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ABSTRACT

In the burgeoning age of generative AI, watermarks act as identifiers of provenance
and artificial content. We present WAVES (Watermark Analysis via Enhanced
Stress-testing), a benchmark for assessing image watermark robustness, overcoming
the limitations of current evaluation methods. WAVES integrates detection and
identification tasks and establishes a standardized evaluation protocol comprised
of a diverse range of stress tests. The attacks in WAVES range from traditional
image distortions to advanced, novel variations of diffusive, and adversarial attacks.
Our evaluation examines two pivotal dimensions: the degree of image quality
degradation and the efficacy of watermark detection after attacks. Our novel,
comprehensive evaluation reveals previously undetected vulnerabilities of several
modern watermarking algorithms. We envision WAVES as a toolkit for the future
development of robust watermarks.

1 INTRODUCTION

Diffusion models such as the open-source Stable Diffusion and proprietary models such as the Dall·E
family and Midjourney have enabled users to produce artificial images that are of human-produced
quality. Consequently, there has been a strong push in the AI/ML community to develop reliable
algorithms for detecting AI-generated content and determining its source (Executive Office of the
President, 2023). One avenue for maintaining the provenance of generative content is by embedding
watermarks. However, a lack of standardized evaluations in existing literature (i.e., inconsistent image
quality measures, statistical parameters, and types of attacks) has resulted in an incomplete picture
of the vulnerabilities and robustness of these algorithms.

We present WAVES (Watermark Analysis via Enhanced Stress-testing), a benchmark for assessing
watermark robustness, overcoming the limitations of current evaluation methods. WAVES consists of a
comprehensive variety of existing and novel variants of classical image distortions, image regeneration,
and adversarial attacks. WAVES focuses on the sensitivity and robustness of watermark detection,
measured by the true positive rate (TPR) at 0.1% false positive rate (FPR), and in the meantime, studies
the severity of image degradations needed to decrease this sensitivity with multiple quality metrics.
WAVES develops a series of Performance vs. Quality 2D plots varying over several prominent image
similarity metrics, which are then aggregated in a heuristically novel manner to paint an overall picture
of watermark robustness and attack potency.

We extensively evaluate the security of three prominent watermarking algorithms, Stable Signature
(Fernandez et al., 2023), Tree-Ring (Wen et al., 2023), and StegaStamp (Tancik et al., 2020),
respectively representing three major techniques for embedding an invisible signature. WAVES
effectively reveals weaknesses in them and discovers previously undetected vulnerabilities. For
example, watermarking algorithms using publicly available VAEs can have their watermarks
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Table 1. Comparison of robustness evaluations with existing works. For categories of attacks, D, R, and A
denote distortions, image regeneration, and adversarial attacks. Joint test means whether the performance and
quality are jointly tested under a range of attack strengths. Our benchmark is the most comprehensive one, with a
large scale of attacks, data, metrics, and more realistic evaluation setups.

Research Num. of Categories Num. of Sample Size Non-watermarked Performance Num. of Joint
Work Attacks of Attacks Datasets per Dataset Image Source Metric Quality Metrics Test

StegaStamp Watermark1 5 D 1 1000 — bit accuracy 3 ✗
Stable Signature Watermark2 12 D, R 1 5000 — bit accuracy 3 ✗

TreeRing Watermark3 6 D 2 1000 generate by same model TPR@1%FPR 2 ✗
Regeneration Attack4 10 D, R 2 500 — bit accuracy 3 ✗

Surrogate Model Attack5 2 R, A 1 2500 real images AUROC 0 ✗
Adaptive Attack6 10 D, A 1 1000 real images TPR@1%FPR 3 ✗

WAVES (ours) 26 D, R, A 3 5000 real images TPR@0.1%FPR 8 ✓

1 Tancik et al. (2020). 2 Fernandez et al. (2023). 3 Wen et al. (2023). 4 Zhao et al. (2023a). 5 Saberi et al. (2023). 6 Lukas et al. (2023).

effectively removed with minimal image manipulation. DALL·E3’s usage of an open-source KL-VAE
underscores the need for unique VAEs in such systems. Our contributions are summarized as follows:

(1) In practical scenarios where false alarms incur high costs, our evaluation metric for watermark
detection prioritizes the True Positive Rate (TPR) at a stringent False Positive Rate (FPR) threshold,
specifically 0.1%. This focus addresses the inadequacies of alternative metrics such as the p-value
and Area Under the Receiver Operating Characteristic (AUROC).
(2) Additionally, our metric incorporates image quality alongside TPR@0.1% FPR. This integration
acknowledges the necessity of maintaining a balance between reducing the accuracy of watermark
detection and the practical utility of the image in practical scenarios.
(3) We introduce a comprehensive taxonomy of attacks that encompasses classical distortions and
powerful, novel variations of regeneration and adversarial attacks, against watermarks.
(4) We standardize the evaluation of watermark robustness, allowing us to rank attacks. We formalize
the watermark detection and identification problems and evaluate the robustness under both scenarios.
(5) Our benchmark uncovers several especially harmful attacks for popular watermarks, some of which
are first introduced in this work. WAVES serves as a toolkit for future development of robust watermarks.

(a) Evaluation of a single attack on a watermarking method. We first attack watermarked images over a variety of
strengths (also labeled ’stg’). Then, we evaluate the detection performance (TPR@0.1%FPR) and a collection
of image quality metrics such as PSNR and plot a set of performance vs. quality plots. By normalizing and
aggregating these quality metrics, we derive a consolidated 2D plot that represents the overall performance vs.
quality for the evaluation.

(b) Benchmarking watermarks and attacks. For each watermark, we plot all attacks on a unified performance vs.
quality 2D plot to facilitate a detailed comparison. Based on this, we provide two additional analytical perspectives.
We compare watermarks’ robustness through the averaged performance under different attacks. We evaluate
attacks’ potency by ranking the quality at a specific performance threshold.

Figure 1. Evaluation workflow.
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2 STANDARDIZED EVALUATION THROUGH WAVES

2.1 WORKFLOW AND METRICS

As shown in Table 1, our benchmark, WAVES, stands out by considering three diverse datasets, incor-
porating 26 diverse attacks across three categories, and employing 8 quality metrics. These distinguish
our work as the most extensive and realistic setup to date for watermark robustness evaluation. For
more details on evaluation workflow, setups, metrics, and more analyses, see Appendix E.

Applications and formulation of invisible image watermarks. Invisible image watermarks,
originally for protecting creators’ intellectual property, have expanded into broader applications
like AI Detection — identifying AI-generated images (Saberi et al., 2023), and User Identification
— tracking the source of an image to its creator (Fernandez et al., 2023). We are interested in
message-based approaches, where a unique, invisible identifier is embedded into an image. which
may be recovered by the content creator at any time to establish provenance.

Evaluation Workflow. The trade-off between watermark performance and image quality, especially
when watermark attacks lead to image distortions, is critical. We introduce Performance vs. Quality
2D plots for a comprehensive comparison, a novel perspective over the typical performance-centric
analyses. The evaluation process involves comparing watermarked images with a diverse set of real
and AI-generated reference images to produce the performance vs. quality 2D plots, and processing
or aggregating the 2D plots to compare attacks and watermarks, as depicted in Figure 1.

Performance Metrics in AI Detection and User Identification. WAVES prioritizes fairness and
comprehensiveness by using evaluation metrics that are independent of the choice of statistical tests
and p-value thresholds. Given the significant impact of false positives in mislabeling non-watermarked
images, strict control over the false positive rate (FPR) is crucial. WAVES focuses on TPR@x%FPR,
specifically at a challenging low FPR threshold of 0.1%. For user identification, we measure
performance by the accuracy of correct image assignments to users.

Implementing Diverse Image Quality Metrics: Recognizing that no single metric can fully
capture the aspects of generated images, we use a range of image quality metrics and propose a
normalized, aggregated metric for evaluating watermark and attack methods. WAVES integrates over 8
metrics: Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Normalized Mutual
Information (NMI), Frechet Inception Distance (FID) (Heusel et al., 2017), a variant based on CLIP
feature space (CLIP-FID) (Kynkäänniemi et al., 2022), Perceptual Image Patch Similarity (LPIPS),
and aesthetics and artifacts scores (Xu et al., 2023).

Normalization and Aggregation of Image Quality Metrics: Addressing the distinct characteristics
of various image quality metrics, WAVES proposes a normalized and aggregated quality metric for
a unified measure of image quality degradation and comprehensive scoring of attack or watermark
methods. We define the normalized scale for each metric by assigning the 10% quantile value over
all attacked images (across 26 attack methods, three watermark methods, and three datasets) as the
0.1 point, and the 90% quantile as the 0.9 point. Normalized quality metrics are always ranked in
ascending order of image degradation. This normalization ensures equivalent significance across
different metrics, defined by their quantiles in a large set of attacked watermarked images. Normalized
metrics are aggregated and extensively utilized in Section 3 for Performance vs Quality plots,
watermark radar plots, and attack leaderboards.

Table 2. A taxonomy of all the attacks in our stress-test set. Novel attacks proposed by WAVES are marked with ∗.

Category Subcategory (prefix) Description Attack Names (suffix)

Distortion Single (Dist-) Single distortion -Rotation, -RCrop, -Erase, -Bright, -Contrast, -Blur, -Noise, -JPEG
Combination (DistCom-) Combination of a type of distortions -Geo, -Photo, -Deg, -All

Regeneration Single (Regen-) A single VAE or diffusion regeneration -Diff, -DiffP1, -VAE, -KLVAE2

Rinsing∗ (Rinse-) A multi-diffusion regeneration -2xDiff, -4xDiff

Adversarial
Embedding (grey-box)∗ (AdvEmbG-)3 Use the same VAE -KLVAE8
Embedding (black-box)∗ (AdvEmbB-) Use other encoders -RN18, -CLIP, -KLVAE16, -SdxlVAE
Surrogate detector attack∗ (AdvCLS-)4 Train a watermark detector -UnWM&WM, -Real&WM, -WM1&WM2

1 DiffP requires user prompts. 2 KLVAE with bottleneck size 8 is grey-box. 3 AdvEmbG is grey-box. 4 AdvCLS needs data and training.
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2.2 STRESS-TESTING WATERMARKS

We evaluate the robustness of watermarks with a wide range of attacks detailed in this section and
summarized in Table 2. Figure 23 demonstrates the visual effects.

