
Neural Diffusion Processes

Vincent Dutordoir 1 2 Alan Saul 2 Zoubin Ghahramani 1 3 Fergus Simpson 2

Abstract
Neural network approaches for meta-learning dis-
tributions over functions have desirable properties
such as increased flexibility and a reduced com-
plexity of inference. Building on the successes of
denoising diffusion models for generative mod-
elling, we propose Neural Diffusion Processes
(NDPs), a novel approach that learns to sample
from a rich distribution over functions through
its finite marginals. By introducing a custom at-
tention block we are able to incorporate proper-
ties of stochastic processes, such as exchangeabil-
ity, directly into the NDP’s architecture. We em-
pirically show that NDPs can capture functional
distributions close to the true Bayesian posterior,
demonstrating that they can successfully emulate
the behaviour of Gaussian processes and surpass
the performance of neural processes. NDPs en-
able a variety of downstream tasks, including re-
gression, implicit hyperparameter marginalisation,
non-Gaussian posterior prediction and global op-
timisation.

1. Introduction
Gaussian processes (GPs) offer a powerful framework
for defining distributions over functions (Rasmussen &
Williams, 2006). It is an appealing framework because
Bayes rule allows one to reason consistently about the pre-
dictive distribution, allowing the model to be data efficient.
However, for many problems, GPs are not an appropriate
prior. Consider, for example, a function that has a single
discontinuity at some unknown location. This is one clas-
sic example of a distribution of functions that cannot be
expressed in terms of a GP (Neal, 1998).

One popular approach to these problems is to abandon GPs,
in favour of Neural Network-based generative models. Suc-

1Department of Engineering, University of Cambridge, Cam-
bridge, UK 2Secondmind, Cambridge, UK 3Google DeepMind.
Correspondence to: Vincent Dutordoir <vd309@cam.ac.uk>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

cessful methods include the meta-learning approaches of
Neural Processes (NPs) (Garnelo et al., 2018b;a), and VAE-
based models (Mishra et al., 2020; Fortuin et al., 2020). By
leveraging a large number of small datasets during training,
they are able to transfer knowledge across datasets at predic-
tion time. Using Neural Networks (NNs) is appealing since
most of the computational effort is expended during the
training process, while the task of prediction becomes more
straightforward. A further major advantage of a NN-based
approach is that they are not restricted by the Gaussianity.

In this work, we strive to enhance the capabilities of NN-
based generative models for meta-learning function by
extending probabilistic denoising diffusion models (Sohl-
Dickstein et al., 2015; Song & Ermon, 2020; Ho et al., 2020).
Diffusion models have demonstrated superior performance
over existing methods in generating images (Nichol et al.,
2021; Ramesh et al., 2022), molecular structures (Xu et al.,
2022; Hoogeboom et al., 2022), point clouds (Luo & Hu,
2021), and audio signal data (Kong et al., 2020). The central
challenge we address is the Bayesian inference of functions,
a fundamentally different task not previously approached
by diffusion models. Although we acknowledge that sev-
eral recent works have emerged since our initial preprint,
providing complementary insights on extending diffusion
models to function spaces (Phillips et al., 2022; Kerrigan
et al., 2022; Lim et al., 2023; Bond-Taylor & Willcocks,
2023; Pidstrigach et al., 2023; Franzese et al., 2023).

Contributions We propose a novel generative model, the
Neural Diffusion Process (NDP), which defines a probabilis-
tic model over functions via their finite marginals. NDPs
generalise diffusion models to stochastic processes by allow-
ing the indexing of the function’s marginals onto which the
model diffuses. We take particular care to enforce properties
of stochastic processes, including exchangeability, facilitat-
ing the training process. These properties are enforced using
a novel bi-dimensional attention block, which guarantees
equivariance over the ordering of the input dimensionality
and the sequence (i.e., datapoints). From the experiments,
we conclude: firstly, NDPs are an improvement over existing
NN-based generative models for functions such as Neural
Processes (NPs). Secondly, NDPs are an attractive alterna-
tive to GPs for specifying appropriate (i.e., non-Gaussian)
priors over functions. Finally, we present a novel global
optimisation method using NDPs.

1

Neural Diffusion Processes

2. Background
The aim of this section is to provide an overview of the key
concepts used throughout the manuscript.

2.1. Gaussian Processes

A Gaussian Process (GP) f : RD → R is a stochastic pro-
cess such that, for any finite collection of points x1, ..., xn ∈
RD the random vector (f1, . . . , fn) with fi = f(xi),
follows a multivariate normal distribution (Rasmussen &
Williams, 2006). For a dataset D = {(xi, yi)}ni=1, where
values are corrupted by Gaussian noise yi = f(xi)+η, GPs
offer exact inference of the posterior p(y∗ | D). This leads
to data-efficient learning and accurate uncertainty estima-
tions as illustrated in Fig. 1a.

