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ABSTRACT

Traditional off-policy actor-critic Reinforcement Learning (RL) algorithms learn
value functions of a single target policy. However, when value functions are up-
dated to track the learned policy, they forget potentially useful information about
old policies. We introduce a class of value functions called Parameter-Based Value
Functions (PBVFs) whose inputs include the policy parameters. They can gener-
alize across different policies. PBVFs can evaluate the performance of any policy
given a state, a state-action pair, or a distribution over the RL agent’s initial states.
First we show how PBVFs yield novel off-policy policy gradient theorems. Then
we derive off-policy actor-critic algorithms based on PBVFs trained by Monte
Carlo or Temporal Difference methods. We show how learned PBVFs can zero-
shot learn new policies that outperform any policy seen during training. Finally
our algorithms are evaluated on a selection of discrete and continuous control tasks
using shallow policies and deep neural networks. Their performance is compara-
ble to state-of-the-art methods.

1 INTRODUCTION

Value functions are central to Reinforcement Learning (RL). For a given policy, they estimate the
value of being in a specific state (or of choosing a particular action in a given state). Many RL
breakthroughs were achieved through improved estimates of such values, which can be used to find
optimal policies (Tesauro, 1995; Mnih et al., 2015). However, learning value functions of arbitrary
policies without observing their behavior in the environment is not trivial. Such off-policy learning
requires to correct the mismatch between the distribution of updates induced by the behavioral policy
and the one we want to learn. Common techniques include Importance Sampling (IS) (Hesterberg,
1988) and deterministic policy gradient methods (DPG) (Silver et al., 2014), which adopt the actor-
critic architecture (Sutton, 1984; Konda & Tsitsiklis, 2001; Peters & Schaal, 2008).

Unfortunately, these approaches have limitations. IS suffers from large variance (Cortes et al., 2010;
Metelli et al., 2018; Wang et al., 2016) while traditional off-policy actor-critic methods introduce
off-policy objectives whose gradients are difficult to follow since they involve the gradient of the
action-value function with respect to the policy parameters∇θQπθ (s, a) (Degris et al., 2012; Silver
et al., 2014). This term is usually ignored, resulting in biased gradients for the off-policy objective.
Furthermore, off-policy actor-critic algorithms learn value functions of a single target policy. When
value functions are updated to track the learned policy, the information about old policies is lost.

We address the problem of generalization across many value functions in the off-policy setting by
introducing a class of parameter-based value functions (PBVFs) defined for any policy. PBVFs are
value functions whose inputs include the policy parameters, the PSSVF V (θ), PSVF V (s, θ), and
PAVF Q(s, a, θ). PBVFs can be learned using Monte Carlo (MC) (Metropolis & Ulam, 1949) or
Temporal Difference (TD) (Sutton, 1988) methods. The PAVF Q(s, a, θ) leads to a novel stochastic
and deterministic off-policy policy gradient theorem and, unlike previous approaches, can directly
compute∇θQπθ (s, a). Based on these results, we develop off-policy actor-critic methods and com-
pare our algorithms to two strong baselines, ARS and DDPG (Mania et al., 2018; Lillicrap et al.,
2015), outperforming them in some environments.

We make theoretical, algorithmic, and experimental contributions: Section 2 introduces the stan-
dard MDP setting; Section 3 formally presents PBVFs and derive algorithms for V (θ), V (s, θ) and
Q(s, a, θ); Section 4 describes the experimental evaluation using shallow and deep policies; Sec-
tions 5 and 6 discuss related and future work. Proofs and derivations can be found in Appendix A.2.
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2 BACKGROUND

We consider a Markov Decision Process (MDP) (Stratonovich, 1960; Puterman, 2014) M =
(S,A, P,R, γ, µ0) where at each step an agent observes a state s ∈ S , chooses action a ∈ A,
transitions into state s′ with probability P (s′|s, a) and receives a reward R(s, a). The agent starts
from an initial state, chosen with probability µ0(s). It is represented by a parametrized stochastic
policy πθ : S → ∆(A), which provides the probability of performing action a in state s. Θ is
the space of policy parameters. The policy is deterministic if for each state s there exists an ac-
tion a such that πθ(a|s) = 1. The return Rt is defined as the cumulative discounted reward from
time step t: Rt =

∑T−t−1
k=0 γkR(st+k+1, at+k+1), where T denotes the time horizon and γ a real-

valued discount factor. The performance of the agent is measured by the cumulative discounted
expected reward (expected return), defined as J(πθ) = Eπθ [R0]. Given a policy πθ, the state-value
function V πθ (s) = Eπθ [Rt|st = s] is defined as the expected return for being in a state s and
following policy πθ. By integrating over the state space S, we can express the maximization of
the expected cumulative reward in terms of the state-value function J(πθ) =

∫
S µ0(s)V πθ (s) ds.

The action-value function Qπθ (s, a), which is defined as the expected return for performing action
a in state s, and following the policy πθ, is Qπθ (s, a) = Eπθ [Rt|st = s, at = a], and it is re-
lated to the state-value function by V πθ (s) =

∫
A πθ(a|s)Qπθ (s, a) da. We define as dπθ (s′) the

discounted weighting of states encountered starting at s0 ∼ µ0(s) and following the policy πθ:
dπθ (s′) =

∫
S
∑∞
t=1 γ

t−1µ0(s)P (s → s′, t, πθ) ds, where P (s → s′, t, πθ) is the probability of
transitioning to s′ after t time steps, starting from s and following policy πθ. Sutton et al. (1999)
showed that, for stochastic policies, the gradient of J(πθ) does not involve the derivative of dπθ (s)
and can be expressed in a simple form:

∇θJ(πθ) =

∫
S
dπθ (s)

∫
A
∇θπθ(a|s)Qπθ (s, a) dads. (1)

Similarly, for deterministic policies Silver et al. (2014) obtained the following:

∇θJ(πθ) =

∫
S
dπθ (s)∇θπθ(s)∇aQπθ (s, a)|a=πθ(s) ds. (2)

Off-policy RL In off-policy policy optimization, we seek to find the parameters of the policy
maximizing a performance index Jb(πθ) using data collected from a behavioral policy πb. Here the
objective function Jb(πθ) is typically modified to be the value function of the target policy, integrated
over dπb∞(s) = limt→∞ P (st = s|s0, πb), the limiting distribution of states under πb (assuming it
exists) (Degris et al., 2012; Imani et al., 2018; Wang et al., 2016). Throughout the paper we assume
that the support of dπb∞ includes the support of µ0 so that the optimal solution for Jb is also optimal
for J . Formally, we want to find:

Jb(πθ∗) = max
θ

∫
S
dπb∞(s)V πθ (s) ds = max

θ

∫
S
dπb∞(s)

∫
A
πθ(a|s)Qπθ (s, a) da ds. (3)

Unfortunately, in the off-policy setting, the states are obtained from dπb∞ and not from dπθ∞ , hence the
gradients suffer from a distribution shift (Liu et al., 2019; Nachum et al., 2019). Moreover, since
we have no access to dπθ∞ , a term in the policy gradient theorem corresponding to the gradient of
the action value function with respect to the policy parameters needs to be estimated. This term is
usually ignored in traditional off-policy policy gradient theorems1. In particular, when the policy is
stochastic, Degris et al. (2012) showed that:

∇θJb(πθ) =

∫
S
dπb∞(s)

∫
A
πb(a|s)

πθ(a|s)
πb(a|s)

(Qπθ (s, a)∇θ log πθ(a|s) +∇θQπθ (s, a)) da ds (4)

≈
∫
S
dπb∞(s)

∫
A
πb(a|s)

πθ(a|s)
πb(a|s)

(Qπθ (s, a)∇θ log πθ(a|s)) da ds. (5)

Analogously, Silver et al. (2014) provided the following approximation for deterministic policies 2:

∇θJb(πθ) =

∫
S
dπb∞(s)

(
∇θπθ(s)∇aQπθ (s, a)|a=πθ(s) +∇θQπθ (s, a)|a=πθ(s)

)
ds (6)

≈
∫
S
dπb∞(s)

(
∇θπθ(s)∇aQπθ (s, a)|a=πθ(s)

)
ds. (7)

1With tabular policies, dropping this term still results in a convergent algorithm (Degris et al., 2012).
2In the original formulation of Silver et al. (2014) dπb∞ (s) is replaced by dπb(s).
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Although the term ∇θQπθ (s, a) is dropped, there might be advantages in using the approximate
gradient of Jb in order to find the maximum of the original RL objective J . Indeed, if we were
on-policy, the approximated off-policy policy gradients by Degris et al. (2012); Silver et al. (2014)
would revert to the on-policy policy gradients, while an exact gradient for Jb would necessarily
introduce a bias. However, when we are off-policy, it is not clear whether this would be better than
using the exact gradient of Jb in order to maximize J . In this work, we assume that Jb can be
considered a good objective for off-policy RL and we derive an exact gradient for it.

