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ABSTRACT

Anomaly detection (AD) has attracted significant research interest and now
achieves near-perfect performance on most existing benchmarks. However, the
majority of prior work has focused on detecting structural anomalies, where
anomalies manifest as localized defective regions. Recently, logical anomaly de-
tection (LAD) has emerged, extending AD to cases where violations occur at the
level of compositional or relational rules rather than individual regions—a setting
particularly relevant for industrial inspection. Despite its importance, LAD re-
search remains hindered by limited dedicated datasets, raising concerns about the
generalization ability of current methods. We address this gap with two contri-
butions. First, we introduce CELAD, a new benchmark designed to test compo-
sitional understanding in LAD. CELAD features greater variation in both normal
and anomalous samples, along with more intricate anomaly types, resulting in
a substantial performance drop in state-of-the-art methods. Second, we propose
ROMAD, a simple yet effective framework that leverages DETR, an object detec-
tor with strong relational modeling, to construct rich object embeddings. ROMAD
computes anomaly scores via a training-free matching pipeline and requires only
a small number of annotated samples. Extensive experiments show that ROMAD
achieves a new state of the art on CELAD, outperforming the next-best method
by nearly 15% while maintaining competitive performance on existing datasets.
In few-shot regimes, ROMAD further delivers the strongest average results across
both CELAD and prior benchmarks, demonstrating its ability to generalize beyond
memorization and capture the underlying logical rules. Code and data are avail-
able at: https://github.com/neutral-coder-737/Home-Page.

1 INTRODUCTION

Anomaly detection (AD) is a fundamental problem in computer vision with broad applications in
industrial and medical domains. Since anomalous samples are rare, diverse, and costly to collect,
unsupervised AD has become the most practical and dominant branch of the field. In this context,
models are given a training set of solely normal samples to learn their distribution. During inference,
any sample that deviates from the established distribution of normal samples should be recognized as
anomalous. Much of the progress in the field of AD has been driven by benchmarks such as MVTec
AD (Bergmann et al.l|2019) and Visa (Zou et al., 2022}, which focus primarily on structural anoma-
lies. These types of anomalies include defects like dents or scratches that disrupt the uniformity of
the image, making it easy to isolate the affected area. As a result of these rapid advances, there are
various well established methods, many of which now achieve near-perfect detection performance.

However, the success of structural AD has highlighted the limitations of current benchmarks and
motivated the emergence of logical anomaly detection (LAD), first introduced with the MVTec
LOCO AD dataset (Bergmann et al., [2022). Unlike structural anomalies, logical anomalies involve
more intricate relations and extend beyond individually contained defects. In this type of anoma-
lies, while no single object of the image is flawed on its own, the overall composition of these
elements and the underlying logical rule is violated. This paradigm is particularly relevant for in-
dustrial quality inspection, where products often adhere to strict logical constraints. Despite recent
progress, existing LAD research still has two key shortcomings. First, the true practical applica-
tions of LAD are substantially richer and more complex than what the existing benchmarks cover,
raising concerns of overfitting and limited generalization. Second, most real-world scenarios, lack
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the capacity for acquiring a comprehensive set of training samples, making few-shot LAD especially
important. Moreover, reliable LAD systems are expected to capture the underlying logical rules of a
scene rather than memorizing all the individual instances. This further emphasizes the need for the
performance evaluation of LAD methods under few-shot regimes.

To address these challenges, we introduce CELAD (Compositional Evaluation for Logical Anomaly
Detection), a new benchmark with a special focus on testing the compositional understanding in
AD. CELAD presents several new characteristics: images with a larger number of constituent ob-
jects, higher variation in both normal and anomalous samples and more complicated compositional
anomalies. We show that state-of-the-art LAD methods, which achieve near-saturated performance
on prior benchmarks, suffer drops of over 20% on CELAD.

We further present ROMAD (Relation-aware Object Matching for logical Anomaly Detection), a
simple yet effective framework for LAD. Our approach leverages the powerful relation-modeling
capabilities of DETR (Carion et al.,2020), a transformer-based family of object detectors, to create
rich object-level embeddings that capture the semantic, positional and compositional information
of each object. With only a small number of annotated samples for fine-tuning the object detector,
we construct a lightweight, training-free matching pipeline that computes anomaly scores from the
matching distances of these embeddings. Our design achieves balanced performance across both
existing and new benchmarks. On average over LOCO and CELAD, it ranks second overall, trailing
the best method by only 0.5%. On CELAD, however, it establishes a new state-of-the-art, surpassing
the second-best approach by nearly 14.7%. Moreover, in the few-shot setting, our method achieves
the best average performance across both LOCO and CELAD.

In summary, our contributions are threefold:

* We introduce CELAD, a new benchmark for LAD with a strong emphasis on composi-
tionality and positional relations. CELAD contains more complex anomalies, requiring
models to reason over both semantics and compositions. Experiments on CELAD show a
significant performance decline across all baselines, with average drops exceeding 20%.

* We propose ROMAD, a relation-aware object matching method that builds on DETR fam-
ily of object detectors. ROMAD leverages object-level embeddings enriched with composi-
tional cues, and combines it with a training-free matching pipeline to compute the anomaly
scores.

* We demonstrate that ROMAD achieves a more balanced performance across both existing
and new benchmarks. It delivers state-of-the-art results on CELAD with a 14.7% margin,
while maintaining competitive performance across both datasets. Importantly, ROMAD
also maintains the strongest average results across both datasets in the few-shot setting.