GPs are stochastic processes (SPs) which satisfy the Kol-
mogorov Extension Theorem (KET). KET states that all
finite-dimensional marginal distributions p are consistent
with each other under permutation (exchangeability) and
marginalisation. Let n ∈ N and π be a permutation of
{1, . . . , n}, then the following holds for the GP’s joint:

p(f1, . . . , fn) = p(fπ(1), . . . , fπ(n)), and (1)

p(f1) =

∫
p(f1, f2, . . . , fn) df2 . . . dfn. (2)

Despite these favourable properties, GPs are plagued by sev-
eral limitations. Firstly, encoding prior assumptions through
analytical covariance functions can be extremely difficult,
especially in higher dimensions (Wilson et al., 2016; Simp-
son et al., 2021a; Liu et al., 2020). Secondly, by definition,
GPs assume a multivariate Gaussian distribution for each
finite collect of predictions —limiting the set of functions it
can model (Neal, 1998).

2.2. Neural Processes and Meta-Learning Functions

Neural Process (NP) models were introduced as a flexible
alternative to GPs, utilising an encoder-decoder architecture
to meta-learn dataset distributions in an amortised fashion
(Garnelo et al., 2018b). While being beneficial in many
respects, they nonetheless present several limitations: Con-
ditional NPs assume independence amongst all function val-
ues in the predictive posterior, leading to a lack of correlated
function samples at test time (Garnelo et al., 2018a). Latent
NPs tackle this but have non-tractable likelihoods, leading
to crude approximations during inference and performance
restrictions. Attentive NPs improve empirical performance
using attention mechanisms, yet frequently produce jittery
samples due to shifting attention patterns (Kim et al., 2019).
Furthermore, NPs fail to ensure consistency in the context
sets as their conditional distributions do not relate through
Bayes’ rule (Kim et al., 2019). We refer to Appendix D for
a primer on these methods.

Several models have sought to address these limitations.
ConvCNPs enforce stationary into the stochastic process
by decoding functional embeddings using convolutional
NNs (Gordon et al., 2019). Gaussian NPs model predictive
correlations (i.e. covariances), which provides universal
approximation guarantees but struggle with computational
scalability (Bruinsma et al., 2021). Recently, Autoregres-
sive NPs were introduced which exhibit promising perfor-
mance on a range of problems but are hampered by simple
distributions, typically Gaussian, for variables early in the
auto-regressive generation (Bruinsma et al., 2023).

2.3. Probabilistic Denoising Diffusion Models

Diffusion models depend on two procedures: a forward
and a reverse process. The forward process consists of a
Markov chain, which incrementally adds random noise to
the data. The reverse process is tasked with inverting this
chain. The forward process starts from the data distribu-
tion q(s0) and iteratively corrupts samples by adding small
amounts of noise, which leads to a fixed Markov chain
q(s0:T) = q(s0)

∏T
t=1 q(st | st−1) for a total of T steps.

The corrupting distribution is Gaussian q(st | st−1) =
N (st;

√
1− βtst−1, βtI). The magnitude of the noise in

each step is controlled by a pre-specified variance schedule
{βt ∈ (0, 1)}Tt=1. Note that there is no learning involved in
the forward process, it simply creates a sequence of random
variables {st}Tt=0 which progressively look more like white
noise q(sT) ≈ N (0, I).

While the forward process is Markovian, the true reverse
probability q(st−1 | st) requires the entire sequence. There-
fore, the reverse process learns to approximate these condi-
tional probabilities in order to carry out the reverse diffusion
process. The approximation relies on the key observation
that the reverse conditional probability is tractable when
conditioned on the initial state s0: q(st−1 | s0, st) =
N (st−1; µ̃(s0, st), β̃tI). As a result, the reverse process
can be traversed by estimating the initial state s0 from st
and t using a NN, which can then be passed to µ̃. In
this work, we follow Ho et al. (2020) who directly pa-
rameterise µ̃ as µθ(st, t) = 1√

αt

(
st − βt√

1−ᾱt
ϵθ(st, t)

)

with αt = 1 − βt and ᾱt =
∏t
j=1 αj . In what follows,

we refer to ϵθ as the noise model. The parameters θ of
the noise model are optimised by minimising the objec-
tive Et,s0,ε[ε − ϵθ(st, t)], where the expectation is taken
over time t ∼ U({1, 2, . . . , T}), data s0 ∼ q(s0), and
st =

√
ᾱts0 +

√
1− ᾱtε with ε ∼ N (0, I). For a trained

network, generating samples from q(s0) is done by running
the reverse process starting from sT ∼ N (0, I).

2

Neural Diffusion Processes

(a) GP Regression (b) Attentive Latent NP (c) Neural Diffusion Process (ours)

Figure 1: Posterior samples conditioned on a context dataset (black dots) for different probabilistic models.

3. Neural Diffusion Processes
In this section, we introduce Neural Diffusion Processes
(NDPs), which define a probabilistic model over functions
via their finite marginals. We focus our attention on the
difference between NDPs and traditional diffusion models
used for gridded data, such as images or audio.