3 PARAMETER-BASED VALUE FUNCTIONS

In this section, we introduce our parameter-based value functions, the PSSVF V (θ), PSVF V (s, θ),
and PAVF Q(s, a, θ) and their corresponding learning algorithms. First, we augment the state and
action-value functions, allowing them to receive as an input also the weights of a parametric pol-
icy. The parameter-based state-value function (PSVF) V (s, θ) = E[Rt|st = s, θ] is defined as
the expected return for being in state s and following policy parameterized by θ. Similarly, the
parameter-based action-value function (PAVF) Q(s, a, θ) = E[Rt|st = s, at = a, θ] is defined as
the expected return for being in state s, taking action a and following policy parameterized by θ. Us-
ing PBVFs, the RL objective becomes: J(πθ) =

∫
S µ0(s)V π(s, θ) ds. Maximizing this objective

leads to on-policy policy gradient theorems that are analogous to the traditional ones (Sutton et al.,
1999; Silver et al., 2014):
Theorem 3.1. Let πθ be stochastic. For any Markov Decision Process, the following holds:

∇θJ(πθ) = Es∼dπθ (s),a∼πθ(.|s) [(Q(s, a, θ)∇θ log πθ(a|s))] . (8)

Theorem 3.2. Let πθ be deterministic. Under standard regularity assumptions (Silver et al., 2014),
for any Markov Decision Process, the following holds:

∇θJ(πθ) = Es∼dπθ (s)

[
∇aQ(s, a, θ)|a=πθ(s)∇θπθ(s)

]
. (9)

Parameter-based value functions allow us also to learn a function of the policy parameters that
directly approximates J(πθ). In particular, the parameter-based start-state-value function (PSSVF)
is defined as:

V (θ) := Es∼µ0(s)[V (s, θ)] =

∫
S
µ0(s)V (s, θ) ds = J(πθ). (10)

Off-policy RL In the off-policy setting, the objective to be maximized becomes:

Jb(πθ∗) = max
θ

∫
S
dπb∞(s)V (s, θ) ds = max

θ

∫
S

∫
A
dπb∞(s)πθ(a|s)Q(s, a, θ) dads. (11)

By taking the gradient of the performance Jb with respect to the policy parameters θ we obtain novel
policy gradient theorems. Since θ is continuous, we need to use function approximators Vw(θ) ≈
V (θ), Vw(s, θ) ≈ V (s, θ) and Qw(s, a, θ) ≈ Q(s, a, θ). Compatible function approximations can
be derived to ensure that the approximated value function is following the true gradient. Like in
previous approaches, this would result in linearity conditions. However, here we consider nonlinear
function approximation and we leave the convergence analysis of linear PBVFs as future work. In
episodic settings, we do not have access to dπb∞ , so in the algorithm derivations and in the experiments
we approximate it by sampling trajectories generated by the behavioral policy. In all cases, the
policy improvement step can be very expensive, due to the computation of the arg max over a
continuous space Θ. Actor-critic methods can be derived to solve this optimization problem, where
the critic (PBVFs) can be learned using TD or MC methods, while the actor is updated following the
gradient with respect to the critic. Although our algorithms on PSSVF and PSVF can be used with
both stochastic and deterministic policies, removing the stochasticity of the action-selection process
might facilitate learning the value function. All our algorithms make use of a replay buffer.

3.1 PARAMETER-BASED START-STATE-VALUE FUNCTION V (θ)

We first derive the PSSVF V (θ). Given the original performance index J , and taking the gradient
with respect to θ, we obtain:

∇θJ(πθ) =

∫
S
µ0(s)∇θV (s, θ) ds = Es∼µ0(s)[∇θV (s, θ)] = ∇θV (θ). (12)
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In Algorithm 1, the critic Vw(θ) is learned using MC to estimate the value of any policy θ. The
actor is then updated following the direction of improvement suggested by the critic. Since the main
application of PSSVF is in episodic tasks3, we optimize for the undiscounted objective.

Algorithm 1 Actor-critic with Monte Carlo prediction for V (θ)

Input: Differentiable critic Vw : Θ → R with parameters w; deterministic or stochastic actor
πθ with parameters θ; empty replay buffer D

Output : Learned Vw ≈ V (θ)∀θ, learned πθ ≈ πθ∗
Initialize critic and actor weights w, θ
repeat:

Generate an episode s0, a0, r1, s1, a1, r2, . . . , sT−1, aT−1, rT with policy πθ
Compute return r =

∑T
k=1 rk

Store (θ, r) in the replay buffer D
for many steps do:

Sample a batch B = {(r, θ)} from D
Update critic by stochastic gradient descent: ∇w E(r,θ)∈B [r − Vw(θ)]2

end for
for many steps do:

Update actor by gradient ascent: ∇θVw(θ)
end for

until convergence

3.2 PARAMETER-BASED STATE-VALUE FUNCTION V (s, θ)

Learning the value function using MC approaches can be difficult due to the high variance of the
estimate. Furthermore, episode-based algorithms like Algorithm 1 are unable to credit good actions
in bad episodes. Gradient methods based on TD updates provide a biased estimate of V (s, θ) with
much lower variance and can credit actions at each time step. Taking the gradient of Jb(πθ) in the
PSVF formulation4, we obtain:

∇θJb(πθ) =

∫
S
dπb∞(s)∇θV (s, θ) ds = Es∼dπb∞ (s)[∇θV (s, θ)]. (13)

Algorithm 2 (Appendix) uses the actor-critic architecture, where the critic is learned via TD5.

3.3 PARAMETER-BASED ACTION-VALUE FUNCTION Q(s, a, θ)

The introduction of the PAVF Q(s, a, θ) allows us to derive new policy gradients theorems when
using a stochastic or deterministic policy.

Stochastic policy gradients We want to use data collected from some stochastic behavioral policy
πb in order to learn the action-value of a target policy πθ. Traditional off-policy actor-critic algo-
rithms only approximate the gradient of Jb, since they do not estimate the gradient of the action-
value function with respect to the policy parameters ∇θQπθ (s, a) (Degris et al., 2012; Silver et al.,
2014). With PBVFs, we can directly compute this contribution to the gradient. This yields an exact
policy gradient theorem for Jb:
Theorem 3.3. For any Markov Decision Process, the following holds:

∇θJb(πθ) = Es∼dπb∞ (s),a∼πb(.|s)

[
πθ(a|s)
πb(a|s)

(Q(s, a, θ)∇θ log πθ(a|s) +∇θQ(s, a, θ))

]
. (14)

Algorithm 3 (Appendix) uses an actor-critic architecture and can be seen as an extension of Off-
PAC (Degris et al., 2012) to PAVF.

3Alternatives include regenerative method for MC estimation (Rubinstein & Kroese, 2016).
4Compared to standard methods based on the state-value function, we can directly optimize the policy

following the performance gradient of the PSVF, obtaining a policy improvement step in a model-free way.
5Note that the differentiability of the policy πθ is never required in PSSVF and PSVF.
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Deterministic policy gradients Estimating Q(s, a, θ) is in general a difficult problem due to the
stochasticity of the policy. Deterministic policies of the form π : S → A can help improving
the efficiency in learning value functions, since the expectation over the action space is no longer
required. Using PBVFs, we can write the performance of a policy πθ as:

Jb(πθ) =

∫
S
dπb∞(s)V (s, θ) ds =

∫
S
dπb∞(s)Q(s, πθ(s), θ) ds. (15)

Taking the gradient with respect to θ we obtain a deterministic policy gradient theorem:
Theorem 3.4. Under standard regularity assumptions (Silver et al., 2014), for any Markov Decision
Process, the following holds:

∇θJb(πθ) = Es∼dπb∞ (s)

[
∇aQ(s, a, θ)|a=πθ(s)∇θπθ(s) +∇θQ(s, a, θ)|a=πθ(s)

]
. (16)

Algorithm 4 (Appendix) uses an actor-critic architecture and can be seen as an extension of
DPG (Silver et al., 2014) to PAVF. Despite the novel formulation of algorithm 3, we decided to
avoid the stochasticity of the policy and to implement and analyze only the deterministic PAVF.

4 EXPERIMENTS6

Applying algorithms 1, 2 and 4 directly can lead to convergence to local optima, due to the lack
of exploration. In practice, like in standard deterministic actor-critic algorithms, we use a noisy
version of the current learned policy in order to act in the environment and collect data to encourage
exploration. More precisely, at each episode we use πθ̃ with θ̃ = θ+ ε, ε ∼ N (0, σ2I) instead of πθ
and then store θ̃ in the replay buffer. In our experiments, we report both for our methods as well as
the baselines the performance of the policy without parameter noise.

4.1 VISUALIZING PBVFS USING LQRS

We start with an illustrative example that allows us to visualize how PBVFs are learning to estimate
the expected return over the parameter space. For this purpose, we use an instance of the 1D Linear
Quadratic Regulator (LQR) problem and a linear deterministic policy with bias. In figure 1, we plot
the episodic J(θ), the cumulative return that an agent would obtain by acting in the environment
using policy πθ for a single episode, and the cumulative return predicted by the PSSVF V (θ) for
two different times during learning. At the beginning of the learning process, the PSSVF is able
to provide just a local estimation of the performance of the agent, since only few data have been
observed. However, after 1000 episodes, it is able to provide a more accurate global estimate over the
parameter space. Appendix A.4.1 contains a similar visualization for PSVF and PAVF, environment
details and hyperparameters used.

4.2 MAIN RESULTS

Given the similarities between our PAVF and DPG, Deep Deterministic Policy Gradients (DDPG)
is a natural choice for the baseline. Additionally, the PSSVF V (θ) resembles evolutionary methods
as the critic can be interpreted as a global fitness function. Therefore, we decided to include in the
comparison Augmented Random Search (ARS) which is known for its state-of-the-art performance
using only linear policies in continuous control tasks. For the policy, we use a 2-layer MLP (64,64)
with tanh activations and a linear policy followed by a tanh nonlinearity. Figure 2 shows results
for deterministic policies with both architectures. In all the tasks the PSSVF is able to achieve at
least the same performance compared to ARS, often outperforming it. In the Inverted Pendulum
environment, PSVF and PAVF with deep policy are very slow to converge, but they excel in the
Swimmer task and MountainCarContinuous. In Reacher, all PBVFs fail to learn the task, while
DDPG converges quickly to the optimal policy. We conjecture that for this task it is difficult to
perform a search in parameter space. On the other hand, in MountainCarContinuous, the reward
is more sparse and DDPG only rarely observes positive reward when exploring in action space.
In Appendix A.4 we include additional results for PSSVF and PSVF with stochastic policies and
hyperparameters. We analyze the sensitivity of the algorithms on the choice of hyperparameters in
Appendix A.4.4.

