 0 be a positive number and consider α = c(x1 − ϵ). When ϵ ≤ x1 − xk1+1 = x1 − xk2
, we

see that
x− α

c
un = [ϵ, . . . , ϵ, ϵ− (x1 − xk1+1), . . . , ϵ− (x1 − xn)]

⊤,

where only the first k1 entries are positive since x1 − xi ≥ ϵ for any i ≥ k1 + 1. Therefore,

h(α) = D̃
1
2σ
(
x− α

c
un

)
= D̃

1
2 [ϵ, . . . , ϵ, 0, . . . , 0]⊤

= [ϵ
√
d1, . . . , ϵ

√
dk1

, 0, . . . , 0]⊤.

and hence we can compute that

∥h(α)∥ = ϵ

√√√√ k1∑
i=1

di.

Also, we have

∥h(α)∥M = |⟨h(α), e⟩|

= [ϵ
√
d1, . . . , ϵ

√
dk1

, 0, . . . , 0]⊤[
√

d1/c,
√
d2/c, . . . ,

√
dn/c]

=
ϵ

c

k1∑
i=1

di.

Then we obtain the smoothness s(h(α)) as follows:

s(h(α)) =
∥h(α)∥M
∥h(α)∥

=
ϵ
c

∑k1

i=1 di

ϵ
√∑k1

i=1 di

=

√∑k1

i=1 di

c
=

K1

c
< 1,

where we denote
√∑k1

i=1 di by K1. Similarly, we may denote
√∑kj

i=kj−1+1 di by Kj for j =

2, . . . , l.

Now we are going to show that the smoothness s(h(α)) is increasing as α gets smaller whenever
α < cx1, which further implies K1

c is the minimum of the smoothness s(h(α)). Remember that we
are considering α = c(x1 − ϵ) and we have studied the case when 0 < ϵ ≤ x1 − xk1+1 = x1 − xk2 .

19

Under review as a conference paper at ICLR 2024

Let δj := x1 − xkj
for 1 ≤ j ≤ l. Clearly, we have δ1 = 0 and δj < δj+1 for 1 ≤ j ≤ l − 1. Fix a

j′ ∈ {2, . . . , l − 1}. We see that when δj′ < ϵ ≤ x1 − xkj′+1,

x− α

c
un

=
[
ϵ− δ1, . . . , ϵ− δ1, ϵ− δ2, . . . , ϵ− δ2, ϵ− δ3, . . . , ϵ− δj′ ,

ϵ− (x1 − xkj′+1), . . . , ϵ− (x1 − xn)
]⊤

,

where we have ϵ−δj > 0 for any 2 ≤ j ≤ j′ and ϵ−(x1−xi) ≤ 0 for any i ≥ kj′+1. Consequently,

h(α) = D̃
1
2σ(x− α

c
un)

= [(ϵ− δ1)
√

d1, . . . , (ϵ− δ1)
√

dk1
, (ϵ− δ2)

√
dk1+1, . . . , (ϵ− δ2)

√
dk2

,

(ϵ− δ3)
√
dk2+1, . . . , (ϵ− δj′)

√
dkj′ , 0, . . . , 0]

⊤.

Then we can compute

∥h(α)∥ =

√√√√√ j′∑
j=1

kj∑
i=kj−1+1

di(ϵ− δj)2 =

√√√√ j′∑
j=1

K2
j (ϵ− δj)2,

where we set k0 := 0 for simplicity and Kj =
√∑kj

i=kj−1+1 di for j = 1, . . . , j′. Also, we have

∥h(α)∥M = |⟨h(α), e⟩| =
j′∑

j=1

kj∑
i=kj−1+1

di(ϵ− δj)

c
=

1

c

j′∑
j=1

K2
j (ϵ− δj).