Distortion Attacks. Watermarked images often face distortions such as compression and cropping
during internet transmission, necessitating watermarks that can endure common alterations. However,
most studies only test resilience against singular or extreme distortions. In WAVES, we establish the
following distortions within an acceptable quality threshold as our baselines. Geometric distortions:
rotation, resized-crop, and erasing; Photometric distortions: adjustments in brightness and contrast;
Degradation distortions: Gaussian blur, Gaussian noise, and JPEG compression; Combo distortions:
combinations of geometric, photometric, and degradation distortions, both individually and collectively.
Detailed setups for each are provided in the Appendix F.1.

Regeneration Attacks, employing diffusion models or VAEs Saberi et al. (2023); Zhao et al. (2023a),
aim at altering an image’s latent representation by noising and then denoising an image. Different from
existing works that only perform a Single regeneration, we also investigate Rinsing regenerations,
where an image undergoes multiple cycles of noising and denoising through a pre-trained diffusion
model. Furthermore, we introduce two additional variations: prompted regeneration and mixed
regeneration (rinse + VAE denoising). To simulate a realistic attack, we use a lower version diffusion
model than the one used to generate watermarked images. All such attacks are detailed in Appendix F.2.

Adversarial Attacks. Deep neural networks are vulnerable to adversarial examples, (Ilyas et al.,
2019; Chakraborty et al., 2018). In WAVES, we explore watermark robustness against two types
of adversarial attacks. Embedding Attacks aims to perturb the latent feature of watermarked
images while preserving invisible change in the image space. We examine if attacks on off-the-shelf
embedding models can transfer to watermark detectors. We evaluate five off-the-shelf encoders:
pre-trained ResNet18, image encoder of CLIP (Radford et al., 2021), KL-VAE(f8), and its two
variants KL-VAE(f16) and Sdxl-VAE (Podell et al., 2023). Note that KL-VAE(f8) is the one used
in the victim latent diffusion model, so it is a grey-box setting. We use PGD (Madry et al., 2017)
to optimize adversarial examples to diverge their embedding from the original ones. As shown in
Figure 14, Tree-Ring is vulnerable to embedding attacks, particularly under the grey-box condition
where TPR@0.1%FPR can drop to nearly zero, effectively removing most watermarks. Surrogate
Detector Attacks first train a binary classifier as a watermark detector, then optimize adversarial
examples on it to flip labels, aiming to remove watermarks. Figure 15 explores three various settings.
We refer the reader to Appendix F.3 for further details on adversarial attacks.

Figure 2. Unified performance vs. quality degradation 2D plots under detection setup. We evaluate each
watermarking method under various attacks. Two dashed lines show the thresholds used for ranking attacks.

3 BENCHMARKING RESULTS AND ANALYSIS

We extensively evaluate the security of three prominent watermarking algorithms (according to
Appendix D.2), Stable Signature, Tree-Ring, and StegaStamp, respectively representing three major
watermarking types: in-processing via model modification, in-processing via random seed modifi-
cation, and post-processing. We conduct thorough evaluations with images from DiffusionDB Wang
et al. (2022), MS-COCO Lin et al. (2014), and the DALL·E3 datasets; see Appendix D.1 for details.
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Figure 3. (left) Detection performance of three watermarks after attacks, measured by Average TPR@0.1%FPR
with lower values (near center) indicating higher vulnerabilities. (right) The distribution of quality degradation.
The lower the better.

Performance vs. Quality 2D plots. We evaluate 3 watermarking methods under 26 attacks, and
report results across 3 datasets in Figure 24 to Figure 29. The quality of images post-attack is evaluated
using 8 metrics and the detection performance is measured by TPR@0.1%FPR. Figure 7 shows that
different quality metrics yield a similar ranking of attacks. Consequently, we aggregate these metrics
into a single, unified quality metric — Normalized Quality Degradation, with lower scores indicating
lesser quality degradation caused by attacks. Furthermore, we aggregate the results across three
distinct datasets, and derive the unified Performance vs. Quality degradation 2D plots in Figure 2,
visualizing the unified evaluation results for each watermarking method against each attack. We defer
the aggregation details to Appendix E.

3.1 BENCHMARKING WATERMARK ROBUSTNESS

Figure 3 provides a high-level overview of watermarks’ robustness. We categorize effective attacks
into the categories listed in Table 2. Attacks considered are detailed in Appendix E.5. The Average
TPR@0.1%FPR, calculated for each category across strength levels, assesses watermarking method
robustness. Figure 3 shows the robustness of three watermarking methods where the area covered
indicates the overall robustness. Figure 3 shows the distribution of quality degradation for each type
of attack to illustrate the potential trade-off between attack effectiveness and image quality.

WAVES provides a clear comparison of watermarks’ robustness and reveals undiscovered vul-
nerabilities. Figure 3 reveals that StegaStamp occupies the largest area, signaling its exceptional
robustness. Tree-Ring follows suit with a smaller area, and Stable Signature occupies the least space.
Interestingly, different watermarking methods exhibit vulnerabilities to different types of attacks. Tree-
Ring is particularly vulnerable to adversarial attacks introduced in this paper, with a significant vulnera-
bility to grey-box embedding and surrogate detector attacks. It is also vulnerable to regeneration rinsing
attacks. Stable Signature is vulnerable to almost all regeneration attacks. All three watermarks maintain
a relative robustness against distortions. Furthermore, as observed in Figure 3, adversarial attacks gener-
ally cause less quality degradation, highlighting their potency against Tree-Ring watermarks. WAVES
offers an apple-to-apple comparison of watermarks through a multi-dimensional stress test of their
robustness, enabling a nuanced and comprehensive understanding of their security in various scenarios.

3.2 BENCHMARKING ATTACKS

Table 3 features a leaderboard ranking attacks based on their impact on detection performance
and image quality. We assess attacks using performance thresholds (TPR@0.1%FPR=0.95 and
TPR@0.1%FPR=0.7) and quality degradation at these thresholds (Q@0.95P and Q@0.7P). Addi-
tionally, we evaluate average performance (Avg P) and quality degradation (Avg Q) across all strengths.
These metrics are used to rank 26 attacks for each watermarking method (details in Appendix E.6).

Attack effectiveness varies among watermarks. Table 3 shows variability in attack efficiency across
watermarking methods. Metrics like Q@0.95P and Q@0.7P provide nuanced comparisons, while Avg
P and Avg Q offer insights into overall attack potency and image quality impact. Our analysis identifies
each watermark’s specific weaknesses to certain attacks. For instance, AdvCls-UnWM&WM,
AdvCls-WM1&WM2, and AdvEmbG-KLVAE8 are notably effective against Tree-Ring, whereas
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Table 3. Comparison of attacks across three watermarking methods in detection setup.
Attack Tree-Ring Stable Signature StegaStamp

Rank Q@0.95P Q@0.7P Avg P Avg Q Rank Q@0.95P Q@0.7P Avg P Avg Q Rank Q@0.95P Q@0.7P Avg P Avg Q
Dist-Rotation 11 0.464 0.521 0.375 0.648 12 0.624 0.702 0.594 0.650 5 0.423 0.498 0.357 0.616
Dist-RCrop 18 0.592 0.592 0.332 0.463 24 inf inf 0.995 0.461 6 0.602 0.602 0.540 0.451
Dist-Erase 26 inf inf 1.000 0.490 25 inf inf 0.998 0.489 25 inf inf 1.000 0.483
Dist-Bright 25 inf inf 0.997 0.304 23 inf inf 0.998 0.305 22 inf inf 0.998 0.317

Dist-Contrast 22 inf inf 0.998 0.243 20 inf inf 0.998 0.243 17 inf inf 0.998 0.231
Dist-Blur 20 0.861 1.112 0.563 1.221 5 -inf -inf 0.000 1.204 9 0.848 0.962 0.414 1.198

Dist-Noise 16 0.548 inf 0.980 0.395 8 0.402 0.520 0.870 0.390 24 inf inf 1.000 0.360
Dist-JPEG 12 0.499 0.499 0.929 0.284 9 0.485 0.485 0.793 0.284 21 inf inf 0.998 0.263

DistCom-Geo 13 0.525 0.593 0.277 0.768 13 0.850 inf 0.937 0.767 7 0.663 0.693 0.396 0.733
DistCom-Photo 22 inf inf 0.998 0.242 20 inf inf 0.998 0.243 17 inf inf 0.998 0.239
DistCom-Deg 19 0.620 inf 0.892 0.694 7 0.206 0.369 0.300 0.679 8 0.826 0.975 0.852 0.664
DistCom-All 14 0.539 0.751 0.403 0.908 11 0.538 0.691 0.334 0.900 10 0.945 1.101 0.795 0.870
Regen-Diff 5 -inf 0.307 0.612 0.323 1 -inf -inf 0.001 0.300 1 0.331 inf 0.943 0.327

Regen-DiffP 4 -inf 0.307 0.601 0.327 1 -inf -inf 0.001 0.303 1 0.333 inf 0.940 0.329
Regen-VAE 17 0.578 0.578 0.832 0.348 10 0.545 0.545 0.516 0.339 23 inf inf 1.000 0.343

Regen-KLVAE 22 inf inf 0.990 0.233 6 -inf 0.176 0.217 0.206 17 inf inf 1.000 0.240
Rinse-2xDiff 6 -inf 0.333 0.510 0.357 3 -inf -inf 0.001 0.332 4 0.391 inf 0.941 0.366
Rinse-4xDiff 7 -inf 0.355 0.443 0.466 4 -inf -inf 0.000 0.438 3 0.388 inf 0.909 0.477

AdvEmbG-KLVAE8 3 -inf 0.164 0.448 0.253 20 inf inf 0.998 0.249 17 inf inf 1.000 0.232
AdvEmbB-RN18 10 0.241 inf 0.953 0.218 17 inf inf 0.999 0.212 14 inf inf 1.000 0.196
AdvEmbB-CLIP 15 0.541 inf 0.932 0.549 26 inf inf 0.999 0.541 25 inf inf 1.000 0.488

AdvEmbB-KLVAE16 8 0.195 inf 0.888 0.238 19 inf inf 0.997 0.233 14 inf inf 1.000 0.206
AdvEmbB-SdxlVAE 9 0.222 inf 0.934 0.221 17 inf inf 0.998 0.219 14 inf inf 1.000 0.204

AdvCls-UnWM&WM 1 -inf 0.102 0.499 0.145 14 inf inf 0.999 0.101 11 inf inf 1.000 0.101
AdvCls-Real&WM 21 inf inf 1.000 0.047 14 inf inf 0.998 0.092 11 inf inf 1.000 0.106

AdvCls-WM1&WM2 1 -inf 0.101 0.492 0.139 14 inf inf 0.999 0.084 13 inf inf 1.000 0.129

Regen-Diff and Regen-DiffP are more potent against Stable Signature. Regeneration attacks impact
StegaStamp but do not greatly affect its average detection performance; in contrast, certain distortion
attacks significantly lower detection performance, at the cost of quality degradation. No single attack
excels across all watermarking methods, yet regeneration attacks exhibit some level of consistent
effectiveness. This significant variation in attack effectiveness emphasizes the imperative for diverse
and watermark-tailored defensive strategies.