3.1. Data, Forward and Reverse Process

NDPs generalise diffusion models to stochastic processes
by allowing indexing of the random variables which are
being diffused. This set of random variables corresponds
to the function’s marginals, which represent a more flexible
type of random variable compared to, say, an image. In
an image, pixel values are organised on a predefined grid
(height × width) with an implicit order. Contrarily, function
values lack ordering and do not reside on a predetermined
grid. Consequently, samples extracted from a NDP should
be evaluable throughout their input domain.

Data NDPs require many datasets that consist of both,
function inputs x and corresponding function values y =
f(x). The functions f : RD → R may be synthetically
created (e.g., step functions, Sec. 6.1.2), drawn from a Gaus-
sian process (Sec. 6.2.1), or correspond to the pixel maps
in images (Sec. 6.1.3). Crucially, in this meta-learning ap-
proach, the NDP needs numerous examples drawn from a
distribution over f to learn an empirical covariance from
the data, {(xi ∈ RN×D,yi ∈ RN)}Mi=1 where yi = f i(xi)
assuming we evaluate the function at N random location
in its domain. This setup is akin to NPs, the key difference
being that NDPs do not necessitate the separation of the
dataset into a context and target set during training.

Forward process Let x0 = x and y0 = y then NDPs
gradually add noise following

q
([xt

yt

]
|
[
xt−1

yt−1

])
= N

(
yt;

√
1− βtyt−1, βt

)
.

This corresponds to adding Gaussian noise to the function
values yt while keeping the input locations xt fixed across
time. At t = T the function values yt should be indistin-
guishable to samples from N (0, I), while xT = xT−1 =

. . . = x0. In Sec. 6.3, we discuss a generalisation of this
scheme where we perturb both the function inputs and out-
puts to obtain a diffusion model that can sample the joint
p(x0,y0). For now, we focus on the conditional p(y0 | x0)
as this is the distribution of interest in supervised learning.

Backward kernel NDPs parameterise the backward
Markov kernel using a NN that learns to de-noise the cor-
rupted function values yt. In contrast, the input locations xt
have not been corrupted in the forward process which makes
reversing their chain trivial. This leads to a parameterised
backward kernel pθ of the form

pθ
([xt−1

yt−1

]
|
[
xt
yt

])
= N

(
yt−1;µθ(xt,yt, t), β̃t

)
, (3)

where the mean is parameterised through the noise ϵθ as

µθ(xt,yt, t) =
1√
αt

(
yt −

βt√
1− ᾱt

ϵθ(xt,yt, t)
)
. (4)

The noise model NN ϵθ : RN×D × RN × R → RN has as
inputs the function inputs xt, the corrupted function values
yt, and time t. The network is tasked with predicting the
noise that was added to y0 to obtain yt. The design of the
network is specific to the task of modelling functions and
as such differs from current approaches. In the next section
we discuss its particular architecture, but for now we want
to stress that it is critical for the noise model to have access
to the input locations xt to make such predictions.

Objective Following Ho et al. (2020), but substituting the
NDP’s forward and backward transition densities leads to
the objective

Lθ = Et,x0,y0,ε

[
∥ε− ϵθ

(
x0,yt, t

)
∥2
]
, (5)

with yt =
√
ᾱty0 +

√
1− ᾱtε and where we made use of

the fact that xt equals x0 for all timesteps t. Full derivation
of the objective is given in Appendix A.

3.2. Prior and Conditional Sampling

Prior Using a trained noise model ϵθ, one can obtain prior
function draws from the NDP at a specific set of input loca-
tions x0 by simulating the reverse process. That is, starting

3

Neural Diffusion Processes

∼ Time embedding + Element-wise addition . Broadcasting — B: batch N: num. data D: dimension H: latent dim

P
re
p
ro
ce
ss

D
en
se

∼

D
en
se

D
en
se .

+

Multi-Head
Attention D

Multi-Head
Attention N

+ ReLU

+
+

∑
D

...

D
en
se

[B,N,D,2] [B,N,D,H]

st[B,N,D]
xt

[B,N,1]
yt

[B,1]
t

[B,128] [B,H]

At
[B,N,D,H]

[B,N,H] [B,N,1]

ϵθ

Residual connection

Figure 2: Architecture of the noise prediction model, utilised at each step within the Neural Diffusion Process. The greyed
box represents the bi-dimensional attention block, as discussed in Section 4.2.

from yT ∼ N (0, I) and iteratively using the backward ker-
nel pθ from Eq. (3) for time t = T, . . . , 1. This procedure
leads to the samples from the prior illustrated in the left
panes of Figs. 3 and 4.

Conditional NDPs draw samples from the conditional dis-
tribution p(y∗

0, | x∗
0,D), where D = (xc0 ∈ RM×D,yc0 ∈

RM) is the context dataset, using a slight adaptation of
REPAINT algorithm (Lugmayr et al., 2022).