A careful calculation shows that ∂
∂ϵs(h(α)) > 0 whenever δj′ < ϵ ≤ x1 − xkj′+1 which implies that

s(h(α)) is increasing as ϵ increases. Indeed, we have
∂

∂ϵ
s(h(α))

=
∂

∂ϵ

(∑j′

j=1 K
2
j (ϵ− δj)

c
√∑j′

j=1 K
2
j (ϵ− δj)2

)

=

(
∂
∂ϵ

∑j′

j=1 K
2
j (ϵ− δj)

)√∑j′

j=1 K
2
j (ϵ− δj)2 −

∑j′

j=1 K
2
j (ϵ− δj)

(
∂
∂ϵ

√∑j′

j=1 K
2
j (ϵ− δj)2

)
c
∑j′

j=1 K
2
j (ϵ− δj)2

=

(∑j′

j=1 K
2
j

)√∑j′

j=1 K
2
j (ϵ− δj)2 −

∑j′

j=1 K
2
j (ϵ− δj)

(∂
∂ϵ

∑j′
j=1 K2

j (ϵ−δj)
2

2
√∑j′

j=1 K2
j (ϵ−δj)2

)
c
∑j′

j=1 K
2
j (ϵ− δj)2

=

(∑j′

j=1 K
2
j

)∑j′

j=1 K
2
j (ϵ− δj)

2 −
∑j′

j=1 K
2
j (ϵ− δj)

(∑j′

j=1 K
2
j (ϵ− δj)

)
c
∑j′

j=1 K
2
j (ϵ− δj)2

√∑j′

j=1 K
2
j (ϵ− δj)2

.

Then to show that ∂
∂ϵs(h(α)) > 0, it suffices to show that the numerator is positive, i.e.(j′∑

j=1

K2
j

) j′∑
j=1

K2
j (ϵ− δj)

2 −
(j′∑

j=1

K2
j (ϵ− δj)

)2
> 0,

since the denominator c
∑j′

j=1 K
2
j (ϵ− δj)

2
√∑j′

j=1 K
2
j (ϵ− δj)2 > 0 is always positive. In fact, this

follows from the Cauchy inequality ∥v∥∥u∥ ≥ ⟨v,u⟩, where we set

v := [K1,K2, . . . ,KJ′]⊤,

u := [K1(ϵ− δ1),K2(ϵ− δ2), . . . ,Kj′(ϵ− δj′)]
⊤.

20

Under review as a conference paper at ICLR 2024

Moreover, equality happens only when v is parallel to u. This is, however, impossible since
ϵ− δj > ϵ− δj+1 for any j = 1, . . . , j′ − 1 and each Kj is positive.

So we see that s(h(α)) is increasing as ϵ increases whenever 0 < ϵ, and hence the smoothness
s(h(α)) is increasing as α decreases whenever cxn ≤ α < cx1.

For the case j′ = l where δl = x1−xn < ϵ, we have xn−α/c = xn−(x1−ϵ) = ϵ−(x1−xn) > 0
which implies α < cxn and h(α) = z(α). We have shown that the smoothness is increasing as α is
going far from ⟨z, e⟩; in particular, when α < ⟨z, e⟩ and α is deceasing. One can check that

cxn =

∑n
i=1 dixn

c
=

〈
xnun,

D̃un

c

〉
≤
〈
x,

D̃un

c

〉
=

〈
D̃

1
2x,

D̃
1
2un

c

〉
= ⟨z, e⟩

which means the smoothness is increasing as α decreases whenever α < cxn.

We conclude that the smoothness is increasing as α decreases whenever α < cx1. On the other
hand, we have supα<cx1

s(h(α)) = 1 as the case in the proof of Proposition C.1. One can check
that s(h(α)) is a continuous function for α < cx1 and thus it has range [K1/c, 1) by the mean value
theorem.

Finally, we can establish the result: K1/c =

√∑
xi=maxx di∑n

j=1 dj
is the minimum of s(h(α)) and 1 is the

maximum of s(h(α)) occurring whenever α ≥ cx1 =
√∑n

j=1 dj maxi xi. Moreover, s(h(α)) has

a monotone property when α <
√∑n

j=1 dj maxi xi and has range
[√∑

xi=maxx di∑n
j=1 dj

, 1
]
.

It is clear that the assumption on the ordering of the entries of x will not affect this result.

To prove Proposition 4.3, we first prove an analogous result for the identity function, that is, h =
σ(z) = z.