2 RELATED WORK

Structural Anomaly Detection. Conventional approaches have largely focused on unsupervised
AD and a variety of strategies have been proposed: Retrieval-based methods construct a memory
bank from feature maps of normal samples and assign anomaly scores by nearest-neighbor search
over local patches of the test image (Cohen & Hoshen, [2020; Roth et al.,|2022). Density estimation
methods attempt to model the distribution of normal data explicitly, often under specific assumptions
such as multivariate Gaussian distributions (Defard et al.,2021)), or through more flexible approaches
such as normalizing flows (Rudolph et al.| 2022} 2023). The likelihood of a test sample under this
distribution is then used as the anomaly score. Reconstruction-based methods rely on the assumption
that generative models trained exclusively on normal data fail to reconstruct anomalies. At test time,
discrepancies between the input and its reconstruction highlight anomalous regions (Zhang et al.,
2024b; Mousakhan et al., [2024). Distillation-based methods train a student network to mimic a
teacher using only normal data. The discrepancy between teacher and student outputs is then used
as the anomaly score (Salehi et al.; 2021} |Deng & Lil 2022).

Logical Anomaly Detection. Building on these foundations, recent work has shifted attention
toward LAD, which focuses on relational and compositional inconsistencies rather than low-level
structural defects. Many LAD approaches are extensions of conventional AD pipelines with archi-
tectural or loss-function modifications to better capture long-range dependencies. For instance, the
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Figure 1: Preview of the twin bracelets class in the proposed CELAD dataset. The images illustrate
normal bracelet compositions alongside various anomaly types. Anomalous regions are highlighted
with bounding box annotations. For images with multiple valid anomaly labels, only one annotation
is visualized for clarity.

use of reconstruction—distillation hybrids with adaptations for long-range understanding have been
widely adopted (Bergmann et al. 2022} [Batzner et al 2024} [Sugawara & Imamural 2024} [Zhang]|
20244). Some other works use deep feature reconstruction, where bottleneck compression is
used to filter out anomalous features (Guo et al,[2023}; [Patra & Taiebl,[2024). Density-based methods
such as SINBAD, model each sample as a distribution of its elements, using fixed features and then
compute anomaly scores via a simple density estimation method (Cohen et al.,[2023). Segmentation-
based methods first decompose the image into constituent components and then perform matching
to compare the object classes of the test image against those of its nearest normal neighbors. By
constructing pixel-level segmentation maps, these methods are particularly effective at capturing the
metrological features of objects (Kim et al.,[2024; [Hsieh & Lail, [2024; [Liu et al.| 2023}, [Peng et al.}
[2025)). Other lines of work include methods leveraging the reasoning capabilities of large language
models or program synthesis to detect logical violations (Zhang et al., 2025} [2024c). While these
methods are attractive for their accuracy and explainability, they remain impractical for real-world
deployments due to their high computational overhead and limited real-time applicability. Our ap-
proach is most closely related to the segmentation-based family, with the distinction that (i) we
use object detection, which serves as a lighter base task compared to segmentation, (ii) we perform
matching at the object level with a focus on modeling compositional context, and (iii) our framework
is simpler, leveraging existing vision foundation models rather than custom architectures.

Discussion. Notably, most LAD pipelines address logical and structural anomalies through sepa-
rate branches, effectively ensembling models to handle both types. This trend, combined with the
clear performance gap between LAD and structural AD, highlights that LAD remains underexplored
and warrants its own dedicated line of research. To this end, our work exclusively targets LAD: we
introduce a new benchmark that explicitly emphasizes compositional relations, and a lightweight
object-matching framework aimed at advancing progress in this emerging direction.

3 THE CELAD DATASET

3.1 MOTIVATION

Recent advancements in LAD have been significantly enabled by the introduction of the MVTec
LOCO AD dataset (Bergmann et al.,[2022). Encompassing five different object classes, each having
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a specific set of logical rules, this dataset has served as the main benchmark for the task of LAD.
Despite the challenging nature of these logical anomalies, current state-of-the-art methods, have
achieved near-perfect performance on this benchmark. However, the complex nature of real-world
logical anomalies leads us to question the generalization ability of existing methods, suggesting that
the problem of generalizable LAD is far from solved. This motivates the need for a more challenging
benchmark to drive further research in this field. Compared to the previous data, CELAD features
a significantly higher degree of variation in both normal and anomalous samples, introducing more
complex compositional relationships. By providing high intra-class variation for normal data and a
wide variety of anomalies with subtle differences, CELAD serves as a well-suited complementary
benchmark to existing datasets. As we show in our experimental evaluation, the performance of prior
methods on CELAD drops drastically, highlighting their lack of generalization to more complicated
scenarios.

3.2 DATASET DESCRIPTION

The CELAD dataset contains images of beaded bracelets, exclusively covering the logical types of
anomalies. Anomaly-free samples are defined by two types of bracelets, which exhibit subtle dis-
tinctions in the type and the arrangement of their constituent beads. Each bracelet type is defined by
letter beads spelling “SPARK” and a unique combination of letter-bead colors and black—white bead
arrangements. Any sample deviating from these two precise types is considered anomalous. Fig-
ure | provides a visual preview of the dataset, showcasing examples of both normal and anomalous
samples. Appendix [A]provides a detailed description of CELAD’s logical rules as well as a preview
of its pixel-precise annotations. The CELAD dataset comprises 530 normal samples and a total of
220 anomalous samples across five distinct anomaly categories. Compared to each class of LOCO,
CELAD offers almost twice as many anomalous test samples, substantially more anomaly types,
a larger number and greater variety of constituent objects per image, and overall more challenging
anomalies. Table ] in Appendix [A] provides a detailed overview of the dataset statistics, including
the number of samples and subtypes for each anomalous category. All images where acquired using
a 4000x4000 high-resolution camera. Both images and pixel-precise annotations are provided.