3.3 BENCHMARKING RESULTS FOR USER IDENTIFICATION

We detail the user identification results, following the evaluation method from Section 2.1. The key
distinction here is the use of identification accuracy as the performance metric. Our study includes
scenarios with 100, and 1 million users, reflecting a range of real-world conditions. Utilizing the same
evaluation approach, we generate unified Performance vs. Quality degradation 2D plots (Figure 16),
radar plots for watermark comparison (Figure 17), and an attack leaderboard in the identification
context (Table 5). Identification results mirror findings from detection, showing similar trends
in watermark robustness and attack effectiveness. Figure 17 and Table 5 reveal that trends in
watermark robustness and attack potency closely match those in detection, largely because both rely on
precise watermark decoding. Notably, watermarks become more vulnerable as user numbers increase,
a trend particularly evident in attacks that already strongly affect detection. Since identification
demands more accurate decoding, its vulnerability amplifies with user growth.

3.4 SUMMARY OF TAKEAWAY MESSAGES

WAVES provides a standardized framework for benchmarking watermark robustness and
attack potency. WAVES evaluates both detection and identification tasks. It unifies the quality metrics
and assesses attack potency against both performance degradation and quality degradation. The
Performance vs. Quality 2D plots allow for a comprehensive analysis of various watermarks in one
unified framework. With over twenty attacks tested, WAVES exposes new vulnerabilities in popular
watermarking techniques.

Avoid using publicly available VAEs. WAVES demonstrates the risks of using publicly available
VAEs in watermarked diffusion models. Stable Signature’s design renders it vulnerable to regeneration
attacks that use a VAE with an encoder identical to the victim model’s VAE encoder, while coupled
with a different decoder. Today’s proprietary generators, like DALL·3, typically train the latent
diffusion model themselves but use a publicly available VAE, pointing to a critical security concern
in such popular AI services.

The robustness of StegaStamp potentially illuminates a path for future robust watermarks. The
StegaStamp watermark Tancik et al. (2020) stands out in our evaluation for its robustness. Designed for
physical-world use which requires high robustness, StegaStamp is trained with a series of distortions
that mimic real-world scenarios, significantly enhancing its robustness. However, it’s important to
recognize the potential trade-off between watermark robustness and quality. As a post-processing
method, the original paper finds that StegaStamp may introduce artifacts. In contrast, this might not
pose a problem for in-processing watermarks. Therefore, in-processing watermarks could still benefit
from incorporating augmentation or adversarial training.
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A A MINI SURVEY OF IMAGE WATERMARKS

In this section, we detail the existing landscape of watermarking approaches in the era of AI-Generated
Content (AIGC) everywhere. Figure 4 depicts our scenario of interest. First, an AI company/owner
embeds a watermark into its generated images. Then, if the owner is shown one of their watermarked
images at a later point in time, they can identify ownership of it by recovering the watermark message.
Commonly, users might modify watermarked images for legitimate personal purposes. There are also
instances where users attempt to erase a watermark for malicious reasons, such as disseminating fake in-
formation or infringing upon copyright. For simplicity, we term any image manipulation as an “attack.”

Figure 4. An illustration of a robust watermarking workflow. An AI company provides two services:
(1) generate watermarked images, i.e., embed invisible messages, and (2) detect these messages when shown
any of their watermarked images. There is an attack stage between the watermarking and detection stages.
The watermarked images may experience natural distortions (e.g., compression, re-scaling) or manipulated by
malicious users attempting to remove the watermarks. A robust watermarking method should still be able to detect
the original message after an attack.

Watermarking AI-generated Images. Imprinting invisible watermarks into digital images has
a long and rich history. From conventional steganography to recent generative model-based methods,
we categorize popular watermarking techniques into two categories: post-processing methods and
in-processing methods.

Post-processing approaches embed post-hoc watermarks into images. When watermarking
AI-generated images, we apply such methods after the generation process. Post-processing watermarks
are model-agnostic and applicable to any image. However, they sometimes introduce human-visible
artifacts, compromising image quality. We review popular post-processing methods.

P1) Frequency-domain methods. These methods manipulate the representation of an image in some
transform domain (ó Ruanaidh et al., 1996; Cox et al., 1996; O’Ruanaidh & Pun, 1997). The image
transform can be a Discrete Wavelet Transform (DWT), Discrete Cosine Transform (DCT) (Cox et al.,
2007), or SVD decomposition (Chang et al., 2005). These transformations have a range of invariance
properties that make them robust to translation and resizing. The commercial implementation of
Stable Diffusion (Rombach et al., 2022) uses DWTDCT (Al-Haj, 2007) to watermark its generated
images. However, many studies have shown that these watermarks are vulnerable to common image
manipulations (Zhao et al., 2023a).

P2) Deep encoder-decoder methods. These methods rely on trained networks for embedding
and decoding the watermark (Hayes & Danezis, 2017). Methods such as HiDDeN (Zhu et al.,
2018) and RivaGAN (Zhang et al., 2019) learn an encoder to imprint a hidden message inside an
image and a decoder (also called a detector) to extract the message. To train robust watermarks,
RedMark (Ahmadi et al., 2020) integrates differentiable attack layers between the encoder and decoder
in the end-to-end training process; RivaGAN (Zhang et al., 2019) employs an adversarial network
to remove the watermark during training; StegaStamp (Tancik et al., 2020) adds a series of strong
image perturbations between the encoder and decoder during training, resulting in watermarks which
are robust to real-world distortions caused by photographing an image as it appears on a display.

P3) Others. There are other varieties of post-processing methods that do not fall into P1 or P2. SSL (Fer-
nandez et al., 2022) embeds watermarks in self-supervised-latent spaces by shifting the image’s features
into a designated region. DeepSigns (Rouhani et al., 2018) and DeepMarks (Chen et al., 2019) embed

11



target watermarks into the probability density functions of weights and activation maps. Entangled wa-
termarks (Jia et al., 2021) designs a reinforced watermark based on a target watermark and the task data.

In-processing methods adapt generative models to directly embed watermarks as part of the image
generation process, substantially reducing or eliminating visible artifacts. With diffusion models
presently dominating the field of image generation, a surge of in-processing approaches specific to
these models has recently emerged. We categorize current work into three categories.

I1) Model modification. The entire model. This line of work inherits the encoder-decoder idea and
bakes the encoder into the entire generative model. This is usually accomplished by watermarking
training images with a pre-trained watermark encoder and decoder, then training or fine-tuning
the generative model on these watermarked images (Yu et al., 2021; Zeng et al., 2023; Lukas &
Kerschbaum, 2023). This type of method has been shown to work well on small models like guided
diffusion, but suffers from the expensive training of large text-to-image generation models (Zhao et al.,
2023b), making it inapplicable in practice.

Parts of the model. Stable Signature (Fernandez et al., 2023) follows the above two-stage training
pipeline while only fine-tuning the decoder of the latent-diffusion model (LDM) (Rombach et al.,
2022), leaving the diffusion component unchanged. This type of watermarker is much more efficient
to train. By fine-tuning multiple latent decoders, the model can embed different messages into images.

The robustness of these two types of model modification critically relies on the robustness of the
pre-trained encoder and decoder.

I2) Modification of a random seed. Tree-Ring (Wen et al., 2023), different from all the above
methods, embeds a pattern into the initial noise vector used by a diffusion model for sampling. The
pattern can be retrieved at detection time by inverting the diffusion process using DDIM (Song
et al., 2020) as the sampler. This method does not require any training, can easily embed different
watermarks, and is robust to many simple distortions and attacks. The robustness of Tree-Ring relies
on the accuracy of the DDIM inversion.

Removing Watermarks Robustness is an essential property of watermarks. Evaluations of
robustness in existing literature focus on simple image distortions like rotation, Gaussian blur, etc.
Recently, inspired by adversarial purification Nie et al. (2022), Zhao et al. (2023a) and Saberi et al.
(2023) both find that regenerating images by noising and denoising images through a diffusion model
or a VAE can effectively remove some watermarks. Saberi et al. (2023) propose adversarial attacks
based on a trained surrogate watermark detector. Lukas et al. (2023) also introduces adversarial attacks
but requires the knowledge of the watermarking algorithm and a similar surrogate generative model.
Jiang et al. (2023) studies white-box attacks and black-box query-based attacks. Some attacks are
not possible in realistic scenarios where the attacker has only API access. Furthermore, existing
evaluations use differing quality/performance metrics, making it difficult to compare the effectiveness
between watermarking methods and between attacks.

Benchmarks for Image Watermarks. Before the advent of AIGC, there were significant
benchmarks introduced that greatly accelerated the progress of watermark standardization Kutter
& Petitcolas (1999); Tao et al. (2014); Petitcolas (2000). However, with the development of AIGC,
the need to watermark images generated by AI has become urgent, as previous methods were weak
in robustness and could not meet current requirements. Nowadays, more and more methods for
watermarking images generated by AI have been proposed, but they all use different methods to
evaluate robustness. Therefore, this paper proposes a benchmark for the AIGC era.

B FORMALISM OF WATERMARK DETECTION AND IDENTIFICATION

Invisible image watermarks, which are inspired by classical watermarks to protect the intellectual
properties of creators, are now applied for a wider range of application scenarios. With the vast
development of AI generative models, most current research focuses on applying invisible watermarks
to (1) identify AI-generated images (AI Detection) (Saberi et al., 2023), and (2) identify the user who
generated the image for source tracking (User Identification) (Fernandez et al., 2023).