Proposition C.1. Suppose zM⊥ ̸= 0, then s(z(α)) achieves its minimum 0 if α = ⟨z, e⟩. Moreover,
supα s(z(α)) = 1 where s(z(α)) is close to 1 when α is far away from ⟨z, e⟩.

Notice that Proposition C.1 does not consider the activation function.

Proof of Proposition C.1. We know that 0 ≤ s(z(α)) ≤ 1 and

s(z(α)) =

√
1− ∥zM⊥∥2

∥z(α)∥2

=

√
1− ∥zM⊥∥2

∥zM⊥∥2 + ∥z(α)M∥2

=

√
1− ∥zM⊥∥2

∥zM⊥∥2 + ∥zM − αe∥2
.

Suppose s(z(α)) = 1. Then we have

∥zM⊥∥2

∥zM⊥∥2 + ∥zM − αe∥2
= 0

which forces ∥zM⊥∥ = 0. However, this contradicts to the hypothesis zM⊥ ̸= 0. So s(z(α)) cannot
attain its maximum.

21

Under review as a conference paper at ICLR 2024

But for any 0 ≤ t < 1, one can see that s(z(α)) = t if and only if√
1− ∥zM⊥∥2

∥zM⊥∥2 + ∥zM − αe∥2
= t

⇔ ∥zM⊥∥2

∥zM⊥∥2 + ∥zM − αe∥2
= 1− t2

⇔ ∥zM⊥∥2 = (1− t2)
(
∥zM⊥∥2 + ∥zM − αe∥2

)
⇔ t2∥zM⊥∥2 = (1− t2)∥zM − αe∥2

⇔ ∥zM − αe∥ =

√
t2

1− t2
· ∥zM⊥∥

This implies that supα s(z(α)) = 1 and s(z(α)) achieves its minimum 0 if and only if α = ⟨z, e⟩.
It is clear that s(z(α)) get closer to 1 when α is going far away from ⟨z, e⟩. i.e. |α − ⟨z, e⟩| =
∥zM − αe∥ is increasing.

Proof of Proposition 4.3. First, we notice that leaky ReLU has the following two properties:

1. σa(x) > 0 for x ≫ 0 and σa(x) < 0 for x ≪ 0.

2. σa is a non-trivial linear map for x ≫ 0.

We will use Property 1 to show that minα s(h(α)) = 0 and Property 2 to show that supα s(h(α)) = 1.
Notice that σa(x) < 0 for x ≪ 0 implies that there exists a sufficient small α2 < 0 s.t. all of the
entries of h(α2) are negative and hence |⟨h(α2), e⟩| < 0. Similarly, σa(x) > 0 for x ≫ 0 implies
that there exists a sufficient large α1 > 0 s.t. all of the entries of h(α1) are positive and hence
|⟨h(α1), e⟩| > 0. Since |⟨h(α), e⟩| is a continuous function of α on [α1, α2], the Intermediate
Value Theorem follows that there exists an α ∈ (α1, α2) s.t. |⟨h(α), e⟩| = 0. Thus by definition
s(h(α)) = |⟨h(α), e⟩|/∥h(α)∥, we see that minα s(h(α)) = 0.

On the other hand, since σa is a non-trivial linear map for x ≫ 0, we may assume σa(x) = cx for
x > x0 where c ̸= 0 is some non-zero constant and x0 > 0 is some positive constant. Then we
can choose an α0 > ⟨z, e⟩ s.t. for any α ≥ α0, all of the entries of z(α) are greater than x0. Then
whenever α ≥ α0, we have h(α) = σa(z(α)) = cz(α). This implies

s(h(α)) =
|⟨h(α), e⟩|
∥h(α)∥

=
|⟨cz(α), e⟩|
∥cz(α)∥

=
|⟨z(α), e⟩|
∥z(α)∥

= s(z(α)).

Thus supα s(h(α)) = 1 follows from the Proof of Proposition C.1 where we see that supα s(z(α)) =
1 since s(z(α)) gets closer to 1 as α increases.