3.3 EVALUATION PROTOCOL AND METRICS

Anomaly Detection. Regarding image-level evaluation, we adopt standard metrics from the field,
including Area Under the Receiver Operating Characteristic Curve (AUROC), Average Precision
(AP), and Fl-score at the optimal threshold (F1-max). These metrics provide a comprehensive
measure of a model’s ability to distinguish between normal and anomalous samples.

Anomaly Segmentation. Pixel-level evaluation for LAD presents a challenge due to the potential
for multiple valid ground truth annotations. The LOCO dataset aimed to address this ambiguity
with saturated Per-Region Overlap (sPRO), an extended version of Per-Region Overlap (PRO). In
this protocol, the union of all candidate regions is selects as the ground truth and the performance
scores are saturated once the predicted region’s overlap with the ground truth exceeds a predefined
threshold. While sPRO lacks the ability to capture the true shape of the anomalous region, it is
required for the evaluation of LOCO due to the uncountable number of pixel-level ground truths.
In contrast to LOCO, the locations of anomalous regions in CELAD are fixed, and the number of
possible ground truths for any given anomalous image is finite. This characteristic allows for a more
basic pixel-level evaluation protocol for CELAD: among all possible choices of ground truths for a
given anomalous image, the one that has the highest Intersection over Union (IoU) with the model’s
predicted anomaly map is selected. Performance is then evaluated using standard pixel-level metrics
commonly used in structural AD, such as PRO and pixel-level AUROC.

4 METHOD

4.1 PRELIMINARY: DETR

Our framework is heavily inspired by DETR (Carion et al.l [2020), which marked a major shift in
object detection by introducing a transformer-based encoder—decoder architecture along with the
concept of object queries. In DETR, a fixed set of learnable object queries is passed through the
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Figure 2: Overview of ROMAD. After fine-tuning the object detector, detected object queries are
extracted and enriched with distance-based attention and SAM-derived area features to form repre-
sentative embeddings of normal images, stored in a memory bank. At test time, embeddings from
a query image are compared against the memory bank via bipartite matching, and the resulting dis-
tance is used as the anomaly score.

transformer decoder, where self-attention (Vaswani et al.| [2017) allows each query to interact with
all others. This mechanism naturally enables relation modeling: the embedding of each object is
contextualized by attending to other potentially relevant objects in the scene. Unlike traditional
detection pipelines that rely on hand-crafted components such as anchors or post-processing heuris-
tics, DETR formulates detection as a direct set prediction problem. It employs bipartite matching
to align predictions with ground-truth objects, enabling a fully end-to-end training pipeline. These
design choices give DETR a flexible formulation that excels not only at detecting individual ob-
jects but also at capturing their interactions. For this reason, DETR is an appealing choice for
tasks like LAD, where the understanding of inter-object relations is essential. The contextualized
object query embeddings encode positional, semantic, and compositional information of each ob-
ject—respectively guided by the bounding-box regression head, the classification head, and the self-
attention mechanism. Therefore, we propose to use these embeddings as proxies for the objects in a
scene, establishing an efficient foundation for object matching.

In practice, we observe that only a small number of annotated data is sufficient to achieve near-
perfect detection on AD datasets. Also, since smaller architectures are more aligned with low-data
regimes, we adopt RT-DETR (Zhao et al.l [2024), a lightweight and efficient variant of the DETR
family. RT-DETR mitigates the heavy computational demands typical of transformer-based archi-
tectures, while achieving performance and efficiency comparable to state-of-the-art YOLO (Redmon
et al.| 2016) detectors, making it particularly well-suited for our setting.

4.2 ENHANCING OBJECT DETECTION VIA SELE-TRAINING

Pseudo-label Verification. An intrinsic property of LAD datasets is that, for anomaly-free sam-
ples, the number of objects in each category follows a predefined pattern. This allows us to design
a simple verification procedure to score the predicted outputs of the object detector. Concretely,

we construct a set of reference histograms {h(lr), cee h%)} from a small set of manually annotated
samples, where h,(:i denotes the expected number of objects of category c in reference sample k.

We then apply the object detector to the training set and compute a histogram h®) for each predicted

image, where hﬁ” ) is the predicted count for category c. We then measure the distance between h(?)
and each reference histogram using the Lo distance. A verification score is then assigned as the
minimum distance across all reference histograms. this is defined as

Qe ?) = min 5™ (h — 1))
B ceC

2
’

(D
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where C is the set of categories. Finally, a predicted annotation is retained as a pseudo-label if its
verification score satisfies dver(h(p)) < Tyer, Where Tyer is a predefined threshold. This score serves
as a minimal evaluation metric for detection performance based solely on normal samples, enabling
us to filter out inaccurate pseudo-labels and retain only the most consistent ones.

Self-training. Prior work in object detection has demonstrated that self-training can significantly
enhance fine-tuning, particularly in low-data regimes (Zoph et al.,[2020). While conventional super-
vised fine-tuning already yields satisfactory detection results, we argue that the reliance on manually
annotated samples can be further reduced through self-training. We also note that, although DETR
eliminates the need for post-processing such as the non-maximum suppression (NMS), applying
NMS yields a slight accuracy gain in our low-shot setting; hence, we retain it in our pipeline. Our
self-training procedure consists of four steps: (i) a teacher model is trained on a small set of man-
ually labeled samples; (ii) the teacher model generates pseudo-labels on the entire training set; (iii)
a verification procedure is applied to filter out incorrect pseudo-labels; and (iv) a student model is
trained jointly on both the verified pseudo-labels and the manual annotations.

Remarkably, self-training combined with our verification procedure enables near-perfect detection
performance with as few as 6 manually annotated images for LOCO classes and 8 for CELAD.
To put this in perspective, the previous state-of-the-art method, PSAD (Kim et al., [2024]), relies on
3-5 manually segmented samples. Given that bounding box annotations are substantially easier to
obtain than pixel-level segmentations, we argue that the supervision required by our framework is
comparable, if not lower.

