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Abstract

Submodular functions, crucial for various applications, often lack practical learning
methods for their acquisition. Seemingly unrelated, learning a scaling from oracles
offering graded pairwise preferences (GPC) is underexplored, despite a rich history
in psychometrics. In this paper, we introduce deep submodular peripteral networks
(DSPNs), a novel parametric family of submodular functions, and methods for
their training using a GPC-based strategy to connect and then tackle both of the
above challenges. We introduce newly devised GPC-style “peripteral” loss which
leverages numerically graded relationships between pairs of objects (sets in our
case). Unlike traditional contrastive learning, or RHLF preference ranking, our
method utilizes graded comparisons, extracting more nuanced information than
just binary-outcome comparisons, and contrasts sets of any size (not just two). We
also define a novel suite of automatic sampling strategies for training, including
active-learning inspired submodular feedback. We demonstrate DSPNs’ efficacy in
learning submodularity from a costly target submodular function and demonstrate
its superiority both for experimental design and online streaming applications.

1 Introduction and Background

This paper jointly addresses two seemingly disparate problems presently open in the machine
learning community.

The first is that of identifying a useful practical scalable submodular function that can be used for
real-world data science tasks. Submodular functions, set functions that exhibit a diminishing returns
property (see Appendix B), have received considerable attention in the field of machine learning.
This has fostered new algorithms that offer near-optimal solutions for various applications. These
applications include detecting disease outbreaks [56], modeling fine structure in computer vision [41],
summarizing images [102, 72, 26, 37], active learning [34, 32, 25], compressed sensing, struc-
tured convex norms, and sparsity [4, 24], fairness [17, 43], efficient model training [57, 58, 70, 69]
recommendation systems [71], causal structure [114, 97], and brain parcellating [85] (see also the re-
views [101, 12]). Despite these myriad applications, most research on submodularity has been on the
algorithmic and theoretical side which assumes the submodular function needing to be optimized is al-
ready at hand. While there has been work showing the theoretical challenges associated with learning
submodularity [5, 7, 6], there is relatively little work on practical methods to produce a useful submod-
ular function in the first place (a few exceptions include [60, 92, 103]). Often, because it works well,
one uses the non-parametric submodular facility location (FL) function, i.e., for A ⊆ V with |V | = n,
f(A) =

∑n
i=1 maxa∈A sa,i where sa,i ≥ 0 is a similarity between items a and i. On the other hand,

the FL function’s computational and memory costs grow quadratically with dataset size n and so FL
can become infeasible for large data or online streaming applications. There is a need for practical
strategies to obtain useful, scalable, general-purpose, and widely applicable submodular functions.
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The second problem we address in this paper is the following: how best, in a modern machine-learning
context, can one learn a scaling from oracles that, for a given query, each provide numerically graded
pairwise comparisons between two choices? That is, given two choices, A and B, an oracle provides
a score Score(A,B) ∈ R which is positive if A is preferred to B, negative if B is preferred to A, zero
if indifferent, and where the absolute value provides the degree of preference A or B has over the
other. The oracle could be an individual human annotator, or could be a combinatorially expensive
desired target function — in either case we assume that it is infeasible to optimize over the oracle but
it is feasible to query. Learning a “scaling” means learning a scalar-valued function f that respects
these graded pairwise scores in that f(A)− f(B) ≈ Score(A,B).

A special case of such preference elicitation from human oracles have been studied going back
many decades. For example, the psychometric “Law of comparative judgment" [99] focuses on
establishing numeric interval scales based on knowing preferences between pairs of choices (e.g.,
A vs B). The Bradley-Terry [14] model (generalized to ranking elicitations in the Luce-Shephard
model [65, 90]) also involves preferences among elements of pairs. These preferences, however,
are not graded and rather are either only binary (A ≺ B or B ≺ A), ternary (allowing also for
indifference), or quaternary (allowing also for incomparability). Thus, each oracle query provides
minimal information about a pair. Therefore, multiple preference ratings are often aggregated where
a collection of (presumed random i.i.d.) oracles vote on the preference between items of the same
pair. This produces a histogram of preference ratings Cij (a count of how many times i is preferred
to j [91]) and this can be used in modern reinforcement learning with human feedback (RLHF)
systems [109, 19, 76, 111, 105] for reward learning (i.e., inverse reinforcement learning [3, 1]).
Overall, the above modeling strategies are known in the field of psychometric theory [33] as “paired
comparisons” where it is said that “paired comparison methods generally give much more reliable
results” [74] for models of human preference expression and elicitation.

There are other models of preference elicitation besides paired comparisons. We explore “graded
pairwise comparisons” (GPC) which also have been studied for quite some time [87, 9, 10]. Quite
recently, it was found that “GPCs are expected to reduce faking compared with Likert-type scales and
to produce more reliable, less ipsative trait scores than traditional-binary forced-choice formats” [61]
such as paired comparisons. An intuitive reason for this is that, once we get to the point that an
oracle is asked only if A ≺ B or B ≺ A, this does not elicit as much information out of the oracle
as would asking for Score(A,B) even though the incremental oracle effort for the latter is often
negligible. As far as we know, despite GPC’s potential information extraction efficiency advantages,
GPC has not been addressed in the modern machine learning community. Also, while histograms
Ci,j are appropriate for maximum likelihood estimation (MLE) of non-linear logistic and softmax
style regression [19, 76, 115, 111], MLE with a Bradley-Terry style model is suboptimal to learn
scoring from graded preferences Score(A,B) ∈ R which can be an arbitrary signed real number.

In the present paper we simultaneously address both of the above concerns via the introduction and
training of deep submodular peripteral networks (DSPNs). In a nutshell, DSPNs are an expressive
theoretically interesting parametric family of submodular functions that can be successfully learnt
using a new GPC-style loss that we introduce below. In our work, since the teacher will be an
expensive FL function and the learner is a DSPN set function, we can view this as a form of
knowledge distillation. Our offering, therefore, is very far from incremental — rather, we introduce
a new provably more expressive model family (DSPNs), and a new learning paradigm (GPC-style
learning) for distilling an expensive FL set function down to an expressive parametric learner.

An outline of our paper follows. In §2 we define the class of DSPN functions, motivating the
name “peripteral”, and offering theoretical comparisons with the class of deep sets [110]. Next, §3
describes a new GPC-style “peripteral” loss that is appropriate to train a DSPN but can be used in
any GPC-based preference elicitation learning task. For DSPN learning, this happens by producing
a list of pairs of subsets E,M that can be used to transfer information from the oracle target to the
DSPN being learnt. §4 describes several E,M pair sampling strategy including an active-learning
inspired submodular feedback approach. §5 empirically evaluates DSPN learning based on how
effectively information is transferred from the target oracle and performance on downstream tasks
such as experimental design. We find that the peripteral loss outperforms other losses for training
DSPNs, and show that the DSPN architecture is more effective at learning from the target function
than baseline methods such as Deep Sets and SetTransformers. We also find that the grading in GPC
indeed improves performance over binary-only comparisons.
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While the above introduction situates our research and establishes the setting of our paper in the
context of previous related work, our relation to and advancement over other related work is fully
explored in our Appendix in §A. The appendices continue (starting at §B) offering further details of
DSPN novelty (§C) and learning via the GPC-style peripteral loss.

2 Deep Submodular Peripteral Networks

Before starting this section, it may assist the reader to consider our brief overview of submodularity,
matroids, and weighted matroid rank in §B, and a brief review of deep submodular functions in §C,
both provided in the appendix.

A deep submodular peripteral network (DSPN) is a new expressive trainable parametric nons-
mooth subdifferentiable submodular function. A DSPN has three stages: (1) a "pillar" stage; (2) a
submodular-preserving permutation-invariant aggregation stage; and (3) a "roof" stage. When consid-
ered together, these three stages resemble an ancient Greek or Roman “peripteral” temple as shown
in Figures 1 and 10. In this paper, all DSPNs are also monotone non-decreasing and normalized (see
§B). As a set function f : 2V → R+, a DSPN maps any subset A ⊆ V to a non-negative real number.
We consider sets as object indices so A might be a set of image indices while {xi : i ∈ A} are the
objects being referred to. Hence, w.l.o.g., V = [n].

The first stage of a DSPN consists of a set of |A| pillars one for each element in a set A that is being
evaluated. The number of pillars changes depending on |A| the size of the set A being evaluated.
Each pillar is a many-layered deep neural structure ϕwp

: DX → Rd
+, parameterized by the vector

wp of real values, that maps from an object (from domain DX which could be an image, string, etc.)
to a non-negative embedded representation of that object. For any v ∈ V and object xv , then ϕwp

(xv)

is a d-dimensional non-negative real-valued vector (ϕwp
(xv)1, ϕwp

(xv)2, . . . , ϕwp
(xv)d) ∈ Rd

+.
The parameters wp are shared for all objects. Also, ϕwp

(x:)j ∈ Rn
+ refers, for any j ∈ [d], to the

n-dimensional vector of the jth pillar outputs for all v ∈ V .

The second stage of a DSPN is a submodular preserving and permutation-invariant aggregation.
Before describing this generally, we start with a simple example. Each element ϕwp

(xa)j of
ϕwp

(xa) is a score for xa along dimension j and so a non-negative modular set function can
be constructed via mj(A) =

∑
a∈A ϕwp

(xa)j . Such a summation is an aggregator that, along
dimension j simply sums up the jth contribution for every object in A. A simple way to convert
this to a monotone non-decreasing submodular function composes it with a non-decreasing concave
function ψ yielding hj(A) = ψ(mj(A)) — performing this for all j yields a d-dimensional vector of
submodular functions. More generally, any aggregation function ⊕ that preserves the submodularity
of hj(A) = ψ(⊕a∈Amj(a)) would suffice so long as it is also permutation invariant [110] (see
Def. 7). For example, with ⊕ = max (i.e., max pooling), the function ψ(maxa∈Amj(a)) is again
submodular. We show that there is an expressive infinitely large family of submodular preserving
permutation-invariant aggregation operators, taking the form of the weighted matroid rank functions
(Def. 6) which are defined based on a matroid M = (V, I) and a non-negative vector m ∈ R|V |

+ .
Lemma 1 (Permutation Invariance of Weighted Matroid Rank). The weighted matroid rank function
rankM,m(·) for matroid M = (V, I) with any non-negative vector m ∈ R|V |

+ is permutation
invariant.

A proof is in Appendix B. We identify the aggregator ⊕ as ⊕a∈Amj(a) = rankM,mj
(A) and produce

new submodular functions ∀j, hwp

j (A) = ψ(rankM,ϕwp (x:)j (A)), where the n-dimensional vector
ϕwp

(x:)j constitute the weights for the matroid. Depending on the matroid, this yields summation
(using a uniform matroid), max-pooling (using a partition matroid), and an unbounded number of
others thanks to the flexibility of matroids [77]. In theory, this means that the aggregator could also
be trained via discrete optimization over the space of discrete matroid structures (in §5, however,
our aggregators are fixed). The second stage of the DSPN thus aggregates the modular outputs
of the first stage into a resulting d-dimensional vector for any set A ⊆ V , namely hwp

(A) =

(h
wp

1 (A), h
wp

2 (A), . . . , h
wp

d (A)) ∈ Rd
+. This can also be viewed as a vector of submodular functions.