To fairly evaluate the different watermark methods for different applications, we start from formulating
a general, message-based watermarking protocol, partially adopting the notation of (Lukas et al.,
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2023), which generalizes most of the existing setups. Let θG denote an image generator, M the space
of watermark messages, and X the domain of images. We assume M is a metric space with distance
function D(·,·). The choice of message space M can be very different depending on the watermarking
algorithm: for Tree-Ring, messages are random complex Gaussians, while for the Stable Signature and
StegaStamp, each message is a length-d binary string, where d denotes the length of the message. For
watermarking algorithms following the encoder-decoder training approach, like Stable Signature and
StegaStamp, the choice of message length d is fixed after training. Some methods, such as Tree-Ring,
enjoy flexible message length at the time of injecting watermarks.

In addition to classifying images as watermarked or non-watermarked, a good detector will often
provide a p-value for the watermark detection, which measures the probability that the level of
watermark strength observed in an image could occur by random chance. The Tree-Ring watermark
also includes an image location parameter τ to embed a message m∈M, but we subsume this under
the parameters of θG. We now introduce several important watermarking operations:

• EMBED :θG×M→X is the generative procedure that creates a watermarked image given
user-defined parameters of θG (such as prompt, guidance scale, etc. for a diffusion model)
and a target message m∈M.

• DECODE :X →M is a recovery procedure of a messagem embedded within a watermarked
image x = EMBED(θG, m). In particular, the recovery m′ = DECODE(x) may be
imperfect, i.e., m′ ̸=m.

• VERIFYα :M×M→{0,1} is conducted by the model owner to decide whether x was
watermarked by inspecting m′=DECODE(x), where x=EMBED(θG,m). For a decoded
message m′, we consider the following p-value (further discussed in Section C) for evaluating
whether the image could have been watermarked using m. which is defined as

p=Pm

(
D(ω,m′)<D(m,m′) |H0

)
,

where, D(ω,m′) is the similarity between an arbitrary message ω∼M (drawn uniformly
at random) and m′, and D(m,m′) is the similarity between the ground truth message m
and the recovered message m′. H0 denotes the null hypothesis that the image was generated
without knowledge of the watermark (and therefore the recovered message is random).
VERIFYα(m

′,m) returns 1 if p<α, and 0 otherwise. In our experiments, we set α=0.001.

To establish a comprehensive evaluation toolbox, we consider two distinct problems that naturally
arise during watermark analysis: detection and identification. Let A : X →X represent an image
attack function and denote by Q a fixed subset of messages independently drawn from M used by
θG. Further, assume that the owner of θG will only embed messages contained within a finite subset
Q drawn randomly from M.

B.1 DETECTION

In the watermark detection problem, given x=EMBED(θG,m), and an attack x′=A(x), the model
owner is tasked with producing EMBED and DECODE protocols which satisfy the following,

(1) If x=EMBED(θG,m) is a watermarked image, then VERIFYα(DECODE(x′))=1.
(2) If x=EMBED(θG,NULL) is an unwatermarked image, then VERIFYα(DECODE(x′))=0.

For both conditions, a comparison of the extracted message m′ = DECODE(x) is performed
against all messages in Q. Failure of the above conditions is referred to as Type II and Type I errors,
respectively. Exploration of the tradeoff between minimization of both error types is an interesting
research topic in its own right Zhao et al. (2023a); Saberi et al. (2023).

B.2 IDENTIFICATION

While watermark detection requires only that VERIFY(θG,x′) = 1, the watermark identification
problem further requires that one can accurately determine which message from Q is embedded in
the image. Rigorously, given x=EMBED(θG,m), an attack x′=A(x), and m′=DECODE(θG,x′),
the user requires the EMBED and DECODE to satisfy

13



argmin
m′∈Q

P
(
D(ω,m)<D(m′,m) |H0

)
=m,

for randomly drawn ω∼M if x.

The identification problem is useful in the scenario where the model owner wishes to identify the
user who created an image (e.g., a user of DALL·E). Note that as |Q|→∞, the identification problem
becomes difficult as Q will resemble M in distribution.

C DETAILS ON PERFORMANCE METRICS

C.1 CLARIFICATIONS ON p-VALUE

Here, we clarify the definition of the p-value as follows.

Watermark injection and evaluation are often done by encoding a message m into the image, and later
recovering the message m′, which may be an imperfect recovery. In addition to classifying images
as watermarked or non-watermarked, a good detector will often provide a p-value for the watermark
detection, which measures the probability that the level of watermark strength observed in an image
could happen by random chance. Rigorously, we have

p=Pm

(
D(ω,m′)<D(m,m′) |H0

)
,

where D(ω,m′) is a dissimilarity metric between an arbitrary message ω∼M (selected uniformly at
random) and recovered messagem′ from the image by the detector, andD(m,m′) denotes dissimilarity
between the ground truth message m and the recovered message m′. H0 denotes the null hypothesis
that the image was generated without knowledge of the watermark (and therefore, the recovered
message is random). The same hypothesis testing can also be applied to user identification.

As in some prior work (Fernandez et al., 2023), one may set a threshold on the estimated p-value
to determine the detection result. However, this approach makes it difficult to compare different
watermark methods fairly. Even if we set the same p-value threshold on all watermark methods,
the distinct choice of message space M, message distribution Pm, and hypothesis test may differ.
Therefore, we seek to evaluate watermark methods mainly using metrics that are independent of the
choice of p-value threshold and statistical test.

C.2 PERFORMANCE METRICS FOR USER IDENTIFICATION

For user identification, we also focus on metrics that do not depend on statistical testing and
hyperparameters like p-value thresholds.

The user detection issue involving K users is aptly conceptualized as a K-way classification task. This
can be reframed into a binary classification problem by designating the positive class as the correct user
and the negative class as all other users. From this perspective, the TPR@x%FPR metric becomes ap-
plicable, defined for a specific FPR threshold and user count. In our study, we focus on TPR@0.1%FPR
for a scenario involving 1,000 users. The identification performance results are shown in Section 3.3.

C.3 OTHER PERFORMANCE METRICS

While this paper primarily focuses on the TPR@0.1%FPR metric, it’s important to acknowledge other
common metrics such as p-values, AUROC scores, mean accuracies, and bit accuracies.

However, we do not report p-values since their absolute values depend heavily on the chosen statistical
test, making them less comparable across different watermark methods.

AUROC scores, although independent of the choice of p-value threshold and statistical test, have
limitations used as a metric for evaluating watermark detection. In AI-generated image applications,
labeling non-watermarked images as watermarked (false positive) are particularly detrimental. As a
result, strict control of false positive rate (FPR) is crucial. However, a high AUROC does not guarantee
a high true positive rate (TPR) at low false positive rate (FPR) levels.

Using message distances such as bit accuracy as a metric for evaluating watermarks’ performance
has several limitations:
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(1) Insensitivity to error distribution: bit accuracy measures the proportion of correctly identified
bits in the watermark but does not account for the distribution of errors. This means it treats all errors
equally, regardless of their impact or pattern. In watermarking, certain types of errors (like clustered
errors) might be more detrimental than others.
(2) Lack of contextual insight: bit accuracy alone doesn’t provide insights into the types of errors (false
positives or false negatives). In watermark detection, understanding the nature of errors is crucial,
especially in differentiating between missing a watermark and incorrectly identifying one.
(3) Threshold dependency: the effectiveness of bit accuracy is dependent on the threshold chosen for
determining a bit’s value. Different thresholds can yield significantly different bit accuracies, making
the metric somewhat arbitrary and less reliable for comparing different watermarking schemes.
(4) Non-representation of overall system performance: bit accuracy focuses narrowly on the correctness
of individual bits, neglecting the broader context of the watermarking system’s performance, such
as its robustness against attacks, computational efficiency, or impact on image quality.
(5) Potential misleading results in imbalanced cases: in scenarios where the watermark bits are not
evenly distributed (e.g., more 0s than 1s or vice versa), bit accuracy might give a skewed view of
the system’s performance. It could show high accuracy even if the system is only good at detecting
the majority class. For these reasons, it’s often more effective to use a combination of metrics that
can provide a holistic view of the watermarking system’s performance, considering aspects like error
distribution, false positives/negatives, and overall impact on the media.

Although these metrics are not included in the paper, they are incorporated in the benchmark software
and available for future research use.

D DESIGN CHOICES OF WAVES

D.1 DATASET PREPARATION

We utilize three datasets for the non-watermarked reference images in our evaluation: DiffusionDB,
MS-COCO, and DALL·E3, each comprising 5000 reference images and prompts. DiffusionDB
represents a diverse collection from the DiffusionDB dataset (Wang et al., 2022), focusing on images
generated from the Stable Diffusion (Rombach et al., 2022) models. MS-COCO is derived from
the well-known Microsoft COCO detection challenge (Lin et al., 2014), featuring a wide range of
everyday scenes and objects. DALL·E31 includes images from the DALL·E3 model, showcasing
another popular diffusion model trained on substantially different data. These datasets provide a
comprehensive range of image types and contexts, ideal for robust watermark evaluation.

The three datasets are filtered subsets of the corresponding source dataset using the same filtering
algorithm. The source dataset information is listed below.

• DiffusionDB: the 2m_random_100k split of DiffusionDB dataset (Wang et al., 2022), link.

• MS-COCO: the validation split of the 2017 Microsoft COCO detection challenge (Lin et al.,
2014), link.

• DALL·E3: the train split of the dalle-3-dataset repository on HuggingFace, collected from
the LAION share-dalle-3 discord channel, link.

The filtering algorithm considers the following rules to subsample the 5,000 image subset:

• Remove columns: Remove irrelevant columns and only keep the reference images and prompt
strings.

• Filter prompts: Tokenize the prompt strings by the Open Clip’s tokenizer, and filter out
samples with no tokens and more than 75 tokens. This is because Stable Diffusion (Rombach
et al., 2022) truncates prompts at 75 tokens (Wang et al., 2022).

• Rank images: Rank the images by their aesthetics score, as defined by Xu et al. (2023),
in descending order. We then select the top 5,000 images, along with their corresponding
prompt strings. This approach is adopted because the DiffusionDB and DALL·E3 datasets,

1The DALL·E3 dataset is hosted at https://huggingface.co/datasets/laion/
dalle-3-dataset.
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sourced from chat-bots, contain some lower-quality images. We posit that watermarking
holds greater utility for high-quality AI-generated images, as the copyright protection of
low-quality generated images is less meaningful and practical.