4.3 FEATURE ENRICHMENT

Distance-based Attention. While the contextualized object queries produced by the final self-
attention layer of the DETR decoder already encode semantic, positional and compositional infor-
mation, they do not explicitly account for the relative spatial proximity between objects. Intuitively,
nearby objects should exert stronger influence when defining each object’s context. Since the DETR
architecture and training objective impose no such spatial bias, we propose to reinforce local context
through a distance-based attention mechanism.

Formally, let an image yield n, detected objects with bounding-box centers {¢; € R?}1'¢, and con-
textualized embeddings { f; € R?}"¢;. We compute pairwise distances: A;; = ||¢c; —¢;ll2, Ay =
400, where we manually suppress self-attention. Normalized inverse-distance weights are then

defined as:
(1+A4)"
rey (1+ Agg) =1
Restricting to the top-m nearest neighbors N; of object i, we re-normalize:
5 _ Pijljen,
= =
’ ZkENi Rk

P, =

The context vector of object ¢ is then:
ng
9i =Y _Pifi, )
j=1

Object Area. Object size is a critical feature in LAD datasets, yet it is often underrepresented in
the embeddings produced by vision backbones. Following prior work, we explicitly enrich each
object representation with its estimated area via segmentation. Unlike previous approaches that rely
on custom-trained segmentation networks, we leverage the Segment Anything Model (SAM) (Kir-
illov et al.,|2023)) in a zero-shot setting. Specifically, the bounding box coordinates predicted by the
detector are used as prompts for SAM, which produces binary segmentation masks for the objects.
Notably, this approach yields more accurate segmentations than the task-specific networks employed
in prior work. Qualitative examples of these results are included in Appendix

For each object ¢, with predicted binary segmentation map p;, we compute its area as: a; =
> w.n Pi(w, k). Finally, the representative embedding for each object is obtained by concatenating
the contextualized embedding f;, the distance-based context g;, and the area feature a;:

zi = [ fi; 95 0;] € R, 3)
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4.4 BIPARTITE MATCHING

Object queries yield slightly different representative embeddings for the same object depending on
its compositional context. To robustly measure similarity between images, we propose to compare
sets of enriched object embeddings through bipartite matching. Specifically, we maintain a memory
bank of representative embeddings from normal images and compute matching distances between a
test image and this bank, which later form the basis of our anomaly score.

Matching Cost. To solve the matching problem, we first define the pairwise cost between elements
of the source and destination sets. Let two images yield sets of representative embeddings

1 1 2 2
zW = {z§ ),...72121)}, 73 = {zé ),...,21(62)}7

where each embedding is decomposed as z = [x;a], = € R?? a € R,. For objects i and
7, the feature similarity cost is defined as the normalized Euclidean distance between their feature
embeddings:

lz{Y — 28I,

O = =53 @)
Also, to penalize discrepancies in object size, we define:
orea — af?l) _ a§2) (5)
ij a§1) N agz) :

The total pairwise cost is then: Cy; = Cf5* + A C3¢, where A > 0 is a tunable coefficient.

Linear Assignment Problem. Given the pairwise cost matrix C, we formulate anomaly scoring
as a linear assignment problem, seeking the minimum-cost bipartite matching distance. When k; #
ko, some objects remain unmatched. To address this, we pad C' with zero-cost entries to form a
square matrix of size max(k1, k2), enabling a balanced assignment. We then apply the Hungarian
algorithm (Kuhn, [1955)), one of the earliest algorithms for balanced linear assignment, to compute

Dmace Z(l) Z(2) = i Cz 6
cehea(Z21), Z3) ﬂeﬁﬂn(lkrf,@)(z i 6)

Lj)en

where M (ky, k2) denotes the set of valid one-to-one matchings. For the remaining unmatched
objects, we assign a penalty equal to their maximum similarity cost relative to the opposite set:

2
Dunmatched(Z(l)a Z( )) = Z mjax Cij + Z IH?X Cija (7)
€U jeUsz
where U and U, denote the sets of unmatched objects in Z(1) and Z(?), respectively. The complete

matching distance is thus: D = Dyaiched + Dunmatched-

Nearest Neighbor Search. Given the distance function D(-, -), we define the anomaly score of a

test image I; based on its similarity to the memory bank of normal images {/ SO 10 }. Specif-
ically, we identify the &k nearest neighbors of I; under D and aggregate their distances to obtain the
final anomaly score:
1 (m)
—— (L) (I
Aty =7 Y D(Z Z ) (8)
mENNy (1)

Figure [2]illustrates the full pipeline.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Implementation Details. We adopt RT-DETR-large (Zhao et al.| 2024)) as the base object detector
and SAM2.1-base (Ravi et al)[2024) as the zero-shot segmentor. For finetuning, we initialize RT-
DETR with COCO-pretrained (Lin et al., 2014) weights, replace the final classification layer to
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Table 1: Image-level AUROC comparison on MVTec LOCO AD and CELAD in full-shot and few-
shot settings. Bold marks the best, underline the second-best, and T denotes results taken from
original papers. All values are averaged over five runs.