We presume in this work that each aggregator uses the same matroid and each pillar dimension is
used with exactly one matroid, but this can be relaxed leading to a d′ > d dimensional space — in
other words, many different discrete matroid structures can be used at the same time if so desired.
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The third and final “roof” stage of a DSPN is a deep submodular function (DSF) [23]. Deep
submodular functions are a nested series of vectors of monotone non-decreasing concave functions
composed with each other, layer-after-layer, leading to a final single scalar output. Each layer
contained in a DSF has non-negative weight values which assures the DSF is submodular. It was
shown in [13] that the family of submodular functions expressible by DSFs strictly increase with
depth. DSFs are also trainable using gradient-based methods analogous to how any deep neural
network can be trained. A DSF is defined as a set function, but we utilize the “root”2 [13] multivariate
multi-layered concave function ψwr

: Rd → R+ of a DSF in this work. That DSPNs significantly
extend DSFs, as well as a DSF primer, is further described in §C. The final stage of the DSPN
composes the output of the second stage with this final DSF via fw(A) = ψwr

(hwp
(A)) where

w = (wp, wr) constitute all the learnable continuous parameters of the DSPN (assuming the discrete
parameters, such as the matroid structure, is fixed). While the roof parameters wr must be positive,
the pillar parameters wp are free, but the pillar must produce non-negative outputs.
Theorem 2 (A DSPN is monotone non-decreasing submodular). Any DSPN fw(A) = ψwr

(hwp
(A))

so defined is guaranteed to be monotone non-decreasing submodular for all valid values of w.

The proof of Theorem 2 is found in Appendix §D. We immediately have the following corollary.
Corollary 3 (Submodular Preservation of Weighted Matroid Rank Aggregators). Any weighted
matroid rank function for matroid M = (V, I) with any non-negative vector m ∈ R|V |

+ , when used
as an aggregator in a DSPN, will be submodularity preserving.

Clearly there is a strong relationship between DSPNs and Deep Sets [110]. In fact any DSPNs is a
special case of a Deep Set, but there is an important distinction, namely that a DSPN is assuredly
submodular. It may seem like this would restrict the family of aggregation functions available but, as
shown above, there are in theory an unbounded number of aggregators to study. Training a DSPN
also preserves submodularity simply by ensuring wr remains positive which can be achieved using
projected gradient descent (the positive orthant is one of the easiest of the constraints to maintain). A
deep set, when trained, can easily lose the submodular property, something we demonstrate in §5,
rendering the deep set inapplicable when submodularity is required. Also, as was shown in [13],
DSFs are already quite expressive, the only known limitation being their inability to express certain
matroid rank functions. With a DSPN, however, the aggregator functions immediately eliminate this
inability.
Corollary 4 (DSPN Family). Let FDSPN (resp. FDSF) be the family of DSPN (resp. DSF) submodular
functions. Then FDSPN ⊃ FDSF.

It is an open theoretical problem if a DSPN, by varying in parameter w and combinatorial space M,
can represent all possible monotone non-decreasing submodular functions.

3 Peripteral Loss

We next describe a new “peripteral” loss to train a DSPN and simultaneously address how to learn
from numerically graded pairwise comparisons (GPCs) queryable from a target oracle.

We are given two objects E and M and we assume access to an oracle that when queried provides
a numerical score Score(E,M) ∈ R. As shorthand, we define ∆(E|M) = Score(E,M). We do
not presume it is always possible to optimize over ∆(E|M). This score, as mentioned above, could
come from human annotators giving graded preferences for E vs. M , or could be an expensive
process of training a machine learning system separately on data subsets E and M and returning
the difference in accuracy on a development set. In the context of DSPN learning, our score comes
from the difference of a computationally challenging target submodular function ft. As an example,
ft could be a facility location function that requires O(n2) time and memory and is not streaming
friendly, where we have ∆(E|M) = ft(E)− ft(M), this being a positive if E is more diverse than
M and negative otherwise. Given a collection of E,M pairs (§4), we wish to efficiently transfer
knowledge from the oracle target’s graded preferences ∆(E|M) to the learners graded preferences
δfw(E|M) = fw(E)− fw(M) by adjusting the parameters w of the learner fw.

We are inspired by simple binary linear SVMs that learn a binary label y ∈ {+1,−1} using a linear
model ⟨θ, x⟩ for input x and a hinge loss hinge(z) = max(1− z, 0). We express the loss of a given

2"root" here is distinct from "roof".
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prediction for x as hinge(y⟨θ, x⟩) where y⟨θ, x⟩ is positive for a correct prediction and negative
otherwise, regardless of the sign of y.

Addressing how to measure δfw(E|M)’s divergence from ∆(E|M), multiplying the two (as above)
would have the same sign benefit as the linear hinge SVM — a positive product indicates the prefer-
ence forE vs.M is aligned between the oracle and learner. We want more than this, however, since we
wish to learn from GPC. Instead, therefore, we measure mismatch via the ratio δfw(E|M)/∆(E|M).
Immediately, we again have a positive quantity if preferences between oracle and target are aligned,
but here grading also matters. A good match makes δfw(E|M)/∆(E|M) not only positive but also
large. If ∆(E|M) is large and positive, δfw(E|M) must also be large and positive to make the ratio
large and positive, while if ∆(E|M) is small and positive, δfw(E|M) must also be positive but need
not be too large to make the ratio large. A similar property holds when ∆(E|M) is negative. That is,
if ∆(E|M) is large and negative, then so would δfw(E|M) need to be to make the ratio large and
positive, while ∆(E|M) being small and negative allows for δfw(E|M) to be small and negative
while ensuring the ratio is large and positive.

On the other hand, a ratio alone is not a good objective to maximize, one big reason being that small
changes in the denominator can have disproportionately large effects on the value of the ratio, which
can amplify noise and lead to erratic optimization behavior.3 Ideally, we could find a hinge-like loss
that will penalize small ratios and reward large ratios. Consider the following:

L∆(δ) = |∆| log(1 + exp(1− δ

∆
)) (1)

Here, if ∆ is (very) positive, then δ must also be (very) positive to produce a small loss. If ∆ is (very)
negative then δ also must be small to produce a small loss. The absolute value of ∆ determines how
non-smooth the ratio is so we include an outer pre-multiplication by |∆| to ensure the slope of the
loss, as a function of δ, asymptotes to negative one (or one when ∆ is negative) in the penalty region,
analogous to hinge loss, and thus produces numerically stable gradients. Also analogous to hinge, we
add an extra “1” within the exp() function as a form of margin confidence, analogous to hinge loss
that, as with SVMs, expresses a distance between the decision boundary and the support vectors. Plots
of L∆(δ) are shown in Fig. 7 in Appendix F — this appendix also discusses the smoothness of L∆(δ)
via its gradients, describes a few additional useful hyperparameters, and provides a numerically stable
solution to the case when ∆ = 0 (thereby solving any δ/0 issues).

Comparing with standard contrastive losses and deep metric learning [8], a peripteral loss on
δfw(E|M) = fw(E) − fw(M) can be seen as a high-order self-normalizing by ∆ generaliza-
tion of triplet loss [108] if E is a heterogeneous and M a homogeneous set of objects. We recover
aspects of a triplet loss if we set E = {v, v−} and M = {v, v+} where M is the positive pair
(close and homogeneous) while E is the negative pair (distant from each other and thus a diverse
pair). With |E| > 2 and |M | > 2, we naturally represent high order relationships amongst both the
positive group M and the disperse group E (which is apparently rare, see§A.1). We remind the reader
that while our peripteral loss could be used for GPC-style contrastive training for representation
learning or for RLHF-based transformer alignment, our experiments in this paper in §5 focus on the
submodular learning problem.

3.1 Augmented Loss for Augmented Data

Data augmentation is frequently used to improve the generalization of neural networks. Since
augmented images represent the same knowledge in principle, they should have the same submodular
valuation and also should be considered redundant by any learnt submodular function. Given a set
E of images, let E′ represent a same-size set of augmented images generated after augmenting
each image e ∈ E. This means any learnt model fw should have fw(E) = fw(E

′) and ∀e ∈ E,
fw(e) = fw(e

′). To ensure this is the case, we use an augmentation regularizer Laug(fw;E,E
′)

defined as follows:

Laug(fw;E,E
′) = λ1(fw(E)− fw(E

′))2 +
λ2
|E|

∑
e∈E

(fw(e)− fw(e
′))2 (2)

Since augmented images represent the same information, the submodular gain of augmented images
relative to non-augmented images should be small or zero meaning fw(E|E′) = fw(E

′|E) = 0

3In the sequel, we use ∆ and δ where the E,M pair is implicit.
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and ∀e ∈ E, fw(e|e′) = fw(e
′|e) = 0. To encourage this, we use a redundancy regularizer

Lredn(fw;E,E
′) defined as follows:

Lredn(fw;E,E
′) = λ3(fw(E|E′)2 + fw(E

′|E)2) + λ4

|E|
∑

e∈E(fw(e|e′)2 + fw(e
′|e)2) (3)

In the above, we square all quantities to provide an extra penalty to larger values, while as quantities
such as fw(E|E′) approach zero, we diminish the penalty.

3.2 Final Loss

With all of the above individual loss components now well described, our final total loss
Ltot(fw; ∆(E|M), δfw(E|M)) for an E,M pair becomes:

Ltot(fw; ∆(E|M), δfw(E|M)) = L∆(E|M)(δfw(E|M)) + Laug(fw;E ∪M,E′ ∪M ′)

+ Lredn(fw;E,E
′) + Lredn(fw;M,M ′) (4)

With a dataset D = {(Ei,Mi)}Ni=1 of pairs, the total risk is:

R̂(w;D) =
1

N

∑
i∈[N ]

Ltot(fw; ∆(Ei|Mi), δfw(Ei|Mi)). (5)

Fig. 1 shows the structure of a DSPN and its learning control flow. Please see appendix G for more
details.
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Figure 1: The structure of a DSPN and the control flow of how a DSPN is trained; parameters are
shared between the DSPNs processing E and M sets.

4 Sampling (E,M) Pairs

DSPN training via the peripteral loss requires a dataset D = {(Ei,Mi)}Ni=1 of pairs of sets where
each Ei,Mi ⊆ V . Since the DSPN starts with the pillar stage, the learnt model can then be tested on
samples that are outside of V as we do in §5. Still, exhaustively training on all pairs of subsets from V
is infeasible. Therefore, the pairing strategy used to incorporate the sampled sets is a critical compo-
nent in our dataset construction. We thus propose several practical, both passive and active, strategies
to efficiently sample from this combinatorial space. The passive strategies are heuristic-based, while
the active strategies are dependent on either the DSPN as it is being learnt or optionally the target
function if it is possible to optimize (fortunately, Table 1 shows target sampling is not necessary). Our
description here of these strategies is augmented with further discussion and analysis in appendix E.

