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Abstract

Increasing concerns about privacy leakage is-001
sues in academia and industry arise when em-002
ploying NLP models from third-party providers003
to process sensitive texts. To protect privacy004
before sending sensitive data to those models,005
we suggest sanitizing sensitive text using two006
common strategies used by humans: i) deleting007
sensitive expressions, and ii) obscuring sensi-008
tive details by abstracting them. To explore009
the issues and develop a tool for text rewrit-010
ing, we curate the first corpus, coined NAP2,011
through both crowdsourcing and the use of012
large language models (LLMs). Compared to013
the prior works based on differential privacy,014
which lead to a sharp drop in information util-015
ity and unnatural texts, the human-inspired ap-016
proaches result in more natural rewrites and017
offer an improved balance between privacy pro-018
tection and data utility, as demonstrated by our019
extensive experiments. Our dataset is available020
at https://anonymous.4open.science/r/NAP-2-021
benchmark-for-privacy-aware-rewriting022

1 Introduction023

Data sharing and information dissemination be-024

tween AI models are pivotal in the AI era, par-025

ticularly since the emergence of Large language026

models (LLMs). The remarkable performance of027

LLMs benefit from a large amount of shared and028

publicly available data. However, it is still chal-029

lenging to balance between data privacy and in-030

formation utility when training and utilizing such031

LLMs (Pan et al., 2020). Users or downstream032

applications often interact with commercial LLMs033

by directly inputting raw text. Such interactions034

can inadvertently expose sensitive data, such as per-035

sonally identifiable information (PII), to untrusted036

service or LLM providers (Utpala et al., 2023).037

Redaction and anonymization techniques are038

widely applied to remove PII from texts, but they039

*Equal contribution.
†Corresponding author.

ORI: I am Cindy .
I am recovering from
ulnar nerve surgery .

PER: I just had surgery.

Human Rewrite:
DEL: I am Cindy.
OBS: Hi, I am Cindy, I am just

recovered from
medical treatment

T5-BASE trained on NAP2:
Output: I am recovering from llness.

DP method
DPNR: YYYYYYYYY.
DP-Forward: My name is Cindy

and I am recovering
from ulnar nerve surgery.

Table 1: An example of rewriting a text (ORI) using
deleting (DEL) and obscuring (OBS) as the strategies
based on a personal information (PER).

suffer from three major drawbacks (Sánchez et al., 040

2014). First, after anonymization, mentions of 041

PII are either redacted or replaced by their entity 042

types so that processed texts become unnatural. 043

Downstream applications need to be adapted or 044

fine-tuned to cope with such unnatural texts. Sec- 045

ond, it is still possible to recover private attributes 046

from PII scrubbed text via reasoning (Mireshghal- 047

lah et al., 2023; Staab et al., 2023). Third, the 048

presence of blacked-out parts or entity types may 049

raise the awareness of a document’s sensitivity in 050

front of potential attackers. 051

Alternatively, differential privacy (DP) provides 052

a theoretical privacy guarantee for data release or 053

dissemination mechanisms (Dwork, 2006). Prior 054

works sanitize texts by perturbing texts either at the 055

word-level or the sentence-level (Mattern et al., 056

2022; Igamberdiev and Habernal, 2023; Igam- 057

berdiev et al., 2022a). In order to reach a high- 058

level of privacy guarantee, substantial noise need 059

to be injected into texts or their representations 060

so that information utility drops sharply and the 061

meanings of texts are changed significantly (see Ta- 062

ble 1). Therefore, determining an optimal trade-off 063
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between privacy and utility for data release remains064

