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Abstract

Developing generalizable models that can effectively learn from limited data and
with minimal reliance on human supervision is a significant objective within the
machine learning community, particularly in the era of deep neural networks.
Therefore, to achieve data-efficient learning, researchers typically explore ap-
proaches that can leverage more related or unlabeled data without necessitating
additional manual labeling efforts, such as Semi-Supervised Learning (SSL), Trans-
fer Learning (TL), and Data Augmentation (DA). SSL leverages unlabeled data in
the training process, while TL enables the transfer of expertise from related data
distributions. DA broadens the dataset by synthesizing new data from existing
examples. However, the significance of additional knowledge contained within
labels has been largely overlooked in research. In this paper, we propose a novel
perspective on data efficiency that involves exploiting the semantic information
contained in the labels of the available data. Specifically, we introduce a Language
Semantic Graph (LSG) which is constructed from labels manifest as natural lan-
guage descriptions. Upon this graph, an auxiliary graph neural network is trained
to extract high-level semantic relations and then used to guide the training of the
primary model, enabling more adequate utilization of label knowledge. Across
image, video, and audio modalities, we utilize the LSG method in both TL and
SSL scenarios and illustrate its versatility in significantly enhancing performance
compared to other data-efficient learning approaches. Additionally, our in-depth
analysis shows that the LSG method also expedites the training process.

1 Introduction

Deep learning has achieved remarkable breakthroughs in various domains, including speech recog-
nition, visual object recognition, object detection, drug discovery, genomics, and many others [33].
However, the increasing size of deep neural networks has led to a growing demand for large volumes
of data. Unfortunately, not all application domains have access to extensive datasets due to the high
costs associated with data collection and human annotation [38, 8, 16]. Consequently, substantial
efforts have been dedicated to studying methods that enable data-efficient learning [1, 49], aiming to
alleviate the requirement of extensive training data and, in particular, human supervision.

The current primary approaches to achieving data-efficient learning encompass semi-supervised
learning (SSL) [62], transfer learning (TL) [49, 86], and other techniques such as data augmentation
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(DA) [78, 9]. Semi-supervised learning [19, 34, 58, 4, 69] involves using both labeled and unlabeled
data to reduce manual labeling effort and enhance model performance. By exploring vast amounts of
unlabeled samples, artificial learners acquire a more comprehensive understanding of the underlying
data structure and achieve improved predictions, even in scenarios where labeled samples are
scarce [70]. Transfer learning leverages data from other related source domains typically offer
abundant data and annotations [42, 14, 2], or it utilizes models pretrained on large-scale datasets
to transfer general knowledge to minimize the data requirements in the target domain [76, 74].
Data augmentation technique creates novel examples from existing ones, thereby expanding and
diversifying the training dataset. From this perspective, these data-efficient learning approaches share
a common objective: to leverage additional training data without necessitating extra manual labeling
efforts. In this paper, we approach data-efficient learning from a different angle: by investigating
improved methods to harness the available data-label pairs. This novel perspective motivates the core
objective of our work: to fully exploit semantic information contained in the labels to improve model
performance with data efficiency.

In particular, it is worth noting that original human annotations typically manifest as natural language
descriptions of the training data, such as "bicycle" and "kangaroo" in object recognition tasks
or "jogging" and "playing piano" in action recognition. We refer to these descriptive labels with
descriptions as the labeled concepts. The prevailing approach of converting these labeled concepts into
indices simplifies the machine learning problem but sacrifices semantic information. Consequently,
our objective is to enhance data utilization by reintegrating this information into the training process.
Our idea involves introducing an auxiliary branch during training to facilitate high-level interactions
between data representations and label semantics. This interaction guides the model in extracting
appropriate features that capture accurate semantics. Notably, the auxiliary branch is discarded after
the training process, thus avoiding an increase in inference cost. However, the question that remains
is how to achieve such interaction effectively.

To this end, we propose employing graphs to model high-level semantics of the labeled concepts,
owing to their generality and flexibility [72]. The initial node features within the graph comprise
language embeddings of these concepts, which are generated by pretrained language models. The
edges of the graph capture strong semantic connections between the concepts. We refer to this graph
as the Language Semantic Graph (LSG) and train an auxiliary graph neural network to extract the
knowledge within the graph and transfer it to the primary neural network model. During formal
training, the data representations produced by the primary model are incorporated into the Language
Semantic Graph as new nodes, based on their true labels. Consequently, the graph neural network
can propagate information across all nodes in the augmented graph. Building upon this interaction
mechanism, we propose two additional optimization objectives to implicitly align and explicitly
regularize the data representations, ensuring their adherence to the correct semantics.

LSG demonstrates applicability across models in various modalities and exhibits improved data-
efficient learning performance. To validate its effectiveness, we conduct experiments on two typical
data-efficient scenarios: transfer learning and semi-supervised learning, and apply it to image,
video, and audio datasets. The experimental results demonstrate that LSG significantly enhances
performance and outperforms other data-efficient approaches. Our contribution includes:

• We propose a novel perspective towards data-efficient learning via enhancing the utilization
efficiency on the available annotated data. Particularly, we introduce a Language Semantic
Graph (LSG) to model the high-level label semantics and provide extra supervision.