Setting | Dataset | SA-PatchCore  ULSAD EfficientAD SINBAD ComAD CSAD PSAD | ROMAD
breakfast box 86.13 84.16 85.461 97707 94707 94407 1007 | 94.80
juice bottle 97.04 98.80 98.417 97.10"7  90.90t 94.90T 99.107 | 94.06
pushpins 64.56 86.38 97.74% 88.90"  89.007 99.50" 1007 | 98.66
Full-shot + + t + ¥
screw bag 57.76 67.11 56.66 s1.10f  79.70"  99.907 99.30T | 99.14
splicing connectors 89.98 87.19 95.52F 91507  84.40T 94.807 91.907 | 85.74
twin bracelets 57.60 60.90 58.12 7468 7538 6926 79.48 | 94.16
average 75.51 80.76 81.98 88.50  85.68 92.13 94.96 | 94.43
LOCO 73.75 72.11 68.92 84.00 8178  69.40 85.59 | 92.44
32-shot |  twin bracelets 55.98 58.31 53.47 7171 6500 5490 61.75 | 85.67
average 70.79 69.81 66.35 81.95 7898 6699 81.62 | 91.32
LOCO 71.61 72.19 67.87 82.68 7722 6269 7525 | 9196
16-shot |  twin bracelets 54.13 54.15 48.41 7234 6530 5255 51.80 | 80.24
average 68.70 69.18 64.63 80.95 7523 61.00 7134 | 90.01
LOCO 67.77 60.82 64.25 8200  76.10 61.83 6527 | 90.84
8-shot twin bracelets 5248 50.03 52.88 67.46 6090 5273 48.88 | 70.60
average 65.22 59.02 62.35 7958 7357 6031 6254 | 8747

SINBAD

Figure 4: Standard deviation of results across
all datasets, illustrating the stability and gen-
eralization of each method.

Figure 3: Average AUROC of different methods
in full-shot and few-shot settings.

match our dataset classes, and then perform full-network finetuning. We use 6 manually annotated
samples for each class of MVTec LOCO AD (Bergmann et al.} [2022) and 8 samples for CELAD.
Training is performed in two passes via self-training, each for 600 epochs with early stopping.
For CELAD, we additionally employ intra-image Copy-Paste augmentation (Ghiasi et al., 2021}
[Dwibedi et al.,[2017; Kisantal et al.L2019) during the first training pass. In the verification procedure,
we fix Ty = 0, such that only pseudo-labels with exactly matching label histograms to the reference
set are retained. After training, we extract the contextualized object queries from the outputs of the
6th self-attention layer of the DETR decoder. In the distance-based attention module, the maximum
number of neighbors is set to m = 3 for all datasets. The area coefficient is fixed at A = 0.5.

Although implemented on RT-DETR, in principle, our framework can be applied to any attention-
based detector that produces self-attended object embeddings, such as YOLOv10 (Wang et al., 2024))

or Sparse R-CNN (Sun et al., 2021)), highlighting the versatility of our approach.

Datasets and Baselines. We evaluate our approach on CELAD and the logical subset of LOCO,
covering six logically distinct datasets. Anomaly detection performance is measured using image-
level AUROC. For our method, we additionally report AP and F1-max in Appendix [B] We compare
against seven baselines: PSAD 2024), CSAD (Hsieh & Lail, [2024), ComAD (Liu et al.
2023), SINBAD [2023), EfficientAD (Batzner et al., [2024), ULSAD (Patra & Taieb
2024), and SA-PatchCore (Ishida et al.,[2023). Among these, the two strongest baselines incorporate
additional supervisions. PSAD relies on 3—5 manually segmented samples and CSAD employs text
supervision for open-vocabulary object segmentation. In total, we conducted 715 baseline runs,
which to the best of our knowledge cover all LAD baselines with publicly available implementations.
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Table 2: Component ablation, Table 3: Effect of self-training.

P Dataset Pass 1 Pass 2
Arca Distance-based o Unmatched | 1 5~ g1 aD Average # verified samples # verified samples
attention policy

breakfast box 347/351 350/351
‘); ; ; max gi;; gggg g ;gg juice bottle 334/335 335/335
v u X max 94‘07 94-08 94'07 pushpins 370/372 372/372
v v v max | 9448 94.16 | 94.43 screw bag 347/360 359/360
v v v min 83.80 92.98 89.50 splicing connectors 359/360 360/360

twin bracelets 223/340 339/340

5.2 MAIN RESULTS

Table [T| compares ROMAD with prior baselines under both full-shot and few-shot settings. Across
LOCO and CELAD, ROMAD ranks second overall, with only a 0.5% gap from the top-performing
method. On CELAD specifically, it achieves a new state of the art, outperforming the next-best
method by 14.7%.

Few-shot Comparison. Evaluating LAD methods in few-shot regimes is crucial for two reasons:
(1) most practical scenarios provide only a limited number of training samples, and (ii) few-shot
performance serves as a strong indicator of genuine logical understanding, as is standard in eval-
uation protocols across other logical domains. In such cases, systems are expected to capture the
underlying rules rather than memorize all possible instances. In this regime, ROMAD achieves the
best average performance across both LOCO and CELAD, with a clear margin of up to 9.4% over
the strongest baseline. Figure [3| summarizes the average results for full-shot and few-shot settings,
highlighting the consistent gap between ROMAD and competing methods. Figure]reports the stan-
dard deviation across six datasets, reflecting each method’s stability. Notably, ROMAD achieves
substantially lower variance, indicating a more balanced generalization across datasets.

5.3 ABLATION STUDY

We validate the effectiveness of the different components of ROMAD. Table[2]reports the impact of
feature enrichment with object area and distance-based attention, as well as applying NMS in object
detection, showing performance gains with each added module. Most of the gains from the distance-
based attention module are observed on CELAD, since most LOCO classes do not require a strict
spatial arrangement of elements. We also experimented with different policies for the anomaly score
associated with unmatched elements and found that using the maximum similarity cost yielded the
best results.