6Code is available at: https://github.com/FF93/Parameter-based-Value-Functions
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Figure 1: True episodic return J(θ) and PSSVF estimation V (θ) as a function of the policy pa-
rameters at two different stages in training. The red arrows represent an optimization trajectory in
parameter space. The blue dots represent the perturbed policies used to train V (θ).

4.3 ZERO-SHOT LEARNING

In order to test whether PBVFs are generalizing across the policy space, we perform the following
experiment with shallow deterministic policies: while learning using algorithm 1, we stop training
and randomly initialize 5 policies. Then, without interacting with the environment, we train these
policies offline, in a zero-shot manner, following only the direction of improvement suggested by
∇θVw(θ), whose weights w remain frozen. We observe that shallow policies can be effectively
trained from scratch. Results for PSSVFs in Swimmer-v3 are displayed in figure 3. In particular,
we compare the performance of the policy learned, the best perturbed policy for exploration seen
during training and five policies learned from scratch at three different stages in training. We note
that after the PSSVF has been trained for 100,000 time steps interactions with the environment (first
snapshot), these policies are already able to outperform both the current policy and any policy seen
while training the PSSVF. They achieve an average return of 297, while the best observed return was
225. We include additional results for PSVF and PAVF in different environments, using shallow and
deep policies in Appendix A.4.2. When using deep policies, we obtain similar results only for the
simplest environments. For this task, we use the same hyperparameters as in figure 2.

4.4 OFFLINE LEARNING WITH FRAGMENTED BEHAVIORS

In our last experiment, we investigate how PSVFs are able to learn in a completely offline setting.
The goal is to learn a good policy in Swimmer-v3 given a fixed dataset containing 100,000 tran-
sitions, without additional environment interactions. Furthermore, the policy generating the data
is perturbed every 200 time steps, for a total of 5 policies per episode. Observing only incom-
plete trajectories for each policy parameter makes TD bootstrapping harder: In order to learn, the
PSVF needs to generalize across both the state and the parameter space. Given the fixed dataset, we
first train the PSVF, minimizing the TD error. Then, at different stages during learning, we train 5
new shallow deterministic policies. Figure 4 describes this process. We note that at the beginning
of training, when the PSVF V (s, θ) has a larger TD error, these policies have poor performance.
However, after 7000 gradient updates, they are able to achieve a reward of 237, before eventually
degrading to 167. They outperform the best policy in the dataset used to train the PSVF, whose
return is only of 58.
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Figure 2: Average return of shallow and deep deterministic policies as a function of the number of
time steps used for learning (across 20 runs, one standard deviation), for different environments and
algorithms. We use the best hyperparameters found when maximizing the average return.

5 RELATED WORK

There are two main classes of similar algorithms performing search in policy parameter space.
Evolutionary algorithms (Wierstra et al., 2014; Salimans et al., 2017; Mania et al., 2018) iteratively
estimate a fitness function evaluating the performance of a population of policies and then perform
gradient ascent in parameter space, often estimating the gradient using finite difference approxima-
tion. By replacing the performance of a population through a likelihood estimation, evolutionary
algorithms become a form of Parameter Exploring Policy Gradients (Sehnke et al., 2008; 2010).
Our methods are similar to evolution since our value function can be seen as a fitness. Unlike
evolution, however, our approach allows for obtaining the fitness gradient directly and is more
suitable for reusing past data. While direct V (θ) optimization is strongly related to evolution, our
more informed algorithms optimize V (s, θ) and Q(s, a, θ). That is, ours both perform a search in
policy parameter space AND train the value function and the policy online, without having to wait
for the ends of trials or episodes.

The second related class of methods involves surrogate functions (Box & Wilson, 1951;
Booker et al., 1998; Moore & Schneider, 1996). They often use local optimizers for generalizing
across fitness functions. In particular, Bayesian Optimization (BO) (Snoek et al., 2012; 2015) uses
a surrogate function to evaluate the performance of a model over a set of hyperparameters and
follows the uncertainty on the surrogate to query the new data to sample. Unlike BO, we do not
build a probabilistic model and we use the gradient of the value function instead of a sample from
the posterior to decide which policy parameters to use next in the policy improvement step.

The possibility of augmenting the value functions with auxiliary parameters was already
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Figure 3: Policies learned from scratch during training. The plot in the center represents the return
of the agent learning while interacting with the environment using Algorithm 1. We compare the
best noisy policy πθ̃ used for exploration to the policy πθ learned through the critic. The learning
curves in the small plots represent the return obtained by policies trained from scratch following the
fixed critic Vw(θ) after different time steps of training. The return of the closest policy (L2 distance)
in the replay buffer with respect to the policy learned from scratch is depicted in green.
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Figure 4: Offline learning of PSVF. We plot the mean squared TD error of a PSVF trained using data
coming from a set of noisy policies. In the small plots, we compare the return obtained by policies
trained from scratch following the fixed critic Vw(s, θ) after different time steps of value function
training and the return of the best noisy policy used to train V.

considered in work on General Value Functions (Sutton et al., 2011), where the return is defined
with respect to an arbitrary reward function. Universal Value Function Approximators (Schaul et al.,
2015) extended this approach to learn a single value function V πθ (s, g), representing the value,
given possible agent goals g. In particular, they learn different embeddings for states and goals,
exploiting their common structure, and they show generalization to new unseen goals. Similarly,
our PSVF V (s, θ) is able to generalize to unseen policies, observing data for only a few (s, θ) pairs.
General and Universal Value Functions have not been applied to learn a single value function for
every possible policy.

Policy Evaluation Networks (PENs) (Harb et al., 2020) are closely related to our work and
share the same motivation. PENs focus on the simplest PSSVF V (θ) trained without an actor-critic
architecture. Like in some of our experiments, the authors show how following the direction of
improvement suggested by V (θ) leads to an increase in policy performance. They also suggest to
explore in future work a more complex setting where a PSVF V (s, θ) is learned using an actor-critic
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architecture. Our work directly introduces the PSVF V (s, θ) and PAVF Q(s, a, θ) and presents
novel policy gradient theorems for PAVFs when stochastic or deterministic policies are used. There
are many differences between our approach to learning V (θ) and theirs. For example, we do not use
a fingerprint mechanism (Harb et al., 2020) for embedding the weights of complex policies. Instead,
we simply parse all the policy weights as inputs to the value function, even in the nonlinear case.
Fingerprinting may be important for representing nonlinear policies without losing information
about their structure and for saving memory required to store the weights. Harb et al. (2020) focus
on the offline setting. They first use randomly initialized policies to perform rollouts and collect
reward from the environment. Then, once V (θ) is trained using the data collected, many gradient
ascent steps through V yield new, unseen, randomly initialized policies in a zero-shot manner,
exhibiting improved performance. They train their value function using small nonlinear policies
of one hidden layer and 30 neurons on Swimmer-v3. They evaluate 2000 deterministic policies on
500 episodes each (1 million policy evaluations), achieving a final expected return of ≈ 180 on new
policies trained from scratch through V. On the other hand, in our zero-shot learning experiment
using a linear PSSVF, after only 100 policy evaluations, we obtain a return of 297. In our main
experiments, we showed that a fingerprint mechanism is not necessary for the tasks we analyzed:
even when using a much bigger 2-layers MLP policy, we are able to outperform the results in PEN.
Although Harb et al. (2020) use Swimmer-v3 “to scale up their experiments”, our results suggest
that Swimmer-v3 does not conclusively demonstrate possible benefits of their policy embedding.

Gradient Temporal Difference (Sutton et al., 2009a;b; Maei et al., 2009; 2010; Maei, 2011)
and Emphatic Temporal Difference methods (Sutton et al., 2016) were developed to address
convergence under on-policy and off-policy (Precup et al., 2001) learning with function ap-
proximation. The first attempt to obtain a stable off-policy actor-critic algorithm under linear
function approximation was called Off-PAC (Degris et al., 2012), where the critic is updated using
GTD(λ) (Maei, 2011) to estimate the state-value function. This algorithm converges when using
tabular policies. However, in general, the actor does not follow the true gradient direction for
Jb. A paper on DPG (Silver et al., 2014) extended the Off-PAC policy gradient theorem (Degris
et al., 2012) to deterministic policies. This was coupled with a deep neural network to solve
continuous control tasks through Deep Deterministic Policy Gradients (Lillicrap et al., 2015). Imani
et al. (2018) used emphatic weights to derive an exact off-policy policy gradient theorem for Jb.
Differently from Off-PAC, they do not ignore the gradient of the action-value function with respect
to the policy, which is incorporated in the emphatic weighting: a vector that needs to be estimated.
Our off-policy policy gradients provide an alternative approach that does not need emphatic weights.

The widely used off-policy objective function Jb suffers the distribution shift problem. Liu
et al. (2019) provided an off-policy policy gradient theorem which is unbiased for the true RL
objective J(πθ), introducing a term dπθ∞/d

πb
∞ that corrects the mismatch between the states distri-

butions. Despite their sound off-policy formulation, estimating the state weighting ratio remains
challenging. All our algorithms are based on the off-policy actor-critic architecture. The two
algorithms based on Q(s, a, θ) can be viewed as analogous to Off-PAC and DPG where the critic is
defined for all policies and the actor is updated following the true gradient with respect to the critic.