Passive Sampling: If we assume the maximum set size to be K so that |E| ≤ K and |M | ≤ K and
a training dataset to have C classes or clusters, we may generate E,M pairs in two ways. In Style-I,
we sample a homogeneous set of size K from a randomly chosen single class and a heterogeneous

6



Figure 2: Passive Sets. We consider a simple 2D
ground set with 5 clusters/classes, as indicated by the
colors. The various types of passively sampled sets are
depicted (discussed in section 4). Type-I homogeneous
sets are randomly sampled from a single class, while
Type-I heterogeneous sets are sampled from the full
ground set. Meanwhile, Type-II restricts the ground set
to a subset of classes and samples “clumps" from each
of the sampled classes to construct the homogeneous set,
and diverse sets from each class to create the heteroge-
neous sets. Intuitively, using Type-I/II allows the learnt
DSPN to model intraclass/interclass respectively.

Figure 3: Set Pairing. We actively sample sets by
optimizing the DSPN as it is being learnt or option-
ally the target function. The depicted graph demon-
strates how the actively sampled sets are integrated into
D = {(Ei,Mi)}Ni . Th red/blue vertices refer to pas-
sively/actively sampled sets. An edge between two ver-
tices indicates that sets from the categories denoted by
the vertices are used to create (E,M) pairs to train the
DSPN. Dashed edges represent non-critical pairs.

set of size K randomly over the full dataset. In Style-II, we first choose a random set of C ′ ≤ C
classes, where C ′ is chosen uniformly at random over [C], and (if C ′ < C) subselect from the ground
set a set VC′ ⊆ V containing only those samples corresponding to those C ′ classes. To choose an
E set, we perform K-Means clustering on VC′ , and pick the sample closest to each cluster mean to
construct our set. To build an M set, we choose one sample for each class/cluster in VC′ and then add
its ⌊K/C ′⌋ − 1 nearest neighbors. Importantly, the E and M sets in each pair sampled with Style-II
are much more difficult to distinguish than Style-I. We also note that these sampling strategies are
imperfect, so the supposedly heterogeneous E set may not truly be heterogeneous in relation to its
homogeneous counterpart M . However, as discussed in §E, the peripteral loss allows us to train a
DSPN even if the set pairs are imperfectly labeled since the oracle just flips the sign of its preference.
Simplified passive 2D sets are shown in Fig. 2 and a set-pairing illustration is seen in Fig. 3.

Active Sampling: Sets selected by the passive strategies are independent of both the learner and the
target function. Thus, due to the combinatorial nature of the problem, there may be a discrepancy
between what sets are valued highly by the DSPN and/or the target. This leads us to employ actively
sampled sets obtained through two approaches. We refer to the first approach as DSPN Feedback,
which obtains sets by maximizing or minimizing the DSPN as it is being learnt. As DSPN is
submodular, we may optimize it over either full ground set V or a class-restricted ground set to get
high-valued subsets, where the greedy algorithm can be used for maximization [73] and submodular
minimization [28] can be used to find the homogeneous sets (although in practice, submodular
minimization heuristics suffice). We refer to the second approach as Target Feedback, where
we obtain sets by optimizing the target. The latter approach is only applicable when the target is
optimizable (e.g., submodular), which would not be the case with a human oracle. While we do test
“Target Feedback” below, our experiments in §5.3 show that it is not necessary for good performance,
which portends well for our framework to be used in other GPC contexts (e.g., RLHF learning via
human feedback). Thus, while the E,M pair generation strategies mentioned here are specific to
DSPN learning, our peripteral loss could be used to train any deep set or other neural network given
access to graded oracle preferences, thus yielding a general purpose GPC-style learning procedure.

5 Experiments

We evaluate the effectiveness of our framework by training a DSPN to emulate a costly target
oracle FL function. We assert that DSPN training is deemed successful if the subsets recovered by
maximizing the learnt DSPN are (1) assigned high values by the target function (§5.1); and (2) are
usable for a real downstream task such as training a predictive model (§5.2).
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Datasets: We consider four image classification datasets: Imagenette, Imagewoof, CIFAR100, and
Imagenet100. Imagenette, Imagewoof, and Imagenet100 are subsets of Imagenet-1k [84] where a
subset of the original classes is used. Imagenet100 (resp. CIFAR100) have 100 classes and 130,000
(resp. 60,000) images, while Imagenette and Imagewoof have 10 classes (and 13,000 images).

DSPN Architecture: We use CLIP ViT encoder [82] for all datasets to get the embeddings that are
used as inputs to the DSPN which can be seen as a fixed part of the pillar. We use an additional
2-layer network as the trainable part of the pillar (ϕwp

); for DSPN roof (ψwr
) we use a 2-layered

DSF for Imagenette/Imagewoof and 1-layered DSF for CIFAR100/Imagenet100. We use multiple
concave activation functions, i.e., all of σ(x) ∈ {x, x0.5, ln(1 + x), tanh(x), 1− e−x} in every layer
of the roof (ensuring wr ≥ 0 during training) and thus allow the training procedure to decide between
them. See §H for hyperparameter details.

Target: We use Facility Location (FL) as a target whose construction is rather expensive (quadratic)
and also does not generalize to held-out data, but this is a key point. That is, we show how we distill
from this expensive target FL to a cheaper and generalizable DSPN. Each target FL is created by
computing a real-valued feature vector for each sample and then computing a non-negative similarity
between each such vector. We used a CLIP ViT encoder to encode input images, and a tuned RBF
kernel to construct similarities for our target FLs.

Training and Evaluation: We train up to sets of size |E|, |M | ≤ 100 for all datasets. We show that
we generalize beyond this size not just on held-out subsets but even on held-out data. Given ground
set V , we construct pairs (E,M) both passively and actively, as discussed earlier. Please refer to §G
for the details on training. For the target oracle, we use a facility location function with similarity
instantiated using a radial basis function kernel with a tuned kernel width. During the evaluation, both
learned set functions and target oracle use a held-out ground set V ′ of images, that is, V ′ ∩ V = ∅.

5.1 Transfer from Target to Learner

We demonstrate that the target FL assigns high values to summaries that are generated
by the DSPN in Figure 4. Specifically, we determine if S is a good quality set if it
has a high normalized FL evaluation ft(S)

ft(SFL) , where ft is the target FL and St is the
set generated by applying cardinality constrained greedy maximization to the target FL.

We evaluate four different loss 
functions (see legend) based 
on how effective they are as 
objectives for DSPN training on 
four different datasets. The 
distances to center (i.e., radius 
at any angle) represent the 
normalized ∈ [0,1] ground-truth 
(target) summary valuations 
(larger is better) produced by 
performing greedy max on a 
DSPN that was trained with one 
of the losses peripteral (solid), 
regression (dotted), margin 
(dash-dot)) or random 
selection (long-dash-dot). 
Across summary sizes (marked 
on the periphery) and the four 
datasets, we find our proposed 
peripteral loss to be the most 
effective for learning DSPNs. 
Existing loss functions such as 
margin and regression 
underperform, and often are 
surpassed even by naive 
random selection.

Imagenet100

CIFAR100Imagenette

Imagewoof

Increasin
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Increasing Summary Size

Increasing Summary Size
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re

as
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Figure 4: Transfer. We compare different loss functions in
terms of their effectiveness at training a DSPN.

Therefore, we compare different
DSPN models based on the normal-
ized FL evaluation that their maximiz-
ers attain. We compare DSPN mod-
els trained with three different losses:
the peripteral loss, the contrastive
max-margin style structured predic-
tion loss [98], and a regression loss
(shown as DSPN (peripteral), DSPN
(margin) and DSPN (regression) re-
spectively in Figure 4). Please refer
appendix H for the definition of base-
line losses (Equations 30 and 31). We
also compare against randomly gener-
ated sets, which are denoted as Ran-
dom. From this set of experiments,
we find that the DSPN trained with
the peripteral loss consistently outper-
forms all other baselines across differ-
ent summary sizes (budgets) and datasets. Interestingly, the DSPN outperforms random even on
budgets greater than 100, despite never having encountered such subsets during training. This
provides evidence that our GPC-based peripteral loss is the loss of choice for training DSPNs.

5.2 Application to Experimental Design

Experimental design involves selecting a subset of unlabeled examples from a large pool for labeling
to create a training set [80]. In this section, we evaluate the performance of a learnt DSPN based on
how well a simple linear model generalizes when trained on a training set that was chosen by a DSPN.
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Figure 5: Offline Experimental Design. We compare different summarization procedures, and assess them
based on the test accuracy that a linear model attains upon being trained on the summary. We find that maximizing
the learnt DSPN generates high quality datasets, outperforming existing summarization techniques such as
CRAIG and k-centers. In many cases, the DSPN approaches the Target FL even though the latter is aware of the
duplicates present in the data. Takeaway: DSPN effectively chooses training samples for labeling from an
unlabeled pool.
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Figure 6: Online Experimental Design. The performance of a linear probe, trained based on a subset
selected by an algorithm that does not use labels, is reported at varying budgets. DSPN-online achieves far
higher performance than other streaming algorithms such as reservoir sampling and VeSSAL and is performs
comparably to offline algorithms. Takeaway: DSPN can effectively select training samples for labeling from
a stream of unlabeled data.

We consider an offline setting where we assume the full unlabeled pool is available and an online
setting where the unlabeled pool is presented to the model in a non-iid stream. To test the robustness
of our framework to real-world challenges, we add duplicates such that the ground set is heavily class-
imbalanced (the procedure to generate the class-imbalanced set is shown in Appendix H). Importantly,
in these experiments we train with one set V and test on a completely held-out set V ′ with V ∩V ′ = ∅;
that is, the testing DSPN is on an entirely different ground set than the training DSPN.

Offline Setting: The offline setting assumes that the full unlabeled pool is accessible by the summa-
rization procedure. The results of these experiments are presented in Figure 5. Our approach, denoted
as DSPN in the figure, applies greedy maximization to the learnt DSPN to generate the summary. We
also consider a cheating experiment by applying greedy to the target FL after removing duplicates
from the ground set; we refer to this approach as Target FL. Finally, we consider three baseline
summarization procedures CRAIG [69], K-centers [89], and random subset selection [75]. The learnt
DSPN achieves performance comparable to the target FL in all datasets up to a budget of 100. Beyond
that, the difference between DSPN and the Target FL grows but the DSPN continues to generate higher
quality than any of the baselines, showing DSPNs generalize to set sizes beyond the training set sizes.

Online Setting: We consider an online setting where the data is presented to the model in a non-
iid, class-incremental stream, as done in the continual learning literature [63, 18, 2, 113]. Unlike
the facility location function which requires the full ground set for evaluation, the DSPN can be
maximized in a streaming manner. Thus, we employ the streaming maximization algorithm proposed
by [52] to maximize the DSPN, due to its effectiveness in real-world settings and its lack of additional
memory requirements. This approach is referred to as DSPN-online in Figure 6.

We compare our approach against two streaming summarization baselines. The first approach,
reservoir sampling [104], is an algorithm that enables random sampling of a fixed number of items
from a data stream as if the sample was drawn from the entire population at once. The second
approach, VeSSAL [86], seeks to select samples such that the summary maximizes the determinant of
the gram matrix constructed from the model embeddings. We also apply (offline) greedy maximization
to the target facility location (Target FL-offline) and the learned DSPN (DSPN-offline), which serve
as upper bounds to what is attainable by streaming DSPN maximization.