an unresolved challenge.065

To address the shortcoming of prior methods, we066

propose an approach that adopts human text edit-067

ing strategy inspired by (Strengers et al., 2020),068

specifically deleting and obscuring to improve the069

naturalness and utility of rewritten texts while en-070

suring privacy. As shown in Table 1, given an071

utterance involving personal information stated in072

a persona, the strategy deleting simply removes073

all words mentioning sensitive information from074

the utterance, while obscuring substitutes sensitive075

expressions for more abstract and general expres-076

sions. Both strategies aim to make rewritten texts077

as natural as possible such that i) they do not raise078

the awareness of potential attackers that rewrites079

are sanitized; and ii) downstream applications can080

directly process such natural rewrites without fine-081

tuning their models for any unnatural parts of texts.082

To evaluate strategy-specific rewriting models,083

we construct the first Naturalness and Privacy084

Preserving Rewriting corpus, coined NAP2, based085

on the open-domain dialogue corpus PERSONA-086

CHAT (Zhang et al., 2018). We recruit univer-087

sity students to manually rewrite 895 utterances088

involving personal information as the manual eval-089

uation set. To promote the development of diverse090

open-source solutions for this task, we apply GPT4091

to generate 3900 synthetic examples as the syn-092

thetic training set because GPT4 demonstrates the093

best performance on PERSONA-CHAT among094

all evaluated models. We also design multiple au-095

tomatic and human evaluation metrics for this task,096

including a novel privacy metric PRIVACY_NLI.097

It utilizes a Natural Language Inference (NLI)098

model (Liu et al., 2019) to determine if a rewrite en-099

tails a personal information or not. The extensive100

comparative studies between the models trained101

on our corpus and the state-of-the-art (SOTA) text102

sanitization methods demonstrate the underlying103

challenges and yield the following key findings:104

• The T5-BASE model (Raffel et al., 2020)105

trained on our corpus is able to achieve a fairly106

high privacy preservation indicated by a PRI-107

VACY_NLI of 93.81%. Its performance is108

even significantly superior than GPT4 accord-109

ing to human evaluation using deleting. In110

contrast, the competitive DP methods have a111

PRIVACY_NLI score lower than 62.14%.112

• The privacy metric PRIVACY_NLI aligns well113

with the human judgements by having a Spear- 114

man’s ranking correlation of 0.70. 115

• GPT4 generates synthetic rewrites with de- 116

cent trade-off between privacy and utility 117

based on human evaluation, better than GPT- 118

3.5 TURBO and the evaluated open-source 119

LLMs in the zero-shot setting. Incorporation 120

of such synthetic data improves the T5-BASE 121

model trained on human curated data by 7% 122

in terms of privacy preservation. 123

2 Preliminary 124

As our task is closely related to local differential 125

privacy (LDP) (Xiong et al., 2020), this section 126

mainly introduces the preliminary concepts of LDP 127

and Context-Aware LDP (Acharya et al., 2020). 128

LDP. For private statistical data publication, LDP 129

provides strong and provable privacy preservation 130

without assuming that data collectors can be trusted. 131

In this setting, each participant locally perturbs 132

her/his private data with a randomized mechanism 133

and transfers the perturbed output to a data collec- 134

tor. The data collector acquires statistical infor- 135

mation from the perturbed data received from all 136

participants without compromising the individual’s 137

privacy. 138

Definition 2.1 (Pure Local Differential Privacy (Ka- 139

siviswanathan et al., 2011)). Let ϵ ≥ 0, a random- 140

ized algorithm Q : X → Y is ϵ−locally differen- 141

tial privacy, if for all x, x′ ∈ X and y ∈ Y , 142

Q(y|x)
Q(y|x′)

< eϵ 143

where Q(y|x) can also be viewed as a conditional 144

distribution. If the privacy budget ϵ is small or zero, 145

it is difficult or infeasible to distinguish between x 146

and x′ based on the outputs of Q. However, it is 147

questionable if such perturbed data is still useful for 148

data analysts or downstream applications (Mattern 149

et al., 2022). 150

This definition assumes that all elements in x are 151

equally sensitive and all x share the same privacy 152

constraint eϵ regardless of how different x and x′ 153

are. For NLP applications, Mattern et al. (2022) ob- 154

serve that a tight universal privacy budget leads to 155

substantial grammatical errors produced by word- 156

level DP mechanisms, while a high budget easily 157

compromises individual privacy. Therefore, the 158

privacy budget of x and x′ should vary depending 159
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on the semantic differences between x and x′ or160

whether x or x′ contains sensitive information.161

To address the limitations, Acharya et al. (2020)162

propose context-aware LDP that employs a differ-163

ent privacy constraint based on differences between164

x and x′.165

Definition 2.2 (Context-Aware LDP (Acharya166

et al., 2020)). Let E ∈ Rm×m be a matrix of non-167

negative entries and ϵx,x′ denote the (x, x′)th entry168

of E, a random algorithm Q is E−LDP, if for all169

x, x′ ∈ X and y ∈ Y ,170

Q(y|x)
Q(y|x′)