• We design a comprehensive method with an auxiliary graph neural network that extracts
knowledge from LSG and two novel objectives that guide the primary model to learn
efficiently. Furthermore, we extend the method by incorporating semi-supervised learning
to leverage unlabeled samples for further enhancement.

• Experiments on both transfer learning and semi-supervised learning scenarios are conducted,
crossing image, video and audio modalities. The superior performance achieved by our
proposed method, along with an in-depth analysis, confirms its effectiveness.

2 Related Work

Data-efficient learning [1] investigates the problem of data hungriness of modern machine learn-
ing algorithms, and proposes algorithms to reduce the reliance on extensive training data. Two
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prominent approaches in the roadmap of data-efficient learning are Transfer Learning (TL) and
Semi-Supervised Learning (SSL). TL focuses on transferring knowledge from source domains to
minimize the number of labeled examples required in a target domain [86]. Within this research
area, Domain Adaptation [14, 55, 82, 35] investigates transductive transfer learning where source
and target domain possess different data distributions but share the same task. Fine-tuning have
emerged with deep neural networks [12, 48, 76, 18], enabling the flexible transfer of knowledge from
large pretrained models to benefit various downstream tasks [56, 74, 41, 23, 61]. In conclusion, TL
generally leverages data from elsewhere to enhance data efficiency in the current task.

On the other hand, SSL takes a different approach by harnessing large-scale unlabeled data to reduce
the need for manual labeling. Prevalent SSL methods [34, 58, 60, 3, 24] explore unlabeled samples
to capture the intrinsic data structural information [70]. Notably, a widely adopted strategy in SSL
is the assignment of pseudo-labels to samples [34], enabling models to improve in a self-training
manner [53, 5, 75]. The combination of TL and SSL approaches has also been embraced to achieve
more promising results [54, 67]. In contrast, our work presents a novel perspective within data-
efficient learning. Instead of exploring data from various sources, we aim to exploit annotated data
more comprehensively. We identify semantic relations between labels and utilize them to guide the
model in learning better representations.

Graph neural network as a learning component. Graph neural networks (GNN) [28, 17, 63, 64]
have gained significant popularity not only for their standard applications in graph-related tasks
such as node classification and link prediction but also as a component within learning systems to
process graph-structured inputs and propagate crucial information [15, 71, 50, 45]. In the domain of
computer vision, Garcia and Bruna [15] leverage GNN for few-shot learning, NGM [20] generates
graph with continuously updated adjacency matrix for 3D action recognition, BGRNet [71] includes
GNN in their framework for panoptic segmentation, and Knowledge-CLIP [50] learns multi-modal
representations. Furthermore, GNNs have found applications in natural language processing [45],
recommendation systems [46] and etc. In our method, a GNN is trained on the semantic graph
constructed from labels to guide the learning process of the primary model.

Language models for non-language tasks. The beneficial interaction between modalities, justified
by the success of multimodal learning [51, 79, 85, 57], has sparked growing interest in borrowing
knowledge from other modalities. LIFT [11] formalizes non-language inputs into sentences and adopts
GPT [52] as general interface. Vision-Language model-based finetuning methods [84, 83, 43, 81, 80]
leverage the jointly pretrained text encoders to construct robust classifiers for downstream vision
tasks. Our method draws inspiration from these works but differs in its objective as well as the way
to leverage linguistic knowledge. Concretely, LSG promotes data-efficient learning on independent
non-language models that are not restricted to multi-modal model. Furthermore, instead of building a
robust classification head, the linguistic knowledge in our method is leveraged to construct a graph
that models label semantic relations then guide the non-language model learn more semantically
meaningful representations .

3 Method

Training a deep neural network to achieve satisfying performance could be challenging in many
real-world applications due to the lack of sufficient label supervision. Our approach seek to improve
the utilization of labeled data that is currently available for enhancing data efficiency. Formally, we
consider training a model on a task-related labeled dataset {xi, yi}ni=1, where x could be images,
video clips or audio clips etc. for different tasks and y is the corresponding category label that is
represented using natural language description such as a word or a phrase. The model (also referred
as the primary model in the following content) can be regard as a feature encoder F (·|θ) that maps
the input data to embedding space and follows by a task-specific head C(·|ϕ) that turns feature
embeddings into predictions, with θ and ϕ as parameters. The standard training objective utilizing
the labeled dataset is the minimization of the empirical risk. By omitting the network parameters and
denote C ◦ F (x) = C(F (x)), the empirical risk minimization can be formulate as:

min
θ,ϕ

Lemp =
1

n

n∑
i=1

ℓ(C ◦ F (xi), yi), (1)

where ℓ(·, ·) typically be cross-entropy loss, and labels are converted to indices during computation.
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Figure 1: Illustration of the LSG training framework. In the first stage, labeled concepts are turned
into text embeddings via pretrained language model (PLM), and then the Language Semantic Graph
(LSG) is constructed according to the embeddings. We train a GNN on the graph to extract semantic
knowledge. In the second or the formal training stage, the data representations h are connected to the
graph based on their labels (and the new graph topology is described in the augmented adjacency
matrix). Representations are then transformed into h′ by the GNN. The proposed alignment loss and
regularization loss is applied on these features to guide the primary model.