Remark C.2. Indeed, it holds for any continuous function f : R → R satisfying the following
conditions:

1. f(x) > 0 for x ≫ 0, f(x) < 0 for x ≪ 0 or f(x) < 0 for x ≫ 0, f(x) > 0 for x ≪ 0,

2. f is a non-trivial linear map for x ≫ 0 or x ≪ 0.

One can check the proof above only depends on these two properties. It is worth mentioning that most
activation functions, e.g. leaky LU, SiLU, tanh, satisfy condition 1.

Proof of Corollary 4.5. For any α, we notice that ∥z∥M⊥ = ∥zM⊥∥F = ∥z(α)∥M⊥ since α
only changes the component of z in the eigenspace M. Also, Propositions 3.2 and 3.3 show
that ∥z(α)∥M⊥ ≥ ∥h(α)∥M⊥ whenever h(α) = σ(z(α)) or σa(z(α)). Therefore, we see that
∥z∥M⊥ ≥ ∥h(α)∥M⊥ holds for any α.

Since zM⊥ ̸= 0, s(z) must lie in [0, 1)

22

Under review as a conference paper at ICLR 2024

D EXPERIMENTAL DETAILS

This part includes the missing details about the experimental configurations and additional experi-
mental results for Section 6. All tasks we run using Nvidia RTX 3090, GV100, and Tesla T4 GPUs.
For consistency, all computational performance metrics, including timing procedures, are run using
Tesla T4 GPUs from Google Colab.

D.1 DATASET DETAILS

In this section, we briefly describe the benchmark datasets used. Table 4 provides additional details
about the underlying graph representation.

Citation Datasets: The five citation datasets considered are Cora, Citeseer PubMed, Coauthor-
Physics, and Ogbn-arxiv. Each dataset is represented by a graph with nodes representing academic
publications, features encoding a bag-of-words description, labels classifying the publication type,
and edges representing citations.

Web Knowledge-Base Datasets: The three web knowledge-base datasets are Cornell, Texas, and
Wisconsin. Each dataset is represented by a graph with nodes representing CS department webpages,
features encoding a bag-of-words description, edges representing hyper-link connections, and labels
classifying the webpage type.

Wikipedia Network Datasets: The two Wikipedia network datasets are Chameleon and Squirrel.
Each dataset is represented by a graph with nodes representing CS department webpages, features en-
coding a bag-of-words description, edges representing hyper-link connections, and labels classifying
the webpage type.

Nodes # Edges # Features # Classes Splits (Train/Val/Test)
Cornell 183 295 1, 703 5 48/32/20%
Texas 181 309 1, 703 5 48/32/20%

Wisconsin 251 499 1, 703 5 48/32/20%
Chameleon 2, 277 36, 101 2, 325 5 48/32/20%

Squirrel 5, 201 217, 073 2, 089 5 48/32/20%
Citeseer 3, 727 4, 732 3, 703 6 120/500/1000

Cora 2, 708 5, 429 1, 433 7 140/500/1000
PubMed 19, 717 44, 338 500 3 60/500/1000

Coauthor-Physics 34,493 247,962 8415 5 100/150/34,243
Ogbn-arxiv 169,343 1,166,243 128 40 90,941/29,799/48,603

Roman-Empire 22,662 32,927 300 18 50/25/25%

Table 4: Graph statistics.

D.2 MODEL SIZE AND COMPUTATIONAL TIME FOR CITATION DATASETS

Table 5 compares the model size and computational time (both training and testing) for experiments
on citation datasets in Section 6.2.

D.3 ADDITIONAL SECTION 6.2 DETAILS FOR CITATION DATASETS

Table 6 lists the hyperparameters used in the grid search for each model in generating the results in
Table 1. Table 10 reports the classification accuracy of different models with different depths using
either ReLU or leaky ReLU activation function.