The conditional sampling scheme, given as pseudocode in
Appendix B.2, works as follows. Start by sampling y∗

T ∼
N (0, I). Then, for each time t, sample a noisy version of
the context yct using the forward process

yct ∼ N
(√

ᾱty
c
0, (1− ᾱt) I

)
. (6)

Continue by collecting the union of the noisy context and
target set in yt = {y∗

t ,y
c
t}. Similarly, collect the inputs as

x0 = {x∗
0,x

c
0}. Finish the step by sampling from the back-

ward kernel pθ using the collected inputs x0 and function
values yt

yt−1 ∼ N
(1√

αt

(
yt−

βt√
1− ᾱt

ϵθ(x0,yt, t)
)
, β̃tI

)
. (7)

Simulating this scheme from t = T, . . . , 1 ensures that for
each backward step we leverage the context dataset. Consis-
tent with the findings of Lugmayr et al. (2022), we found
that in practice the sample quality improves by repeating
Eqs. (6) and (7) multiple times (e.g., 5) per time step. We
show conditional samples in Figs. 1c, 3 and 4 using our
proposed algorithm.

4. Noise Model Architecture
NDPs implement the noise model ϵθ as a NN. Here, we re-
view its architecture and key components. In principle, any
NN could be used. However, if we wish for NDPs to mimic

stochastic processes (SPs), the noise model must learn to
generate a prior distribution over functions. We expect such
a prior to possess several key symmetries and properties,
which will heavily influence our choice of architecture.

4.1. Input Size Agnosticity

Before addressing the NN invariances and equivariances,
we focus our attention to a key property of the network: the
NDP network is agnostic to dataset size N and dimension
D. That is, the weights of the network do not depend on
the size of the inputs (i.e. N nor D). This has as impor-
tant practical consequences that it is not required to train
different NDPs for datasets with different size or dimension-
ality. This makes it possible to train only a single model
that handles downstream tasks with different N or D values.
To achieve this functionality, NDPs start by reshaping the
inputs (xt ∈ RN×D,yt ∈ RN) to RN×D×2 by replicating
the yt outputs D times before concatenating them with xt.

4.2. Bi-Dimensional Attention Block

A key property of stochastic processes is an equivariance
to the ordering of inputs. As such, shuffling the order of
data points in the context dataset D or the order at which
we make predictions should not affect the probability of
the data (i.e., the data is exchangeable). Secondly, we also
expect an invariance in the ordering of the input dimensions.
Consider, for example, a dataset consisting of two features,
the weight and height of people. We would not expect the
posterior function to be different if we would swap the order
of the columns in the training data. This is an important
invariance encoded in many GP kernels (e.g., Matérn, RBF)
but often overlooked in the neural net literature.

We accommodate for both desiderata using our proposed
bi-dimensional attention block. We denote this block by
At : RN×D×H → RN×D×H as it acts on the preprocessed
inputs (xt,yt). At its core, the block consists of two multi-

4

Neural Diffusion Processes

head self-attention (MHSA) layers (Vaswani et al., 2017)
(see Fig. 2). The MHSA layers act on different axes of the
input: one attends to the input dimension axis d, while the
other attends across the dataset sequence axis n. The outputs
of the two are subsequently summed and passed through
a non-linearity. This process is repeated multiple times
by feeding the output back into the next bi-dimensional
attention block using residual connections. Concretely, the
ℓth block is defined as

Aℓ
t(s

ℓ−1
t) = Aℓ−1

t +σ
(
MHSAd(sℓ−1

t) + MHSAn(sℓ−1
t)

)
,

for ℓ = {1, . . . , L} with σ the ReLU function, s0t = st (i.e.,
the output of the preprocessing step) and A0

t = 0. Kossen
et al. (2021) introduced a similar block which operates se-
quentially across datapoints and attributes, whereas ours
acts in parallel.

To summarise, the bi-dimensional attention block is equiv-
ariant to the order of the dimensions and dataset sequence,
as formalised by

Proposition 4.1. Let ΠN and ΠD be the set of all permu-
tations of indices {1, . . . , N} and {1, . . . , D}, respectively.
Let s ∈ RN×D×H and (πn ◦ s) ∈ RN×D×H denote a ten-
sor where the ordering of indices in the first dimension
are given by πn ∈ ΠN . Similarly, let (πd ◦ s) denote a ten-
sor where the ordering of indices in the second dimension
are given by πd ∈ ΠD. Then, ∀πn, πd ∈ ΠN ×ΠD:

πd ◦ πn ◦At(s) = At (πd ◦ πn ◦ s) . (8)

Proof. Follows from the invariance of MHSA and the com-
mutativity of πd and πn as detailed in Appendix C.2.

The final noise model output ϵθ is obtained by summing the
output of the different bi-dimensional attention layers (see
purple ‘+’ in Fig. 2). This is followed by a sum over the
input dimension axis (green block). These final operations
introduce an invariance over input dimensionality, while
preserving the equivariance over the dataset ordering. We
summarise the noise model’s invariance and equivariance
properties in the following proposition

Proposition 4.2. Let πn and πd be defined as in Proposi-
tion 4.1, then ϵθ satisfies

πn ◦ ϵθ(xt,yt, t) = ϵθ(πn ◦ πd ◦ xt, πn ◦ yt, t). (9)

Proof. The claim follows from Proposition 4.1 and Zaheer
et al. (2017) as shown in Appendix C.3.