We argue that such conversion of labels inevitably losses information and results in data inefficiency.
Therefore, our method introduces two additional losses Lalign and Lr that exploit the discarded label
semantic information for complement.

This section first introduces the construction process of the Language Semantic Graph (LSG) and
the training process of the auxiliary model, which are conducted before the primary training stage to
capture the semantic information. Then it moves on to explain the objectives Lalign and Lr guide the
data-efficient training of the primary model through LSG.

3.1 Language Semantic Graph

LSG aims to model the semantic relationship between labeled concepts with high generality and
flexibility. We propose a straightforward approach to construct the graph, leveraging the text
embedding space that contains rich semantics. Specifically, given the natural language descriptions
of the concepts {Wk}Kk=1 where K is the total number of concepts or categories, we use a set of m
predetermined prompts (e.g., ‘This is a photo of a {concept}’) to contextualize the concepts. We
then obtain a set of text embeddings T by inputting contextualized concepts into a frozen pretrained
language model such as BERT [25], where T = ∪Kk=1{t

(1)
k , t

(2)
k , ..., t

(m)
k } ⊆ Rdt , |T | = mK,

with dt being the dimension of the text embedding space. Then we define the text embedding
matrices K and K̃, such that K = [t

(1)
1 , ..., t

(m)
1 , t

(1)
2 , ..., t

(m)
K ] ∈ Rdt×|T | and K̃ be its column

normalized matrix. We compute the cosine similarity matrix between text embeddings as S = K̃⊤K̃.
Additionally, we define a text label vector yt = [1, ..., 1︸ ︷︷ ︸

m

, ...,K, ...,K︸ ︷︷ ︸
m

] to indicate the category for

each text embedding.

Next, we define the language semantic graph adjacency matrix based on text embedding similarities:

A = [aij ]1≤i≤|T |,1≤j≤|T | =


max(Si,j , 0) if yt,i = yt,j ,

Si,j if yt,i ̸= yt,j and Si,j ≥ τ ,

0 otherwise.
(2)

Note that A is a weighted adjacency matrix. The first line means that we connect nodes representing
the same concept with their similarity scores as weight. The second line allows certain edge
connections between nodes that represent different concepts but share high feature similarities, which
is controlled be an edge threshold hyper-parameter τ . Finally, the language semantic graph we
defined can be represented as: G = (V,A,K), where V is the node set, |V| = |T |, and K is used as
the node feature matrix.

To fully leverage the LSG to guide the data-efficient training of the primary model, we propose to
train an auxiliary graph neural network to extract semantic information from LSG. We adopt the
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standard GCN [28] architecture, which consists of several consecutive graph convolution layers. It is
expected that GCN, with its strength in massage passing, first refines the initial node embeddings (or
text embeddings) by leveraging graph topology and then serves as a bridge connecting the primary
model and the LSG. Let D be the degree matrix of A, σ(·) be the ReLU [47] activation function,
W (l) be the learnable weight matrix for the lth layer and K(0) = K, the update function of the node
features can be formulated as:

K(l) = σ(D− 1
2AD− 1

2K(l−1)W (l)). (3)
Analogues to the primary model, we regard our GCN model as the composition of node feature

encoder Fg and node classifier Cg. Particularly, the encoder Fg is designed to output node features
that have the same dimension as input features for the later computation of Lr. The whole network is
trained using the node classification objective that aims to correctly predict category for each node:

Lnode = −
|T |∑
i=1

K∑
k=1

1[k=yt,i] log δ (Cg ◦ Fg(K·,i))k , (4)

where δ(·) is the softmax function. To this end, we obtain the LSG and the auxiliary model trained
on it, which contain semantic information from the labeled concepts and will be leveraged to boost
the data-efficient training of the primary model.

Remark: Lnode is only used for training GCN in this first stage. By doing this, each node processed by
the GCN aggregates discriminative and more comprehensive semantic information from neighboring
nodes. Also note that both the LSG and the GCN only depend on the categories of the current task.
Hence, they can be constructed and trained on each task once and for all.

3.2 LSG Guided Data-Efficient Learning

To enable language semantic guidance, we add a new projectorH(·|ψ) on top of the feature encoder F
of the primary model to project the data representation to the same dimension as the text embeddings.
We denote hi = H(F (xi)) ∈ Rdt as the projected representation of xi and h̃ as its embedding after
l2 normalization. We would like to enable interactions between the data representations and the node
features within the semantic graph. Henceforth, we propose to connect features generated by the
primary model into LSG according to the label y of the data.