6 LIMITATIONS AND FUTURE WORK

We introduced PBVFs, a novel class of value functions which receive as input the parameters of a
policy and can be used for off-policy learning. We showed that PBVFs are competitive to ARS and
DDPG (Mania et al., 2018; Lillicrap et al., 2015) while generalizing across policies and allowing for
zero-shot training in an offline setting. Despite their positive results on shallow and deep policies,
PBVFs suffer the curse of dimensionality when the number of policy parameters is high. Embed-
dings similar to those used in PENs (Harb et al., 2020) may be useful not only for saving memory
and computational time, but also for facilitating search in parameter space. We intend to evaluate the
benefits of such embeddings and other dimensionality reduction techniques. We derived off-policy
policy gradient theorems, showing how PBVFs follow the true gradient of the performance Jb. With
these results, we plan to analyze the convergence of our algorithms using stochastic approximation
techniques (Borkar, 2009) and test them on environments where traditional methods are known to
diverge (Baird, 1995). Finally, we want to investigate how PBVFs applied to supervised learning
tasks or POMDPs, can avoid BPTT by mapping the weights of an RNN to its loss.
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A APPENDIX

INDEX OF THE APPENDIX

In the following, we briefly recap the contents of the appendix.

• Appendix A.1 contains additional related works

• Appendix A.2 reports all proofs and derivations.

• Appendix A.3 illustrates implementation details and pseudocode.

• Appendix A.4 provides the hyperparameters used in the experiments and further results.

A.1 ADDITIONAL RELATED WORKS

Recent work (Unterthiner et al., 2020) shows how to map the weights of a trained Convolutional
Neural Network to its accuracy. Experiments show how these predictions allow for performance
rankings of neural networks on new unseen tasks. These maps are either learned by taking the
flattened weights as input or using simple statistics. However, these predictions do not guide the
training process of CNNs.

In 1990, adaptive critics trained by TD were used to predict the gradients of an RNN from
its activations (Schmidhuber, 1990), avoiding backpropagation through time (BPTT) (Werbos,
1990). This idea was later used to update the weights of a neural network asynchronously (Jaderberg
et al., 2017). In our work, the critic is predicting errors instead of gradients. If applied to POMDPs,
or supervised learning tasks involving long time lags between relevant events, the PSSVF could
avoid BPTT by viewing the parameters of an RNN as a static object and mapping them to their loss
(negative reward).

Additional differences between our work and Policy Evaluation Networks (PENs) (Harb
et al., 2020) concern the optimization problem: we do not predict a bucket index for discretized
reward, but perform a regression task. Therefore our loss is simply the mean squared error between
the prediction of V (θ) and the reward obtained by πθ, while their loss (Harb et al., 2020) is
the KL divergence between the predicted and target distributions. Both approaches optimize the
undiscounted objective when learning V (θ).

A.2 PROOFS AND DERIVATIONS

Theorem 3.1. Let πθ be stochastic. For any Markov Decision Process, the following holds:

∇θJ(πθ) = Es∼dπθ (s),a∼πθ(.|s) [(Q(s, a, θ)∇θ log πθ(a|s))] . (8)

Proof. The proof follows the standard approach by Sutton et al. (1999) and we report it for com-
pleteness. We start by deriving an expression for∇θV (s, θ):
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∇θV (s, θ) = ∇θ
∫
A
πθ(a|s)Q(s, a, θ) da =

∫
A
∇θπθ(a|s)Q(s, a, θ) + πθ(a|s)∇θQ(s, a, θ) da

=

∫
A
∇θπθ(a|s)Q(s, a, θ) + πθ(a|s)∇θ

(
R(s, a) + γ

∫
S
P (s′|s, a)V (s′, θ) ds′

)
da

=

∫
A
∇θπθ(a|s)Q(s, a, θ) + πθ(a|s)γ

∫
S
P (s′|s, a)∇θV (s′, θ) ds′ da

=

∫
A
∇θπθ(a|s)Q(s, a, θ) + πθ(a|s)γ

∫
S
P (s′|s, a)×

×
∫
A
∇θπθ(a′|s′)Q(s′, a′, θ) + πθ(a

′|s′)γ
∫
S
P (s

′′ |s′, a′)∇θV (s
′′
, θ) ds

′′
da′ ds′ da

=

∫
S

∞∑
t=0

γtP (s→ s′, t, πθ)

∫
A
∇θπθ(a|s′)Q(s′, a, θ) da ds′.

Taking the expectation with respect to s0 ∼ µ0(s) we have:

∇θJ(θ) = ∇θ
∫
S
µ0(s)V (s, θ) ds =

∫
S
µ0(s)∇θV (s, θ) ds

=

∫
S
µ0(s)

∫
S

∞∑
t=0

γtP (s→ s′, t, πθ)

∫
A
∇θπθ(a|s)Q(s, a, θ) ds′ da ds

=

∫
S
dπθ (s)

∫
A
∇θπθ(a|s)Q(s, a, θ) da ds

= Es∼dπθ (s),a∼πθ(.|s) [(Q(s, a, θ)∇θ log πθ(a|s))] .

Theorem 3.2. Let πθ be deterministic. Under standard regularity assumptions (Silver et al., 2014),
for any Markov Decision Process, the following holds:

∇θJ(πθ) = Es∼dπθ (s)

[
∇aQ(s, a, θ)|a=πθ(s)∇θπθ(s)

]
. (9)

Proof. The proof follows the standard approach by Silver et al. (2014) and we report it for com-
pleteness. We start by deriving an expression for∇θV (s, θ):

∇θV (s, θ) = ∇θQ(s, πθ(s), θ) = ∇θ
(
R(s, πθ(s)) + γ

∫
S
P (s′|s, πθ(s))V (s′, θ) ds′

)
= ∇θπθ(s)∇aR(s, a)|a=πθ(s)+

+ γ

∫
S
P (s′|s, πθ(s))∇θV (s′, θ) +∇θπθ(s)∇aP (s′|s, a)|a=πθ(s) ds′

= ∇θπθ(s)∇a
(
R(s, a) + γ

∫
S
P (s′|s, a)V (s′, θ) ds′

)
|a=πθ(s)+

+ γ

∫
S
P (s′|s, πθ(s))∇θV (s′, θ) ds′

= ∇θπθ(s)∇aQ(s, a, θ)|a=πθ(s) + γ

∫
S
P (s′|s, πθ(s))∇θV (s′, θ) ds′

= ∇θπθ(s)∇aQ(s, a, θ)|a=πθ(s)+

+ γ

∫
S
P (s′|s, πθ(s))∇θπθ(s′)∇aQ(s′, a, θ)|a=πθ(s′) ds′+

+ γ

∫
S
P (s′|s, πθ(s))γ

∫
S
P (s

′′ |s′, πθ(s′))∇θV (s
′′
, θ) ds

′′
ds′

=

∫
S

∞∑
t=0

γtP (s→ s′, t, πθ)∇θπθ(s′)∇aQ(s′, a, θ)|a=πθ(s′) ds′
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Taking the expectation with respect to s0 ∼ µ0(s) we have:

∇θJ(θ) = ∇θ
∫
S
µ0(s)V (s, θ) ds =

∫
S
µ0(s)∇θV (s, θ) ds

=

∫
S
µ0(s)

∫
S

∞∑
t=0

γtP (s→ s′, t, πθ)∇θπθ(s′)∇aQ(s′, a, θ)|a=πθ(s′) ds′ ds

=

∫
S
dπθ (s)∇θπθ(s)∇aQ(s, a, θ)|a=πθ(s) ds

= Es∼dπθ (s)

[
∇θπθ(s)∇aQ(s, a, θ)|a=πθ(s)

]

Theorem 3.3. For any Markov Decision Process, the following holds:

∇θJb(πθ) = Es∼dπb∞ (s),a∼πb(.|s)

[
πθ(a|s)
πb(a|s)

(Q(s, a, θ)∇θ log πθ(a|s) +∇θQ(s, a, θ))

]
. (14)

Proof.

∇θJb(πθ) = ∇θ
∫
S
dπb∞(s)V (s, θ) ds (17)

= ∇θ
∫
S
dπb∞(s)

∫
A
πθ(a|s)Q(s, a, θ) da ds (18)

=

∫
S
dπb∞(s)

∫
A

[Q(s, a, θ)∇θπθ(a|s) + πθ(a|s)∇θQ(s, a, θ)] dads (19)

=

∫
S
dπb∞(s)

∫
A

πb(a|s)
πb(a|s)

πθ(a|s)[Q(s, a, θ)∇θ log πθ(a|s) +∇θQ(s, a, θ)] dads (20)

= Es∼dπb∞ (s),a∼πb(.|s)

[
πθ(a|s)
πb(a|s)

(Q(s, a, θ)∇θ log πθ(a|s) +∇θQ(s, a, θ))

]
(21)

Theorem 3.4. Under standard regularity assumptions (Silver et al., 2014), for any Markov Decision
Process, the following holds:

∇θJb(πθ) = Es∼dπb∞ (s)

[
∇aQ(s, a, θ)|a=πθ(s)∇θπθ(s) +∇θQ(s, a, θ)|a=πθ(s)

]
. (16)

Proof.

∇θJb(πθ) =

∫
S
dπb∞(s)∇θQ(s, πθ(s), θ) ds (22)

=

∫
S
dπb∞(s)

[
∇aQ(s, a, θ)|a=πθ(s)∇θπθ(s) +∇θQ(s, a, θ)|a=πθ(s)

]
ds (23)

= Es∼dπb∞ (s)

[
∇aQ(s, a, θ)|a=πθ(s)∇θπθ(s) +∇θQ(s, a, θ)|a=πθ(s)

]
(24)

A.3 IMPLEMENTATION DETAILS

A.3.1

In this appendix, we report the implementation details for PSSVF, PSVF, PAVF and the baselines.
We specify for each hyperparameter, which algorithms and tasks are sharing them.