Crucially, by directly encoding these properties into the
noise model, the NDP produces a set of random variables
{y1t , . . . , ynt } at each time step t that are exchangeable as
defined in Eq. (1).

5. On Meta-Learning Consistency
Neural Diffusion Processes (NDPs) are generative models
that define a probabilistic model over functions via their fi-
nite marginals. As prescribed by the Kolmogorov extension
theorem, these finite marginals originate from a stochas-
tic process if they satisfy the conditions of exchangeability
and consistency. Proposition 4.2 has established that the
exchangeability condition can be achieved by parametrising
the noise model using the proposed bi-dimensional atten-
tion model, rendering the network permutation-equivariant.
Consequently, we direct our focus to the more intricate topic
of marginal consistency.

We first note that when the true noise ε is accessible, the
generative model described by the reverse process exhibits
marginal consistency across all finite marginals, thereby cor-
responding to samples from a stochastic process. However,
in NDPs the noise model is approximated by a neural net-
work ϵθ ≈ ε. This approximation leads to NDPs forfeiting
consistency within the generative process pθ.

Even though NDPs cannot guarantee consistency as per
Eq. (2), they do embed a particular form of it. Consider
y = y∗∪yc = y∗′∪yc′ where, yc and yc′ denote two sets
of contexts and y∗ and y∗′ represent the targets. When the
union of these sets are identical, NDPs guarantee that the
conditionals p(y∗|yc) and p(y∗′|yc′) are consistent among
each other and the joint p(y). Consequently, NDPs can
generate 2|y| consistent marginals from this joint.

While this is arguably a restricted form of consistency, it is
a property that (A)NPs do not possess (Kim et al., 2019).
As detailed in Appendix D, when it comes to conditioning,
NDPs are unlike (A)NPs. In (A)NPs the predictive distribu-
tion over the targets is learnt in an amortised fashion by a
neural network, using the context as inputs. NDPs, on the
contrary, draw conditional samples using the joint distribu-
tion over contexts and targets, as described in Sec. 3.2.

Continuing the example, in cases where the unions of the
target and context sets in NDPs are not equal, i.e. y∗∪yc ̸=
y∗′ ∪ yc′, NDPs cannot ensure consistency and must resort
to meta-learning for an approximation. It has been posited
by Foong et al. (2020), that it is in practice often more
beneficial to refrain from enforcing consistency into the
network as this limits the choices of network architectures,
and can lead to constraints on the learning performance.
This view is confirmed by our experiments, which show
that NDP’s predictive performance closely matches that of
optimal models, despite their lack of KET consistency.

6. Experimental Evaluation
In this section we aim to address the following two ques-
tions: Firstly, what additional advantages do NDPs offer

5

Neural Diffusion Processes

−0.5 0 0.5 −0.5 0 0.5 −0.5 0 0.5 −0.5 0 0.5

0 1 2

lengthscale (ℓ)
0 1 2

lengthscale (ℓ)
0 1 2

lengthscale (ℓ)
0 1 2

lengthscale (ℓ)

ℓ = 1.4

ℓ = 2.3

Figure 3: Hyperparameter marginalisation: Samples from the NDP, conditioned on an increasing number of data points
(black dots), are illustrated in the top row. A sample is coloured according to its most likely lengthscale. The bottom row
shows a histogram of likely lengthscales from the produced samples. As more data points are provided, the distribution of
likely lengthscales converges from the prior over lengthscales to the lengthscale that was used to produce the data (ℓ = 0.3).

beyond GPs? Secondly, how do NDPs stand in relation
to NPs concerning performance and applicability? Fur-
thermore, we introduce an innovative method for global
optimisation of black-box functions in Sec. 6.3.1, which
is predicated on modelling the joint distribution p(x, y).
All experiments (except Sec. 6.3.1) share the same model
architecture illustrated in Fig. 2. Comprehensive details re-
garding the specific model configurations and training times
can be found in Appendix F.1.

6.1. Emulating Gaussian Processes

6.1.1. HYPERPARAMETER MARGINALISATION

Conventionally, GP models optimise a point estimate of the
hyperparameters. However, it is well known that marginal-
ising over the hyperparameters can lead to significant per-
formance improvements, albeit at an extra computational
cost (Lalchand & Rasmussen, 2020; Simpson et al., 2021b).
A key capability of the NDP is its ability to produce real-
istic conditional samples across the full gamut of data on
which it was trained. It therefore in effect marginalises
over the different hyperparameters it was exposed to, or
even different kernels. To demonstrate this, we train a NDP
on a synthetic dataset consisting of samples from a GP
with a Matérn- 32 kernel, with a prior on the lengthscale of
logN (log(0.5),

√
0.5). In the top row of Fig. 3 we show

samples from this NDP for an increasing number of data
points. A sample is coloured according to its most likely
lengthscale. As the NDP has no notion of a lengthscale, we
infer the most likely lengthscale by retrospectively fitting

a set of GPs and matching the lengthscale of the GP corre-
sponding to the highest marginal likelihood to the sample.
The bottom row shows the histogram of lengthscales from
the produced samples. We observe that the NDP covers
the prior at first and then narrows down on the true data-
generating lengthscale as more data is observed. Effectively
marginalising over the lengthscale posterior.