During training process, for every minibatch ofB images {xj , yj}Bj=1, we obtain their representations
{hi}Bi=1 and construct an augmented graph of the original Language Semantic Graph, denoted as
Gaug = (Va,Aa,Ka). In this augmented graph, |Va| = |T | + B, the augmented node feature
matrix Ka = [K,h1, ...,hB ] ∈ Rdt×(|T |+B) is the node feature matrix plus B data features, and

the augmented adjacency matrix is defined as Aa =

[
A P
P⊤ M

]
, where P ∈ R|T |×B is a binary

matrix indicating the connection between label nodes and data nodes, P = [pij ] =

{
1 if yt,i = yj ,

0 otherwise,
and M ∈ RB×B is a symmetric binary matrix indicating the connection among data nodes, M =

[mij ] =

{
1 if yi = yj ,

0 otherwise.
Based on the true label of training data, these edges build connection

between the primary model and the LSG, which allows the graph neural network to propagate
information and transfer knowledge that is embedded inside the labels.

With the augmented graph, we conduct language semantic guidance to the primary model through
optimizing two objectives: Lalign that implicitly aligns the data representation to the semantic graph
and Lr that explicitly regularize the model to extract more semantically meaningful representations.
We utilize the frozen auxiliary model to encode new data nodes in the augmented graph and predict
their categories. Given that the trained auxiliary model can correctly predict the label nodes in the
original graph and its weights are no longer updated, the data representations hi are forced to become
similar to their corresponding label node features during optimization, achieving the alignment
between features from different node. The implicit alignment objective is as follows:

min
θ,ψ

Lalign = −
B∑
i=1

K∑
k=1

1[k=yi] log δ(Cg ◦ Fg(hi))k. (5)

Besides the implicit alignment loss that guides the data representations to have correct semantic
relations, we further propose an explicit regularization loss to transfer the knowledge embedded
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in the label nodes to the primary model. Notice that after being processed by the trained GCN,
the output features of the data nodes have already aggregated information from their label node
neighbors on the augmented graph, which are desirable representations that contain information
from both the data samples and the semantic graph. Thus, we propose the graph semantic feature
regularization loss Lr that directly uses the output features of the auxiliary model encoder Fg
to promote their initial input features, which is why both features are designed to have the same
dimension. Specifically, we denote Fg(hi) as the output graph feature for hi. Then we normalize
both features ˜F(hi) = Fg(hi)/||Fg(hi)||2, h̃i = hi/||hi||2 and use the normalized graph feature
as the target for normalized input feature. We have the following regularization objective:

min
θ,ψ

Lr = −
B∑
i=1

||sg ˜(Fg(hi))− h̃i||22, (6)

where sg(·) denotes stop gradient. By explicitly regularizing the original data representation to include
more information embedded in the graph as Eq. (6), the primary model learns more informative
features from the LSG and thus allows this auxiliary branch to be discarded during inference.

Two proposed objectives Lalign and Lr work in a complementary manner to convey the semantic re-
lations between labeled concepts to primary model, whereas the classical empirical risk minimization
helps the model to discriminate. Combining the three losses, our proposed method achieves fully
exploitation of the information inside human annotations, and improves the data utilization efficiency.
The final optimization objective of LSG is the weighted sum of the three losses joined by trade-off
parameters λ and µ. The full two-stage training process is shown in Fig. 1.

min
θ,ϕ,ψ

L = Lemp + λLalign + µLr. (7)

Remark: The GCN and correspondingly the projector is not used during inference, and the classifi-
cation result is still produced by the primary model. For this reason, no extra computational cost is
needed in inference time.

3.3 Extend LSG to Unlabeled Data

We further discuss a straightforward extension of the proposed LSG on unlabeled training dataset {u}
that share a same label space with the labeled data . By simply assigning a hard pseudo-label to each
of them, these unlabeled data can also be connected to the semantic graph and be leveraged to guide
the model. We find surprisingly that the vanilla Pseuso-Labeling strategy [34] works satisfactory
with our method in semi-supervised learning. To be specific, we assign pseudo-labels to all unlabeled
data according to the maximum class in model output: ŷ = argmaxc δ(C ◦ F (u)), and these
pseudo-labels are updated after each epoch. To this end, we extend LSG to semi-supervised learning
by jointly utilize labeled and unlabeled data for constructing the augmented semantic graph, and the
objective now becomes

min
θ,ϕ,ψ

Lssl = Lemp(x) + λLalign(x,u) + µLr(x,u). (8)

With these pseudo-labeled samples, our method achieves significant performance boost despite that
there exists noisy pseudo-labels. We hypothesis that it is because the pseudo-labels are leveraged only
for the auxiliary branch and hence do not bias the classification head, as also suggested in [5]. We
believe that further improvements can be achieved via combining our method with more advanced
pseudo-labeling strategies in SSL, which will be left as future works.