Table |3| evaluates the effect of self-training in achieving strong detection performance with only
a few manually annotated samples. After the second self-training pass, we reach almost perfect
detection performance in terms of the verification score, highlighting both the power of existing
object detectors in modeling complex scenes and the effectiveness of self-training in further reducing
annotation requirements. It is also worth noting that the number of manually annotated samples for
LOCO was not heavily optimized and could potentially be reduced even further.

6 CONCLUSION

In this work, we addressed the current limitations of existing LAD research by introducing CELAD,
a new benchmark explicitly designed to test compositional understanding. CELAD substantially
increases the complexity of LAD by featuring more objects per scene, greater variability, and more
intricate anomaly types. Our evaluation demonstrates that state-of-the-art methods, which achieve
near-saturated results on previous benchmarks, experience notable drops on CELAD, underscoring
the need for more generalizable approaches. We also proposed ROMAD, a relation-aware object
matching framework that leverages DETR’s relation modeling capabilities alongside a lightweight
matching pipeline. Despite its simplicity, ROMAD achieves a new state of the art on CELAD
with a 14.7% margin, maintains competitive results on prior datasets, and delivers the strongest
performance in few-shot regimes. We view ROMAD as a minimal baseline for LAD, intended to
support our new benchmark and the argument that current models lack in generalization capabilities.
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REPRODUCIBILITY STATEMENT

We release the full implementation of our method as well as the CELAD dataset for review. Since
we report results for seven baselines across datasets and settings that were not necessarily covered
in the original papers, we also provide the modified code used to reproduce these baselines. The
modifications to the official implementations are minimal and limited to adding support for CELAD
data loaders and few-shot settings. Code and data are available for review at: https://github.
com/neutral-coder—-737/Home-Pagel For confidentiality, the dataset is provided as an
encrypted file, with the password included in the supplementary materials for reviewers. The dataset
will be made publicly available upon acceptance.

ETHICS STATEMENT

We used large language models (LLMs) solely for language editing purposes, such as rephrasing
and polishing the final text of the paper. No parts of the technical content, experiments, or results
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A DATASET

A.1 DATASET DESCRIPTION

CELAD consists of images of two bracelet types. Both types feature letter beads spelling “SPARK,”
but with distinct color combinations. In Twin A, the sequence begins with a black bead carrying
a white “S,” followed by alternating color patterns for the remaining letters. Twin B follows the
exact opposite color pattern for its letter beads. The letter beads are separated by small hexagonal
patterned beads, and each bracelet type has a slightly different arrangement of black and white
beads. Variations produced by rotations, flips, and bendings of the bracelets are all considered
normal, giving rise to substantially greater diversity among the normal samples.

A.2 DATASET STATISTICS

Different approaches to LAD have varying strengths and weaknesses in detecting specific types of
anomalies. It is therefore crucial for benchmarks to encompass diverse anomaly types so as not
to favor a particular family of methods. CELAD includes a considerably broad range of anomaly
types—covering semantic, metrological, and relational features—thereby providing a more com-
prehensive assessment of a model’s logical understanding. Table [4] presents detailed statistics of
CELAD, including the number of samples and sub-types within each anomalous category. In par-
ticular, anomaly types such as wrong orientations or wrong permutations are especially challenging,
since they cannot be resolved through a simple matching of object categories.

Table 4: Overview of CELAD dataset statistics, including five distinct anomaly types, each with
multiple sub-types.

Normal Cross Extra Wrong Duplicate Wrong
Ormal combinations Beads Orientations Letters Permutations
# samples 530 20 34 71 66 29
# sub-types 2 2 5 10 10 4

A.3 PIXEL-LEVEL GROUND TRUTHS

Pixel-level anomaly scores have long served as the primary means of evaluating explainability in
structural AD, where most state-of-the-art methods already achieve strong performance on pixel-
level benchmarks (Bergmann et al.| 2019} [Zou et al.| 2022). In LAD, the pixel-level evaluation
protocol largely follows the same conventions as structural AD, with the added complexity that
multiple valid ground-truth annotations may exist for a single anomalous image (Bergmann et al.,
2022). Figure[3]illustrates this by showing examples of anomalous samples in CELAD together with
all of their valid ground-truth annotations.

A.4 LIMITATIONS OF PIXEL-LEVEL EVALUATION FOR LAD

Although some existing LAD methods demonstrate near-perfect performance at the image level, ex-
plainability remains an underexplored direction. Unlike in structural AD, where pixel-level anomaly
maps are both common and effective, many high-performing LAD methods—including ours—do
not produce pixel-level outputs. While anomaly heatmaps provide a useful form of interpretability
for structural anomalies, they are particularly well-suited to settings where anomalies are localized
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Twin A
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Twin B
Duplicate Letters
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Cross Combinations

Figure 5: Examples of CELAD anomaly types along with their pixel-precise ground-truth annota-
tions. Each row shows anomalous images alongside all its valid annotations, whose number varies
by instance.

to specific regions of an image. This assumption does not necessarily hold for logical anomalies,
where defects are often distributed across objects or relations and may admit multiple valid answers.
We therefore argue that conventional pixel-level evaluation is not the ideal measure of explainability
for LAD, and we leave it to future work to develop alternative evaluation protocols tailored to this
setting.

A.5 DISTINCTION BETWEEN STRUCTURAL AND LOGICAL ANOMALIES

Most prior works on LAD report results jointly over both structural and logical anomalies. However,
in practice, these two types of anomalies are often handled through separate branches or mecha-
nisms (Bergmann et al., 2022} Batzner et al.,[2024; [Sugawara & Tmamural,[2024; [Hsieh & Lail 2024}
[Zhang et al.| 2024a)), suggesting that the underlying challenge of structural and logical AD differ sub-
stantially. Furthermore, the nature of logical anomalies in real-world scenarios is far more complex
than what existing benchmarks cover. By introducing CELAD, we highlight this gap and demon-
strate that current LAD methods struggle to understand and reason about more complex scenes.
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Taken together, these points suggest that logical AD is inherently different and more difficult than
structural AD and merits its own dedicated line of research.