To test the significance of the SCT based models, we perform a trial of 100 random model initial-
izations. Table8 reports the mean test accuracy ± standard deviation for each model of varying
depth. We compare against each of the baseline models generating results for GCN and EGNN, and
reporting results from [8] for GCNII (marked with ∗). We then perform a t-test at 0.95 confidence,
where

t-score =
µ*-SCT − µ*√

σ2
*-SCT
n +

σ2
*
n

23

Under review as a conference paper at ICLR 2024

Parameters Training Time (s) Inference Time (ms)
Cora

GCN 100,423 8.4 1.6
GCNII 110,535 10.0 2.1
GCNII 708,743 57.6 12.3

GCNII-SCT 1,237,127 110.3 29.6
EGNN 712,839 65.6 14.4

EGNN-SCT 316,551 24.8 4.5
Citeseer

GCN 245,638 8.3 1.5
GCN-SCT 301,830 15.5 4.0

GCNII 999,174 57.6 12.3
GCNII-SCT 1,001,222 65.9 15.7

EGNN 739,078 39.6 7.2
EGNN-SCT 540,934 24.0 5.8

PubMed
GCN 40,451 9.0 1.8

GCN-SCT 40,707 11.1 2.2
GCNII 326,659 98.2 12.8

GCNII-SCT 590,851 71.7 17.4
EGNN 592,899 93.7 2.5

EGNN-SCT 130,563 16.0 3.1
Coauthor-Physics

GCN 547,141 35.2 8.0
GCN-SCT 547,397 33.9 8.3

GCNII 555,333 49.1 10.3
GCNII-SCT 555,461 67.0 9.5

EGNN 672,069 176.4 47.9
EGNN-SCT 572,229 51.7 14.8

Ogbn-arxiv
GCN 27,240 50.4 21.1

GCN-SCT 28,392 62.6 24.4
GCNII 76,392 205.4 94.8

GCNII-SCT 80,616 253.0 108.9
EGNN 77,416 206.8 98.0

EGNN-SCT 81,640 254.0 112.3

Table 5: Number of model parameters for varying numbers of layers using the optimal model
hyperparameters. The SCT is added at each layer and the size of the additional parameters scales
with the number of eigenvectors with an eigenvalue of one for matrix G in equation (2).

Parameter Values
Learning Rate {1e-4, 1e-3, 1e-2}

Weight Decay (FC) {0, 1e-4, 5e-4, 1e-3, 5e-3, 1e-2}
Weight Decay (Conv) {0, 1e-4, 5e-4, 1e-3, 5e-3, 1e-2}

Dropout {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
Hidden Channels {16, 32, 64, 128}

GCNII-α {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
GCNII-θ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

EGNN-cmax {0.5, 1.0, 1.5, 2.0}
EGNN-α {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
EGNN-θ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

Table 6: Hyperparameter grid search for Table 1.

The results of the t-test are reported in Table 9.

24

Under review as a conference paper at ICLR 2024

Layers 2 4 16 32
Cora

EGNN/EGNN-SCT 83.2/83.4 84.2/84.3 85.4/85.5 85.3/85.5
Citeseer

EGNN/EGNN-SCT 72.0/72.1 71.9/72.3 72.4/72.6 72.3/72.8
PubMed

EGNN/EGNN-SCT 79.2/79.4 79.5/79.8 80.1/80.1 80.0/80.2
Coauthor-Physics

EGNN/EGNN-SCT 92.6/92.8 92.9/93.0 93.1/93.3 93.3/93.3
Ogbn-arxiv

EGNN/EGNN-SCT 68.4/68.5 71.1/71.3 72.7/73.0 72.7/72.9

Table 7: Test accuracy for EGNN and EGNN-SCT using SReLU activation function of varying depth on citation
networks with the split discussed in Section 6.2. (Unit:%)

Layers 2 4 16 32
Cora

GCN 78.45 ± 2.29 71.26 ± 8.09 55.82 ± 5.10 30.52 ± 4.48
GCN-SCT 81.88 ± 0.98 78.54 ± 2.54 60.51 ± 5.26 40.30 ± 15.81
GCNII∗ 82.19 ± 0.77 82.84 ± 0.61 84.69 ± 0.51 85.29 ± 0.47