4 Experiments

Datasets and Models. We conduct experiments on 7 standard datasets that are intensively studied in
Transfer Learning [77, 41, 27] and Semi-supervised learning [67, 24] and cover input data ranging
images, videos and audios. For image datasets, we adopt FGVC Aircraft [44] (10,000 images for 100
aircraft variants), Stanford Cars [30] (16,185 images for 196 car categories) and CUB-200-2011 [66]
(11,788 images for 200 bird species) for fine-grained classification analysis and Office Home [65]
(four domains, each contains roughly 4,000 images for 65 categories) to evaluate out-of-distribution
performance. For video datasets, we use UCF-101 [59] (13,320 video clips in 101 categories)
and HMDB51 [31] (6,766 clips form 51 actions) For audio dataset, we report the performance on
AudioSet-20K [16].
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Table 1: Classification accuracy (%) on three fine-grained image benchmarks under fully-supervised
and semi-supervised learning settings. ResNet-50 pretrained on ImageNet-1k is adopted as backbone
and SSL indicates whether the rest training data is leveraged as unlabeled samples.

Method SSL
FGCV Aircraft Stanford Cars CUB-200

15% 30% 50% 100% 15% 30% 50% 100% 15% 30% 50% 100%

Fine-tuning ✘ 41.6 57.8 68.7 80.2 41.1 65.9 78.4 87.8 51.2 64.6 74.6 81.8
LWF [37] ✘ 44.1 60.6 68.7 82.4 44.9 67.0 77.6 87.5 56.7 66.8 73.4 81.5
DELTA [36] ✘ 43.6 59.5 69.6 81.2 43.3 67.6 79.6 88.0 53.4 66.7 76.0 82.0
BSS [7] ✘ 44.4 61.9 71.4 82.7 45.0 68.4 79.6 88.4 54.8 67.3 76.3 82.3
StochNorm [29] ✘ 44.3 60.6 70.1 81.5 44.4 68.1 79.3 87.9 54.8 66.8 75.8 82.2
Co-Tuning [77] ✘ 45.9 61.6 72.7 83.9 49.0 70.6 81.9 89.5 57.6 70.1 77.3 82.5
LSG ✘ 55.6 72.0 79.5 86.7 55.4 75.5 83.8 90.7 57.7 70.6 77.5 82.2

Pseudo-Labeling [34] ✔ 46.8 62.8 73.2 – 40.9 67.0 78.7 – 45.3 62.0 72.3 –
FixMatch [58] ✔ 55.5 71.6 78.3 – 49.9 77.5 84.8 – 44.1 63.5 76.0 –
SimCLRv2 [6] ✔ 40.8 59.0 68.5 – 45.7 61.7 77.5 – 45.7 62.7 71.1 –
Self-Tuning [67] ✔ 64.1 76.0 81.2 – 72.5 83.6 88.1 – 64.2 75.1 80.2 –
DebiasMatch [68] ✔ 59.5 71.2 77.1 – 75.3 86.1 90.0 – 64.7 75.1 77.7 –
LSG (extended) ✔ 71.4 85.3 87.1 88.6 79.3 87.7 90.9 91.9 66.1 76.1 80.6 82.6

Table 2: Classification accuracy (%) with self-supervised pretraining model (CLIP ViT-B).

Method
FGCV Aircraft Stanford Cars CUB-200

15% 30% 50% 100% 15% 30% 50% 100% 15% 30% 50% 100%

CoOp [84] 34.8 38.2 42.9 49.8 75.0 81.3 83.7 84.0 64.4 72.3 76.3 78.7
ProDA [43] 33.9 36.6 43.5 50.8 75.4 81.5 84.0 84.2 65.5 73.1 76.4 79.2
Tip-Adapter [81] 36.9 41.7 46.7 53.8 75.6 81.4 84.1 85.0 69.0 74.9 77.9 81.2
LSG 48.9 58.6 65.0 74.5 79.4 83.2 86.1 90.1 70.2 78.4 81.9 85.4

Several deep neural networks with different architecture and pretraining dataset are included in
the experiments. For image tasks, we use ResNet-50 [21] and ConvNext-S [40] pretrained on
ImageNet-1k [10], ViT-B pretrained on CLIP WIT [51], and Swin-B [39] pretrained on ImageNet-
21k. For video and audio tasks, we adopt pretrained ViT-L [13] from VideoMAE [61] and ViT-B
from Audio-MAE [22], respectively.

Implementation Details. We utilize a pretrained BERT-L [25] as the language model to transform
labels to text embeddings. For each concept, we contextualize it into complete sentences using 20
handcrafted prompts. When constructing the Language Semantic Graph, the similarity threshold τ is
determined adaptively to include the top ρ = 0.3% edges that connects between nodes of different
labels of the fully connected graph. The GCN is trained on full graph for 5,000 iterations.