In Figure 6, we present quantitative results where a linear model is trained on a given streaming
summary after labels have been obtained. We find that DSPN-online significantly outperforms the
other streaming baselines on all datasets. Surprisingly, DSPN-offline and DSPN-online achieve similar
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performance, demonstrating the flexibility of DSPNs. FL-offline tends to generate the highest quality
summaries, but requires access to the full ground set and assumes duplicates are manually removed.

5.3 Ablations

Method FL Eval Offline Acc Online Acc

DSPN 0.92 67.8 65.9

w/o target feedback 0.93 67.7 66.9
w/o feedback 0.83 47.7 30.1
w/o type-II sampling 0.64 13.1 10.7

PC rather than GPC 0.90 62.8 63.4

w/o learnt pillar 0.71 39.1 38.0

Deep Set 0.56 9.2 3.5
Set Transformer 0.34 13.8 –

Table 1: Ablations on Imagenet100. The importance
of feedback, learnt features, enforcing submodularity,
and GPC (in each column, bold is best, underline is
2nd best). “w/o feedback" indicates a DSPN model
trained without feedback, while “w/o target feedback”
is when the oracle is only queried. For Set Transformer,
streaming maximization fails to produce a summary of
the required size (therefore it is omitted). “PC rather
than GPC” uses non-graded pairwise comparisons,
showing the benefits of grading, consistent with [61].
All results are for a size-100 set.

Table 1, provides Imagenet100 results on
sets of size 100 that explore the importance
of various components of the DSPN. We
report three numbers for each ablation: (1)
FL Eval which corresponds to the normal-
ized FL evaluation discussed in § 5.1 (2)
Offline Acc which denotes the final accu-
racy of a linear model in the offline exper-
imental design setting and (3) Online Acc
denotes the final accuracy of a linear model
in the online experimental design setting.

Removing (FL) Feedback: Active selec-
tion is obtained by maximizing the DSPN
or Target FL during training (denoted as
DSPN feedback and Target feedback respec-
tively). We find that only removing the sets
obtained from target feedback has little to
no impact on the final performance of the
DSPN, suggesting that it is not necessary
to optimize the target function. This shows
that our framework can be applied to GPC
learning even when it is not possible to opti-
mize the target, such as with human oracles.
However, we find that completely removing Active selection significantly hurts the final DSPN .

Removing Learnable Pillar: We assess the utility of a learnable pillar, by training a DSPN with
a fully frozen pillar. In this case, we attempt to learn the weights of a DSF on random projections
of CLIP features. We discover that the DSPN without learnable pillars significantly underperforms
its counterpart. We discuss this further in appendix I .

Removing Submodularity: We study the utility of submodular constraints to learn the target. To this
end, we compare DSPN against a Deep Set [110] and SetTransformer [55] architecture in the third sec-
tion of table 1. we discover that the absence of submodularity significantly hampers the performance
for all the metrics, since the greedy algorithm has no guarantees on an arbitrary set function.

6 Conclusion and Future Work

We have proposed DSPNs and methods for training/distilling them. Since the computational cost
for querying a DSPN is independent of dataset size, and the training scheme leverages automatically
generated (E,M) pairs, our methods learn practical submodular functions scalably. It may ultimately
be possible to scale our training framework to massive heterogeneous datasets to develop foundation
DSPNs having strong zero-shot summarization capabilities on a wide array of domains. We also
propose the peripteral loss which leverages numerically graded relationships between pairs of
objects. The graded pairwise preferences are provided from an oracle and are used to learn a
submodular function that captures these relationships. However, the scope of the peripteral loss
extends far beyond training DSPNs and has many applications such as new contrastive representation
learning procedures, and learning a reward model in the context of RLHF with real human oracles.
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A Other Related Work

In addition to the previously discussed literature in §1 that addresses learning through pairwise com-
parison, human preference elicitation, and contrastive learning, this section provides a comprehensive
review of both theoretical and empirical studies related to the learning of set functions.

A.1 Relationship to contrastive learning

We are inspired by contrastive learning [8], which has pushed the boundaries of deep learning by
leveraging the massive information in unlabeled data. Unlike standard supervised learning which
teaches models to associate samples to human-supplied labels, contrastive learning encourages
models to capture relationships between pairs, groups, or sections of unlabeled samples. It does this
by “contrasting” positive pairs (i.e., similar data points) against negative pairs (dissimilar data points).
Mathematically, this approach uses loss functions that encourage the model to learn embeddings
where positive pairs become “close” (according to some distance measure), while negative pairs
become “far.” A common setting is the contrastive loss, such as the triplet loss or the Siamese
network loss. For instance, in the triplet loss framework, the model is trained on triplets of data
points consisting of an anchor x, a positive example x+ (similar to the anchor), and a negative
example x− (dissimilar from the anchor). Optimizing a model with such a loss function encourages a
representation that respects these positive/negative pairwise preferences.

On the other hand, such contrastive approaches are analogous to binary-only pairwise comparison
elicitations. That is, existing contrastive losses neither utilize information regarding how positive the
pair x, x+ is nor how negative the pair x, x− is. A more nuanced graded comparison, if available,
would be an improvement. In fact, the benefit of graded comparisons is analogous to the benefits of
using soft over hard labels in supervised training (say from model distillation) which has benefits
in uncertainty representation, regularization, noise mitigation, adjustable smoothness via softmax
temperature, and more efficient knowledge transfer. Another limitation of previous contrastive
learning is that it operates only with positive or negative groups of size two (pairs) rather than larger
groups. While it is often the case that the anchor x is contrasted with many negative examples, it
is always done so pairwise, considering each x− with x together in a sum of pairwise terms. Also,
while [100, 42] is the only work we are aware of that considers more than two positive examples at
a time, each of these positive samples is again considered only paired up with a negative sample,
leading to

(
k
2

)
pairings with k positive examples. Sums of pairwise terms do not allow for the

consideration of higher order relationships, e.g., a given pair might be measured differently in the
context of a third sample. In addition to addressing the two aforementioned problems, DSPNs and
our GPC-style loss addresses this issue as well, although our learning goal in this paper is learning
submodularity not in representation learning (the latter of which we leave to future work).

A.2 Learning Non-submodular Set functions

Recently, there has been a growing focus on leveraging data-driven neural methods for estimating
set functions, with practical applications spanning anomaly detection, amortized clustering of mix-
ture models, and point cloud classification [81]. Common to these applications is the fundamental
approach of embedding each element within a set into dense embeddings, followed by permutation-
invariant aggregation (set-to-vector transformation), and subsequent integration into a deep neural
network [110, 38, 83]. The significance of incorporating interaction among set elements has been
emphasized by [55], who argue that conventional aggregations, such as average-pooling, can be
interpreted as a specialized form of attention. Consequently, they propose an attention-based architec-
ture known as the set-transformer. Building upon this, [67] have made computational enhancements
to the attention-based architecture. Lastly, there has been a recent exploration into a probabilistic
interpretation of set-to-vector transformations [113, 46], further refining the methodology.

The works mentioned above diverge from our approach for several reasons. Firstly, they primarily
focus on supervised learning oracles utilizing static datasets to learn neural parameters, whereas
our method draws inspiration from max-margin contrastive learning and employs a dynamically
updated dataset. Secondly, these existing works lack architectural and/or optimization constraints
ensuring the submodularity of the learned set function, in contrast to our work on learning deep
submodular functions, where submodularity is explicitly guaranteed. However, for a comprehensive
evaluation against existing literature, we include Deep Sets and Set-Transformer as a baseline for
comparison. Thirdly, the set sizes used in these works are much smaller (30 in many experiments)
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compared to ours which go up to 500. Lastly, the learned set function in these works lacks a clear
interpretation associated with extremal—sets that (locally) maximize or minimize the set function.
In contrast, our Deep Submodular Function (DSF) yields heterogeneous/homogeneous sets upon
maximization/minimization. It is noteworthy that the choice of a submodular function as the inductive
bias may not be essential for certain tasks, such as point-cloud classification and amortized clustering
of mixture models. However, it proves to be a plausible inductive bias in scenarios where the objective
is to count unique characters [110, 113, 46, 55], since it can be exactly be expressed as a partition
matroid rank function, which lies in the family of deep submodular function.

Beyond neural approaches, one of the previous works [66] has also considered learning Determinantal
Point Process, or DPPs [50], by learning the O(n2) similarity matrix by noise contrastive estimation
[35]. However, their learning procedure is different from ours, and sampling from a DPP is much
more computationally expensive than maximizing a submodular function.

A.3 Theoretical Work on Learning Submodular Functions

Numerous works have investigated strategies for understanding submodular functions from a the-
oretical perspective. [31] examined the approximation of an oracle for every subset, utilizing a
multiplicative approximation approach to approximate the submodular polyhedron of the oracle using
Löwner ellipsoids. In contrast, [5, 6] focused on approximating the oracle with high probability on
sets sampled from specific distributions (often referred to as Probably Mostly Approximately Correct
(PMAC) learning) by transforming the problem into the identification of linear separators. Notably,
[6] demonstrated the impracticality of approximating any arbitrary monotone non-decreasing sub-
modular function to arbitrary closeness under PMAC learning in polynomial queries. Subsequently,
[7] proposed an algorithm for learning the oracle through pairwise comparisons in polynomial queries.
While this work shares theoretical commonalities with ours, it is important to highlight that [7]
examined set pairs sampled from a static distribution, contrasting with our approach, which involves
a dynamically changing distribution of set pairs due to our submodular feedback. Remarkably, across
the aforementioned works, the learned functions exhibit a form that can be represented easily using a
Deep Submodular Function (DSF), a facet that our work incorporates and explores further.

A.4 Neural Estimation of Submodular Functions

Since submodular functions have 2|V | degrees of freedom, empirical approaches of learning submod-
ular functions restrict the search space to a parametric subclass such as feature-based functions or
DSFs. Early data-driven learning techniques use the max-margin structured prediction framework
introduced in [98], which requires human annotators to manually construct summaries/sets that should
be assigned high values by the learnt submodular function [60, 102, 93, 36, 29]. These approaches
have consistently demonstrated that learned coefficients, as opposed to handcrafted ones, result in
submodular functions that can generate much higher quality summaries. However, these approaches
depend on human-constructed summaries which can be prohibitively expensive to procure at scale.
Furthermore, that the features suitable for the feature-based function are not learned, unlike our work
where we jointly learn features and associated parameters for the submodular function. Despite the
empirical success of this framework, these approaches all require sets chosen by humans which are
difficult to procure at scale.

More recently, [22] proposed to estimate a submodular function using recursive composition with
a learned concave function, arguing that the lack of a “good" concave function is a weakness of
DSF (and only used one concave function in their experiments). In our work, we alleviate this by
showing that one can learn a good DSF by training with multiple concave functions simultaneously
with varying degrees of saturation. It should also be noted that there is no theoretical discussion if the
representation capacity of the function class strictly increases with more recursive steps, unlike DSF,
where the capacity strictly increases with additional layers. Furthermore, they learn the parameters in
a supervised manner, given the annotated high-valued summaries, unlike our work which does so
in a self-supervised fashion. Lastly, the learned modular function for DSF has the interpretation of
capturing concepts (appendix I) which is not in their case. Remarkably, it is an interesting extension
where one combines the technique proposed in [22] to learn the concave function jointly with our
technique for learning the parameters.