< eϵx,x′171

The matrix E can be constructed by using different172

functions. Metric-based LDP (Alvim et al., 2018)173

can also be viewed as a special case of context-174

aware LDP by requiring ϵx,x′ = ϵd(x, x′), where175

d(x, x′) is the metric between x and x′.176

3 Naturalness and Privacy-Preserving177

Rewriting178

3.1 Problem Definition179

Task. Given an utterance x and a sentence p180

describing personal information, the task of nat-181

uralness and privacy-preserving rewriting aims to182

map x into a natural sentence y such that y ∈ Yn183

does not reveal the personal information in p and184

maximally preserves the non-private content in185

x. We define a natural sentence as one that is186

grammatically correct, fluent, and does not con-187

tain any artifacts such as blacked-out words or spe-188

cial symbols indicating omitted sensitive informa-189

tion. The rewrite space Yn contains only natu-190

ral sentences with maximum squence length of n.191

Compared with differential privacy (DP) mecha-192

nisms that prevent privacy leakage during model193

training (Abadi et al., 2016a), this task focuses on194

privacy-preserving data publishing or privacy pro-195

tection at inference time.196

When sanitizing texts, humans often hide sen-197

sitive information by avoiding sensitive words or198

replacing them with more general or abstract ex-199

pressions (Strengers et al., 2020). We expect ma-200

chines to adopt similar strategies:201

• Deleting: removing words or phrases in x202

that leak personal information specified in p;203

• Obscuring: replacing sensitive words or204

phrases in x with more general or abstract205

expressions to avoid compromising privacy.206

Relation to LDP. A probabilistic rewriting 207

model can be viewed as a randomized mechanism 208

Q(y|x) that maps an input text x into a word se- 209

quence y inside a constraint output space Y , which 210

only contains natural texts. Given a pair of semanti- 211

cally similar texts x and x′, where only x contains 212

sensitive information, a rewriting model Q(y|x) 213

implements metric-based LDP by enforcing the dis- 214

tribution divergence in log-scale between Q(y|x) 215

and Q(y′|x′) to be smaller than ϵd(x, x′). As a 216

result, perturbed texts are more similar than their 217

original counterparts because mentions of private 218

information are either removed or obscured. 219

Corpus Overview. Our corpus NAP2 consists of 220

a small manually curated dataset for both training 221

and testing (Sec. 3.2), and a large synthetic dataset 222

distilled from GPT-3.5 TURBO and GPT4 for train- 223

ing data augmentation (Sec. 3.3). According to our 224

evaluation stated below, human writes with obscur- 225

ing achieve the best trade-off between privacy and 226

utility, and the naturalness of GPT4 generated texts 227

is on par with that of human rewrites. 228

3.2 Manually Curated Corpus 229

The corpus PERSONA-CHAT associates each 230

multi-turn chit-chat with two personas, each of 231

which is a set of sentences describing the cor- 232

responding personality. Hence, it is straightfor- 233

ward to measure if an utterance leaks personal in- 234

formation in the relevant persona. From another 235

point of view, a persona can be regarded as a user- 236

specific privacy profile, which states what infor- 237

mation needs to be protected. For instance, one 238

user might consider their marital status as sensitive 239

information requiring privacy protection, while an- 240

other user may not prioritize it. 241

The manual created evaluation set extends 242

the test set of PERSONA-CHAT with human- 243

authored rewrites. As not all utterances reveal pri- 244

vate information in personas, we apply the auto- 245

matic alignment methods to pair an utterance in- 246

volving personal information with the correspond- 247

ing sentence in a persona. 248

Formally, given a dialogue D, suppose there are 249

m utterances Xi = {x1,x2, ...,xm} associated 250

with a persona Pi = {p1,p2, ...,pn}}, we aim to 251

compute an alignment score sij between xi ∈ Xi 252

and pj ∈ Pi indicating to what degree xi leaks 253

personal information in pj . 254

We formulate the computation of alignment 255

scores as an NLI problem. Namely, if xi entails 256
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pj , it is highly likely that xi leaks information in257

pj . Specifically, we reuse the ROBERTA model258

trained on Multi-Genre Natural Language Infer-259

ence (MNLI) corpus (Williams et al., 2018), which260

is available from Huggingface, to compute the prob-261

ability of p(y = entail|xi,pj) as sij . We find262

out that this simple approach significantly outper-263

forms SPARSE-MAX and SHARP-MAX proposed264

in (Xu et al., 2020) on a random sample of 200265

ground-truth pairs. We manually check the candi-266

dates among the pairs with a score higher than a267

threshold and keep only the well aligned ones.268

For each selected sentence-persona pair, we re-269

cruit annotators from Amazon Mechanical Turk270

(AMT) to rewrite utterances w.r.t. the aligned per-271

sona sentences using both Deleting and Obscuring.272

In our preliminary experiments, we observe that273

even though annotators endeavor to generate decent274

rewrites, many of them could not clearly identify275

and strictly stick to the required strategies. There-276

fore, we prepare a small sample of pairs as a pre-277

test to select qualified annotators. In addition, we278

employ a rigorous procedure for quality check. In279

particular, we wrap up 15 sentence-persona pairs280

as a batch and ask annotators to rewrite them using281

the required strategies. Then, we manually check282

the rewritten batches, we only accept those that are283

written using the required strategy. The averaged284

acceptance rate of the rewrites is 47.97%, demon-285

strating the challenge of collecting a high-quality286

rewriting dataset with specific rewriting require-287

ments. As a result, we collect 895 pairs annotated288

with one rewrite per strategy. We further split this289

corpus into a cross-validation (CV) set, a valida-290

tion and a hold-out test set with 655, 140 and 100291

instances, respectively.292

Data Statistics. We analyze the manually curated293

corpus using averaged word length in sentences294

(Len.) and distinct unigrams divided by the to-295

tal number of words (Dist.) (Li et al., 2016). The296

statistics of the dataset is given in Table 2. Delet-297

ing tends to produce more concise rewrites, while298

obscuring is slightly longer than ORIGINAL sen-299

tences. Although the average length increases, the300

diversity score for obscuring is still ascending, com-301

pared with original sentences. This shows the high302

diversity of word usage using obscuring.303

3.3 Synthetic Data Augmentation304

We employ the ROBERTA NLI model to align305

utterances with persona sentences in the training set306

CV Valid Test
Len. Dist. Len. Dist. Len. Dist.