For LSG guided training process, the projector H is implemented by a fully-connected layer with an
output dimension of 1024 and randomly initialized weights. We find that setting λ and µ to 1.0 and
8.0 generally achieves satisfying results within all the experiments. In image classification tasks, we
adopt SGD with a momentum of 0.9 as the optimizer. The learning rate is set as 1e-3 for the visual
backbone in most experiments and a 10× larger value is applied for the classifier and projector in
SSL and SDG. In video and audio tasks, we adopt the same configurations as finetuning in the official
released VideoMAE and Audio-MAE codebase. Please refer to the appendix for more details.

4.1 Results of Image Experiments

To examine the effectiveness of our method, we first conduct experiments on three fine-grained image
classification benchmarks FGVC-Aircraft, Stanford Cars and CUB-200-2011 following [77, 67].
Similar to previous works, we analyze the performance of LSG under labeled data partition ratio
of 15%, 30%, 50% as well as the full training set. We adopt ImageNet-1k pretrained ResNet-50 as
backbone and compare LSG with previous transfer learning baselines: vanilla fine-tuning, LWF [37],
DELTA [36], BSS [7], StochNorm [29] and Co-Tuning [77]. In addition, to show that LSG is
applicable to self-supervised pretraining models, we adopt CLIP pretrained ViT-B and compare
LSG to vision-language fine-tuning methods CoOP [84], ProDA [43], Tip-Adapter [81]. Finally,
we extend LSG to semi-supervised learning setting by including the rest training data as unlabeled
data. As discussed in § 3.3, we adopt Pseudo-Labeling [34] strategy for unlabeled data (which can
be regarded as the baseline for extended LSG) and compare the extended LSG with SSL methods
including FixMatch [58], DebiasMatch [68], SimCLRv2 [6] and Self-Tuning [67].
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Table 3: Out-of-distribution accuracy (%) for single domain generalization on Office-Home. Backbone
ConvNext-S and Swin-B are pre-trained on ImageNet-1k and ImageNet-22k respectively.

Backbone Method
Source:Ar Source:Cl Source:Pr Source:Rw Avg.

(ID)
Avg.

(OOD)Ar Cl Pr Rw Cl Ar Pr Rw Pr Ar Cl Rw Rw Ar Cl Pr

ConvNext-S
ERM [27] 85.0 53.4 72.7 78.6 85.0 67.5 72.9 75.4 94.7 61.8 49.0 80.0 91.4 72.2 52.7 80.9 89.0 68.1
LP-FT [32] 85.1 55.3 73.3 79.5 85.6 70.4 73.4 77.5 95.1 63.9 52.0 82.0 91.4 72.0 54.1 82.2 89.3 69.6
LSG 85.8 57.7 74.0 79.9 86.3 71.7 75.4 77.8 95.1 65.8 54.7 82.1 91.2 73.8 58.0 82.3 89.6 71.1

Swin-B
ERM [27] 91.8 70.7 86.1 88.5 89.1 80.6 84.3 86.7 96.5 77.9 66.1 88.3 95.2 82.6 69.1 90.4 93.2 81.0
LP-FT [32] 91.5 70.4 85.9 88.6 89.4 81.3 85.4 87.1 96.7 78.8 68.0 88.9 95.1 82.9 70.3 90.5 93.2 81.5
LSG 92.4 72.4 85.7 88.3 89.8 83.7 87.1 88.3 96.7 80.9 69.9 89.4 95.1 83.0 70.8 90.5 93.5 82.5

The results are shown in Table 1 and Table 2. We observe that our method outperforms its counter-
parts on each task and in both fully-supervised and semi-supervised scenarios. In fully supervised
experiments, LSG significant outperforms other methods on FGVC-Aircraft and Stanford Cars es-
pecially when the available labeled data is more scarce. It also achieves comparable performance
on CUB200. At 15% sampling ratio, LSG improves from the vanilla fine-tuning by 14.0%, 14.3%
and 6.5% on three datasets, and surpasses Co-tuning by an average accuracy of 5.3%. Similarly,
LSG shows promising potential in semi-supervised setting, achieving the best performance across
all of the labeling rate and all three datasets. Notably, since the extended LSG incorporates data
augmentation techniques adopted in semi-supervised learning, its results improvement over LSG
under 100% training data shows that the proposed method is mutually beneficial to other data-efficient
strategies. When applied on self-supervised pretrained model, LSG also demonstrates consistent
gains comparing to fine-tuning methods that are specifically designed for vision-language models.

We also conduct experiments on cross-domain benchmark Office-Home to evaluate the out-of-
distribution performance of the LSG guided training. Following [27], we consider the challenging
single domain generalization setting where models are trained on one single source domain and tested
on the rest target domains without seeing any data from them. We compare LSG against the vanilla
empirical risk minimization (ERM) baseline and the more advanced approach LP-FT [32].