Shared hyperparameters:
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• Deterministic policy architecture (continuous control tasks): We use three different deter-
ministic policies: a linear mapping between states and actions; a single-layer MLP with
32 neurons and tanh activation; a 2-layers MLP (64,64) with tanh activations. All policies
contain a bias term and are followed by a tanh nonlinearity in order to bound the action.
• Deterministic policy architecture (discrete control tasks): We use three different determin-

istic policies: a linear mapping between states and a probability distribution over actions;
a single-layer MLP with 32 neurons and tanh activation; a 2-layers MLP (64,64) with tanh
activations. The deterministic action a is obtained choosing a = arg maxπθ(a|s). All
policies contain a bias term.
• Stochastic policy architecture (continuous control tasks): We use three different stochastic

policies: a linear mapping; a single-layer MLP with 32 neurons and tanh activation; a 2-
layers MLP (64,64) with tanh activations all mapping from states to the mean of a Normal
distribution. The variance is state-independent and parametrized as e2Ω with diagonal Ω.
All policies contain a bias term. Actions sampled are given as input to a tanh nonlinearity
in order to bound them in the action space.
• Stochastic policy architecture (discrete control tasks): We use three different deterministic

policies: a linear mapping between states and a probability distribution over actions; a
single-layer MLP with 32 neurons and tanh activation; a 2-layers MLP (64,64) with tanh
activations. All policies contain a bias term.
• Policy initialization: all weights and biases are initialized using the default Pytorch initial-

ization for PBVFs and DDPG and are set to zero for ARS.
• Critic architecture: 2-layers MLP (512,512) with bias and ReLU activation functions for

PSVF, PAVF; 2-layers MLP (256,256) with bias and ReLU activation functions for DDPG.
• Critic initialization: all weights and biases are initialized using the default Pytorch initial-

ization for PBVFs and DDPG.
• Batch size: 128 for DDPG, PSVF, PAVF; 16 for PSSVF.
• Actor’s frequency of updates: every episode for PSSVF; every batch of episodes for ARS;

every 50 time steps for DDPG, PSVF, PAVF.
• Critic’s frequency of updates: every episode for PSSVF; every 50 time steps for DDPG,

PSVF, PAVF.
• Replay buffer: the size is 100k; data are sampled uniformly.
• Optimizer: Adam for PBVFs and DDPG.

Tuned hyperparameters:

• Number of directions and elite directions for ARS ([directions, elite directions]): tuned
with values in [[1, 1], [4, 1], [4, 4], [16, 1], [16, 4], [16, 16]].
• Policy’s learning rate: tuned with values in [1e− 2, 1e− 3, 1e− 4].
• Critic’s learning rate: tuned with values in [1e− 2, 1e− 3, 1e− 4].
• Noise for exploration: the perturbation for the action (DDPG) or the parameter is sampled

from N (0, σI) with σ tuned with values in [1, 1e − 1] for PSSVF, PSVF, PAVF; [1e −
1, 1e− 2] for DDPG; [1, 1e− 1, 1e− 2, 1e− 3] for ARS. For stochastic PSSVF and PSVF
we include also the value σ = 0, although it almost never results optimal.

Environment hyperparameters:

• Environment interactions: 1M time steps for Swimmer-v3 and Hopper-v3; 100k time steps
for all other environments.

• Discount factor for TD algorithms: 0.999 for Swimmer; 0.99 for all other environments.
• Survival reward in Hopper: True for DDPG, PSVF, PAVF; False for ARS, PSSVF.

Algorithm-specific hyperparameters:

• Critic’s number of updates: 50 for DDPG, 5 for PSVF and PAVF; 10 for PSSVF.
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• Actor’s number of updates: 50 for DDPG, 1 for PSVF and PAVF; 10 for PSSVF.

• Observation normalization: False for DDPG; True for all other algorithms.

• Starting steps in DDPG (random actions and no training): first 1%.

• Polyak parameter in DDPG: 0.995.

PAVF ∇θQ(s, a, θ) ablation We investigate the effect of the term ∇θQ(s, a, θ) in the off-policy
policy gradient theorem for deterministic PAVF. We follow the same methodology as in our main
experiments to find the optimal hyperparameters when updating using the now biased gradient:

∇θJb(πθ) ≈ Es∼dπb∞ (s)

[
∇aQ(s, a, θ)|a=πθ(s)∇θπθ(s)

]
, (25)

which corresponds to the gradient that DDPG is following. Figure 5 reports the results for Hopper
and Swimmer using shallow and deep policies. We observe a significant drop in performance in
Swimmer when removing part of the gradient. In Hopper the loss of performance is less significant,
possibly because both algorithms tend to converge to the same sub-optimal behavior.
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Figure 5: Performance of PAVF and biased PAVF (PAVF without the gradient of the action-value
function with respect to the policy parameters) using deterministic policies. We use the hyperparam-
eters maximizing average return and report the best hyperparameters found for the biased version in
Table 1. Learning curves are averaged over 20 seeds.

Table 1: Table of best hyperparameters for biased PAVFs

Learning rate policy Policy: [] [64,64]
Metric: avg avg

Swimmer-v3 1e-3 1e-4
Hopper-v3 1e-4 1e-4
Learning rate critic
Swimmer-v3 1e-4 1e-4
Hopper-v3 1e-3 1e-3
Noise for exploration
Swimmer-v3 1.0 1.0
Hopper-v3 0.1 0.1

ARS For ARS, we used the official implementation provided by the authors and we modified it
in order to use nonlinear policies. More precisely, we used the implementation of ARSv2-t (Mania
et al., 2018), which uses observation normalization, elite directions and an adaptive learning rate
based on the standard deviation of the return collected. To avoid divisions by zero, which may
happen if all data sampled have the same return, we perform the standardization only in case the
standard deviation is not zero. In the original implementation of ARS (Mania et al., 2018), the
survival bonus for the reward in the Hopper environment is removed to avoid local minima. Since
we wanted our PSSVF to be close to their setting, we also applied this modification. We did not
remove the survival bonus from all TD algorithms and we did not investigate how this could affect
their performance. We provide a comparison of the performance of PSSVF with and without the
bonus in figure 6 using deterministic policies.
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Figure 6: Performance of PSSVF with and without the survival bonus for the reward in Hopper-v3
when using the hyperparameters maximizing the average return. Learning curves are averaged over
5 seeds.

DDPG For DDPG, we used the Spinning Up implementation provided by OpenAI (Achiam,
2018), which includes target networks for the actor and the critic and no learning for a fixed set
of time steps, called starting steps. We did not include target networks and starting steps in our
PBVFs, although they could potentially help stabilizing training. The implementation of DDPG that
we used (Achiam, 2018) does not use observation normalization. In preliminary experiments we
observed that it failed to significantly increase or decrease performance, hence we did not use it.
Another difference between our TD algorithms and DDPG consists in the number of updates of the
actor and the critic. Since DDPG’s critic needs to keep track of the current policy, the critic and the
actor are updated in a nested form, with the first’s update depending on the latter and vice versa. Our
PSVF and PAVF do not need to track the policy learned, hence, when it is time to update, we need
only to train once the critic for many gradient steps and then train the actor for many gradient steps.
This requires less compute. On the other hand, when using nonlinear policies, our PBVFs suffer
the curse of dimensionality. For this reason, we profited from using a bigger critic. In preliminary
experiments, we observed that DDPG’s performance did not change significantly through a bigger
critic. We show differences in performance for our methods when removing observation normaliza-
tion and when using a smaller critic (MLP(256,256)) in figure 7. We observe that the performance is
decreasing if observation normalization is removed. However, only for shallow policies in Swimmer
and deep policies in Hopper there seems to be a significant benefit. Future work will assess when
bigger critics help.
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Figure 7: Learning curves for PSVF and PAVF for different environments and policies removing
observation normalization and using a smaller critic. We use the hyperparameters maximizing the
average return. Learning curves are averaged over 5 seeds. For this ablation we use deterministic
policies.

18



Published as a conference paper at ICLR 2021

Discounting in Swimmer For TD algorithms, we chose a fixed discount factor γ = 0.99 for all
environments but Swimmer-v3. This environment is known to be challenging for TD based algo-
rithms because discounting causes the agents to become too short-sighted. We observed that, with
the standard discounting, DDPG, PSVF and PAVF were not able to learn the task. However, making
the algorithms more far-sighted greatly improved their performance. In figure 8 we report the return
obtained by DDPG, PSVF and PAVF for different values of the discount factor in Swimmer when
using deterministic policies.
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Figure 8: Effect of different choices of the discount factor in Swimmer-v3 for PSVF, PAVF and
DDPG, with shallow and deep deterministic policies. We use the hyperparameters maximizing the
average return. Learning curves are averaged over 5 seeds

A.3.2 PSEUDOCODE

Algorithm 2 Actor-critic with TD prediction for V (s, θ)

Input: Differentiable critic Vw : S × Θ → R with parameters w; deterministic or stochastic
actor πθ with parameters θ; empty replay buffer D

Output : Learned Vw ≈ V (s, θ), learned πθ ≈ πθ∗
Initialize critic and actor weights w, θ
repeat:

Observe state s, take action a = πθ(s), observe reward r and next state s′
Store (s, θ, r, s′) in the replay buffer D
if it’s time to update then:

for many steps do:
Sample a batch B1 = {(s, θ̃, r, s′)} from D
Update critic by stochastic gradient descent:
∇w

1
|B1| E(s,θ̃,r,s′)∈B1

[Vw(s, θ̃)− (r + γVw(s′, θ̃))]2

end for
for many steps do:

Sample a batch B2 = {(s)} from D
Update actor by stochastic gradient ascent: ∇θ 1

|B2| Es∈B2
[Vw(s, θ)]

end for
end if

until convergence
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Algorithm 3 Stochastic actor-critic with TD prediction for Q(s, a, θ)

Input: Differentiable critic Qw : S ×A×Θ→ R with parameters w; stochastic differentiable
actor πθ with parameters θ; empty replay buffer D

Output : Learned Qw ≈ Q(s, a, θ), learned πθ ≈ πθ∗
Initialize critic and actor weights w, θ
repeat:

Observe state s, take action a = πθ(s), observe reward r and next state s′
Store (s, a, θ, r, s′) in the replay buffer D
if it’s time to update then:

for many steps do:
Sample a batch B1 = {(s, a, θ̃, r, s′)} from D
Update critic by stochastic gradient descent:
∇w

1
|B1| E(s,a,θ̃,r,s′)∈B1

[Qw(s, a, θ̃)− (r + γQw(s′, a′ ∼ πθ̃(s′), θ̃))]2
end for
for many steps do:

Sample a batch B2 = {(s, a, θ̃)} from D
Update actor by stochastic gradient ascent:

1
|B2| E(s,a,θ̃)∈B2

[
πθ(a|s)
πθ̃(a|s) (Q(s, a, θ)∇θ log πθ(a|s) +∇θQ(s, a, θ))

]
end for

end if
until convergence

Algorithm 4 Deterministic actor-critic with TD prediction for Q(s, a, θ)

Input: Differentiable critic Qw : S ×A×Θ→ R with parameters w; differentiable determin-
istic actor πθ with parameters θ; empty replay buffer D

Output : Learned Qw ≈ Q(s, a, θ), learned πθ ≈ πθ∗
Initialize critic and actor weights w, θ
repeat:

Observe state s, take action a = πθ(s), observe reward r and next state s′
Store (s, a, θ, r, s′) in the replay buffer D
if it’s time to update then:

for many steps do:
Sample a batch B1 = {(s, a, θ̃, r, s′)} from D
Update critic by stochastic gradient descent:
∇w

1
|B1| E(s,a,θ̃,r,s′)∈B1

[Qw(s, a, θ̃)− (r + γQw(s′, πθ̃(s
′), θ̃))]2

end for
for many steps do:

Sample a batch B2 = {(s)} from D
Update actor by stochastic gradient ascent:

1
|B2| Es∈B2 [∇θπθ(s)∇aQw(s, a, θ)|a=πθ(s) +∇θQw(s, a, θ)|a=πθ(s)]

end for
end if

until convergence

A.4 EXPERIMENTAL DETAILS

A.4.1 LQR

For our visualization experiment, we employ an instance of the Linear Quadratic Regulator. Here,
the agent observes a 1-D state, corresponding to its position and chooses a 1-D action. The transi-
tions are s′ = s + a and there is a quadratic negative term for the reward: R(s, a) = −s2 − a2.
The agent starts in state s0 = 1 and acts in the environment for 50 time steps. The state space is
bounded in [-2,2]. The goal of the agent is to reach and remain in the origin. The agent is expected
to perform small steps towards the origin when it uses the optimal policy. For this task, we use a
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deterministic policy without tanh nonlinearity and we do not use observation normalization. Below
additional details and plots for different algorithms.

PSSVF We use a learning rate of 1e − 3 for the policy and 1e − 2 for the PSSVF. Weights are
perturbed every episode using σ = 0.5. The policy is initialized with weight 3.2 and bias −3.5. All
the other hyperparameters are set to their default. The true episodic J(θ) is computed by running
10,000 policies in the environment with parameters in [−5, 5] × [−5, 5]. Vw(θ) is computed by
measuring the output of the PSSVF on the same set of policies. Each red arrow in figure 1 represents
200 update steps of the policy.

PSVF ad PAVF Using the exact same setting, we run PSVF and PAVF in LQR environment and
we compare learned V (s0, θ) andQ(s0, πθ(s0), θ) with the true PSVF and PAVF over the parameter
space. Computing the value of the true PSVF and PAVF requires computing the infinite sum of
discounted reward obtained by the policy. Here we approximate it by running 10,000 policies in
the environment with parameters in [−5,−5] × [−5, 5] for 500 time steps. This, setting γ = 0.99,
provides a good approximation of their true values, since further steps in the environment result in
almost zero discounted reward from s0. We use a learning rate of 1e − 2 for the policy and 1e − 1
for the PSVF and PAVF. Weights are perturbed every episode using σ = 0.5. The policy is updated
every 10 time steps using 2 gradient steps; the PSVF and PAVF are updated every 10 time steps
using 10 gradient updates. The critic is a 1-layer MLP with 64 neurons and tanh nonlinearity.

In Figures 9 and 10 we report J(θ), the cumulative discounted reward that an agent would
obtain by acting in the environment for infinite time steps using policy πθ and the cumulative
return predicted by the PSVF and PAVF for two different times during learning. Like in the
PSSVF experiment, the critic is able improve its predictions over the parameter space. Since in the
plots V (s, θ) and Q(s, πθ(s), θ) are evaluated only in s0, the results show that PBVFs are able to
effectively bootstrap the values of future states. Each red arrow in Figures 9 and 10 represents 50
update steps of the policy.
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Figure 9: True cumulative discounted reward J(θ) and PSVF estimation Vw(s0, θ) as a function of
the policy parameters at two different stages in training. The red arrows represent an optimization
trajectory in parameter space. The blue dots represent the perturbed policies used to train Vw(s0, θ).
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Figure 10: True cumulative discounted reward J(θ) and PAVF estimation Qw(s0, πθ(s0), θ) as a
function of the policy parameters at two different stages in training. The red arrows represent an
optimization trajectory in parameter space. The blue dots represent the perturbed policies used to
train Qw(s0, πθ(s0), θ).

A.4.2 OFFLINE EXPERIMENTS

Zero-shot learning We evaluate the performance of the policies learned from scratch evaluating
them with 5 test trajectories every 5 gradient steps. In addition to the results in the main paper,
we report in Figures 11 and 12 a comparison of zero-shot performance between PSSVF, PSVF
and PAVF in three different environments using deterministic shallow and deep policies (2-layers
MLP(64,64)). In this task we use the same hyperparameters found in tables 4, 6 and 8. One
additional hyperparameter needs to be considered: the learning rate of the policies trained from
scratch. In Figure 3 of the main paper, we use a tuned learning rate of 0.02 that we found working
particularly well for PSSVF in the Swimmer environment. In the additional experiments in
Figures 11 and 12, we use a learning rate of 0.05 that we found working well across all policies,
environments and algorithms when learning zero-shot.

We observe that, using shallow policies, PBVFs can effectively zero-shot learn policies with
performance comparable to the policy learned in the environment without additional tuning for
the learning rate. We note the regular presence of a spike in performance followed by a decline
due to the policy going to regions of the parameter space never observed. This suggests that there
is a trade-off between exploiting the generalization of the critic and remaining in the part of the
parameter space where the critic is accurate. Measuring the width of these spikes can be useful
for determining the number of offline gradient steps to perform in the general algorithm. When
using deep policies the results become much worse and zero-shot learned policies can recover the
performance of the main policy being learned only in simple environments and at beginning of
training (eg. MountainCarContinuous). We observe that, when the critic is trained (last column),
the replay buffer contains policies that are very distant to policies randomly initialized. This might
explain why the zero-shot performance is better sometimes at the beginning of training (eg. second
column). However, since PBVFs in practice perform mostly local off-policy evaluation around the
learned policy, this problem is less prone to arise in our main experiments.

Offline learning with fragmented behaviors In this task, data are generated by perturbing a
randomly initialized deterministic policy every 200 time steps and using it to act in the environment.
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Figure 11: Shallow policies learned from scratch during training. The plots in the left column repre-
sent the return of agents learning while interacting with the environment using different algorithms.
The learning curves in the other plots represent the return obtained by policies trained from scratch
following the fixed critics after different time steps of training. Zero-shot learning curves are aver-
aged over 5 seeds.

We use σ = 0.5 for the perturbations. After the dataset is collected, the PSVF is trained using a
learning rate of 1e − 3 with a batch size of 128. When the policy is learned, we use a learning rate
of 0.02. All other hyperparameters are set to default values.

A.4.3 FULL EXPERIMENTAL RESULTS

Methodology In order to ensure a fair comparison of our methods and the baselines, we adopt
the following procedure. For each hyperparameter configuration, for each environment and policy
architecture, we run 5 instances of the learning algorithm using different seeds. We measure the
learning progress by running 100 evaluations while learning the deterministic policy (without action
or parameter noise) using 10 test trajectories. We use two metrics to determine the best hyperparam-
eters: the average return over policy evaluations during the whole training process and the average
return over policy evaluations during the last 20% time steps. For each algorithm, environment and
policy architecture, we choose the two hyperparameter configurations maximizing the performance
of the two metrics and test them on 20 new seeds, reporting average and final performance in table 2
and 3 respectively.

Figures 13 and 14 report all the learning curves from the main paper and for a small non linear
policy with 32 hidden neurons.

Stochastic policies We include some results for stochastic policies when using PSSVF and PSVF.
Figures 15 and 16 show a comparison with the baselines when using shallow and deep policies re-
spectively. We observe results sometimes comparable, but often inferior with respect to deterministic
policies. In particular, when using shallow policies, PBVFs are able to outperform the baselines in
the MountainCar environment, while obtaining comparable performance in CartPole and Inverted-
Pendulum. Like in previous experiments, PBVFs fail to learn a good policy in Reacher. When using
deep policies, the results are slightly different: PBVFs outperform ARS and DDPG in Swimmer,
but fail to learn InvertedPendulum. Although the use of stochastic policies can help smoothing the
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Figure 12: Deep policies learned from scratch during training. The plots in the left column represent
the return of agents learning while interacting with the environment using different algorithms. The
learning curves in the other plots represent the return obtained by policies trained from scratch fol-
lowing the fixed critics after different time steps of training. Zero-shot learning curves are averaged
over 5 seeds.

objective function and allows the agent exploring in action space, we believe that the lower variance
provided by deterministic policies can facilitate learning PBVFs.