[51] proposes an unsupervised framework to learn submodular functions, similar to our work. Their
approach involves the maximization of a handcrafted objective function, evaluating the quality of
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weights through measurements of submodular function properties like curvature and sharpness.
Notably, they do not engage in the simultaneous joint learning of features alongside parameters and
instead they first train an auto-encoder to get the features. To the best of our knowledge, no existing
studies have effectively undertaken the joint learning of submodular function parameters and features,
a key aspect of our proposed methodology.

Finally, we note the existence of related work using the same nomenclature, DSPN, introduced
by [112], which stands for Deep Set Prediction Network. The primary objective of [112] is to
predict a set based on dense features. In contrast, our research focuses on the development of a deep
submodular function (DSF) capable of generating sets through optimization.

B Submodular Functions and Weighted Matroid Rank

Submodular set functions effectively capture notions of diversity and representativeness. Continuing
on from §1, it is known that they are useful in machine learning in the context of data subset selection
[69, 45, 44, 106], feature selection [62], summarization [59], active learning [106, 49], experimental
design [11], more recently in reinforcement learning [79] and several other areas that involve some
form of discrete optimization. Submodular functions also appear naturally in many other areas, such
as theoretical computer science and statistical physics [101, 12].

Submodular functions are also of interest since they enjoy properties sufficient for efficient opti-
mization. For a ground set of size n, they lie in a cone of dimension 2n in R2n , but can still be
minimized exactly without constraints in polynomial time [28]. Even though submodular function
maximization is NP-hard, it offers a fast constant factor approximation algorithm, for instance in the
cardinality-constrained case, greedy results in 1− 1/e guarantee for polymatroid functions [73, 68].
Similarly one can give guarantees for other constrained cases such as knapsack constraint or more
complicated independence or matroid constraints [15, 16, 54, 40, 39].

In this section, we offer a brief primer on submodularity and their relationship to matroid rank.

Any function f : 2V → R that maps from subsets of some underlying ground set V of size |V | = n
is called a discrete set function. For a set function to be submodular, it must satisfy the property of
diminishing returns. This means that for any X ⊆ Y ⊆ V and any v ∈ V \ Y the gain of adding v to
the smaller set is larger than the gain of adding v to the larger set, meaning:

f(v|X) ≜ f(X ∪ {v})− f(X) ≥ f(Y ∪ {v})− f(Y ) ≜ f(v|Y ) (6)

We use the (conditional) gain notation f(v|X) ≜ f(X ∪ {v}) − f(X) regularly in the paper. We
also assume also that all submodular functions are monotone non-decreasing (or just monotone),
which means that for any X ⊆ Y we have that f(X) ≤ f(Y ) and non-negative, meaning that
0 ≤ f(X) for any X ⊆ V . We also assume f is normalized so that at the emptyset f(∅) = 0. Such
normalized monotone non-decreasing submodular functions necessarily are always non-negative, and
are commonly referred to as polymatroid functions [12, 20, 21, 64].

If Eqn (6) holds with equality for all sets, then the function is referred to as a modular function which
implies that f can be equated with a length n vector, that is for all X ⊆ V , f(X) =

∑
x∈X f(x),

which means the vector associated with f is (f(v) : v ∈ V ) ∈ Rn. We often use simplified notation
for modular functions — that is, given a length n vector m ∈ Rn, we can define the modular function
m : 2V → R as m(A) =

∑
a∈Am(a).

If the inequality in Eqn (6) holds in the reverse, meaning

f(v|X) ≜ f(X ∪ {v})− f(X) ≤ f(Y ∪ {v})− f(Y ) ≜ f(v|Y ) (7)

then the function is known as a supermodular function.

For completeness, we note that an equivalent definition of submodularity would say that for any two
sets A,B ⊆ V , we have that f(A) + f(B) ≥ f(A ∪B) + f(A ∩B). It is not hard to show that this
and Inequality (6) are identical [12, 28].

Given a finite set V and a set of subsets I = {I1, I2, . . . }, the pair (V, I) is known as a set system.

Matroids [53, 77, 88] are useful algebraic structures that are strongly related to submodular func-
tions [28]. Given a finite ground set V of size |V | = n, a matroid M is a set system that consists of
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the pair (V, I) where V is said ground set and I = {I1, I2, . . . } is a set of subsets of V , meaning
Ii ⊆ V for all i. To define matroid M we say M = (V, I). The subsets I are known as the indepen-
dent sets (meaning, for any I ∈ I, I is said to be independent) and they have certain properties that
make this the set system interesting and useful. Formally, a matroid is defined as follows:
Definition 5 (Matroid). Given a ground set V of size |V | = n, a matroid M = (V, I) is a set system
where the set of subsets I = (I1, I2, . . . , ) have the following properties:

1. ∅ ∈ I

2. If I ∈ I and I ′ ⊂ I , then I ′ ∈ I

3. For any I, I ′ ∈ I with |I| < |I ′|, there exists a v ∈ I ′ \ I such that I ∪ {v} ∈ I.

Matroids generalize the algebraic properties of vectors in a vector space, where independence of
a set corresponds to sets of vectors that are linearly independent. If we think V as a set of indices
of vectors, and A = {a1, a2, . . . } ⊆ V , then the A being independent corresponds to the vectors
associated with A being linearly independent. Matroids however capture the algebraic properties of
independence and there are valid matroids that can not be representable by any vector space. Note
also that the algebraic structure is similar to that of collections of random variables that might or
might not be statistically independent.

While there are many types and useful properties of matroids, the rank of a matroid measures the
independence of a set based on the largest independent set that it contains, namely

rankM(A) = max
I∈I

|A ∩ I| = max{B : B ⊆ A and B ∈ I} (8)

For any matroid, the rank function is submodular, meaning for any A,B ⊆ V , rankM(A) +
rankM(B) ≥ rankM(A∪B)+ rankM(A∩B). For example, the function f(A) = min(|A|, α) with
integral valued α is a classic concave-composed with modular function (which is thus submodular)
but is also the rank function for partition matroid with one partition block and limit of α. A matroid
rank function is also a polymatroid function since rankM(∅) = 0 and rankM(A) ≤ rankM(B)
whenever A ⊆ B.

A matroid rank functions can be significantly extended when it is associated with a non-negative
vector m ∈ R|V |

+ of length |V | = n. With such a vector, one can define a weighted matroid rank
function that returns the maximum weight of any base of a set A:
Definition 6 (Weighted Matroid Rank Function). Given a matroid M = (V, I) and a non-negative
vector m ∈ Rn

+, the weighted matroid rank function for this matroid and vector is defined as:

rankM,m(A) = max
I∈I

m(A ∩ I) (9)

A weighted matroid rank function is still submodular and is still a polymatroid function. In fact,
weighted matroid rank functions generalize many much more recognizable functions. Here are
several examples.

1. Consider a free matroid M = (V, I) where I = 2V . This means that all 2n subsets of V
are independent in the matroid. Then given non-negative vector m ∈ R|V |

+ , the weighted
matroid rank function has the form rankM,m(A) =

∑
a∈Am(a), thus the weighted matroid

rank function is just the modular function m.
2. Consider a one-partition matroid rank function with limit k = 1. This is a matroid M =

(V, I) where I = {A ⊆ V : |A| = 1}, meaning all sets of size one are independent but no
other set is independent in the matroid. Given non-negative vector m ∈ R|V |

+ , the weighted
matroid rank function has the form rankM,m(A) = maxa∈Am(a).

3. The facility location function can be seen as the sum of a weighted matroid rank functions
using the same matroid as the previous example but using different weights for each term
in the sum. That is, given a similarity matrix [S]ai of non-negative entries, the facility
location function has form f(A) =

∑n
i=1 maxa∈A sai. Hence, using the same matroid as

the previous case, the facility location takes the form f(A) =
∑M

i=1 rankM,s:,i(A) where
s:,i is the ith column of the matrix.
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Another interesting (and apparently previously unreported) property of weighted matroid rank
functions is that they are always permutation invariant in the same sense as a deep set function [110]
is permutation invariant. Firstly, we restate the definition of permutation invariance from [110].
Definition 7 (Permutation Invariance [110]). A function f : 2V → R acting on sets is said to be
permutation invariant if the function is invariant to the order of objects in the set. That is for any set
A ⊆ V with A = {a1, a2, . . . , am}, and for any permutation π : A → A, we have that for any set
f({a1, a2, . . . , am}) = f({π(a1), π(a2), . . . , π(am)}).

Thus, permutation invariance means that the order in which elements are considered or arranged does
not affect the outcome of the function that is applied to a set. For the weighted matroid rank function,
this means that if we take a subset A ⊆ V and permute its elements, the rankM,m(A) stays the same.
The reason is because the rank function is concerned only with the elements present in the subset, not
the order in which they are listed. Thus, permutation invariance aligns with the properties of matroids
as we formalize in the next lemma.
Lemma 1 (Permutation Invariance of Weighted Matroid Rank). The weighted matroid rank function
rankM,m(·) for matroid M = (V, I) with any non-negative vector m ∈ R|V |

+ is permutation
invariant.

Proof. The weighted matroid rank function for matroid M = (V, I) is defined as

rankm(A) = max
I∈I

m(A ∩ I) = max
I∈I

∑
a∈A∩I

m(a) (10)

and since nowhere in this definition are the order of the elements in A used, but rather only a sum
over some of the elements as shown on the right hand side of the above, the function is permutation
invariant. This also immediately follows given Proposition 8.

In fact, this property is true for any submodular function.
Proposition 8. Submodularity and Permutation Invariance. Any submodular set function f : 2V →
R is permutation invariant.

C Primer on and Novelty over Deep Submodular Functions

In this section, we offer a brief background on deep submodular functions (DSFs) and demonstrate
how our results in the present paper are not just incremental over this previous work — rather the
present paper offers significant novelty over, as far as we can tell from an extensive literature search,
previously published papers.

[96] proposed a scalable algorithm for minimizing a class of submodular functions known as de-
composable functions. In general, given a collection of modular functions, {mi}Ni=1 where each
mi : V → R+ and ϕ, a monotone non-decreasing, normalized ϕ(0) = 0 and non-negative concave
function,

f(A) =

N∑
i=1

ϕ (mi(A))

is said to be a “decomposable” function.

In machine learning, objects of interest are often represented by featurizing them into a finite-
dimensional vector space. If U = {u1, u2, . . . , u|U |} indexes the dimensions, then for any example

v ∈ V the modular function mU (v) =
(
mu1(v),mu2(v), . . . ,mu|U|(v)

)T
represents the features of

v. mu(v) can be interpreted in several ways such as the degree of presence of u− th concept in v
similar to concept bottleneck models [48] or even the count of an n-gram feature [107, 59, 60]. With
this nomenclature, we re-define decomposable submodular functions as feature-based functions that
has the form:

f(A) =
∑
u∈U

wuϕu (mu(A)) , (11)

where w represents a non-negative weight for each feature. The gain of adding examples with more of
the property represented by feature u diminishes as the set gets larger due to concave composition and

22



the diminishing returns of the concave function. Therefore, intuitively the set X ⊆ V that maximizes
the feature-based function would comprise examples that produce a diverse set of features according
to the features’ properties.