In our study, we examined three distinct datasets—DiffusionDB, MS-COCO, and DALL·E3—each
characterized by a unique distribution of prompt words. As illustrated in the word-cloud plots
(Figure 5), we observe notable differences. DiffusionDB predominantly features prompt words that
emphasize the desired quality of the generated images, such as “beautiful” and “highly detailed.” In
contrast, MS-COCO’s prompts mainly focus on describing the objects within the images. Meanwhile,
DALL·E3’s prompts show a tendency towards describing aspects of fine arts.

(a) DiffusionDB prompts (b) MS-COCO prompts (c) DALL·E3 prompts

Figure 5. Word clouds of DiffusionDB, MS-COCO, and DALL·E3 prompts.

Image examples from the three datasets are illustrated in Figure 6. The reference images for
DiffusionDB are produced by Stable Diffusion, MS-COCO includes real-world photographs, and
DALL·E3 contains images generated by the DALL·E3 model. This choice of datasets effectively
covers two popular generative models and the real-world scenario, highlighting their relevance in
practical watermarking applications.

(a) DiffusionDB (b) MS-COCO (c) DALL·E3

Figure 6. Image examples of DiffusionDB, MS-COCO, and DALL·E3.

D.2 SELECTION OF WATERMARK REPRESENTATIVES

Table 4. A list of alternative watermarking algorithms not tested by WAVES in this work.

Method Known Weakness(es)
DwtDct (Al-Haj, 2007) Distortion (Wen et al., 2023), Purification (Saberi et al., 2023)

DwtDctSvd (Al-Haj, 2007) Distortion (Zhao et al., 2023a; Wen et al., 2023), Purification (Saberi et al., 2023), Regeneration (Zhao et al., 2023a)
RivaGan (Dong et al., 2023) Regeneration (Zhao et al., 2023a), Purification (Saberi et al., 2023)
SSL (Fernandez et al., 2022) Distortion(Zhao et al., 2023a), Regeneration (Zhao et al., 2023a)

WatermarkDM (Zhao et al., 2023b) Purification (Saberi et al., 2023)

Our WAVES framework can be used to stress-test the robustness of any watermark. In this work, how-
ever, we focus on three methods: the Stable Signature, Tree-Ring, and Stegastamp. This is due to existing
and extensive studies (Zhao et al., 2023a; Saberi et al., 2023; Wen et al., 2023) indicating these three
methods are far more robust to simple off-the-shelf attacks than alternative watermarking algorithms
listed in Appendix A. We list these competitors along with their documented vulnerabilities in Table 4.

E EVALUATION DETAILS

In this section, we provide more details on the evaluation scheme of WAVES.
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E.1 WATERMARKING PROTOCOL AND EVALUATION WORKFLOW.

In-depth information on the applications of invisible image watermarks is provided, focusing on AI
detection and user identification. We delve into the evolution of watermarks from classical copyright
protection tools to their modern uses in AI scenarios. The appendix discusses the specific roles of
AI detection in distinguishing AI-created images and user identification in tracing image origins, citing
studies like (Saberi et al., 2023; Fernandez et al., 2023).

The formulation of our watermarking protocol is detailed, explaining the use of an image generator
θG, a metric space of watermark messages M, and an image domain X . We elaborate on the variations
in the choice of message space M across different watermark methods. For example, Tree-Ring
uses random complex Gaussians, whereas Stable Signature and StegaStamp use binary strings. The
implications of these choices on the flexibility and effectiveness of watermark methods are discussed.

An extensive analysis of the trade-off between watermark performance and image quality in the
context of watermark attacks is provided. This includes the rationale for using Performance vs.
Quality 2D plots for attack comparisons, highlighting the comprehensive perspective this offers over
traditional performance-focused analyses. The methodology of our evaluation process is laid out
in detail, describing how we compare watermarked images from model θG with a mixed set of real
and AI-generated images to achieve a robust and unbiased assessment. This section also covers the
specific metrics used, including TPR@0.1%FPR and various image quality metrics, and how they
are integrated into a consolidated performance vs. quality analysis.

E.2 PERFORMANCE EVALUATION METRICS

The evaluation approach in WAVES addresses the challenges of using p-values for fair watermark
method comparison. The diversity in message spaces M, distributions Pm, and hypothesis tests
can lead to biased results when traditional p-value thresholds are used. Our metrics, designed to be
independent of these thresholds and tests, offer a balanced and thorough evaluation of watermark
methods, focusing on their inherent strengths in encoding and recovering messages.

Emphasizing TPR@x%FPR, particularly at the low FPR of0.1%, sets WAVES apart in evaluating water-
mark methods. This novel approach, inspired by studies like Wen et al. (2023); Fernandez et al. (2023),
challenges watermark methods beyond typical benchmarks such as TPR@1%FPR. Applied to a broader
image dataset, it provides a more comprehensive evaluation of their effectiveness. In user identification,
WAVES’s multi-class classification approach assesses watermark methods’ efficacy in correctly at-
tributing users. The appendices detail the methodology’s implementation and present additional results,
demonstrating the effectiveness and accuracy of our approach in various user identification scenarios.

We treat the user identification problem as a multi-class classification task, as outlined in Section 2.1.
This involves defining a set of ground-truth messages, each corresponding to a unique user. To avoid
the exhaustive evaluation process (watermark encoding, attacking, and decoding) for varying numbers
of users, we consistently watermark images with the same message, the ground-truth message of the
first user, and generate a random set of ground-truth messages for the remaining users at the time of
evaluation. This approach is feasible since the ground-truth messages for users other than the first
do not influence the watermarking or attack phases. We conduct the identification assessment ten
times with ten distinct random sets of ground-truth messages for the other users, and we report the
mean multi-class classification accuracy.

E.3 PROCESSING RESULTS

A set of Performance vs. Quality 2D plots show the detailed evaluation results. We evaluate
3 watermarking methods under the 26 attacks, and report results across 3 datasets in Figure 24 to
Figure 29. The quality of images post-attack is evaluated using 8 metrics and the detection performance
of 3 methods is measured by TPR@0.1%FPR.

Different quality metrics yield similar ranking of attacks. Despite measuring different aspects of
image quality, we observe that eight quality metrics consistently produce similar rankings for attacks,
as illustrated in Figure 7. Since a strong attack should remove the watermark without sacrificing
the image quality, we rank attack potency by ranking the post-attack quality, from best to worst, at
a frozen performance threshold (e.g., TPR@0.1%FPR=0.95). Upon comparing the rankings derived
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Figure 7. Ranking attacks with different quality metrics on DiffusionDB images watermarked by Tree-Ring.
Attack potency is ranked by image quality at 0.95 TPR@0.1%FPR. Colors indicate the ranks (1=best, 9=worst),
and values show the measured quality. We use ’NA’ to label an attack if its attack curve lies entirely above
TPR=0.95; the attack is automatically ranked last.

from different quality metrics, we find that the variations in rank order are minimal. Consequently,
we aggregate these metrics into a single, unified quality metric.

Unified Performance vs. Quality degradation 2D plots. We first set the “standardized” 0.1 and
0.9 points for each metric according to the distribution of measured values (as depicted in Figure 8).
Subsequently, every metric’s value is normalized to predominantly fall within the [0.1,0.9] range of the
normalized quality metric (the detailed methodology is provided in Appendix E.4). We average these
normalized quality scores to derive the Normalized Quality Degradation, with lower scores indicating
lesser quality degradation caused by attacks, which is preferred. Furthermore, we aggregate the results
across three distinct datasets. The Performance vs. Quality degradation 2D plots, as shown in Figure 2,
visualize the unified evaluation results for each watermarking method. We use unified Performance
vs. Quality degradation 2D plots to benchmark watermarks and attacks in the following sections.

E.4 NORMALIZATION AND AGGREGATION OF QUALITY METRICS

The eight quality metrics in WAVES exhibit unique range characteristics. To synthesize these into
a single metric, we normalize each metric into a common interval, assigning the 10% quantile of all
attacked images as the 0.1 point, and the 90% quantile as the 0.9 point. This normalization is based on a
comprehensive dataset covering 26 attack methods, three watermark methods, and three datasets. Our
focus is on specific applications, particularly attacking invisible image watermarks. The normalization
process is informed by the cumulative distribution functions (CDFs) of these metrics, which exhibit
a roughly linear distribution between the 10% and 90% quantiles, but a non-linear pattern outside
this range. This observation is particularly evident in metrics like PSNR. The normalization method
ensures values carry equivalent significance across different metrics. Figure 8 in this appendix provides
a visual representation of the CDFs across all metrics. After normalization, metrics are aggregated by
averaging to form the comprehensive quality metric, utilized in Section 3 for Performance vs Quality
plots, watermark radar plots, and attack leaderboards. This section elaborates on the normalization and
aggregation process, providing a foundation for understanding the metric’s application and significance.

In Figure 8, the cumulative distribution functions (CDFs) for eight image quality metrics over all
attacked watermarked images are presented. This illustration includes the metric values at the 10%
and 90% quantiles, which are used as the boundaries for normalizing the metric values within the range
of [0.1,0.9]. Such normalization ensures that all normalized metrics exhibit a comparable statistical
distribution over attacked watermarked images, facilitating an unbiased aggregated evaluation. To
consolidate these normalized metrics, we first calculate the average within each of the four defined
categories (image similarities, distribution distances, perception-based metrics, and image quality
assessments) as delineated in Section 2.1. Subsequently, the average of these category averages is
calculated to yield a single, consolidated normalized, and aggregated quality metric.
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Figure 8. Cumulative distribution functions (CDFs) for eight image quality metrics across all attacked watermarked
images. The horizontal dashed lines mark the 10% and 90% quantiles, and the intersecting vertical dashed lines
delineate the bounds of the normalization intervals. Values at the lower bound are normalized to 0.1, and those at
the upper bound to 0.9.