A.4.4 SENSITIVITY ANALYSIS

In the following, we report the sensitivity plots for all algorithms, for all deterministic policy ar-
chitectures and environments. In particular, figure 17, 18, 19, 20 and 21 show the performance
of each algorithm given different hyperparameters tried during training. We observe that in gen-
eral deep policies are more sensitive and, apart for DDPG, achieve often a better performance than
smaller policies. The higher sensitivity displayed by ARS is in part caused by the higher number of
hyperparameters we tried when tuning the algorithm.

A.4.5 TABLE OF BEST HYPERPARAMETERS

We report for each algorithm, environment, and policy architecture the best hyperparameters found
when optimizing for average return or final return in tables 4, 5, 6, 7, 8 and 9.
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Table 2: Average return with standard deviation (across 20 seeds) for hypermarameters optimizing
the average return during training using deterministic policies. Square brackets represent the number
of neurons per layer of the policy. [] represents a linear policy.

Policy: [] MountainCar Inverted Reacher Swimmer Hopper
Continuous-v0 Pendulum-v2 -v2 -v3 -v3

ARS 63± 6 886± 72 −9.2± 0.3 228± 89 1184± 345
PSSVF 85± 4 944± 33 −11.7± 0.9 259± 47 1392± 287
DDPG 0± 0 612± 169 −8.6± 0.9 95± 112 629± 145
PSVF 84± 20 926± 34 −19.7± 6.0 188± 71 917± 249
PAVF 82± 21 913± 40 −17.0± 7.7 231± 56 814± 223

Policy:[32]
ARS 37± 11 851± 46 −9.6± 0.3 139± 78 1003± 66
PSSVF 60± 33 701± 138 10.4± 0.5 189± 35 707± 668
DDPG 0± 0 816± 36 −5.7± 0.3 61± 32 1384± 125
PSVF 71± 25 529± 281 −11.9± 1.2 226± 33 864± 272
PAVF 71± 27 563± 228 −10.9± 1.1 222± 28 793± 322

Policy: [64,64]
ARS 28± 8 812± 239 −9.8± 0.3 129± 68 964± 47
PSSVF 72± 22 850± 93 −10.7± 0.2 158± 59 922± 568
DDPG 0± 0 834± 36 −5.5± 0.4 92± 117 767± 627
PSVF 80± 9 580± 107 −10.7± 0.6 137± 38 843± 282
PAVF 73± 10 399± 219 −10.7± 0.5 142± 26 875± 136

Policy: [] Acrobot-v1 CartPole-v1

ARS −161± 23 476± 13
PSSVF −137± 14 443± 105
PSVF −148± 25 459± 28

Policy:[32]
ARS −296± 38 395± 141
PSSVF −251± 80 463± 18
PSVF −270± 113 413± 61

Policy: [64,64]
ARS −335± 35 416± 105
PSSVF −281± 117 452± 34
PSVF −397± 71 394± 71
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Table 3: Final return with standard deviation (across 20 seeds) for hypermarameters optimizing the
final return during training using deterministic policies.

Policy: [] MountainCar Inverted Reacher Swimmer Hopper
Continuous-v0 Pendulum-v2 -v2 -v3 -v3

ARS 73± 5 657± 477 −8.6± 0.5 334± 34 1443± 713
PSSVF 84± 28 970± 126 −10.0± 1.0 350± 8 1560± 911
DDPG 0± 1 777± 320 −7.3± 0.4 146± 152 704± 234
PSVF 76± 36 906± 289 −16.5± 1.6 238± 107 1067± 340
PAVF 68± 42 950± 223 −17.2± 15.4 298± 40 720± 281

Policy:[32]
ARS 54± 20 936± 146 −9.2± 0.4 239± 117 1048± 68
PSSVF 89± 22 816± 234 −10.2± 1.0 294± 41 1204± 615
DDPG 0± 0 703± 283 −4.6± 0.6 179± 150 1290± 348
PSVF 84± 31 493± 462 −11.3± 0.8 290± 70 1003± 572
PAVF 92± 7 854± 295 −10.1± 0.9 307± 34 967± 411

Policy: [64,64]
ARS 11± 30 976± 83 −9.4± 0.4 157± 54 1006± 47
PSSVF 91± 16 898± 227 −10.7± 0.6 224± 99 1412± 691
DDPG 0± 0 943± 73 −4.4± 0.4 196± 151 1437± 752
PSVF 93± 1 1000± 0 −10.6± 1.0 257± 26 1247± 344
PAVF 93± 2 827± 267 −10.6± 0.4 232± 42 1005± 155

Policy: [] Acrobot-v1 CartPole-v1

ARS −126± 26 499± 2
PSSVF −97± 6 482± 53
PSVF −100± 18 500± 0

Policy:[32]
ARS −215± 97 471± 110
PSSVF −116± 33 500± 0
PSVF −244± 151 488± 36

Policy: [64,64]
ARS −182± 45 492± 18
PSSVF −233± 139 500± 0
PSVF −406± 51 499± 2
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Figure 13: Learning curves representing the average return as a function of the number of time steps
in the environment (across 20 runs) with different environments and deterministic policy architec-
tures. We use the best hyperparameters found while maximizing the average reward for each
task. For each subplot, the square brackets represent the number of neurons per policy layer. []
represents a linear policy.
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Figure 14: Learning curves representing the average return as a function of the number of time steps
in the environment (across 20 runs) with different environments and deterministic policy architec-
tures. We use the best hyperparameters found while maximizing the final reward for each task.
For each subplot, the square brackets represent the number of neurons per policy layer. [] represents
a linear policy.

Stochastic shallow policies
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Figure 15: Learning curves representing the average return as a function of the number of time steps
in the environment (across 20 runs) with different environments using stochastic shallow policies.
We use the best hyperparameters found while maximizing the average reward for each task.
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Stochastic deep policies
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Figure 16: Learning curves representing the average return as a function of the number of time
steps in the environment (across 20 runs) with different environments using stochastic deep policies
([64,64]). We use the best hyperparameters found while maximizing the average reward for
each task.
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Figure 17: Sensitivity of PSSVFs using deterministic policies to the choice of the hyperparameter.
Performance is shown by percentile using all the learning curves obtained during hyperparameter
tuning. The median performance is depicted as a dark line. For each subplot, the numbers in the
square brackets represent the number of neurons per layer of the policy. [] represents a linear policy.
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Figure 18: Sensitivity of PSVFs using deterministic policies to the choice of the hyperparameter.
Performance is shown by percentile using all the learning curves obtained during hyperparameter
tuning. The median performance is depicted as a dark line. For each subplot, the numbers in the
square brackets represent the number of neurons per layer of the policy. [] represents a linear policy.
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Figure 19: Sensitivity of PAVFs using deterministic policies to the choice of the hyperparameter.
Performance is shown by percentile using all the learning curves obtained during hyperparameter
tuning. The median performance is depicted as a dark line. For each subplot, the numbers in the
square brackets represent the number of neurons per layer of the policy.
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Figure 20: Sensitivity of DDPG to the choice of the hyperparameter. Performance is shown by
percentile using all the learning curves obtained during hyperparameter tuning. The median perfor-
mance is depicted as a dark line. For each subplot, the numbers in the square brackets represent the
number of neurons per layer of the policy.
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Figure 21: Sensitivity of ARS to the choice of the hyperparameter. Performance is shown by
percentile using all the learning curves obtained during hyperparameter tuning. The median perfor-
mance is depicted as a dark line. For each subplot, the numbers in the square brackets represent the
number of neurons per layer of the policy.
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Table 4: Table of best hyperparameters for PSSVFs using deterministic policies

Learning rate policy Policy: [] [32] [64,64]
Metric: avg last avg last avg last

Acrobot-v1 1e-2 1e-3 1e-4 1e-4 1e-4 1e-4
MountainCarContinuous-v0 1e-2 1e-3 1e-4 1e-4 1e-4 1e-4
CartPole-v1 1e-3 1e-3 1e-3 1e-3 1e-4 1e-4
Swimmer-v3 1e-3 1e-3 1e-3 1e-3 1e-2 1e-4
InvertedPendulum-v2 1e-3 1e-3 1e-3 1e-3 1e-4 1e-4
Reacher-v2 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4
Hopper-v3 1e-4 1e-4 1e-4 1e-3 1e-4 1e-4
Learning rate critic
Acrobot-v1 1e-2 1e-3 1e-2 1e-2 1e-2 1e-2
MountainCarContinuous-v0 1e-3 1e-2 1e-3 1e-2 1e-2 1e-2
CartPole-v1 1e-2 1e-2 1e-3 1e-3 1e-2 1e-2
Swimmer-v3 1e-3 1e-3 1e-2 1e-2 1e-3 1e-2
InvertedPendulum-v2 1e-2 1e-2 1e-3 1e-2 1e-3 1e-3
Reacher-v2 1e-3 1e-3 1e-3 1e-3 1e-4 1e-4
Hopper-v3 1e-3 1e-3 1e-2 1e-2 1e-2 1e-2
Noise for exploration
Acrobot-v1 1.0 1.0 1e-1 1e-1 1e-1 1e-1
MountainCarContinuous-v0 1.0 1.0 1e-1 1e-1 1e-1 1e-1
CartPole-v1 1.0 1.0 1.0 1.0 1e-1 1e-1
Swimmer-v3 1.0 1.0 1.0 1.0 1.0 1e-1
InvertedPendulum-v2 1.0 1.0 1.0 1.0 1e-1 1e-1
Reacher-v2 1e-1 1e-1 1e-1 1e-1 1e-1 1e-1
Hopper-v3 1.0 1.0 1e-1 1.0 1e-1 1e-1