ORI 13.7 0.148 13.6 0.257 13.5 0.248

DEL 8.0 0.190 8.4 0.298 8.5 0.279
OBS 14.1 0.160 13.9 0.266 14.3 0.250

Table 2: Statistics of original sentence (ORI), rewrites
with deleting (DEL) and obscuring (OBS) on the CV set,
validation and test set of the manually curated dataset,
using average length (Len.) and distinct token (Dist.)

of PERSONA-CHAT and keep only the pairs with 307

an entailment probability above 0.3. This threshold 308

leads to high recall low precision alignments so 309

that GPT4 is employed to check if there is indeed 310

a privacy leakage. Among them, we randomly 311

sample 3900 pairs to generate synthetic rewrites 312

by using GPT4. The resulting dataset is used to 313

augment the training set of the manually created 314

corpus to mitigate the data scarcity issue. 315

Prior studies show that GPT4 is one of the 316

strongest few-shot learner (Brown et al., 2020). 317

Therefore, we carefully design prompts and in- 318

context examples to use it for privacy-aware rewrit- 319

ing. Given an utterance-persona pair, we use the 320

following prompt for a selected rewriting strategy. 321

Rewrite this sentence, <deleting /
obscuring> any private information.
Example rewrites are:
< $IN −CONTEXT_EXAMPLES>
Only return the rewritten sentence, nothing
else.
Private information present is: [$PER-
SONA].
Sentence to rewrite is: [$UTTERANCE].

322

where $X denotes a placeholder for the corre- 323

sponding information. The k in-context examples 324

are selected from a combination of the validation 325

set of the manually curated corpus and a set of non- 326

sensitive utterances which do not leak personal 327

information. Each of the in-context examples in 328

the validation set contains an utterance, a persona 329

sentence, and a human rewrite using the given strat- 330

egy, while an example from the non-sensitive set 331

includes only an utterance. The in-context exam- 332

ples are found by k-nearest neighbour search using 333

the sentence embeddings of utterances (Reimers 334

and Gurevych, 2019). In this work, given an ut- 335

terance, we select the top-1 most similar example 336

from the validation set and one example from the 337
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SPRIVACY SREL SNATURAL

Human_deleting 82.00% 76.00% 95.00%
GPT3.5_deleting 34.00% 94.00% 72.00%
GPT4_deleting 49.00% 92.00% 99.00%

Human_obscuring 81.00% 97.00% 98.00%
GPT3.5_obscuring 61.00% 90.00% 95.00%
GPT4_obscuring 66.00% 95.00% 99.00%

Table 3: Comparison between GPT-3.5 TURBO, GPT4,
and human rewrites.