GCNII-SCT 83.67 ± 0.45 83.27 ± 0.41 84.73 ± 0.63 85.32 ± 0.64
EGNN 83.16 ± 0.38 84.17 ± 0.36 85.36 ± 0.45 85.43 ± 0.41

EGNN-SCT 83.56 ± 0.40 84.35 ± 0.47 85.37 ± 0.52 85.36 ± 0.46

Citeseer
GCN 65.33 ± 1.74 56.57 ± 4.21 18.24 ± 1.72 29.67 ± 6.46

GCN-SCT 65.47 ± 1.70 64.86 ± 1.58 50.89 ± 3.49 43.07 ± 4.68
GCNII∗ 67.81 ± 0.89 68.10 ± 0.84 72.97 ± 0.71 73.24 ± 0.78

GCNII-SCT 71.25 ± 0.96 69.66 ± 1.78 72.86 ± 0.74 73.30 ± 1.33
EGNN 71.82 ± 0.49 72.04 ± 0.50 72.52 ± 0.67 72.54 ± 0.65

EGNN-SCT 72.88 ± 0.50 72.05 ± 0.58 72.57 ± 0.87 72.69 ± 0.72

PubMed
GCN 77.43 ± 0.90 75.63 ± 3.72 40.85 ± 5.09 41.11 ± 1.77

GCN-SCT 77.32 ± 1.20 76.46 ± 2.53 64.85 ± 13.14 66.27 ± 10.80
GCNII∗ 78.05 ± 1.53 77.86 ± 0.91 80.03 ± 0.50 79.91 ± 0.27

GCNII-SCT 78.36 ± 0.59 77.89 ± 1.08 80.65 ± 0.41 80.51 ± 0.64
EGNN 79.27 ± 0.37 79.51 ± 0.30 79.88 ± 0.27 79.92 ± 0.28

EGNN-SCT 79.35 ± 0.37 79.70 ± 0.33 80.07 ± 0.35 80.03 ± 0.30

Table 8: Mean test accuracy ± standard deviation over 100 random initializations for each model of varying
depth. We compare against each of the baseline models generating results for GCN and EGNN, and report
the results (∗) for GCNII from [8]. SCT improves almost all baseline models except 32-layer EGNN for Cora,
16-layer GCNII for Citeseer, and 2-layer GCN for PubMed. In these three cases, models with SCT are only
marginally inferior to the baseline models.

Layers 2 4 16 32
Cora

GCN-SCT 13.77 8.72 6.40 5.95
GCNII-SCT 16.59 5.85 0.49 0.38
EGNN-SCT 7.29 3.04 0.15 −1.16

Citeseer
GCN-SCT 0.58 18.44 83.92 16.58

GCNII-SCT 26.28 7.93 −1.07 0.39
EGNN-SCT 15.14 0.13 0.46 1.55

PubMed
GCN-SCT −0.77 1.84 17.03 22.99

GCNII-SCT 1.89 0.21 9.51 8.64
EGNN-SCT 1.57 4.26 4.30 2.68

Table 9: We conduct t-test experiments at 0.95 confidence to compare models with and without SCT
on different benchmark graph node classification tasks. We observe that in general SCT provides
significant improvements, and only fails to improve in very few cases and by a marginal amount. A
larger t-score means a more significant improvement.

25

Under review as a conference paper at ICLR 2024

D.3.1 VANISHING GRADIENTS

Figure 4 shows the vanishing gradient problem for training deep GCN – with or without SCT – in
comparison to models like GCNII and EGNN. This figure plots ||∂Hout/∂H l|| for layers l ∈ [0, 32]
as the training epochs run from 0 to 100. Figures 4 (a) and (b) illustrate the vanishing gradient issue
for GCN and that it persists for GCN-SCT. Figures 4 (c) and (e) illustrate that GCNII and EGNN
do not suffer from vanishing gradients, and furthermore, because these models connect H0 to every
layer, the gradient with respect to the weights in the first layer is nonzero. What is interesting about
the addition of SCT to both EGNN and GCNII is that the intermediate gradients become large as the
training epochs progress shown in Figure 4 (d) and (f).