One issue with the feature-based function happens when there is redundancy between two features ui
and uj . For instance, if the features are a count of n-grams, and since higher-order n-grams encompass
lower-order n-grams, having too many of a certain high-order n-gram would also mean having many
of its lower-order n-grams, leading to redundancy (or correlation) in what the features represent. As
eq. (11) suggests, feature-based functions treat each feature independently. This motivates a flexible
class of submodular functions, known as Deep submodular functions or DSFs [13] which mitigates
the problem of redundancy by an additional concave composition followed by weighted aggregation
which allows for interaction between sets of redundant features as follows:

f(A) =
∑
s∈S

ωsϕs

(∑
u∈U

ws,uϕu (mu(A))

)
(12)

Here, ws,u and ωs are non-negative mixture weights. This naturally leads to a representation resem-
bling neural networks when we iteratively apply a concave function followed by linear aggregation,
giving rise to Deep Submodular Functions. ∀s ∈ S, [13] define

∑
u∈U ws,uϕu (mu(A)) as meta-

features, and in general one can stack more layers of concave composition followed by affine
transformations, leading to meta-meta features, and so on. Let L be the total number of layers in a
DSF; each meta-feature at layer ℓ of this network is a submodular function, we index them using
U (ℓ), which means in the example in equation (12) U = U (0) and S = U (1).

W (ℓ) ∈ R|U(ℓ)|×|U(ℓ−1)|
+ be the mixture weights at layer ℓ, where for the last layer L we have a

uniform weight, which means WL ∈ R|U(L)|
+ Concave functions applied at the j-th submodular

function of layer ℓ is represented by ϕ(ℓ)j . To write concave functions in vector form, we define
ΦU : R|U | → R|U | such that for any a ∈ R|U | we define ΦU (a)

ΦU (a) ≜ [ϕ1(a1), ϕ2(a2), . . . , ϕ|U |(a|U |)]
T (13)

With the notation above, for X ⊆ V , DSF f(A) is defined as following

f(A) =W (L) · ΦU(L−1)

(
W (L−1) · ΦU(L−2)

(
. . .W (1) · ΦU(0) (mU(0)(A)) . . .

))
(14)

or recursively as follows
fL(A) =W (L) · ΦU(L−1)

(
fL−1(A)

)
(15)

where,
f1(A) =W (1) · ΦU(0)(mU(0)(A)) (16)

here, “·" denotes matrix multiplication. To maintain submodularity, all weight matrices must be
non-negative. A DSF can incorporate skip connections, and in general, a directed acyclic graph
topology can be used to represent the DSF architecture with the help of recursive definitions (refer to
section 4.1 of [13]).

Lastly, [13] showed that DSFs strictly generalize feature-based functions, and adding additional
layers strictly increases the representation capacity, therefore suggesting the utility of additional
layers.

It is important to realize that our present work on DSPNs and GPC-based learning is not just an
incremental improvement to DSFs, but rather offers a new class of submodular function and an
entirely new way to learn the submodular function. There are two pre-existing papers on DSFs,
this paper [23] from 2016 as well as a more theoretical paper [13] from 2017. The first paper [23]
introduces DSFs and uses a max-margin based learning algorithm that was introduced by [60] in
their “Submodular Shells” paper but applies that learning algorithm to DSFs. Max-margin learning
of submodular functions requires a dataset of highly valued subsets according to some unknown
submodular function to be learnt (e.g., each subset can be thought of as a good summary) and the
goal of max-margin learning in this case is to learn a submodular function so that it scores those
subsets highly relative to other subsets. Max-margin learning does not care at all about the rest of
the valuations of the submodular function (e.g., a max-margin learnt submodular function is under
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no obligation to perform well for problems other than submodular maximization, and is under no
obligations to preserve the rank valuations of a given teacher submodular function).

Our present paper is entirely different from these two papers. While our DSPN “roof” structure uses
the deep concave function from DSFs, there is no commonality beyond this. In the present (DSPN)
paper, we have introduced a new parametric submodular function class (DSPNs) that overcomes
the only known weakness of DSFs (namely, DSFs inability to express certain graphic matroid
rank functions, as proven in [13]). DSPNs do not have this weakness thanks to the submodularity-
preserving permutation-invariant aggregation stage (see Lemma 1 and Corollaries 3 and 4) which
immediate means that DSPNs can represent any graphic matroid rank function. The expressivity
improvement of DSPNs over DSFs means that it is now an open theoretical problem if DSPNs can
represent all polymatroid functions or not. Considering the narrow range of submodular functions that
DSFs cannot represent, we believe that it is likely that DSPNs indeed can represent any polymatroid
function, but we do not have a proof of this at the present time.

We have also, in the present paper, introduced a new learning paradigm (the peripteral loss) for
learning DSPNs that does not suffer from the issues that the max-margin learning approach suffers
from. In essence, our learning is a form of distillation from an expensive (possibly unoptimizable)
target oracle down to a parametric and computationally efficient student (a DSPN). That is, with a
peripteral loss, the graded comparison signal ∆ can be any positive/negative value, which could come
from a difference in submodular valuations, or could come from a non-submodular function, or could
come from a human evaluator (we explain this in detail in Section 1). I.e., the learnt submodular
function can, via minimizing the peripteral loss, scale well for all values of any target function (e.g.,
low valued sets should be given a low value by the learnt function, and high valued set should be given
a high value by the learnt function, in order for the peripteral loss to be small). In the present study,
we choose ∆ as the difference between expensive-to-optimize facility location function evaluations
since it is a widely and successfully used submodular function but that suffers from computational
scalability issues when used for optimization (e.g., submodular max) over large datasets.

Another critical novel component of our paper over [23, 13] is that, to the best of our knowledge,
our peripteral loss approach is the first to establish a connection between: (I) contrastive learning
approaches in representation learning (see Section A.1); (II) pairwise comparison scaling methods
widely used in RLHF (and LLM learning, as discussed in the paper, lines 55–81); and (III) submodular
learning. We establish connections between these three approaches while at the same time extending
regular pairwise comparison approaches to the graded pairwise comparison approach (GPC), which
is further novelty. While we do not study contrastive learning or RLHF in our paper, we believe that
a broad impact of our work is that our peripteral loss for GPC will be useful for both higher-order
contrastive learning methods and for RLHF, but we leave that to future studies as we focus on
the submodular learning problem in the present paper (and, as we discuss in our introduction, we
believe there is too little attention in the community paid to practical strategies for identifying a good
submodular functions for a problem).

Lastly, the experimental results in [23] consider only very small-scale (and entirely offline) sum-
marization experiments (summarizing 100 images down to 10) or synthetic data experiments. By
contrast, we consider experiments on a much larger scale (130K images) and apply it towards both
offline and online summarization problems in the context of choosing a good set of training data
subset points that have not been previously explored — in other words, we instantiate the resulting
DSPNs on entirely held-out data, so not only do DSPNs generalize to different sets and set sizes of a
given ground set V but DSPNs generalize to entirely different ground sets V ′ (meaning V ′ ∩ V = ∅).

So in sum, the present paper offers enormous novelty and difference over the two previous DSF
papers [23, 13].

D Weighted Matroid Rank Aggregation for DSFs

Vanilla DSFs use modular functions (sum operator) for permutation invariant aggregation. However,
as we show in appendix B and definition 6, given a matroid M = (V, I) a modular function is indeed
just a special case of a weighted matroid rank function. Moreover, another common permutation
invariant aggregation technique - max-pooling is yet another special case of the weighted matroid
rank function. Therefore, with the same notations as in appendix C we define a DSF via a weighted
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matroid rank as follows:

fM(A) =W (L) · ΦU(L−1)

(
W (L−1) · ΦU(L−2)

(
. . .W (1) · ΦU(0) (m⃗axI∈ImU(0)(A ∩ I)) . . .

))
(17)

where define m⃗ax as applying maximum operator to every index as follows:

m⃗axI∈ImU(0)(A ∩ I) =
(
max
I∈I

mu(A ∩ I) | u ∈ U (0)

)T

(18)

In theorem 13 we show that fM is a permutation invariant submodular set function. To show that
fM is submodular we first state some properties that will be useful. We re-visit the definitions from
[13] for superdifferential and antitone superdifferential of a concave function which we will use to
provide sufficient conditions that will help to show f is submodular.
Definition 9 (Superdifferential). Let ϕ : Rd → R be a concave function; a superdifferential of a
concave function is a set defined as follows

∂ϕ(x) = {s ∈ Rn : f(y)− f(x) ≤ ⟨s, y − x⟩,∀y ∈ Rn}

Definition 10 (Antitone Superdifferential). A concave function ϕ : Rd → R is said to have antitone
superdifferential if for every x ≤ y (where ordering is defined for each dimension) we have a
superdifferential hx ≥ hy for all hx ∈ ∂ψ(x) and for all hy ∈ ∂ψ(y).

Using the definitions above, we have the following -
Lemma 11. Given for every layer ℓ in a DSF the list of monotone non-decreasing normalized
concave functions ΦUℓ = (ϕu | u ∈ U ℓ), W be matrix of non-negative mixture weights. Define
ψ : Rk → R as follows

ψ(x) ≜W (L) · ΦU(L−1)

(
W (L−1) · ΦU(L−2)

(
. . .W (1) · ΦU(0) (x⃗) . . .

))
(19)

Then ψ is concave and has antitone superdifferential.

Proof. The proof can be done following the similar steps as in Lemma 5.13, Corollary 5.13.1 and
Lemma 5.14 from [13].

We now re-state Theorem 5.12 in [13] as the follows.

Lemma 12. Let ψ : Rk → R be a monotone non-decreasing concave function and let ⃗g(A) ≜
(g1(A), g2(A) . . . gk(A)) be a vector of monotone non-decreasing and normalized submodular
(polymatroid) functions. Then if ψ has an antitone super differential, then the set function f : 2V → R
defined as f(A) ≜ ψ(g⃗(A)) is submodular for every A ⊆ V .

Proof. The proof is the same as for Theorem 5.12 in [13].

Using the theorem above, we have the following corollary that shows the submodularity of the Deep
Submodular Function defined using the weighted matroid rank (fM(A)) as the aggregation function.

Theorem 13 (Submodularity of fM). Given a matroid M = (V, I), ⃗g(A) ≜(
maxI∈I mu(A ∩ I) | u ∈ U (0)

)T
and ψ as in lemma 11, fM(A) = ψ(g⃗(A)) is submodular ∀

A ⊆ V . Moreover, fM(A) is permutation invariant on the elements of set A.