6.1.2. NON-GAUSSIAN POSTERIORS

The predictions of a GP for a finite set of data points follow
a multivariate normal distribution. While this allows for con-
venient analytic manipulations, it also imposes a restrictive
assumption. For example, it is impossible for a GP to rep-
resent a 1D step function when the step occurs at a random
location within its domain (Neal, 1998). In Fig. 4, we train
a NDP on a prior that consists of functions that take a jump
at a random location within the interval [−1, 1]. Unlike a
GP, we observe that the NDP is able to correctly sample
from the prior in (a), as well as from the conditional in (b).
In (c) we show the a marginal of the NDP’s posterior, which
correctly captures the bimodal behaviour. This experiment
highlights that the NDP can infer a data-driven distribution
that need not be Gaussian, which is impossible for GPs.

6.1.3. IMAGE REGRESSION

In the next experiment, we apply NDPs to the task of image
regression. The specific goal is to predict pixel values based
on their coordinates within the normalized range of [−2, 2].
For the MNIST dataset, our task simplifies to predicting a

6

Neural Diffusion Processes

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

(a) Prior

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

(b) Conditional

0.0 0.5 1.0
0

2

4

6

8

de
ns

ity

(c) p(y | x = 0.0)

Figure 4: Representing a step function using NDPs. Figure (a) and (b) show samples from the model’s prior and conditional
distribution, respectively. Figure (c) illustrates the non-Gaussian posterior a NDP can capture, which a GP, by definition, can
not do.

Truth Context Samples

to
p

True Image Context Sample 1 Sample 2 Sample 3 Sample 4

le
ft

5%
10

%

Truth Context Samples
to

p

True Image Context Sample 1 Sample 2 Sample 3 Sample 4

le
ft

5%
10

% 0.25 0.50 0.75

Fraction of context points

0.00

0.02

0.04

0.06

0.08

M
SE

CELEBA
MNIST

Figure 5: NDPs for image regression on MNIST and CELEBA (32× 32). Figures (a) and (b) show conditional samples
where the context datasets are from top to bottom: the upper and left half of the pixels and a random selection of 5% and
10% of the pixels. Figure (c) plots the MSE of the NDP’s predictions for an increasing number of context points.

single output value that corresponds to grayscale intensity.
However, when tackling the CELEBA 32× 32 dataset, we
deal with the added complexity of predicting three output
values for each pixel to represent the RGB colour channels.
Crucially, for these image-based tasks, the architecture of
our bi-dimensional attention block has been modified to
accommodate for the distinct nature of image data in which
the order of the input coordinates do matter. This is done
by removing the MHSA layer over D in the architecture
of Fig. 2. Notably, we keep the attention over the input
ordering N as this is key when treating images as datasets.

Figure 5 shows samples from the NDP conditioned on a
variety of contexts (top, left, random 5% and 10% of pixels).
We observe that the NDP is able to effectively learn the
covariance over digits and human faces from the data — a
very challenging task for any non-parametric kernel method.
In (c) we measure the MSE of the NDP’s predicted output
(computed by drawing 5 samples from the conditional and
taking the mean) and the target image. We observe an almost
perfect match (low MSE) by increasing the context size. The
MSE is computed on the normalised pixel values [0, 1].

6.2. Comparison to Neural Processes

We now compare NDPs to a range of NP models.

6.2.1. REGRESSION ON SYNTHETIC DATA

We evaluate NDPs and NPs on two synthetic datasets, fol-
lowing the experimental setup from Bruinsma et al. (2021)
but extending it to multiple input dimensions D. We use
a Squared Exponential and a Matérn-5/2 kernel, where the
lengthscale is set to ℓ =

√
D/4. We corrupt the samples by

white noise N (0, 0.052) and train the models on 214 exam-
ples. At test time, the context dataset contains between 1
and 10×D points, whereas the target set has a fixed size of
50. We report the test log-likelihood of 128 examples.

For the NDP, the model’s likelihood is computed using sam-
ples from the conditional distribution of the model. Utilising
these samples, the empirical mean and covariance are com-
puted, which are then used to fit a multivariate Gaussian.
Given our understanding that the true posterior is Gaussian,
this strategy allows for a valid and meaningful comparison
with the other methods. Per test example, we used 128
samples to estimate the mean and covariance.

7

Neural Diffusion Processes

Table 1: Mean test log-likelihood (↑) ± 1 standard error estimated over 128 test samples. Statistically significant best
non-GP model is in bold. ‘–’ stands for computationally infeasible models.