E.5 DETAILS OF BENCHMARKING WATERMARKS

When benchmarking watermark robustness in Figure 3 and Figure 17, we consider the following
effective attacks. We select 21 attacks from 26 attacks. We include all distortion attacks. We select
the two most effective single regeneration attacks and two rinsing attacks. For adversarial attacks,
we do not include AdvEmbB-RN18, and AdvCls-Real&WM since they basically do not work. We also
eliminate AdvCls-UnWM&WM and only use AdvCls-WM1&WM2 to represent surrogate detector
attacks since AdvCls-UnWM&WM is based on an unrealistic assumption. For each type of attack,
we compute Average TPR@0.1%FPR across all practical strength levels that cause quality degradation
less than 0.8, and across all attacks in each category.

• Distortion Single: Dist-Rotation, Dist-RCrop, Dist-Erase, Dist-Bright, Dist-Contrast,
Dist-Blur, Dist-Noise, Dist-JPEG.

• Distortions Combination: DistCom-Geo, DistCom-Photo, DistCom-Deg, DistCom-All.

• Regeneration Single: Regen-Diff, Regen-KLVAE.

• Regeneration Rinsing: Regen-2xDiff, Regen-4xDiff.

• Adv Embedding Grey-box: AdvEmbG-KLVAE8.

• Adv Embedding Black-box: AdvEmbB-CLIP, AdvEmbB-SdxlVAE, AdvEmbB-KLVAE16.

• Adv Surrogate Detector: AdvCls-WM1&WM2.

E.6 DETAILS OF BENCHMARKING ATTACKS

In addition to benchmarking watermarks, WAVES also facilitates the analysis from the perspective
of attacks. Table 3 provides a leaderboard of individual attacks. A strong attack should result in low
post-attack detection performance while simultaneously preserving image quality for practical uses.
Therefore, we benchmark attacks according to both performance and quality degradation. Based
on three Performance vs. Quality 2D plots in Figure 2, we first select two performance thresholds,
TPR@0.1%FPR=0.95 and TPR@0.1%FPR=0.7, ensuring intersections with most attack curves. Then,
we calculate the quality degradation for each attack at these two performance thresholds, denoted
as Q@0.95P and Q@0.7P. Given that some attack curves do not intersect with either threshold, we
also compute each attack’s average performance and quality degradation across all strengths, termed
as Avg P and Avg Q. We report these metrics — Q@0.95P, Q@0.7P, Avg P, and Avg Q — for attack
comparison. Based on them, we also provide a ranking of 26 attacks for each watermarking method
for reference. During this ranking process, we incorporate a 0.01 buffer for both P and Q, meaning that
if the difference between any two values is less than 0.01, they are considered a tie in terms of ranking.
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F DETAILS OF ATTACKS

F.1 DISTORTION ATTACKS

For single distortions, we consider, as described in Section 2.2, eight types: rotation, resized-crop,
random erasing, brightness adjustment, contrast adjustment, Gaussian blur, Gaussian noise, and JPEG
compression. For each distortion, we consider five evenly distributed distortion strengths between
minimum and maximum; the minimums and maximums are listed as follows.

• Rotation: rotate 9◦ to 45◦ clock-wise.

• Resized-crop: crop 10% to 50% of the image area.

• Random erasing: erase 5% to 25% of the image area and fill with gray color.

• Brightness adjustment: increase image brightness by 20% to 100%.

• Contrast adjustment: increase image contrast by 20% to 100%.

• Gaussian blur: blur with kernel size from 4 to 20 pixels.

• Gaussian noise: add Gaussian random noise with standard deviation from 0.02 to 0.1 (when
pixel values normalized to [0, 1]).

• JPEG compression: compress with JPEG quality score from 90 to 10.

It is worth noting that our strength selections are more conservative than most of the watermark papers,
such as (Wen et al., 2023; Fernandez et al., 2023). This is because we want to keep the image quality
after distortion within a reasonable interval compared to the other attacks. While some watermark
papers intentionally select unreasonably large distortion strength (for example, cropping 90% of
image area in (Fernandez et al., 2023), or Gaussian blurring with kernel size 40 (Wen et al., 2023))
to demonstrate their robustness under some distortions. We implement the distortions following the
standard image augmentations in the torchvision library.

For combinations of distortions (also called combo distortions in paper for short), we apply each single
distortion with the same relative strength, where the relative strength is between 0 and 1, normalized
with respect to the minimum and maximum strengths above. For combinations of geometric, photomet-
ric, and degradation distortions, we consider five evenly distributed normalized strengths from 0.05 to
0.45. For combinations of all distortions, we consider five evenly distributed normalized strengths from
0.05 to 0.20. The relative strengths are selected for reasonable image qualities after distortions again.

(a) Geometric distortions (PSNR
↑)

(b) Degradation distortions
(PSNR ↑)

Figure 9. Distortions and their combinations. We combine three types of distortions: geometric, photometric, and
degradation, both individually and collectively. By comparing quality-performance plots, we see combinations of
distortions do not necessarily lead to better attacks.

F.2 REGENERATION ATTACKS

Following the language of Section 2, regeneration attacks Zhao et al. (2023a) use off-the-shelf VAEs
and diffusion models to transfer a target image x∈X to a latent representation followed by a restoration
to x′∈X that is faithful to its original representation, i.e., x′≈x. Since the chosen VAE or diffusion
model will not be contained by the attacker’s model of interest, the entire regeneration is likely to
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disrupt the latent representation of x, thereby damaging an embedded watermark. However, since
the capacity of the attacker’s regenerative model is inferior to the target model, x′ will likely be of
reduced quality. In this work, the target model is Stable Diffusion v2.1 while the surrogate model
used for regeneration is Stable Diffusion v1.4.

Figure 12 demonstrates that a long diffusion or low-quality VAE attack will significantly reduce
watermark detectability but at the expense of reduced image quality, which is clear by visual inspection
of the sequence of images in Figure 10. Rising regenerations achieve similar reductions in detection,
although too deep of rinsing regenerations (> 30 noising steps) significantly alter image quality as
evidenced by Figure 11.

(a) Regen-Diff-40 (b) Regen-Diff-120 (c) Regen-Diff-200 (d) Regen-VAE-1

Figure 10. Regenerative diffusion with varying depth of noising steps and a VAE regeneration with a low quality
factor.

(a) Rinse-4xDiff-10 (b) Regen-4xDiff-30 (c) Regen-4xDiff-50

Figure 11. 4x rinsing regeneration with varying depth of noising steps per diffusion.

F.2.1 PROMPTED REGENERATION

We propose a simple variation on a regenerative diffusion attack: if an image is produced via a known
prompt, then an attacker uses the prompt to guide the diffusion of their surrogate model. This type of
attack is reasonable and realistic for users of online generative models such as DALL·E or Midjourney.
Figure 12 and Tables 5 & 3 indicate that this type of attack, labeled Regen-DiffP is slightly stronger
than conventional Regen-Diff.

F.2.2 MIXED REGENERATION

Mixed regeneration refers to any style of attack that uses a regenerative diffusion on an image followed
by VAE-style regeneration for the purposes of denoising. In Figure 12, we label examples of such
attacks as RinseD-VAE and RegenD-KLVAE, which respectively denote VAE and KLVAE denoising
following a 4x rinsing regeneration with 50 steps (Rinse-4xDiff-50). According to Figure 12, such
a combination improves PSNR and CLIP-FID, as opposed to a Rinse-4xDiff alone. The restorative
effects of mixed regeneration are visually observable for shallower (i.e., 2x or 3x) rinsing regenerations,
as depicted in Figure 13. We do not extensively study or rank such attacks in this work, but include
them as a future topic of research.

All tested regeneration attacks are summarized as follows, with five evenly divided strengths between
the listed minimum and maximum unless specified otherwise:

21



Figure 12. Regeneration attacks on Tree-Ringk. Regen-Diff is a single diffusive regeneration and Rinse-[N]xDiff
is a rinsing one with N repeated diffusions, with the number of noising steps as attack strength. Regen-VAE uses a
pre-trained VAE with quality factor as strength and Regen-KLVAE uses pre-trained KL-VAEs with bottleneck size
as strength. RinseD-VAE applies a VAE as a denoiser after Rinse-4xDiff.

(a) Unattacked (b) Rinse-3xDiff (c) Rinse-3xDiff+VAE

Figure 13. An image of a dragon attacked using a 3x rinsing regeneration. Pushing the image through a
VAE restores image quality, noticeable in the eye color of the dragon (indicated by the green box). Image is
drawn from the Gustavosta Stable Diffusion dataset available @ https://huggingface.co/datasets/
Gustavosta/Stable-Diffusion-Prompts.

• Regeneration via diffusion: passes an image through Stable Diffusion v1.4 with strength
as the number of noise/de-noising steps timesteps, 40 to 200.

• Regeneration via prompted diffusion: passes an image through Stable Diffusion v1.4
conditioned on its generative prompt with strength as the number of noise/de-noising steps
timesteps, 40 to 200.

• Regeneration via VAE: Image is encoded then decoded by a pre-trained VAE (bmshj2018)
Ballé et al. (2018) with strength as quality level from 1 to 7.

• Regeneration via KL-VAE: Image is encoded and then decoded by a pre-trained KL-
regularized autoencoder with strength as bottleneck sizes 4, 8, 16, or 32.

• Rinsing generation 2x: an image is noised then de-noised by Stable Diffusion v1.4 two times
with strength as number of timesteps, 20-100 (per diffusion).

• Rinsing generation 4x: an image is noised then de-noised by Stable Diffusion v1.4 two times
with strength as number of timesteps, 10-50 (per diffusion).

• Mixed Regeneration via VAE: an image passed through a rinsing regeneration 4x (for 50
timesteps each) and then a VAE with strength as quality level from 1-7.

• Mixed Regeneration via KL-VAE: an image passed through a rinsing regeneration 4x (for
50 timesteps each) and then a KL-VAE with strength as bottleneck sizes 4, 8, 16, or 32.

F.3 ADVERSARIAL ATTACKS

In this section, we detail our adversarial attacks. Figure 15 visually summarizes these methods.
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Figure 14. Adversarial embedding attacks target Tree-Ring at strengths of {2/255, 4/255, 6/255, 8/255}. Tree-Ring
shows vulnerability to embedding attacks, especially when the adversary can access the VAE being used.