We report the prediction accuracies of both in-distribution (ID) and out-of-distribution (OOD) in
Table 3. Specifically, samples in the source domain are randomly partitioned into 80% training data
and 20% test data, and the results refers to accuracy on test data. OOD results are obtained evaluating
all data in each target domain. The results show that LSG improves model performance on both ID
and OOD samples, demonstrating that the label semantic relations help the model learn features that
are more robust to distribution shift.

4.2 Results of Video and Audio Experiments

Table 4: Accuracies (%) of video action recognition on
UCF-101 and HMBD51 under label rate of 1% and 10%.
Backbone: ViT-L pretrained by VideoMAE.

Method SSL
UCF-101 HMDB51

1% 10% 1% 10%

VideoMAE ft [61] ✘ 26.80 73.26 11.82 46.85
LSG ✘ 29.07 74.49 13.28 50.50

Pseudo-Labeling [34] ✔ 28.11 76.08 11.97 47.72
FixMatch [58] ✔ 30.51 76.45 13.12 48.30
CMPL [73] ✔ 32.24 77.82 13.58 50.81
LSG (extended) ✔ 35.32 80.36 15.40 52.65

Category labels in video and audio tasks
also have their natural language de-
scriptions, such as “push up”, “kiss”
in HMDB51 dataset and “singing”,
“groan” in AudioSet. This enables
LSG to construct semantic graph and
improve the model training process.
We adopt VideoMAE pretrained ViT-L as
backbone for small-scaled video datasets
UCF-101 and HMDB51, and use Audio-
MAE pretrained ViT-B for audio bench-
mark AudioSet.

Table 5: Classification accuracies (%) on
AudioSet-20K with label proportion of 10%,
25% and 50%. (ft: Fine-tuning)

Method 10% 25% 50%

Audio-MAE ft [22] 2.59 15.60 25.96
LSG 11.20 21.80 27.82

Following previous data efficient studies [24, 73] on
the two video benchmarks, we train the model using
1% and 10% labeled data respectively. We also con-
duct SSL experiments similar to image experiments
and compare LSG against SSL approaches in video.
From the results in Table 4, we observe that LSG
consistently improves the fine-tuning accuracy over
all tasks with only limited amount of labeled samples available. With unlabeled data being included,
two classical SSL methods Pseudo-Labeling and FixMatch both achieve certain improvements,
whereas CMPL [73], a method designed specifically for video SSL tasks, performs better. On top of
that, LSG obtains superior results than these method on all of the tasks, boosting the accuracy from
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Table 6: Ablation study of losses and alternative design choices on FGVC Aircraft, 15% labeled data.
Method Lemp Lalign Lr Lr w/ sg. classifier language head Acc.

LSG w/o Lr,Lalign ✔ n/a ✔ 41.6 (-14.0)
LSG w/o Lr ✔ ✔ n/a ✔ 44.2 (-11.4)
LSG w/o Lalign ✔ ✔ ✔ ✔ 50.7 (-4.9)
LSG ✔ ✔ ✔ ✔ ✔ 55.6 (+0.0)

Classifier→Language Head ✔ ✔ ✔ ✔ ✔ 47.9 (-7.7)
LSG w/o stop gradient ✔ ✔ ✔ ✔ 48.3 (-7.3)

Table 7: Ablation study using different alignment strategy to transfer language semantic knowledge
to the primary model on four image datasets. OH denotes for Office-Home dataset.

Method
FGCV Aircraft Stanford Cars CUB-200 OH Avg.

(ID)
OH Avg.
(OOD)15% 30% 50% 15% 30% 50% 15% 30% 50%

Vanilla (No Alignment) 41.6 57.8 68.7 41.1 65.9 78.4 51.2 64.6 74.6 89.0 68.1
Text Prototype Alignment 51.1 68.8 76.5 52.4 73.0 82.6 56.0 70.1 76.8 89.0 68.8
Contrastive Alignment 54.2 70.7 78.3 54.3 73.8 83.2 56.7 69.9 77.1 89.4 69.3
LSG 55.6 72.0 79.5 55.4 75.5 83.8 57.7 70.6 77.2 89.6 71.1

its baseline Pseudo-Labeling by 4.28% and 4.93%, and achieves 80.36% and 52.65% accuracies on
two datasets with only 10% labeled data.

For audio experiment, we utilize the Audio-MAE ViT-B model pretrained on the full AudioSet-2M
and report its finetuning results on a class-balanced AudioSet-20K subset using 10%, 25% and
50% labeled audio clips. Our results is illustrated in Table 5 where we compare LSG with vanilla
fine-tuning method. As a consequence, LSG achieves an average of 5.56% accuracy enhancement
from the baseline, which demonstrates that guiding the audio representation by their label semantic
information could also be beneficial. These results on video and audio experiments demonstrate that
LSG is widely application to various modalities.