Squared Exponential Matérn- 52
D = 1 D = 2 D = 3 D = 1 D = 2 D = 3

GP (truth) 0.67±0.03 −0.45±0.03 −0.94±0.03 0.19±0.03 −0.85±0.03 −1.14±0.02

NDP (ours) 0.48±0.04 −0.67±0.05 −1.16±0.04 −0.00±0.04 −1.05±0.03 −1.33±0.03

GNP 0.51±0.02 −0.98±0.02 −1.36±0.02 0.14±0.02 −1.12±0.02 −1.37±0.02

CONVNP −0.41±0.06 −1.16±0.03 – −0.63±0.05 −1.22±0.02 –
ANP −0.55±0.05 −1.19±0.03 −1.36±0.02 −0.70±0.04 −1.23±0.02 −1.37±0.02

GP (diagonal) −0.88±0.07 −1.04±0.04 −1.22±0.04 −0.98±0.06 −1.21±0.04 −1.31±0.03

CONVCNP −0.74±0.07 −1.20±0.03 −1.36±0.02 −0.87±0.06 −1.25±0.03 −1.37±0.02

Table 1 presents the performance of different models: the
ground-truth GP, the ground truth GP with diagonal covari-
ance, Gaussian NPs (Bruinsma et al., 2021, GNP), Convo-
lutional CNPs (Gordon et al., 2019, ConvCNP), Convolu-
tional NPs (Foong et al., 2020, ConvNP) and Attentive NPs
(Kim et al., 2019, ANP). The table demonstrates that for
D = 1, the performance of NDPs is on par with that of
GNPs, a model designed specifically to capture Gaussianity.
Moreover, both NDPs and GNPs significantly surpass the
performance of other methods and nearly reach the level
of the ground truth. However, when we scale up to D = 2
and 3, NDPs uniquely stand out as the only method that
maintains competitiveness while scaling with relative ease.

6.2.2. BAYESIAN OPTIMISATION

We now tackle four black-box optimisation problems in
dimensions three to six. The probabilistic models are part
of a Bayesian optimisation (BO) loop in which they are
used as a surrogate of the expensive black-box objectives.
At each iteration, the surrogate is evaluated at 128 random
locations in the input domain, and the input corresponding
to the minimum value is selected as the next query point.
The objective is evaluated at this location and added to the
context dataset (akin to Thompson sampling BO (Shahriari
et al., 2015)). Figure 6 shows the regret (distance from the
true minimum) for the different models. We observe that
the NDP almost matches the performance of GPR, which
is the gold standard model for this type of task. NDPs
also outperform the NPs and random search strategies. The
important difference between GPR and the NDP is that the
NDP requires no training during the BO loop, whereas the
GPR is retrained at every step.

6.3. Modelling Function Inputs and Outputs Jointly

So far, we have used NDPs to model p(y | x,D). This
is a natural choice as in regression it is typically the only
quantity of interest to make predictions. However, we can
extend NDPs to model the joint p(x,y | D). For this, during

the forward process we corrupt both the function inputs and
outputs with additive Gaussian noise. The task of the reverse
process now consists of denoising both the corrupted inputs
xt and outputs yt, which leads to the objective

Lθ = Et,x0,y0,εx,εy

[
∥εx − ϵxθ (xt,yt, t)∥2+

∥εy − ϵyθ(xt,yt, t)∥2
]
, (10)

where we highlighted the differences with Eq. (5) in or-
ange. Importantly, in this case we require a noise model
for both the inputs and outputs: ϵxθ and ϵyθ , resp. We
detail the architecture of this NN in the supplementary
(Fig. 8). We design it such that ϵxθ and ϵyθ share most
of the weights apart from the final invariance layers as
explained in Sec. 4. The inputs to the NN are now the
corrupted inputs xt =

√
ᾱtx0 +

√
1− ᾱtεx and outputs

yt =
√
ᾱty0 +

√
1− ᾱtεy . This is in contrast to the previ-

ous NDP in which xt = x0 for all t.

6.3.1. GLOBAL OPTIMISATION USING NDPS

By taking advantage of the NDP’s ability to model the full
joint distribution p(x,y | D) we conceive of a new global
optimisation strategy. Consider conditioning the NDP on
the current belief about the minima y∗. A NDP allows us to
obtain samples from p(x∗ | y∗) which provides information
about where the minima lie in the input domain. In Fig. 7
we illustrate a global optimisation routine using this idea. In
each step, we sample a target from p(y∗), which describes
our belief about the minima. For the experiment, we sample
y∗ from a truncated-normal, where the mean corresponds
to the minimum of the observed function values and the
variance corresponds to the variance of the observations.
The next query point is selected by sampling p(x∗ | y∗,D),
thereby systematically seeking out the global minimum.
This experiment showcases NDP’s ability to model the com-
plex interaction between inputs and outputs of a function
—a task on which it was not trained.