B METHOD

B.1 IMPLEMENTATION DETAILS

We use RT-DETR-large (Zhao et al., 2024) as our base object detector and SAM2.1-base (Ravi
et al., [2024)) as the zero-shot segmentor, both through the implementations provided by Jocher et al.
(2023). RT-DETR-large has ~33M parameters, and SAM?2.1-base has ~81M parameters, reflecting
the minimal memory consumption of ROMAD.

For fine-tuning the object detector, we follow the established convention of initializing from COCO-
pretrained (Lin et al) [2014) weights, replacing the last classification layer to match the number
of classes in the target dataset, and then performing full fine-tuning. Training proceeds in two
passes via self-training, with the validation set identical to the training set. Each pass runs for up
to 600 epochs with early stopping. For CELAD, we additionally apply intra-image Copy-Paste
augmentation (Ghiasi et al.l [2021; [Dwibedi et al.l 2017} Kisantal et al., [2019), but only during the
first training pass to support the detector’s classification objective for pseudo-label generation.

In the verification procedure, we fix 7y, = 0, retaining only pseudo-labels with exactly matching
label histograms. After self-training, we extract contextualized object queries from the outputs of the
6th self-attention layer of the DETR decoder. We use the same hyperparameters across all datasets:
the confidence threshold for object detection is set to 7oy = 0.7, the maximum number of neighbors
for the distance-based attention module is m = 3, the area coefficient is fixed at A = 0.5, and the
number of nearest neighbors for the final KNN search is k£ = 3.

Further details for each step are discussed in the following sections. All experiments on our method
and other baselines are conducted on a single NVIDIA RTX 3090 24GB GPU.

B.2 CHOICE OF OBJECT DETECTORS

The main distinction of the DETR family of object detectors (Carion et al., 20205 |Zhu et al., 2020;
Meng et al.| 2021} [Zhao et al., 2024) compared to conventional detectors lies in their transformer-
based architecture and the use of self-attention (Vaswani et al.,[2017) among object queries. While
DETR was the first to introduce this design, subsequent object detectors have increasingly incorpo-
rated variants of self-attention. For instance, Sparse R-CNN (Sun et al.| [2021)) applies self-attention
to its set of object features prior to the dynamic instance interaction heads, enabling reasoning over
inter-object relations. Similarly, YOLOv10 (Wang et al.,[2024) adopts a Partial Self-Attention (PSA)
module, which uses the global modeling capabilities of self-attention while reducing its quadratic
computational cost. Given this trend, we believe our lightweight matching pipeline could be readily
extended to any object detector that produces self-attended object embeddings.

B.3 VERIFICATION THRESHOLD

The verification threshold 7, is selected using a dynamic quantile-based strategy. However, as
shown in Table[3] even in the most challenging case (i.e., CELAD), 66% of the predicted annotations
from the first pass satisfy dye(h("?)) = 0. Given the satisfactory performance of the first pass,
coupled with the fact that in our extremely low-data regime the quality of each pseudo-label is
especially important, we fix the verification threshold at 7y, = 0.

B.4 DATA AUGMENTATION

CELAD introduces substantially more object categories than MVTec LOCO AD (Bergmann et al.,
2022), with subtle inter-class differences. Additionally, CELAD contains two bracelet types, mean-
ing that some objects of the training set appear as few as four times. To address this rarity, we adopt
an augmentation strategy focused on underrepresented objects of the scene. We employ intra-image
Copy-Paste augmentation in CELAD to increase the frequency of rare objects. Concretely, from the

set of manually annotated samples with reference histograms {h@, ey h%) }, we identify rare cat-
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egories as those with the lowest values of Zle hgi For each reference image, we then randomly

select two or three such objects, copy their instances (using the annotated bounding boxes), and

paste them randomly within the same image. Remarkably, this simple strategy raised the number of
verified samples of the first pass from 20/340 to 223/340.

It is important to mention that this augmentation is applied only in the first pass to support the detec-
tor’s classification objective during pseudo-label generation. We avoid using it in the second pass,
since random placement of objects could disrupt the model’s ability to capture the true compositional
structure of the scene.

B.5 ADDITIONAL EVALUATION METRICS

AUROC is the most widely used metric for evaluating AD performance, but it cannot represent the
true performance of models in all situations. For instance, in imbalanced datasets where the ratio
of normal to anomalous samples is skewed, AUROC alone may present an inflated view of perfor-
mance (Davis & Goadrich, 2006} [Saito & Rehmsmeier, [2015; |(Cook & Ramadas), [2020). Table E]
reports all three AD metrics for ROMAD—AUROC, AP, and F1-max—across all datasets.

Table 5: Complete quantitative results of ROMAD.

Setting | Metric | breakfast box juice bottle pushpins screw bag splicing connectors twin bracelets | average

AUROC 94.80 94.06 98.66 99.14 85.74 94.16 94.43

Full-shot AP 95.42 96.96 98.48 99.09 88.01 95.68 95.61
Fl-max 88.46 91.10 94.92 96.82 79.61 88.89 89.97

AUROC 91.73 91.39 98.13 99.02 81.96 85.67 91.32

32-shot AP 93.05 95.10 97.65 98.92 86.23 87.18 93.02
Fl-max 87.57 88.42 92.55 97.47 76.00 81.32 87.22

AUROC 89.17 92.06 98.07 98.36 82.16 80.24 90.01

16-shot AP 90.60 95.06 97.82 98.22 85.73 81.58 91.50

Fl-max 80.82 88.57 93.26 96.38 76.19 78.52 85.62

AUROC 91.76 84.90 98.28 96.94 82.32 70.60 87.47

8-shot AP 92.42 91.55 98.17 94.59 85.58 75.79 89.68

Fl-max 83.22 81.53 94.19 96.06 73.68 72.60 83.55

B.6 OBIJECT DETECTION AND SEGMENTATION RESULTS

Figure [6] presents the object detection and segmentation outputs of ROMAD. Notably, our method
produces more accurate annotations than the task-specific networks employed in prior work. For
example, CELAD contains visually similar object classes that are difficult to distinguish. Although
these cases pose challenges to baseline methods, ROMAD achieves near-perfect detection perfor-
mance on them.