0 20 40 60 80
Epoch

0

20La
ye

r

0.00

0.05

0.10

0 20 40 60 80
Epoch

0

20La
ye

r

0.00

0.05

0.10

(a) GCN (b) GCN-SCT

0 20 40 60 80
Epoch

0

20La
ye

r

0.00

0.05

0.10

0 20 40 60 80
Epoch

0

20La
ye

r

0.00

0.05

0.10

(c) GCNII (d) GCNII-SCT

0 20 40 60 80
Epoch

0

20La
ye

r

0.00

0.05

0.10

0 20 40 60 80
Epoch

0

20La
ye

r

0.00

0.05

0.10

(e) EGNN (f) EGNN-SCT

Figure 4: Training gradients for ||∂Hout/∂H l|| for l ∈ [0, 32] layers and 100 training epochs on the Citeseer
dataset. Here, all models have 32 layers and 16 hidden dimensions for each layer. We observe that (a) GCN
suffers from vanishing gradients. By contrast (c) GCNII and (e) EGNN do not suffer from vanishing gradients,
and we can observe their skip connection to H0. Because these models (GCNII/GCNII-SCT and EGNN/EGNN-
SCT) connect H0 to every layer, the gradient at the first layer is nonzero. We notice that while SCT does
not overcome vanishing gradients for (b) GCN-SCT, it is able to increase the norm of the gradients for the
intermediate layers in (d) GCNII-SCT and (f) EGNN-SCT.

D.4 ADDITIONAL SECTION 6.2 DETAILS FOR OTHER DATASETS

Table 11 reports the mean and standard deviation test accuracy over ten folds of the WebKB and
WikipediaNetwork datasets using the SCT-based models.

Table 12 lists the average computational time for each epoch for different models of the same depth
– 8 layers. These results show that integrating SCT into GNNs only results in a small amount of
computational overhead.

D.5 ADDITIONAL RESULTS FOR HETEROPHILIC GRAPHS

Heterophilic graphs contain a higher connection likelihood between distinct rather than similar labels.
Following the experimental setup described in [30], we compare GCN/GCN-SCT and GCNII/GCNII-
SCT using 10 fixed splits of 50/25/25% for training, validation, and testing, respectively. As in [30],
we report the mean accuracy and standard deviation for 10-fold cross validation on the test results in
Table 13. We utilize the same architectures and hyperparameter tuning as in Section 6.2.

26

Under review as a conference paper at ICLR 2024

Cora
ReLU leaky ReLU

Layers 2 4 16 32 2 4 16 32
GCN-SCT 81.2 80.3 71.4 67.2 82.9 82.8 68.0 65.5

GCNII-SCT 83.5 83.8 82.7 83.3 83.8 84.8 84.8 85.5
EGNN-SCT 84.1 83.8 82.3 80.8 83.7 84.5 83.3 82.0

Citeseer
ReLU leaky ReLU

Layers 2 4 16 32 2 4 16 32
GCN-SCT 69.0 67.3 51.5 50.3 69.9 67.7 55.4 51.0

GCNII-SCT 72.8 72.8 72.8 73.3 72.8 72.9 73.8 72.7
EGNN-SCT 72.5 72.0 70.2 71.8 73.1 71.7 72.6 72.9

PubMed
ReLU leaky ReLU

Layers 2 4 16 32 2 4 16 32
GCN-SCT 79.4 78.2 75.9 77.0 79.8 78.4 76.1 76.9

GCNII-SCT 79.7 80.1 80.7 80.7 79.6 80.0 80.3 80.7
EGNN-SCT 79.7 80.1 80.0 80.4 79.8 80.4 80.3 80.2

Coauthor-Physics
ReLU leaky ReLU

Layers 2 4 16 32 2 4 16 32
GCN-SCT 91.8 ± 1.6 91.6 ± 3.0 44.5 ± 13.0 42.6 ± 17.0 92.6 ± 1.6 92.5 ± 5.9 50.9 ± 15.0 43.6 ± 16.0