4.3 Analytical Experiments

Ablation Study. We report the accuracy of different LSG variants on FGVC-Aircraft with 15%
labeled data (Table 6). We begin with respectively removing the regularization loss Lr and the
alignment loss Lalign from the total objective. The performance drops of 14.4% and 4.9% prove
that both objectives contribute to the semantic guidance. Moving on, we investigate two variants:
replacing the trainable classifier by a fixed head from language embeddings, and removing the stop
gradient in Lr. Both variants performs much worse than the current design.

Table 8: Calinski-Harabasz Indexes of the original label em-
beddings from pretrained language model and the GCN refined
label embeddings. OH denotes for Office-Home dataset.

Method Aircraft StanfordCars CUB200 OH

Original 86.5 137.2 157.8 85.5
GCN refined 1364.1 1481.7 916.3 1395.2

Effectiveness of the GCN model.
Here we conduct two experiments
to verify the effectiveness of the
GCN model on refining the label
embeddings and promoting seman-
tic knowledge transfer from LSG to
the primary model. First, we com-
pares the Calinski-Harabasz Index
between the original and refined la-

bel embeddings, where higher index indicates better clustering performance. We use the node
embeddings of the penultimate layer of the GCN as the refined label embeddings. As shown in
Table 8, the index of the refined embeddings is significantly higher than the original ones, which
demonstrates that the GCN model learns the discriminative information and improves the label
embedding quality.

Second, we compare the performance of LSG with two alternative alignment strategies: Text
Prototype Alignment and Contrastive Alignment. For the former, we use the average of the label
embeddings as the class prototypes and minimize the cosine similarity between features and their
corresponding prototypes. For the latter, we adopt supervised contrastive loss [26] between features
and label embeddings. The results are shown in Table 7. We observe that both alignment strategies
improve the performance of the vanilla finetuning, which demonstrates that learning semantic relation
via the alignment loss is beneficial to the model training. However, the performance of LSG is still
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Figure 2: Analytical experiments: (a) and (b) Model accuracy on validation sets during training. (c)
Comparison between GCN and GAT. (d) Effect of the threshold hyper-parameter τ .

superior to the two alternatives, which indicates that the GCN model is more effective in transferring
the label semantic knowledge to the primary model.

LSG speeds up model training. It is discovered that applying LSG to guide the representation
learning encourages the model to achieve a satisfactory performance faster. The accuracy curves on
validation set of LSG and its baseline in both video (UCF-101) and audio (AudioSet) training are
depicted in Fig. 2(a)(b). The accuracy curve of LSG rises faster and higher than vanilla fine-tuning.

Substitute GCN by GAT [63]. To further investigate the effect of the graph neural network in our
system, we change the implementation from GCN to Graph Attention Network (GAT), which is
another wildly adopted GNN. The biggest different is that GAT automatically learns the weight
between connected nodes instead of relying on manual definition as GCN does. We compare the two
variants on FGVC Aircraft SSL with 15% labeled data and discover an interesting trend. As shown in
Fig. 2(c), GAT outperforms GCN in low label regime ( labeled data ≤ 15%) whereas GCN is more
beneficial with more labeled samples.

Analysis of the LSG edge connection threshold τ . The hyper-parameter τ in Eq. (2) controls
the topology (i.e., the number of edges that connect different labels) of the Language Semantic
Graph. We study the effect of this threshold on both the GCN node classification accuracy and more
importantly the primary model accuracy. We observe (in Fig. 2(d)) that as the ratio of cross-label
edges decrease, the graph topology becomes more simple and GCN accuracy increases. However,
due to lack of beneficial cross-label interaction, the primary model performs worse. In contrast, if the
ratio is overwhelmingly high, the graph topology becomes too complicated and results in degradation
in both GCN and primary model performance.

5 Limitation and Future Work
The proposed semantic graph is a general concept that aims to capture the high-level semantic
relations between labeled concepts. In this paper, we only use the natural language descriptions of the
labeled concepts and leverage the pretrained language model to construct the graph. Although using
language embedding is effective in many data-efficient scenarios across various modalities, it is still
limited when the labeled concepts in the task are not well described by natural language.However, the
semantic relations between concepts can also be captured by other ways, such as manually determining
the relationship between categories based on expert knowledge or leveraging a knowledge graph.
In the future, we will explore how to combine the semantic relations from different modalities to
construct a more comprehensive graph.

Meanwhile, since the proposed LSG is a simple and lightweight modification to the standard training
process and does not alter the inference procedure, another promising direction would be to extend
the proposed method to other data-efficient scenarios, such as semantic segmentation and object
detection.

6 Conclusion
In this paper, we study how to exploit the semantic information in labels for improving data efficiency.
We present LSG, a novel and effective data-efficient learning method that leverages Language
Semantic Graph to guide the model learn semantic relations between labeled concepts. LSG consists
of two parts: an auxiliary graph neural network that extracts knowledge from the semantic graph and
two novel optimization objectives that transfer the knowledge to primary model. We demonstrate that
LSG is applicable on image, video and audio models and brings significant performance gains to the
model under Transfer Learning and Semi-Supervised Learning scenarios.
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