B.7 MODEL ADJUSTABILITY

As with other segmentation-based methods, the way images are annotated has a direct impact on the
final performance. We argue that methods relying on a small number of manually annotated samples,
such as ours, offer additional adjustability to the end user. Specifically, they allow users to define
which objects in a scene are most relevant for capturing the underlying logical rules, providing a
means to adjust the model to meet customized requirements. This property is especially important
in practice, since the definition of human-perceived anomalies is inherently subjective and may not
always align perfectly with statistical deviations from the normal distribution. For example, while
the model might flag inconsistencies in the background as anomalous, humans may consider them
irrelevant to the primary objects of interest (Liu et al., [2023)).

B.8 SIMPLICITY

Our method is among the simplest approaches for LAD, requiring no custom architectures or heav-
ily optimized objectives. Instead, we leverage existing vision foundation models in few-shot and
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Figure 6: Qualitative results of ROMAD’s object detection and segmentation. Each row shows the
annotations for both normal and anomalous samples.

zero-shot settings, combined with an intuitive object-matching pipeline. Despite this simplicity,
our method achieves competitive performance and more balanced results across diverse datasets,
indicating stronger generalization capabilities.

We view our approach as a basic and minimal baseline for LAD, intended to support our new bench-
mark and the argument that current models are overfitted to existing datasets, highlighting the need
for more generalizable approaches. We believe that future methods—equipped with specially op-
timized architectures and training objectives—have the potential of achieving significantly higher
performance.
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B.9 LIMITATIONS

ROMAD does not address structural anomalies, which is a limitation of our method. However,
as discussed earlier, we believe that LAD warrants dedicated methods, and in practice, the joint
detection of structural and logical anomalies could be achieved by ensembling specialized methods
for each. Furthermore, although the matching-based design of ROMAD allows for explainable
anomaly detection, it does not produce pixel-level anomaly maps.

In addition, Table [6] reports the misclassifications of ROMAD on CELAD when using the opti-
mal threshold (i.e., the one yielding the highest F1 score) to discretize image-level anomaly scores.
While ROMAD successfully detects all instances across CELAD anomaly categories, it shows re-
duced performance in detecting the particularly challenging case of anomalies caused by wrong
orientations.

Table 6: Misclassifications of ROMAD on CELAD.

Cross Extra Wrong Duplicate Wrong

Normal Combinations Beads Orientations Letters Permutations
# test samples 190 20 34 71 66 29
# misclassified samples 25 0 0 24 0 0

C BASELINES

C.1 CHOICE OF BASELINES

Since we evaluate prior methods on a new dataset as well as in few-shot settings, many results are
not directly available from the original papers. We therefore restrict our comparison to baselines
with publicly released implementations. To the best of our knowledge, baselines included in Table/[T]
cover all existing LAD methods with accessible codebases (Kim et al., 2024; [Hsieh & Lail, 2024;
Liu et al., 2023; |Cohen et al., 2023} |Batzner et al.| 2024} [Patra & Taieb, 2024 Ishida et al., [2023)).

We exclude LLM-based approaches (Zhang et al., 2025} 2024c) from our comparison, as their set-
tings are fundamentally different: they rely on large foundation models and substantially greater
computational resources, making them impractical for real-time applications where efficiency is
critical.

C.2 EVALUATION SETUP

In total, considering both few- and full-shot settings, multiple datasets, and five independent runs
per result, we conducted a substantial number of 715 baseline runs, representing a large-scale
experimental effort to ensure the reliability of our comparisons. We are the first to evaluate such a
broad set of models across so many settings. Our results reveal a clear reordering of methods in few-
shot scenarios: state-of-the-art approaches that dominate in the full-shot setting often perform worse
in low-data regimes. This indicates that simpler and more general models such as SINBAD (Cohen
et al.,2023)) and ComAD (Liu et al., 2023)) capture the underlying relations more effectively, while
full-shot state-of-the-art methods tend to rely heavily on memorization of training instances.

C.3 REPRODUCTION DETAILS

Among the baselines, PSAD (Kim et al.| [2024)) and CSAD (Hsieh & Lail [2024) incorporate addi-
tional supervision. Below, we detail the manual supervision provided for each:

* PSAD relies on a small number of manually segmented samples to train its segmenta-
tion network. According to the original paper, for MVTec LOCO AD (Bergmann et al.|
2022) classes with multiple types (e.g., three types within “juice bottle” and “splicing con-
nectors”), the authors use one manually segmented sample per type, totaling three. For
CELAD, which has two bracelet types, we use two manually segmented samples per type
for fair comparison, totaling four. Moreover, the number of components is set to 15 to
match CELAD’s 15 distinct bead categories.
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* CSAD relies on text prompts for open-vocabulary object segmentation (Liu et al. [2024).

[ TSI T ]

For CELAD, the prompts provided are: “black bead”, “white bead”, “hexagon”, “s”, “p”,

[T L INT3

a”, “r”, “k”, following the authors’ convention for LOCO.
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