(A) Embedding Attacks. Watermark detection can be thwarted by perturbations on image embedding.
Such attacks have been used against Multimodal Large Language Models like GPT-4V (Dong et al.,
2023) and shown good transferability (Inkawhich et al., 2019). We examine if attacks on off-the-shelf
embedding models can transfer to watermark detectors. Given an encoder f :X →Z mapping images
to latent features, we craft an adversarial image xadv to diverge its embedding from the original water-
marked imagex, within an l∞ perturbation ball limit: maxxadv

∥f(xadv)−f(x)∥2, s.t. ∥xadv−x∥∞≤
ϵ. We approximately solve this using the PGD (Madry et al., 2017) algorithm (see details in Ap-
pendix F.3.1), and see if the adversarial image transfers to real watermark detectors.

We evaluate five off-the-shelf encoders. AdvEmbB-RN18 uses a pre-trained ResNet18 (He et al., 2016),
targeting the pre-logit feature layer. AdvEmbB-CLIP employs CLIP’s (Radford et al., 2021) image
encoder. AdvEmbG-KLVAE8 utilizes the encoder of KL-VAE (f8) which is used in the victim latent
diffusion model. This is a grey-box setting but reflects the use of public VAEs in proprietary models (for
example, DALLE·3 uses a public KL-VAE according to https://cdn.openai.com/papers/
dall-e-3.pdf). Further, we do ablation studies on KL-VAE (f16), which has a different architecture
but is trained on the same data, and on SDXL-VAE (Podell et al., 2023), an enhanced version of KL-VAE
(f8). They are black-box attacks and are labeled AdvEmbB-KLVAE16 and AdvEmbB-SdxlVAE.

As shown in Figure 14, Tree-Ring is vulnerable to embedding attacks, particularly under the grey-box
condition where TPR@0.1%FPR can drop to nearly zero, effectively removing most watermarks. This
is because the detection process of Tree-Ring first maps the image to the latent representation through the
encoder of KL-VAE (f8), then conducts inverse DDIM to retrieve the watermark. The embedding attack
changes the latent representation severely; therefore, watermark retrieval becomes very difficult. Using
similar yet distinct VAEs, attack effectiveness diminishes but still manages to remove some watermarks,
with KL-VAE (f16), trained on the same images, demonstrating the highest transferability. CLIP-based
attacks also achieve some success, especially on natural images like MS-COCO, likely due to CLIP
being trained on natural images akin to those in MS-COCO, enhancing the transferability. Conversely,
Stable Signature and StegaStamp demonstrate robustness against embedding attacks (Figure 2), likely
because their detectors are trained independently from generative models, differing significantly from
standard classifiers and VAEs. Hence, our attacks fail to effectively transfer to their detectors.

(B) Surrogate Detector Attacks. Watermark detection hinges on a detector that decodes and
verifies messages from watermarked images. Adversaries might acquire numerous watermarked
and non-watermarked images to train a surrogate detector, and transfer attacks on it to the actual
watermark detector. Figure 15 explores our various settings. AdvCls-UnWM&WM trains a surrogate
detector with both watermarked and non-watermarked images from the victim generative model,
as per Saberi et al. (2023). Note that this is an unrealistic setting for proprietary models since all
their outputs are assumed to be watermarked. AdvCls-Real&WM trains the surrogate watermark
detector with watermarked and non-watermarked images, where non-watermarked images are sampled
from the ImageNet dataset (not from the generative model). This approach is more applicable to
proprietary models. AdvCls-WM1&WM2 only uses watermarked images. It actually trains a
surrogate watermark message classifier to distinguish two users. Suppose the system assigns a
particular message to each user for identification purposes, the adversary can collect the training data
from two users’ outputs, with an identical set of prompts. Adversarial attacks on this surrogate model
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Figure 15. Three settings for training the surrogate detector. The Generator is the victim generator under attack.
We externalize the watermarking process for simplicity, but it could be in-processing watermarks. After training
the surrogate detectors, the adversary performs PGD attacks on them to flip the labels.

aim at user misidentification. All surrogate detectors are fine-tuned on ResNet18. We use ImageNet
text prompts “A photo of a {class name}” to generate training images (see details in Appendix F.3.2).

With the trained surrogate detector f : X → Y , where Y = {0, 1}, adversaries launch targeted
attacks. The goal is to craft an adversarial image xadv from an original image x so that f incorrectly
predicts the target label ytarget (i.e., wrong label), minimizing the following with cross-entropy
loss: minxadv

L(f(xadv),ytarget), s.t. ∥xadv−x∥∞ ≤ ϵ. It enables adversaries to erase watermarks
from marked images or implant them into clean images in the first two settings, and to disrupt user
identification as well as watermark detection in the third setting. We solve it with the PGD algorithm.

Figure 18 shows Tree-Ring’s vulnerability to surrogate detector-based attacks. In AdvCls-
UnWM&WM, the adversary accessing non-watermarked images has good transferability and
removes watermarks effectively. However, it fails to add watermarks to clean images (spoofing attack),
as detailed in Figure 19. The reason behind this is explored in Appendix G.2, where we find the
attacker disrupts the entire latent space, not just the watermark (as shown in Figure 20). Conversely, the
spoofing attack fails to embed the precise watermark. AdvCls-Real&WM attack fails entirely, likely
due to the surrogate model appearing to differentiate real from generated images, using broader features
than the watermark. The newly proposed AdvCls-WM1&WM2 successfully attacks Tree-Ring
using only watermarked images. Like the first scenario, the surrogate model fails to precisely locate
watermarks but learns the mapping to the latent feature space, allowing a PGD attack to remove the
watermark by disturbing the entire latent space (see Figure 21). In user identification tasks (Figure 22),
the attack doesn’t consistently mislead the detector into misidentifying User1’s watermarked images as
User2’s (targeted misidentification). Instead, imprecise perturbations often lead to incorrect attribution
of User1’s images to others.

Figure 2 shows that Stable Signature and StegaStamp are robust to these attacks. Even with high
surrogate classifier accuracy in AdvCls-UnWM&WM, adversarial examples fail to transfer to the
true detector, possibly due to reliance on different features than those used by the true detector.
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F.3.1 EMBEDDING ATTACK

The embedding attacks use off-the-shelf encoders and perform untargeted attacks. We use the Projected
Gradient Descent (PGD) algorithm (Madry et al., 2017) to optimize the adversarial examples. We
conduct the attack using a range of perturbation budgets ϵ, specifically {2/255, 4/255, 6/255, 8/255}.
All the attacks are configured with a step size of α=0.05∗ϵ and the number of total iterations of 200.
The attacks are on the watermarked images, aiming to remove the watermarks by perturbing their
latent representations.

F.3.2 SURROGATE DETECTOR ATTACK

Figure 15 illustrates the three settings of training the surrogate detectors. In all three settings, we train
the surrogate detectors by fine-tuning the ResNet182 for 10 epochs with a learning rate of 0.001 and
a batch size of 128. The training images are either generated by the victim generator with the ImageNet
text prompts "A photo of a {ImageNet class name}," or real ImageNet images. We randomly shuffle
those images and build the binary training set according to each setting. In the AdvCls-UnWM&WM
setting, we train the surrogate detector with 3000 images (1500 images per class) since we find a larger
training set might have the overfitting problem. In the AdvCls-Real&WM and AdvCls-WM1&WM2
settings, we train the surrogate detector with 15000 images (7500 images per class). The watermarked
images in AdvCls-WM1&WM2 are embedded with two distinct messages. One message is the one
used in the test watermarked images. The other one is randomly generated. In all three settings, we
use 5000 images (2500 images per class) for validation (derived from the same source as the training
set), and the training yields nearly 100% validation accuracy in all cases.

After completing the training phase, the adversary executes a Projected Gradient Descent (PGD)
attack on the surrogate detector using the testing data (DiffusionDB, MS-COCO, DALL·E3). In all
three settings, we conduct the attack using a range of perturbation budgets ϵ, specifically {2/255,
4/255, 6/255, 8/255}. The attack is configured with a step size of α=0.01∗ϵ and the number of total
iterations of 50. By flipping the label, the adversary can either try to remove the watermarks or add
the watermarks. The analyses of results appear in Appendix G.2.

G ADDITIONAL RESULTS

G.1 MORE RESULTS FOR IDENTIFICATION

Figure 16 shows the Performance vs. Quality degradation plots under the user identification setting.
Table 5 presents the ranking of attacks in the identification setup. Figure 17 is a radar plot of
identification accuracy.

G.2 MORE ANALYSES ON SURROGATE DETECTOR ATTACKS

The AdvCls-UnWM&WM attack leverages a surrogate model to distinguish between images that
are watermarked and those that are not. As demonstrated in Figure 18, the PGD attack is effective in
removing watermarks by flipping the label of watermarked images. This raises a question: Is it possible
to similarly ‘add’ watermarks to clean images by flipping their labels? This process, commonly
referred to as a spoofing attack, which demonstrates a false detection of watermarks in clean images,
is explored in our study.

However, as illustrated in Figure 19, our attempts to add watermarks to clean images by simply flipping
the labels were unsuccessful. In this experiment, detailed in Figure 19, we focus exclusively on
unwatermarked images, aiming to introduce watermarks, while leaving already watermarked images
untouched. Despite employing the most intensive perturbations, we were unable to artificially add
watermarks to these images. This outcome leads to an intriguing inquiry: Why is the technique
effective in removing watermarks but not in adding them? We delve into the underlying reasons for
this asymmetry in Figure 20.

The insights from Figure 20 reveal that the surrogate model does not exactly remove the watermark.
Instead, it perturbs the watermark along with other features within the latent space. The disturbance

2https://pytorch.org/vision/main/models/generated/torchvision.models.resnet18.html
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Figure 16. Aggregated performance vs. quality degradation 2D plots under identification setup (one million
users). We evaluate each watermarking method under various attacks. Two dashed lines show to thresholds used
for ranking attacks.

Table 5. Comparison of attacks across three watermarking methods under the identification setup (one
million users). Q denotes the normalized quality degradation and P denotes the performance as derived from
aggregated 2D plots. Q@0.7P measures quality degradation at a 0.7 performance threshold where "inf" denotes
cases where all tested attack strengths yield performance above 0.7, and "-inf" where all are below. Q@0.4P is
defined analogously. Avg P and Avg Q are the average performance and quality over all the attack strengths. The
lower the performance and the smaller the quality degradation, the stronger the attack. For each watermarking
method, we rank attacks by Q@0.7P, Q@0.4P, Avg P, Avg Q, in that order, with lower values (↓) indicating stronger
attacks. The top 5 attack of each watermarking method are highlighted in red.