non-sensitive set. The latter is used to instruct338

GPT4 that it should not rewrite an utterance if339

there is no privacy leakage detected.340

3.4 Human Evaluation341

Three university students are recruited to check342

their quality on a set of 100 instances sampled343

from the test set of the manual corpus. Hence, an344

utterance-persona pair in the sample includes a hu-345

man rewrite, a rewrite from GPT-3.5 TURBO and346

GPT4 respectively. For each rewrite, a student is347

instructed to answer the following questions from348

the perspectives of privacy leakage (Q1), seman-349

tic relevance (Q2) and naturalness (Q3) which is350

detailed in Appendix A.1.351

Each question is answered by three university352

students. To deal with possible disagreements, we353

take the majority vote as the final answer.354

In order to use a score to summarize the perfor-355

mance w.r.t. each criteria, we calculate the per-356

centage of choosing the option (a) as the majority357

vote for each question above on the human eval-358

uation test set, referred to as SPRIVACY, SREL,359

and SNATURAL. They indicate the percentage of360

rewrites having no privacy leakage, complete se-361

mantic relevance, full naturalness, respectively.362

To understand the quality of rewrites in our cor-363

pus, we compare GPT4 outputs with those of GPT-364

3.5 TURBO using the same prompts, as well as with365

human rewrites. The key results are summarized in366

Table 3. Human rewrites achieve the highest level367

of privacy protection with both strategies, outper-368

form the best rewriting model GPT4 by at least369

15%. Human rewrites with obscuring achieve the370

best balance between privacy and utility in compari-371

son with alternative methods. Both OpenAI models372

completely preserve personal information in over373

60% of utterances by using obscuring, but strug-374

gle to implement the deleting strategy for the same375

purpose. A close investigation on the percentages376

of individual Q1 answer in Fig. 1 demonstrates377

that both models fail to delete private expressions378

completely in over 34% of the utterances involving 379

sensitive information. GPT-3.5 TURBO is signif- 380

icantly worse than GPT4 in terms of sanitization. 381

Only a small proportion of the errors are attributed 382

to applying an incorrect strategy. 383

4 Experiments 384

4.1 Rewriting Models 385

We compare the SOTA privacy-preserving rewrit- 386

ing models DPNR (Lyu et al., 2020), DP- 387

Forward (Du et al., 2023), and the zero-shot LLMs 388

with the T5-BASE models fine-tuned on our corpus, 389

with or without synthetic data augmentation. The 390

word-level DP method DPNR and the sentence- 391

level DP model DP-Forward are fine-tuned based 392

on a T5-BASE model, which is pre-trained to map 393

inputs to their outputs. All implementation details 394

can be found in Appendix A.3. DPNR. It stands for 395

Differentially Private Neural Representation, which 396

applies Laplace noise to distributed representations 397

of words in order to randomly drop sensitive words 398

or replace sensitive words with non-sensitive ones. 399

We compare the cosine similarity between each 400

word in an input utterance with those in the corre- 401

sponding persona, and pick the top-k most similar 402

ones. 403

DP-Forward. This method perturbs embedding 404

matrices and multi-head attention layers during 405

each forward pass of a language models by achiev- 406

ing a sentence level LDP. When adapting this ap- 407

proach to T5-BASE for inference, we mainly per- 408

turb embedding matrices, because the DP mecha- 409

nism for attention layers is mostly useful for pro- 410

tecting privacy at the training time. 411

LLAMA-PARAPH. Mattern et al. (2022) points 412

out the limitations of word-level LDP and propose 413

to paraphrase input texts with lower temperature to 414

achieve a sentence-level LDP. We implement this 415

approach by using LLAMA-13B. 416

DP-PROMPT.Utpala et al. (2023) utilizes zero- 417

shot prompting and large language model to gen- 418

erate document paraphrasing to prevent author de- 419

anonymization attack which comprise the privacy 420

of text owner. 421

DP-BART. The method is a privatized text 422

rewriting system incorporates LDP. The system 423

leverages the LPD paradgram to perform model 424

rewriting using BART model to protect input data 425

which tackles same challenge like us. 426

FLAIR-SCRUBBING. we also adapt the 427

scrubbing method used in (Lukas et al., 2023) as 428
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Figure 1: Human evaluation of privacy leakage.

our baseline. We employ FLAIR-SCRUBBING429

as our method to test if this automatics method430

can effectively remove private information from431

sentence.432

Zero-Shot LLMs. To compare with the LLMs433

fine-tuned on our corpus, we apply the same434

prompts to the same pre-trained LLMs without435

any training. Specifically, we consider T5-BASE,436

LLAMA-13B, GPT-3.5 TURBO and GPT4 and ap-437

ply the prompt template introduced in Sec. 3.3.438

To distinguish from the fine-tuned models, the439

T5-BASE and LLAMA-13B in the zero-shot set-440

ting is referred to as T5_ZEROSHOT and LLAMA-441

13B_ZEROSHOT, respectively.442

T5-NAP2. By using the same prompts as the443

zero-shot version, we fine tune T5-BASE on the444

training set of the manually curated corpus, with445

or without augmenting them with synthetic data.446

The prompts are similar to those used by zero-shot447

models detailed in A.2.448

T5-NAP2-DP. To simulate the use cases that the449

training data of the rewriting models contains sen-450

sitive information, we apply DP-SGD (Abadi et al.,451

2016a) when fine-tuning the T5-BASE model in452

order to understand to what degree the DP mecha-453

nism impacts the inference quality of the rewriting454

models and shed light on future research directions.455

4.2 Evaluation Details 456

Prior studies focus on protect data privacy from 457

membership inference attacks, reconstruction at- 458

tacks, and sensitive attribute attacks etc. (Mattern 459

et al., 2022). However, almost all of them focus 460

on privacy preservation at the training time. In 461

contrast, our target task is concerned with i) if a 462

rewrite reveals personal information in a given per- 463

sona, ii) preservation of non-sensitive content, and 464

iii) naturalness of rewrites. Compared with the 465

prior studies based on DP mechanisms, our setting 466

is more close to that of natural language generation 467

(NLG) tasks. Therefore, we evaluate the outcomes 468

of the rewriting models by using NLG motivated 469

automatic and human evaluation. 470

For human evaluation, we use the same question- 471

naires and the metrics introduced in Sec. 3.4 and 472

ask annotators to answer each question in order to 473

obtain the majority votes. 474

For all experiments involving model fine-tuning, 475

we conduct five folds cross validation (CV) on the 476

CV set of the manually curated corpus. In order to 477

understand the usefulness of synthetic data, we also 478

conduct experiments with the same models that 479

augment the training set in each fold with 3,900 480

synthetic instances generated by GPT4. 481

4.2.1 Automatic Evaluation Metrics. 482

Privacy Leakage. We propose a novel metric, 483

called PRIVACY_NLI, by using the ROBERTA 484
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Method PRIVACY_NLI SPRIVACY ROUGE-1 ROUGE-LSUM

DPNR 62.14% 25.00% 92.79% 92.79%
DP-Forward 36.42% 0.00% 99.91% 99.91%
DP-PROMPT 62.86% 0.00% 42.18% 41.89%
DP-BART 78.22% 1.00% 44.01% 43.15%
FLAIR-SCRUBBING 56.43% 0.00% 67.75% 67.89%
T5_ZEROSHOT-deleting 70.0% 10.00% 16.62% 12.61%
T5_ZEROSHOT-obscuring 45.00% 45.00% 29.58% 23.80%
LLAMA-13B_ZEROSHOT-obscuring 79.28% 16.00% 40.86% 40.12%
LLAMA-13B_ZEROSHOT-deleting 77.14% 14.00% 68.28% 67.53%
LLAMA-PARAPH-obscuring 82.86% 31.00% 21.72% 20.05%
LLAMA-PARAPH-deleting 76.42% 16.00% 56.29% 54.91%
GPT-3.5-obscuring 87.14% 61.00% 66.66% 65.76%
GPT-3.5-deleting 74.29% 34.00% 69.13% 68.48%
GPT-4-obscuring 92.14% 66.00% 73.24% 72.63%
GPT-4-deleting 90.0% 49.00% 77.48% 77.08%
T5-NAP2-GPT4 93.81% 72.00% 73.01% 72.78%

Table 4: Evaluation and comparison of baseline methods.