Table 5: Table of best hyperparameters for ARS

Learning rate policy Policy: [] [32] [64,64]
Metric: avg last avg last avg last

Acrobot-v1 1e-2 1e-3 1e-2 1e-2 1e-2 1e-2
MountainCarContinuous-v0 1e-2 1e-2 1e-2 1e-2 1e-2 1e-2
CartPole-v1 1e-2 1e-2 1e-2 1e-2 1e-2 1e-2
Swimmer-v3 1e-2 1e-2 1e-2 1e-2 1e-2 1e-2
InvertedPendulum-v2 1e-2 1e-2 1e-2 1e-2 1e-2 1e-2
Reacher-v2 1e-2 1e-2 1e-3 1e-2 1e-3 1e-3
Hopper-v3 1e-2 1e-2 1e-2 1e-2 1e-2 1e-2
Number of directions
and elite directions
Acrobot-v1 (4,4) (4,4) (1,1) (1,1) (1,1) (1,1)
MountainCarContinuous-v0 (1,1) (1,1) (1,1) (16,4) (1,1) (1,1)
CartPole-v1 (4,4) (4,4) (1,1) (1,1) (4,1) (4,1)
Swimmer-v3 (1,1) (1,1) (1,1) (4,1) (1,1) (1,1)
InvertedPendulum-v2 (4,4) (4,4) (1,1) (4,4) (4,1) (16,1)
Reacher-v2 (16,16) (16,16) (1,1) (16,4) (1,1) (1,1)
Hopper-v3 (4,1) (4,1) (1,1) (1,1) (1,1) (1,1)
Noise for exploration
Acrobot-v1 1e-2 1e-3 1e-1 1e-1 1e-1 1e-1
MountainCarContinuous-v0 1e-1 1e-1 1e-1 1e-1 1e-1 1e-1
CartPole-v1 1e-2 1e-2 1e-1 1e-1 1e-2 1e-2
Swimmer-v3 1e-1 1e-1 1e-2 1e-1 1e-1 1e-1
InvertedPendulum-v2 1e-2 1e-2 1e-2 1e-2 1e-2 1e-2
Reacher-v2 1e-2 1e-2 1e-2 1e-2 1e-2 1e-2
Hopper-v3 1e-1 1e-1 1e-1 1e-1 1e-1 1e-1
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Table 6: Table of best hyperparameters for PSVFs using deterministic policies

Learning rate policy Policy: [] [32] [64,64]
Metric: avg last avg last avg last

Acrobot-v1 1e-2 1e-2 1e-4 1e-4 1e-4 1e-2
MountainCarContinuous-v0 1e-2 1e-3 1e-2 1e-4 1e-3 1e-4
CartPole-v1 1e-2 1e-2 1e-2 1e-4 1e-3 1e-4
Swimmer-v3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3
InvertedPendulum-v2 1e-2 1e-3 1e-4 1e-4 1e-4 1e-4
Reacher-v2 1e-3 1e-2 1e-4 1e-4 1e-4 1e-4
Hopper-v3 1e-3 1e-3 1e-4 1e-4 1e-4 1e-3
Learning rate critic
Acrobot-v1 1e-3 1e-4 1e-2 1e-2 1e-3 1e-2
MountainCarContinuous-v0 1e-4 1e-3 1e-2 1e-4 1e-3 1e-3
CartPole-v1 1e-2 1e-2 1e-2 1e-3 1e-2 1e-4
Swimmer-v3 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4
InvertedPendulum-v2 1e-3 1e-2 1e-3 1e-4 1e-4 1e-3
Reacher-v2 1e-2 1e-2 1e-3 1e-3 1e-4 1e-4
Hopper-v3 1e-2 1e-2 1e-4 1e-4 1e-2 1e-4
Noise for exploration
Acrobot-v1 1.0 1.0 1e-1 1e-1 1e-1 1e-1
MountainCarContinuous-v0 1.0 1e-1 1e-1 1.0 1e-1 1e-1
CartPole-v1 1.0 1.0 1.0 1e-1 1e-1 1e-1
Swimmer-v3 1.0 1.0 1.0 1.0 1.0 1.0
InvertedPendulum-v2 1.0 1.0 1e-1 1e-1 1e-1 1e-1
Reacher-v2 1.0 1.0 1.0 1.0 1e-1 1e-1
Hopper-v3 1.0 1.0 1e-1 1e-1 1e-1 1.0

Table 7: Table of best hyperparameters for PSSVFs and PSVFs using stochastic policies

Algo: PSSVF PSVF

Learning rate policy Policy: [] [64,64] [] [64,64]
Metric: avg avg avg avg

Acrobot-v1 1e-2 1e-2 1e-2 1e-3
MountainCarContinuous-v0 1e-2 1e-3 1e-2 1e-3
CartPole-v1 1e-3 1e-4 1e-2 1e-3
Swimmer-v3 1e-2 1e-4 1e-3 1e-4
InvertedPendulum-v2 1e-3 1e-4 1e-2 1e-3
Reacher-v2 1e-4 1e-3 1e-2 1e-2
Hopper-v3 1e-4 1e-4 1e-3 1e-4
Learning rate critic
Acrobot-v1 1e-2 1e-4 1e-4 1e-2
MountainCarContinuous-v0 1e-2 1e-2 1e-3 1e-3
CartPole-v1 1e-2 1e-3 1e-2 1e-2
Swimmer-v3 1e-2 1e-3 1e-3 1e-4
InvertedPendulum-v2 1e-3 1e-3 1e-3 1e-2
Reacher-v2 1e-3 1e-3 1e-3 1e-3
Hopper-v3 1e-3 1e-2 1e-2 1e-4
Noise for exploration
Acrobot-v1 1.0 1.0 1.0 1.0
MountainCarContinuous-v0 1.0 1e-1 1.0 1e-1
CartPole-v1 1.0 1.0 1.0 1e-1
Swimmer-v3 1.0 1e-1 1.0 1e-1
InvertedPendulum-v2 1.0 1.0 1.0 1e-1
Reacher-v2 1e-1 0.0 1.0 0.0
Hopper-v3 1.0 1e-1 1.0 1e-1
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Table 8: Table of best hyperparameters for PAVFs using deterministic policies

Learning rate policy Policy: [] [32] [64,64]
Metric: avg last avg last avg last

MountainCarContinuous-v0 1e-2 1e-3 1e-3 1e-4 1e-4 1e-4
Swimmer-v3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3
InvertedPendulum-v2 1e-2 1e-3 1e-3 1e-4 1e-4 1e-4
Reacher-v2 1e-3 1e-3 1e-4 1e-4 1e-4 1e-4
Hopper-v3 1e-3 1e-4 1e-4 1e-4 1e-4 1e-3
Learning rate critic
MountainCarContinuous-v0 1e-4 1e-4 1e-4 1e-3 1e-4 1e-3
Swimmer-v3 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4
InvertedPendulum-v2 1e-3 1e-2 1e-2 1e-4 1e-2 1e-3
Reacher-v2 1e-3 1e-3 1e-3 1e-2 1e-3 1e-3
Hopper-v3 1e-4 1e-3 1e-3 1e-2 1e-4 1e-3
Noise for exploration
MountainCarContinuous-v0 1.0 1e-1 1e-1 1e-1 1e-1 1e-1
Swimmer-v3 1.0 1.0 1.0 1.0 1.0 1.0
InvertedPendulum-v2 1.0 1.0 1e-1 1e-1 1e-1 1e-1
Reacher-v2 1e-1 1e-1 1e-1 1.0 1.0 1.0
Hopper-v3 1.0 1.0 1e-1 1e-1 1e-1 1.0

Table 9: Table of best hyperparameters for DDPG

Learning rate policy Policy: [] [32] [64,64]
Metric: avg last avg last avg last

MountainCarContinuous-v0 1e-2 1e-2 1e-2 1e-4 1e-3 1e-3
Swimmer-v3 1e-3 1e-3 1e-2 1e-2 1e-2 1e-2
InvertedPendulum-v2 1e-4 1e-4 1e-3 1e-3 1e-3 1e-4
Reacher-v2 1e-4 1e-3 1e-2 1e-2 1e-3 1e-3
Hopper-v3 1e-2 1e-2 1e-2 1e-4 1e-2 1e-2
Learning rate critic
MountainCarContinuous-v0 1e-4 1e-4 1e-4 1e-3 1e-3 1e-3
Swimmer-v3 1e-3 1e-3 1e-3 1e-3 1e-2 1e-3
InvertedPendulum-v2 1e-3 1e-3 1e-3 1e-4 1e-3 1e-3
Reacher-v2 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3
Hopper-v3 1e-3 1e-3 1e-4 1e-4 1e-4 1e-4
Noise for exploration
MountainCarContinuous-v0 1e-2 1e-2 1e-2 1e-1 1e-1 1e-1
Swimmer-v3 1e-1 1e-1 1e-2 1e-2 1e-2 1e-1
InvertedPendulum-v2 1e-1 1e-1 1e-2 1e-2 1e-2 1e-2
Reacher-v2 1e-1 1e-2 1e-1 1e-1 1e-1 1e-1
Hopper-v3 1e-1 1e-1 1e-1 1e-2 1e-1 1e-2
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