Attack Tree-Ring Stable Signature StegaStamp
Rank Q@0.7P Q@0.4P Avg P Avg Q Rank Q@0.7P Q@0.4P Avg P Avg Q Rank Q@0.7P Q@0.4P Avg P Avg Q

Dist-Rotation 8 -inf 0.434 0.131 0.648 12 0.613 0.642 0.400 0.650 4 0.454 0.500 0.288 0.616
Dist-RCrop 11 -inf 0.592 0.094 0.463 24 inf inf 0.972 0.461 6 0.602 0.602 0.494 0.451
Dist-Erase 26 inf inf 0.986 0.490 25 inf inf 0.988 0.489 25 inf inf 1.000 0.483
Dist-Bright 22 inf inf 0.913 0.304 23 inf inf 0.982 0.305 22 inf inf 0.995 0.317

Dist-Contrast 23 inf inf 0.949 0.243 20 inf inf 0.979 0.243 17 inf inf 0.994 0.231
Dist-Blur 21 1.105 1.437 0.551 1.221 5 -inf -inf 0.000 1.204 9 0.897 0.970 0.280 1.198

Dist-Noise 16 0.427 inf 0.728 0.395 8 0.415 0.480 0.633 0.390 24 inf inf 1.000 0.360
Dist-JPEG 17 0.499 0.499 0.700 0.284 9 0.485 0.485 0.540 0.284 21 inf inf 0.995 0.263

DistCom-Geo 9 -inf 0.559 0.105 0.768 13 0.788 0.835 0.519 0.767 7 0.676 0.717 0.359 0.733
DistCom-Photo 23 inf inf 0.947 0.242 20 inf inf 0.981 0.243 17 inf inf 0.994 0.239
DistCom-Deg 18 0.556 0.864 0.570 0.694 7 0.216 0.281 0.183 0.679 8 0.870 0.957 0.737 0.664
DistCom-All 10 -inf 0.575 0.123 0.908 11 0.550 0.623 0.176 0.900 10 0.995 1.096 0.682 0.870

Regen-Diff 6 -inf 0.307 0.258 0.323 1 -inf -inf 0.000 0.300 2 0.333 inf 0.766 0.327
Regen-DiffP 6 -inf 0.308 0.256 0.327 1 -inf -inf 0.000 0.303 1 0.336 0.356 0.763 0.329
Regen-VAE 19 0.578 0.578 0.701 0.348 10 0.545 0.545 0.340 0.339 23 inf inf 1.000 0.343

Regen-KLVAE 14 0.257 inf 0.810 0.233 6 -inf -inf 0.047 0.206 17 inf inf 0.999 0.240
Rinse-2xDiff 5 -inf 0.270 0.220 0.357 3 -inf -inf 0.000 0.332 3 0.390 0.402 0.778 0.366
Rinse-4xDiff 1 -inf -inf 0.110 0.466 4 -inf -inf 0.000 0.438 5 0.488 0.676 0.687 0.477

AdvEmbG-KLVAE8 4 -inf 0.168 0.259 0.253 20 inf inf 0.985 0.249 17 inf inf 1.000 0.232
AdvEmbB-RN18 15 0.288 inf 0.811 0.218 17 inf inf 0.990 0.212 14 inf inf 1.000 0.196
AdvEmbB-CLIP 20 0.697 inf 0.798 0.549 26 inf inf 0.991 0.541 25 inf inf 1.000 0.488

AdvEmbB-KLVAE16 12 0.158 0.309 0.540 0.238 19 inf inf 0.983 0.233 14 inf inf 1.000 0.206
AdvEmbB-SdxlVAE 13 0.214 inf 0.692 0.221 17 inf inf 0.986 0.219 14 inf inf 1.000 0.204

AdvCls-UnWM&WM 2 -inf 0.123 0.352 0.145 14 inf inf 0.991 0.101 11 inf inf 1.000 0.101
AdvCls-Real&WM 25 inf inf 0.986 0.047 14 inf inf 0.990 0.092 11 inf inf 1.000 0.106

AdvCls-WM1&WM2 2 -inf 0.118 0.343 0.139 14 inf inf 0.991 0.084 13 inf inf 1.000 0.129

alone is sufficient to confuse the detector, making it challenging to recognize the watermark. In contrast,
successfully adding watermarks requires precise modifications in the latent space, rather than mere
perturbations, which proves to be a more challenging task. The relative imprecision of this attack may
stem from the ‘transferable gap’ between the surrogate model and the ground-truth detector. Notably,
for the purpose of watermark removal, perturbing the latent space proves to be adequately effective.

These findings have led to the development of our proposed AdvCls-WM1&WM2 attack, which
utilizes images watermarked with different messages (e.g., collected from two users, User1 and
User2). The essential requirement for this approach is the surrogate model’s ability to map images
to the generator’s latent space. This mapping allows the attacker to perturb the latent space, removing
the watermark. In contrast to the AdvCls-UnWM&WM approach, which uses both watermarked
and non-watermarked images for training (differing only in the latent space), AdvCls-WM1&WM2
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Figure 17. Identification accuracy of three watermarks after attacks.

Figure 18. Adv. surrogate detector attacks on Tree-Ring.

Figure 19. The spoofing attack fails for AdvCls-UnWM&WM.
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Figure 20. Visualization of AdvCls-UnWM&WM attack. (a) shows the watermarking mask of Tree-Ring where
there are four channels, and we only watermark the last channel. The watermark message is the rings, which
contain ten complex numbers that are not shown in the figure. (b) and (c) show the inversed latent before and after
the attack in the Fourier space. We only show the real part of the latent. Clearly, the rings exist before the attack
and vanish after the attack. (d) shows the magnitude of the element-wise difference before and after the attack.
The attack not only perturbs the watermark part but also other features. The average magnitude change of the
watermark-part and non-watermark-part is around 2:1. The attack successfully disturbs the watermark, albeit in an
imprecise manner.

uses two sets of images, each embedded with a distinct watermark message (differing only in the
latent space as well). Figure 21 shows that AdvCls-WM1&WM2 attack effectively disrupts the latent
features of the images, including the watermarks. However, it lacks the precision to interchange
the embedded watermark message. Consequently, while this attack can remove watermarks and
mislead user identification—mistaking an image originally generated by User1 as belonging to another
user—it cannot accurately manipulate the identification to frame User2 as desired by the attacker.
The identification results in Figure 22 also support this finding. Although AdvCls-WM1&WM2 aims
to misidentify images as belonging to User2, it often leads to misidentification as users other than
User2. However, in a system with fewer users, like 100 users, and under intense attack conditions
(e.g., strength=8), AdvCls-WM1&WM2 demonstrates a targeted identification success rate of 0.7%,
showing a potential direction for attacks aimed at targeted user identification.

G.3 VISUALIZATION OF ATTACKS

In Figure 23, we present visualizations of several attacks included in the WAVES benchmark. Prefix
indicates the attack strategy, while suffix indicates the strength.

G.4 FULL RESULTS ON DIFFUSIONDB, MS-COCO AND DALL·E3

H LIMITATIONS

We only stress-test the Tree-Ring, Stable Signature, and Stegastamp watermarking algorithms.
We curated these watermarks for WAVES after an extensive literature review indicated these three
techniques to be the most powerful and practical candidates for deployment in the wild. However, we
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Figure 21. Visualization of AdvCls-WM1&WM2 attack. (a) and (b) are the same as that in Figure 20. (c) shows
the inversed latent after the attack, where the watermark vanishes instead of changing to another watermark. (d)
shows the magnitude of the element-wise difference before and after the attack. The attack not only perturbs the
watermark part but also other features. The average magnitude change of the watermark-part and non-watermark-
part is also around 2:1. Although the surrogate detector is trained to classify two different watermark messages.
The attack based on it cannot change the watermark message from one to another but can effectively disturb the
watermark.

Figure 22. The user identification results for Tree-Ring under AdvCls-WM1&WM2 attacks. The original
watermarked images are embedded with User1’s message. AdvCls-WM1&WM2 tries to disrupt the latent feature
of those images so that they can be misidentified as User2 generated. We simulate two settings: 100 users and
1000 users in total. The blue curves represent the proportion of images correctly identified as belonging to User1,
while the orange curves show those misidentified as User2’s. Note that, the axes for blue and orange curves have
different ranges in the figure. With increasing attack strengths, the likelihood of correctly identifying them as
User1’s decreases significantly under both 100 and 1K user scenarios. However, misidentification as User2’s
images occurs notably only when the total number of users is small (e.g., 100 users).
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(a) Tree-Ring Unattacked
(b) AdvEmbG-KLVAE8-
2/255

(c) AdvEmbG-KLVAE8-
8/255 (d) AdvEmbB-CLIP-2/255

(e) AdvEmbB-CLIP-8/255
(f) AdvClsWM1WM2-
2/255

(g) Adv-
ClsWM1WM28/255 (h) Regen-Diff-40

(i) Regen-Diff-200 (j) Rinse-2xDiff-20 (k) Rinse-2xDiff-100 (l) Rinse-4xDiff-10

(m) Rinse-4xDiff-50 (n) DistCom-Photo-0.15 (o) DistCom-Geo-0.15 (p) DistCom-Deg-0.15

Figure 23. A visual demonstration of various adversarial, regeneration, and distortion attacks on a Tree-Ring
watermarked image. Figure (a) is the base unattacked image. The base prompt, drawn from DiffusionDB, is
“digital painting of a lake at sunset surrounded by forests and mountains,” along with further styling details.

emphasize our framework is extensible to any watermarking method. Additionally, our attack ranking
method relies on author-selected TPR thresholds and image quality metrics that we believe will fairly
capture attack potency based on existing literature and experimental studies. The use of other quality
metrics (MSE, Watson-DFT, etc.) and differing TPR thresholds may affect attack rankings.
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Figure 24. Evaluation on DiffusionDB dataset under the detection setup (part 1).
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Figure 25. Evaluation on DiffusionDB dataset under the detection setup (part 2).
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Figure 26. Evaluation on MS-COCO dataset under the detection setup (part 1).

33



Figure 27. Evaluation on MS-COCO dataset under the detection setup (part 2).
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Figure 28. Evaluation on DALL·E3 dataset under the detection setup (part 1).
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Figure 29. Evaluation on DALL·E3 dataset under the detection setup (part 2).
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