SPRIVACY SREL SNATURAL

Human_deleting 82.00% 76.00% 95.00%
LLAMA-13B _deleting 54.00% 49.00% 87.00%

T5-NAP2-GPT4 _deleting 72.00% 91.00% 95.00 %
DPNR 1.00% 0.00% 19.00%

Human_obscuring 81.00% 97.00% 98.00%
DP-PROMPT 0.00% 1.00 % 0.00%
DP-BART 1.00% 10.00% 2.00%

FLAIR-SCRUBBING 0.00% 1.00% 0.00%
LLAMA-13B _obscuring 12.00% 14.00% 86.00%

T5-NAP2-GPT4 _obscuring 53.00% 93.00% 98.00%

Table 5: Human evaluation of the SOTA models.

model trained on the MNLI corpus, to infer to485

what degree it is possible to infer personal infor-486

mation in personas. As the NLI model classifies487

a pair of input texts into entailed, contradicted,488

or neutral, we adopt P (entailed|x,p) as the score489

of privacy_leakage, e. Hence, we consider PRI-490

VACY_NLI as 1- privacy_leakage, denoting the491

privacy preserved by our method. The higher the492

metric, the more private information is preserved.493

Semantic Relevance. For assessing the preser-494

vation of semantic content, we consider ROUGE-1495

and ROUGE-LSUM (Lin, 2004) to compare gener-496

ated rewrites with the corresponding references.497

4.3 Results and Discussions498

Efficacy of NAP2. Table 4 reports the evaluation499

of all methods. T5-BASE fine tuned on the human500

rewrites and the synthetic data using both strate-501

gies outperform the DP based methods and zero-502

shot LLMs by a wide margin. DPNR preserves503

more privacy than DP-Forward, but results in a504

dramatic drop of information utility. The gener-505

ated texts often have completely different meanings 506

and have substantial grammatical errors, though 507

some of them are still fluent. In contrast, DP- 508

Forward mostly copies inputs to outputs but rarely 509

hide sensitive information. LLAMA-PARAPH pro- 510

duces frequently irrelevant texts, hence have fairly 511

low ROUGE-1 and ROUGE-LSUM scores. Be- 512

sides, for convention personally identifiable infor- 513

mation scrubbing method FLAIR-SCRUBBING, 514

it can not effectively remove the private informa- 515

tion in open-ended domain, only 40.71% examples 516

are successfully removing PII tokens. For DP- 517

PROMPT and DP-BART, even PRIVACY_NLI are 518

outperformed than other baseline models, the para- 519

phrasing impairs the semantic of original sentence 520

leading to low ROUGE-1 score. 521

We further investigate the rewriting quality w.r.t. 522

each strategy based on human evaluation. We use 523

the T5-BASE model trained on the human rewrites 524

and the synthetic data with both strategies, and 525

apply it on the hold-out test set of each strategy. 526

Table 5 shows that the T5-BASE model achieves 527

superior performance over the baselines with both 528

strategies. The naturalness of all generated rewrites 529

is on par with that of human rewrites. Both zero- 530

shot LLAMA-13B models perform better than the 531

best DP method DPNR, which mostly perturbs non- 532

sensitive contents or yields repeated words. The 533

overall results are encouraging for a wide range of 534

applications on edge devices, because our corpus is 535

not huge and T5-BASE contains only a few million 536

parameters, which is a few hundred times smaller 537

than LLAMA-13B, GPT-3.5 TURBO and GPT4. 538
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SPRIVACY SREL SNATURAL

Human_deleting 82.00% 76.00% 95.00%
T5-NAP2-GPT4 _deleting 72.00% 91.00% 95.00%

non-Syn_deleting 65.00% 92.00% 93.00%
Human_obscuring 81.00% 97.00% 98.00%

T5-NAP2-GPT4 _obscuring 53.00% 93.00% 98.00%
non-Syn_obscuring 4.00% 92.00% 93.00%

Table 6: Human evaluation results with and without
synthetic data.