GCNII-SCT 94.4 ± 0.4 93.5 ± 1.2 93.7 ± 0.7 93.8 ± 0.6 94.0 ± 0.4 94.2 ± 0.3 93.3 ± 0.7 94.1 ± 0.3
EGNN-SCT 93.6 ± 0.7 94.1 ± 0.4 93.4 ± 0.8 93.8 ± 1.3 93.9 ± 0.7 94.0 ± 0.7 94.0 ± 0.7 93.3 ± 0.9

Ogbn-arxiv
ReLU leaky ReLU

Layers 2 4 16 32 2 4 16 32
GCN-SCT 71.7 ± 0.3 72.6 ± 0.3 71.4 ± 0.2 71.9 ± 0.3 72.1 ± 0.3 72.7 ± 0.3 72.3 ± 0.2 72.3 ± 0.3

GCNII-SCT 71.4 ± 0.3 72.1 ± 0.3 72.2 ± 0.2 71.8 ± 0.2 72.0 ± 0.3 72.2 ± 0.2 72.4 ± 0.3 72.1 ± 0.3
EGNN-SCT 68.5 ± 0.6 71.0 ± 0.5 72.8 ± 0.5 72.1 ± 0.6 67.7 ± 0.5 71.3 ± 0.5 72.3 ± 0.5 72.3 ± 0.5

Table 10: Test accuracy results for models of varying depth with ReLU or leaky ReLU activation
function on the citation network datasets using the split discussed in Section 6.2.

Cornell Texas Wisconsin Chameleon Squirrel
GCN-SCT 55.95± 8.5 62.16± 5.7 54.71± 4.4 38.44± 4.3 35.31± 1.9

GCNII-SCT 75.41± 2.2 83.34± 4.5 86.08± 3.8 64.52± 2.2 47.51± 1.4

Table 11: Test mean ± standard deviation accuracy from 10 fold cross validation on five heterophilic
datasets with fixed 48/32/20% splits. The depth of each model is 8 layers with 16 hidden channels.

Cornell Texas Wisconsin Chameleon Squirrel
GCN [22] 0.011 0.013 0.012 0.011 0.022
GCNII [7] 0.017 0.018 0.017 0.013 0.022
GCN-SCT 0.015 0.017 0.015 0.011 0.023

GCNII-SCT 0.017 0.018 0.017 0.020 0.025

Table 12: Average computational time per epoch for five heterophilic datasets with fixed 48/32/20%
splits. The depth of each model is 8 layers with 16 hidden channels. (Unit: second)

Layers 2 4 16 32
Roman-Empire

GCN [22] 84.48± 0.53 84.00± 0.71 74.56± 0.75 14.32± 1.02
GCN-SCT 85.37± 0.56 84.08± 0.71 82.58± 0.57 79.6± 0.49
GCNII[7] 83.49± 0.36 83.43± 0.40 80.01± 0.50 76.52± 0.70

GCNII-SCT 85.44± 0.56 85.08± 0.24 81.44± 0.35 77.28± 0.55

Table 13: Test mean ± standard deviation accuracy from 10 fold cross validation on heterophilic
Roman-Empire graph with fixed 50/25/25% splits. (Unit:%)

27

	Introduction
	Our contribution
	Additional related works
	Notation
	Organization

	Preliminaries and Existing Results
	Existing smoothness notions of node features
	Two existing theories of over-smoothing

	Effects of Activation Functions: A Geometric Characterization
	Implications of the above geometric characterizations

	 How Adjusting TEXT Affects the Smoothness of the Output
	The disparate effects of on M and s(): Empirical results
	Theoretical results on the smooth effects of ReLU and leaky ReLU

	Controlling Smoothness of Node Features
	Integrating SCT into other GCN-style models

	Experiments
	 Node feature trajectory
	Baseline comparisons for node classification

	Concluding Remarks
	Notations
	Summary of notations
	Details of notations

	Proofs in Section 3
	ReLU
	Leaky ReLU

	Proofs in Section 4
	Experimental Details
	Dataset details
	Model size and computational time for citation datasets
	Additional Section 6.2 details for citation datasets
	Vanishing gradients

	Additional Section 6.2 details for other datasets
	Additional results for heterophilic graphs