Proof. This is an application of lemma 11 into lemma 12 using the knowledge that weighed matroid
rank are polymatroid functions. Permutation invariance of fM it can be inferred from the permutation
invariance of weighted matroid rank function from lemma 1

This leads us to the fact that any DSPN, assuming that w = (wp, wr) are valid (specifically, that
wr ≥ 0) is submodular.
Theorem 2 (A DSPN is monotone non-decreasing submodular). Any DSPN fw(A) = ψwr

(hwp
(A))

so defined is guaranteed to be monotone non-decreasing submodular for all valid values of w.
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Proof. The output of each pillar is a d-dimensional non-negative vector. The aggregation via any
weighted matroid rank of the pillar outputs for any set A ⊆ V is also a d-dimensional non-negative
vector and moreover, each element of this resulting aggregated vector is itself a polymatroid function
thanks to the fact that a weighted matroid rank function is a polymatroid function. When we compose
a vector of polymatroid functions with a DSF, this preserves polymatroidality by Theorem 5.12
in [13], and thus submodularity. The theorem is hence proven.

Corollary 3 (Submodular Preservation of Weighted Matroid Rank Aggregators). Any weighted
matroid rank function for matroid M = (V, I) with any non-negative vector m ∈ R|V |

+ , when used
as an aggregator in a DSPN, will be submodularity preserving.

Proof. This follows immediately from Theorem 2.

E Further discussion on (E,M) pair sampling and dataset construction
strategies

Training a DSPN via the peripteral loss requires transferring information from an expensive oracle tar-
get function to a learnt DSPN. As mentioned in §section 4, this requires a dataset D = {(Ei,Mi)}Ni=1
of pairs of sets to be contrasted with each other where each Ei,Mi ⊆ V . The target function in our
work is an expensive facility location function, but in general it can be any oracle to provide infor-
mation in a GPC context to a learner. This means that ∆(E|M) = ft(E)− ft(M). As submodular
functions are set functions that tend to produce higher score for a diverse set and a low score for a
homogeneous set, the oracle evaluation will be positive if E is considered more diverse than M and
will be negative if M is considered more diverse than E. For this reason, even if we design sampling
strategies that attempt to produce pairs E,M where E is more diverse than M , the peripteral loss
Eqn. (23) allows for mistakes to be made in the selection of these pairs since the sign of the oracle
GPC can switch within the peripheral loss. Hence, our approach is robust to E,M pair label noise in
this sense. This also means that our E,M sampling strategy can be done in an automated manner.

Moreover, a set E might be seen as diverse in some cases and homogeneous in other cases. For
instance, a set E containing elements from two distinct classes is heterogeneous compared to a set
M containing all elements from one class. However, the same set E is homogeneous when compared
against a set E′ containing all distinct classes, so in this latter case the (E,M) pair would be (E′, E).
The oracle query offers a GPC of the pair (E,M) providing a score Score(A,B) ∈ R depending on
which of E and M is more diverse. The pairwise comparison aspect of GPC is one of its powers
since we are not asking for absolute scores from the oracle but for comparisons between pairs. This
is one of the benefits of pairwise comparison models when querying humans as well (as discussed in
the field of psychometrics [74] and this benefit extends to the GPC case as well [61].

For learning a DSPN, an oracle evaluation will require evaluations with an expensive FL function,
but in general the oracle need not be submodular at all, and can even be a non-submodular arbitrary
dispersion function. Furthermore, as mentioned above, our framework only requires query access
to the oracle, we do not need to optimize over it. When the target is non-submodular and we are
learning a DSPN, our approach can be seen as finding a projection of a non-submodular function onto
the space of DSPNs. A compelling example of this is in the context of dataset pruning, where a target
function could be a mapping from pairs of subsets of training data to the difference in validation
accuracies that a deep model achieves after being trained on each of the subsets and evaluated on a
validation set (we do not test this case in this paper however, but plan to do so in future work). An
alternate target function could capture a human’s assessment of diversity of a summary, incorporating
human feedback into the process of learning a submodular function. Crucially, in both of these
examples, the target functions are not directly optimized but are only queried. Our framework may
allow us to distill them onto easy-to-optimize functions such as DSPNs that can still exhibit essential
and relevant properties of the target.

In general, how the (E,M) pair of subsets are chosen in the learning procedure is absolutely critical,
and this is why we have introduced a suite of novel automatic sampling strategies. One of the
strategies involves passive sampling of sets via random subsetting and clustering. The other strategy
is a new “submodular feedback” method that can be seen as combinatorial active learning since it
optimizes over the DSPN as it is being learnt to produce the (E,M) sets, something greatly facilitates
learning.
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F Analysis and Further Description of Peripteral Loss

In addition to the motivation for our loss function provided in section 3 here we provide a discussion
on its gradient and curvature and how the hyperparameters govern the curvature of the provided loss.
First, we re-state the mother loss, plot its value for different values of margin, and then follow by
equation for its gradient and double-derivative. In the below σ(x) refers to sigmoid function, that is,
σ(x) = 1

1+e−x and sgn(x) refers to the sign of x.

The mother loss has the form

L∆(δ) = |∆| log(1 + exp(1− δ

∆
)), (20)

and the corresponding gradient becomes

∂L∆(δ)

∂δ
= − sgn(∆)σ

(
1− δ

∆

)
. (21)

We first plot the loss and the gradients in Fig. 7. From the plots in Fig. 7 and gradient in Fig. 21, it is
clear that if ∆ is (very) positive, then δ must also be (very) positive to produce a small loss. If ∆ is
(very) negative then so also must δ be to produce a small loss. The absolute value of ∆ determines
how non-smooth loss is so we include an outer pre-multiplication by |∆| ensures gradient of loss,
as a function of δ, asymptotes to negative one (or one when ∆ is negative) in the penalty region,
analogous to hinge loss, and thus produces numerically stable gradients.

Having established the “mother” loss L∆(δ) we can see that ∆ controls its curvature (the smaller
the |∆| the higher the curvature). Still, we augment the mother loss with additional hyperparameters
in way that produces smoother and more stable and convergent optimization. Firstly, rather than a
requiring a margin of one, we introduce a hyperparameter τ to express this margin whose default value
is τ = 1. Second, since the units of the oracle target might be different than the units of the learner,
we introduce a unit adjustment parameter κ that scales ∆. We also introduce an anti-smoothness
parameter β > 0 (smaller β means smoother loss) to further optionally smooth the transition between
the linearly increasing loss region and the zero-loss region of δ. That is, since in general the margin
could be different from sample to sample, the β hyperparameter provides global control over the
curvature of the loss in a way that produces smoother, more stable, and convergent optimization.
Lastly, if ∆ gets small, to avoid finite-precision numerical problems, we add a small signed value
ϵ sgn(∆) for ε ≥ 0 which slightly pushes the denominator away from zero depending on the sign of
∆. This yields L∆;β,τ,κ,ε(δ) which is defined as:

L∆;β,τ,κ,ε(δ) ≜
|κ∆+ ε sgn∆|

β
log(1 + exp(β(τ − δ

κ∆+ ε sgn∆
))) (22)

There is one last issue with the above we must address, namely when ∆ becomes extremely small
or zero. This is perfectly reasonable since it expresses the oracle’s indifference to E vs. M . We
address this with a tanh-based “gating” function that detects when ∆ is very small and gates towards
a secondary loss that penalizes the absolute value of δ. The final peripteral loss L∆;α,β,τ,κ,ε(δ) thus
has the form:

L∆;α,β,τ,κ,ε(δ) ≜ tanh
( α

|κ∆|

)
|δ|+

(
1− tanh

( α

|κ∆|

))
L∆;β,τ,κ,ε(δ) (23)

The rate of the gating is determined by α ≥ 0, and since α
|κ∆| ≥ 0, the gate switches to the absolute

value |δ| whenever ∆ gets very small. Thus if the oracle target is indifferent to E vs. M this
encourages the learner also to be indifferent. Despite these hyperparameters, the loss gradient is still
independent of the margin and β making it useful for fine-tuning a learning rate

Considering only following term (which does not have the gating term),

L∆;β,τ,κ,ε(δ) =
|κ∆+ ε sgn∆|

β
log(1 + exp(β(τ − δ

κ∆+ ε sgn∆
))) (24)

the corresponding gradient will be:

∂L∆;β,τ,κ,ε(δ)

∂δ
= − sgn(∆)σ

(
β

(
τ − δ

κ∆+ ε sgn∆

))
. (25)
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We plot the gradients in appendix F for two offsets, namely τ = 1 and τ = 5. From these plots, it
is clear that β provides control over the smoothness of L∆;β,τ,κ,ε(δ) where the smaller the β the
smaller the curvature (without impacting the gradient magnitudes). The importance of low curvature
of the loss objective has been studied from the optimization stability [30] as well as from the lens of
robustness in deep learning [95, 27]. Similarly, we can also see that τ merely provides an offset in
the gradient, which, however, can nevertheless be important for the gradient magnitude while we are
optimizing.

Bringing back in the gating term (again, to account for corner cases where ∆ is very small), we have

L∆;α,β,τ,κ,ε(δ) = tanh

(
α

|κ∆|

)
)|δ|+ (1− tanh

(
α

|κ∆|

)
)L∆;β,τ,κ,ε(δ), (26)

and the corresponding gradient will be:

∂L∆;α,β,τ,κ,ε(δ)

∂δ
= tanh

(
α

|κ∆|

)
) sgn(δ) + (1− tanh

(
α

|κ∆|

)
)
∂L∆;β,τ,κ,ε(δ)

∂δ
. (27)

Note that for δ = 0 the function is indeed non-differentiable, however, we can have any subgradient
between [−1, 1]. Similar to PyTorch [78] we choose to have the subgradient to be 0, as |δ| is also 0 at
that point. In practice, we do not encounter any instabilities due to this, and gate value throughout
our experiments remains very small.
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Figure 7: Peripteral loss of δ for different values and sign of margin ∆ and the corresponding gradient.

F.1 Final Extended Loss

Building and extending Section 3.2 using the peripteral loss along with its hyperparameters,
and with all of the individual loss components described from Section 3.1, the final total loss
Ltot(fw; ∆(E|M), δfw(E|M)) for an E,M pair becomes:

Ltot(fw; ∆(E|M), δfw(E|M)) = L∆(E|M);α,β,τ,κ,ε(δfw(E|M)) + Laug(fw;E ∪M,E′ ∪M ′)

+ Lredn(fw;E,E
′) + Lredn(fw;M,M ′) (28)
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Figure 8: τ = 1.
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Figure 9: τ = 5

With a dataset D = {(Ei,Mi)}Ni=1 of pairs, the total risk is:

R̂(w;D) =
1

N

∑
i∈[N ]

Ltot(fw; ∆(Ei|Mi), δfw(Ei|Mi)). (29)

G Peripteral Networks and Training Flow

Figure 1 in the main paper depicts the DSPN architecture. In fact, we see two copies of a DSPN
presented in Figure 1, the left one instantiated for the E set and the right one instantiated for the
M set. Each DSPN consists of a set of pillars which transform a number of objects (e.g., images
corresponding to a set) into a non-negative embedding space. The reason for the space to be non-
negative is to ensure that the subsequent transformations can preserve submodularity, in the same way
that a concave composed with a modular function requires the modular function to be non-negative
to preserve submodularity. The figure above shows that object space has dimension nine (the number
of red nodes on the bottom of each pillar) and embedding space having dimension seven (the seven
orange nodes at the top of each pillar). This DSPN has five pillars which means that it is appropriate
for anE orM set of size five. The outputs of the pillars are aggregated using a submodular-preserving
permutation invariant aggregator (such as a weighted matroid rank function) but in the experiments
in this paper, we use a simple uniform matroid which corresponds to a summation aggregator. Note
that each scalar output of each pillar is aggregated separately and after aggregation we get a resulting
seven-dimensional vector which is input to a deep submodular function (DSF). We consider the
aggregation step and the final DSF to be the “roof model.”, highlighted with the blue triangle above.
The word peripteral is an adjective (applicable typically to a building) which means having a single
row of pillars on all sides in the style of the temples of ancient Greece. This is reminiscent of the
above DSPN structures which is the reason for this name (see figure10).