Alignments between Automatic metrics and539

Human Evaluation. We compare the ranking us-540

ing PRIVACY_NLI with the corresponding human541

judgements in Table 4. T5-NAP2-GPT4 obtains542

the highest 1-PRIVACY_NLI of 93.81% in auto-543

matic evaluation, matching the highest SPRIVACY544

with 72.00%. The results are aligned well among545

the rewriting models using the obscuring strategy.546

However, PRIVACY_NLI does not rank all rewrit-547

ing models using deleting in the same manner as548

humans. To quantify the alignments, we calculate549

a Spearman’s ranking correlation of 0.70 between550

PRIVACY_NLI and SPRIVACY among all models551

to show the effectiveness of PRIVACY_NLI. The552

correlation between the models using obscuring553

reaches even 0.83.554

Usefulness of the Synthetic Data. Table 6555

shows the result of using synthetic data for training556

rewriting models. We compare two different strate-557

gies: deleting and obscuring. The results shows558

that the model performs better with the synthetic559

data for both tasks. In particular, the model pre-560

serves more non-personal information compared561

to human rewrites in the deleting task. With the562

synthetic data for training the models, the model563

performance is 7% better than the non-synthetic564

data model in terms of deleting. The biggest gain565

of the synthetic data is obtained for improving the566

privacy protection of the rewriting model using567

obscuring.568

5 Related Work569

The field of controllable text style transfer focuses570

on modifying specific attributes in texts, such as571

formality (Briakou et al., 2021) and sentiment (Li572

et al., 2018a, 2022) while preserving the core se-573

mantic content. The advancement of text rewriting574

tasks is heavily dependent on the availability of575

high-quality corpora to assess generation quality.576

For example, Rao and Tetreault (2018) collected577

a large-scale corpus GYAFC for initiating the re-578

search of formality style transfer to rewrite for-579

mal language. As for our task sensitive to privacy, 580

which demands sophisticated alignment in rewrit- 581

ing utterances, the construction of a specialized 582

corpus for high-quality privacy-sensitive rewrites 583

are crucial. 584

There is a growing interest in protecting user 585

privacy (Chen et al., 2020; Tigunova et al., 2019; 586

Xu et al., 2019; Bevendorff et al., 2019) in NLP 587

tasks. One way of protecting privacy is to implic- 588

itly remove the information in decision models, 589

for example perturbing the representations via ad- 590

versarial training (Li et al., 2018b; Elazar and 591

Goldberg, 2018; Barrett et al., 2019) or differential 592

privacy (Fernandes et al., 2019; Bo et al., 2019). 593

In text rewriting which is close to our rewriting 594

approach, local differential privacy are recently 595

adapted to protect the data by adding customized 596

noise (Igamberdiev et al., 2022b; Igamberdiev and 597

Habernal, 2023). Such adaptations in rewriting sys- 598

tem mitigate the privacy leakage risk of original 599

input however result in complete semantic change 600

of inputs as the noise is independently drawn from 601

the data and task. We consider a more generalised 602

rewriting setting where the naturalness and general 603

meaning of sentence are preserved. 604

Another series of work suggested to generate 605

new sentences with less sensitive information (Em- 606

mery et al., 2018; Xu et al., 2019). Following this 607

approaches, the setting of our work is more general 608

since we use open-domain sensitive personal infor- 609

mation from the open domain as a control signal 610

for rewriting. Moreover, our corpus is flexible in 611

the way that it supports two strategies for rewrit- 612

ing, which is of the interest for the style transfer 613

research community (Strengers et al., 2020). 614

6 Conclusion 615

We introduce the task of naturalness and privacy- 616

preserving text rewriting and collect a corpus 617

NAP2 based on PERSONA-CHAT. The funda- 618

mental concept involves training models to learn 619

human strategies, namely deleting and obscuring, 620

for inference-time privacy. The T5-BASE model 621

trained on our corpus outperforms competitive zero- 622

shot LLMs and DP methods by a wide margin. This 623

work paves the way for future research on LLM- 624

based rewriting techniques with a new focus on 625

naturalness preservation. 626
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Ethical Statement627

In this paper, we align our research practices with628

the principles outlined in the ACL Code of Ethics,629

fully endorsing its values. Our investigation has630

been conducted in compliance with these ethical631

standards.632

The creation and assessment of NAP2 have been633

conducted with a keen awareness of ethical con-634

siderations, especially regarding the involvement635

of human annotators. The necessity for human-636

annotated data to train conditional independence637

classifiers in our method is recognized as demand-638

ing significant effort. We have taken careful mea-639

sures to ensure that this process is ethically sound,640

honoring the annotators’ contributions by respect-641

ing their time and providing equitable compensa-642

tion.643

Moreover, the central objective of NAP2 is to644

assess the relevance of generated responses in rela-645

tion to their persona information and the difference646

between human evaluation and proposed automated647

metrics. The system is engineered to assign scores648

on a continuous scale from 0 to 1, with higher649

scores denoting greater relevance. It is designed to650

yield only these scores, without generating any in-651

formation that could be deemed harmful or violate652

privacy.653

Limitation654

Due to budgetary constraints associated with this655

project, we were unable to engage a vast num-656

ber of annotators to rewrite the extensive dialogue657

datasets with respective rewrite strategies. Conse-658

quently, NAP2 we compiled is somewhat limited659

in scope. While NAP2 possesses sufficient volume660

to validate the core assertions of our study, it might661

not fulfill the expansive needs of commercial de-662

ployments. Industrial entities interested in utilizing663

our dataset could potentially address this limitation664

by adopting prompt tuning techniques or employ-665

ing additional annotators to expand the dataset in666

accordance with our outlined methodology.667

Our evaluation metric is specifically designed to668

assess the relevance of the generated responses. Al-669

though it demonstrates superior performance over670

baseline metrics in terms of privacy preservation671

and naturalness, the advantage it presents in rele-672

vance and specificity is less pronounced. Therefore,673

the development of innovative metrics tailored to674

specific evaluation criteria presents a valuable av-675

enue for our future research endeavors.676
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A appendix 899

A.1 Question design for human evaluation 900

Q1: The rewrite deletes/obfuscates _ ? 901

(a) None of the key information in the personal 902

information and the original utterance does 903

contain personal information. 904

(b) None of the key information in the personal 905

information, because the original utterance 906

does not contain personal information. 907

(c) At least one key information in the personal 908

information (if the rewrite uses both correct 909

and incorrect strategies, only evaluate the part 910

that uses the correct strategy). 911

(d) All key information in the personal informa- 912

tion (using the correct strategy only). 913

(e) At least one or all key information in the per- 914

sonal information (using the incorrect strate- 915

gies only). 916

Q2: The rewrite _. 917

(a) Accurately preserves the meaning of the origi- 918

nal sentence. 919

(b) Basically the same meaning but does not cover 920

some minor content. 921

(c) Has a minor resemblance to the meaning of 922

the original sentence, however, it is also mis- 923

leading. 924

(d) Empty sentence or does not reflect the mean- 925

ing of the original sentence at all. 926

Q3: The rewrite is able to retain _ in the orig- 927

inal utterance that is not covered in the personal 928

information. 929

(a) has no grammatical mistakes and the sentence 930

is coherent. 931

(b) has some grammatical mistakes and the sen- 932

tence is less coherent 933

(c) is full of grammatical mistakes</b> and the 934

sentence is not coherent 935
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A.2 Prompt template for synethetic Data936

The prompt template used across the paper is937

shown as 2. We use three nearest examples drawn938

from the training set as prompting example. Each939

example contains two cases if the raw persona infor-940

mation is provided. And objective for the prompt941

is to rewrite given sentence with specified strategy.942

943

A.3 Implementation Details944

In our experiment, we consider T5-BASE as our945

targeted rewrite model, we set optimal hyperparam-946

eters for model fine tuning with learning rate of947

5e−4 and beam search as decoding method with948

generative temperature of 0.2. In the model fine-949

tuning, we set noise multiplier of DP-SGD (Abadi950

et al., 2016b) to 0.001 to gain minimal influence for951

model result. In baseline experiments, for two DP952

methods applied to echo language model, we con-953

sider the empirically optimal noise multipliers 0.01954

and epsilon to 3 with one word masked for DPNR.955

As for DP-Forward-utility, we set the key noise956

hyperparameters delta to 1e−5 and epsilon at 7 to957

obtain the impact with small noise gap, while for958

DP-Forward-privacy, we set the hyperparameters959

to 2e−5 and 8 for delta and epsilon respectively.960

The remaining hyperparemeters are the same as961

with the ones reported in the corresponding papers.962

B Experiments963

B.1 Evaluation metrics964

Details of the evaluation metrics for semantic rele-965

vance are provided below.966

• ROUGE-1 (Lin, 2004): It is a widely used967

evaluation metric measuring the overlap of968

unigrams between a generated text and a set969

of references.970

• ROUGE-LSUM: It is a variant of ROUGE-971

L, tailored to evaluate longer texts by sum-972

marizing the longest common sub-sequences973

between an output text and a set of references.974

B.2 Impact of DP-SGD.975

Table 7 shows results of models trained with and976

without DP-SGD. The purpose is to understand977

to what degree the widely used DP method can978

influence rewriting quality if the training data is979

sensitive. Comparing these two settings with hu-980

man rewrites, there is a slight performance drop981

of around 3% with DP-SGD. However, DP-SGD982

provides a privacy guarantee during training which 983

is useful when the training data is sensitive. When 984

comparing with automatic metrics, as shown in 985

Table 8, there is only a 1% performance drop in 986

terms of privacy leakage if DP-SGD is applied. 987

For preservation of semantic contents, MAUVE 988

scores show little differences between using and 989

not using DP-SGD, meaning our proposed rewrit- 990

ing approaches are compatible with the DP based 991

training algorithms for more sensitive scenarios. 992

SPRIVACY SREL SNATURAL

Human_deleting 82.00% 76.00% 95.00%
DP_deleting 59.00% 88.00% 99.00%

non-DP_deleting 63.00% 82.00% 96.00%
Human_obscuring 81.00% 97.00% 98.00%

DP_obscuring 29.00% 90.00% 98.00%
non-DP_obscuring 32.00% 88.00% 93.00%

Table 7: Human evaluation results with and without
DP-SGD.
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Figure 2: Prompt template for T5-NAP2.

DP real synth LLM PRIVACY_NLI ROUGE-1 ROUGE-LSUM

False 1300 0 - 0.0810 ±0.1077 0.6946 0.6924
False 1300 3900 GPT-3 0.0826 ±0.0903 0.7143 0.7122
False 1300 3900 GPT-4 0.0619±0.0870 0.7301 0.7278
True 1300 0 - 0.0602 ±0.0759 0.7338 0.7316
True 1300 3900 GPT-3 0.0757 ±0.0908 0.7368 0.7351
True 1300 3900 GPT-4 0.0703 ±0.1135 0.7446 0.7428

Table 8: Evaluation for DP and combination of synthetic data and human rewrites
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