29



Figure 10: A “peripteral neural temple” showing a Greek/Roman style peripteral structure with many
pillars rendered as a form of neural temple, where each of the pillars, the submodular preserving and
permutation-invariant aggregation, and the roof are all seen as having an underlying neural network
graphical structure. This figure was generated using GPT-4 after an enormous amount of trial and
error including many seed images, and then it was further edited in Adobe Photoshop.

To train a DSPN, we need two sets, an E (hEterogeneous) set and an M (hoMogeneous) set. Each of
the E and M sets of the (E,M) pair is presented to a DSPN instantiation being learnt and which is
governed, overall by the parameters w. Note that w consists both of the parameters for the DSPN
pillars as well as the parameters for the DSPN roof. The parameters for all instances of the pillar are
shared over all pillars, similar to how Siamese networks share (or tied) parameters between the two
transformations. Here, however the number of pillars in the DSPN grows or shrinks depending on
the sizes |E| and |M | of the sets E and M respectively, but regardless of the size of |E| or |M | the
number of the parameters of the pillars stays fixed. These sets are acquired in a variety of different
ways, and this includes heuristics on the data (e.g., clusterings, random sets) as well as submodular
feedback strategy which optimizes the DSPN as it is being learnt to ensure that what the DSPN thinks
has high or low value agrees with the target oracle.

H Additional Experimental Details

Baseline Loss Functions To assess the efficacy of our peripteral loss, we consider two popular
baselines to learn from pairwise comparisons. Note that we only replace our peripteral loss function
with the baseline and we do not remove any necessary regularizers such as Lredn and Laug. Using
the same notations as the main paper, we define the regression loss Lregr and Lmarg in equations 30
and 31.

Lregr(fw; ∆(E|M), δfw(E|M)) = (δfw(E|M)−∆(E|M))2 (30)

Lmarg(fw; ∆(E|M), δfw(E|M)) = max(∆(E|M)− δfw(E|M)), 0) (31)
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Given the dataset D = {(Ei,Mi)}Ni=1 of pairs, we have the following empirical risks for regression
(Eq. 32) and margin (Eq. 33).

R̂regr(w;D) =
1

N

∑
i∈[N ]

(Lregr(fw; ∆(Ei|Mi), δfw(Ei|Mi)) + Laug(fw;E ∪M,E′ ∪M ′)

+Lredn(fw;E,E
′) + Lredn(fw;M,M ′)

(32)

R̂marg(w;D) =
1

N

∑
i∈[N ]

Lmarg(fw; ∆(E|M), δfw(E|M)) + Laug(fw;E ∪M,E′ ∪M ′)

+Lredn(fw;E,E
′) + Lredn(fw;M,M ′)

(33)

Hyperparameters and Sensitivity Analysis We train every DSPN on 2 NVIDIA-A100 GPUs
with a cyclic learning rate scheduler [94], using Adam optimizer [47]. To ensure non-negative
parameters in DSF, we perform projected gradient descent, where we apply projection on ψwr

to the
non-negative orthant after every gradient descent step.

We list the hyperparameters we use for the peripteral loss in table 2 and table 3. We observed that
β and τ are the most salient hyperparameters since they control the curvature and hinge of the loss
respectively. The benefits of smaller loss curvature have been widely studied from optimization
stability in deep learning [30, 95, 27] and our low value of β supports previous work. α parameter
controls the tanh gate, the smaller the value of alpha the more weight is given to the main part of our
objective function. Since we did not encounter corner cases where ∆ is very small, neither ϵ nor α
were found to be particularly influential.

α β κ τ ϵ
Imagenette 1e− 5 0.5 1 10 1e− 15
Imagewoof 1e− 5 0.5 1 10 1e− 15
CIFAR100 1e− 5 0.01 1 10 1e− 15

Imagenet100 1e− 5 0.01 1 10 1e− 15

Table 2: Peripteral loss hyperparameters used for each dataset. λ1 and λ2 correspond to the coeffi-
cients used in the augmentation regularizer (Eq. 2, while λ3 and λ4 are the coefficents in (Eq. 3)

λ1 λ2 λ3 λ4
Imagenette 0.25 0.01 0 0
Imagewoof 0.25 0.01 0 0
CIFAR100 0.25 0.01 1e− 5 5e− 4

Imagenet100 0.25 0.01 0 0

Table 3: Loss coefficients used for each dataset.

We search over β ∈ {0.01, 0.1, 0.5} and τ ∈ {1, 5, 10} and report the normalized target evaluation
for Imagenet100 results in Table 4 and Table 5. We select which hyperparameter configuration to
use based on normalized FL evaluation which is described in Figure 4. We find that DSPN can work
reasonably well even without tuning β and τ , but a hyperparameter search should be done for peak
performance. Regarding the loss coefficients, we fix the λ1 = 0.25 and λ2 = .01 respectively across
all datasets, where the range is chosen such that each loss value is commensurate with the other. This
way, none of the loss/regularization terms solely drive the optimization. For λ3 and λ4 we decided
the range to be 0, 1e− 5, 1e− 3 and 0, 5e− 4, 5e− 2. For Imagnette/Imagewoof/Imagenet-100 we
did not see significant changes in performance by including non-zero λ3 and λ4. In fact, even for
CIFAR-100 not having these does not imply DSPN will fail to produce good summaries, it only
results in a marginal drop.

Dataset Construction We compute the passive (E,M) pairs offline to improve computational
efficiency. For the actively sampled pairs, we generate (E,M) pairs every K epochs where an epoch
is defined as a full pass over all of the offline pairs. For all the datasets we consider, K = 15.
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k=10 k=20 k=30 k=40 k=50 k=60 k=70 k=80 k=90 k=100

β = 0.01 0.88 0.89 0.92 0.91 0.91 0.91 0.92 0.92 0.92 0.92
β = 0.1 0.88 0.88 0.90 0.90 0.90 0.92 0.91 0.92 0.92 0.92
β = 0.5 0.90 0.89 0.90 0.92 0.92 0.92 0.92 0.93 0.92 0.92

Table 4: Sensitivity of β based on normalized FL evaluation.

k=10 k=20 k=30 k=40 k=50 k=60 k=70 k=80 k=90 k=100

τ = 1 0.84 0.84 0.85 0.87 0.88 0.88 0.88 0.89 0.90 0.90
τ = 5 0.90 0.88 0.88 0.89 0.90 0.90 0.90 0.91 0.91 0.92
τ = 10 0.90 0.89 0.90 0.92 0.92 0.92 0.92 0.93 0.92 0.92

Table 5: Sensitivity of τ based on normalized FL evaluation.

Long-tailed Dataset Construction For the results presented in Sections 5.2, we create patholog-
ically imbalanced datasets from sets of images that the DSPN never encountered during training.
Specifically, we add duplicates for each image in a class; the number of duplicates varies per class
and is drawn from a Zipf distribution [116]. We show the final distributions of the imbalanced dataset
in Figure 11.
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Figure 11: Imbalanced dataset distributions

I Qualitative Analysis of Learnt Features

In Table 1, we show that imparting DSPNs the ability to learn features is crucial for successful training.
Feature-based functions and DSFs work best when features correspond to some bag-of-words or
count like attribute. For example, [60, 62] both use TF-IDF based feature extractors to instantiate
feature-based functions. More recently, [51] learns “additively contributive" (AC) features with
an autoencoder by restricting all weights in the initial layer of the decoder to the positive orthant.
Unfortunately, universal features for images procured from modern pretrained models such as CLIP
do not necessarily have this property.

We show that DSPNs learn bag-of-words features in Figure 12, by exploring the preferences of
individual DSPN/CLIP features. For visualization purposes, we randomly select 10 features from
the model in consideration and use each feature to rank the images from a completely held out set.
The top 10 images selected by any of the DSPN features appear very homogeneous and are strongly
correlated to class, while images with the lowest feature values (typically with feature value 0) are
practically indistinguishable from a random subset of images. In other words, a high value indicates
the presence of some attribute while a low value indicates its absence. When we perform a similar
qualitative analysis upon CLIP features, we find that both the high valued sets and low valued sets
have some weak correlation to class. CLIP features cannot be interpreted in the same way as DSPN
because each feature corresponds to a coordinate in some higher dimensional space. Our results show
that features that encapsulate count-like attributes are essential for learning a good DSF.
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Figure 12: Qualitative Assessment of Learnt Features on Imagenet100. For each row, we use a randomly
selected feature of either DSPN or CLIP to rank all images in the held out set and visualize the highest and
lowest ranked samples. Each DSPN feature corresponds to some count-like property that is correlated to class,
evident from the fact that very few distinct classes are present in the highly ranked images.
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k DSPN DSPN (No Redun) Random

10 0.91 0.88 0.65 ± 0.04
20 0.93 0.89 0.67 ± 0.03
30 0.91 0.89 0.67 ± 0.02
40 0.90 0.88 0.68 ± 0.02
50 0.90 0.88 0.68 ± 0.02
60 0.89 0.88 0.68 ± 0.02
70 0.88 0.88 0.68 ± 0.02
80 0.88 0.87 0.69 ± 0.02
90 0.88 0.87 0.69 ± 0.02
100 0.88 0.87 0.70 ± 0.02

Table 6: Effect of setting λ3 = λ4 = 0 on normalized FL evaluations on CIFAR100

J Limitations

A limitation of DSPNs is that they may not be able to produce effective summaries that are significantly
larger than the largest sets that they were trained on. In our experiments, we do observe that the learnt
DSPN produces high quality summaries of size 500 though they were not trained on sets larger than
100. However, further investigation is needed to determine if DSPNs can continue to produce high
quality summaries with significantly larger cardinalities.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our claims from the abstract and introduction are justified throughout the
paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations of our paper is discussed in Appendix J.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We do not make any assumptions in our theoretical results.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all the details required for reproducibility in Appendix H and
Table 2.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We plan to release the codebase in a separate GitHub repository under the
name bhattg/DeepSubmodularPeripteralNetworks.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All the details are provided in Appendix H and Table 2.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide standard error for the results of all experiments that are non-
deterministic in section 5.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
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Justification: We provide the details in Section 5 and Table 2.
9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We reviewed NeurIPS Code of Ethics and abide by it in our work.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Our work proposes a new approach to learn submodular functions from an
oracle. We do not anticipate any negative social impact of our work.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release any dataset or model.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets we use are cited.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release any new assets in this work.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not have any experiments with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects were used on our work.
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