8

Neural Diffusion Processes

NDP (ours) GPR ANP (Kim et al., 2019) NP (Garnelo et al., 2018b) Random

0 10 20 30

0

1

2

3

4

step

(a) Hartmann 3D

0 20 40

0

1

2

3

4

step

(b) Rastrigin 4D

0 20 40

0

4

8

12

16

step

(c) Ackley 5D

0 20 40 60 80

0

2

4

6

8

step

(d) Hartmann 6D

Figure 6: The regret of several probabilistic models used in Thompson sampling-based Bayesian Optimisation.

Objective Target y∗ Data D Next query point Last query point

0

2

−1 0 1

step 0

p
(x

∗
|y

∗ ,
D

)

−1 0 1

step 1
−1 0 1

step 2
−1 0 1

step 3

Figure 7: Global optimisation by diffusing the input locations. We condition the model at each step on a target y∗ value
(dashed line), and use the NDP to sample from p(x∗ | y∗,D). The panels in the upper row illustrate the progression of the
optimisation. Bottom row shows the distribution p(x∗ | y∗,D) and the red triangles mark the next selected query point.

7. Conclusion
We proposed Neural Diffusion Processes (NDPs), a de-
noising diffusion generative model for learning distribu-
tion over functions, and generating prior and conditional
samples. NDPs generalise diffusion models to infinite-
dimensional functions by allowing the indexing of the func-
tion’s marginals. We introduced the bi-dimensional atten-
tion block, which wires dimension and sequence equivari-
ance into the architecture such that it satisfies the basic
properties of a stochastic process. We empirically show
that NDPs are able to capture functional distributions that
are richer than Gaussian processes, and more accurate than
neural processes. We concluded the paper by proposing a
novel optimisation strategy based on diffusing the inputs.
The code is available at https://github.com/vdu
tor/neural-diffusion-processes.

Limitations As with other diffusion models, we found
that the sample quality improves with the number of dif-

fusion steps. This does however lead to slower inference
times. Techniques for accelerating the inference process
could be incorporated to ameliorate this issue. Secondly, as
is common with NNs we found that it is important for test
input points to lie within the training range, as going beyond
leads to poor performance.

Acknowledgements
We would like to recognise the contributions of Carl Henrik
Ek, Erik Bodin, Sebastian Ober, and anonymous reviewers
for their insightful feedback and constructive suggestions.
We’re also thankful to Yeh Whye Teh, Emile Mathieu, and
Michael Hutchinson for their valuable insights, particularly
concerning the topic of consistency. Their inputs have sub-
stantially shaped the presentation of this work.

9

https://github.com/vdutor/neural-diffusion-processes
https://github.com/vdutor/neural-diffusion-processes

Neural Diffusion Processes

References
Berkeley, J., Moss, H. B., Artemev, A., Pascual-Diaz, S.,

Granta, U., Stojic, H., Couckuyt, I., Qing, J., Loka, N.,
Paleyes, A., Ober, S. W., and Picheny, V. Trieste, 2022.
URL https://github.com/secondmind-la
bs/trieste.

Bond-Taylor, S. and Willcocks, C. G. infinite-diff: Infi-
nite resolution diffusion with subsampled mollified states.
arXiv preprint arXiv:2303.18242, 2023.

Bruinsma, W., Markou, S., Requeima, J., Foong, A. Y. K.,
Vaughan, A., Andersson, T., Buonomo, A., Hosking,
S., and Turner, R. E. Autoregressive Conditional Neu-
ral Processes. In International Conference on Learn-
ing Representations, February 2023. URL https:
//openreview.net/forum?id=OAsXFPBfTBh.

Bruinsma, W. P., Requeima, J., Foong, A. Y., Gordon, J., and
Turner, R. E. The Gaussian neural process. In Advances
in Approximate Bayesian Inference, 2021.

Dubois, Y., Gordon, J., and Foong, A. Y. Neural process
family. http://yanndubs.github.io/Neura
l-Process-Family/, September 2020.

Foong, A. Y. K., Bruinsma, W. P., Gordon, J., Dubois, Y.,
Requeima, J., and Turner, R. E. Meta-Learning Stationary
Stochastic Process Prediction with Convolutional Neural
Processes. arXiv:2007.01332 [cs, stat], November 2020.

Fortuin, V., Baranchuk, D., Rätsch, G., and Mandt, S. GP-
VAE: Deep probabilistic time series imputation. In Inter-
national Conference on Artificial Intelligence and Statis-
tics, 2020.

Franzese, G., Rossi, S., Rossi, D., Heinonen, M., Filip-
pone, M., and Michiardi, P. Continuous-time functional
diffusion processes. arXiv preprint arXiv:2303.00800,
2023.

Garnelo, M., Rosenbaum, D., Maddison, C., Ramalho, T.,
Saxton, D., Shanahan, M., Teh, Y. W., Rezende, D. J.,
and Eslami, S. M. A. Conditional neural processes. In
International Conference on Machine Learning, 2018a.

Garnelo, M., Schwarz, J., Rosenbaum, D., Viola, F.,
Rezende, D. J., Eslami, S. M. A., and Teh, Y. W. Neural
processes. 2018b.

Gordon, J., Bruinsma, W. P., Foong, A. Y. K., Requeima,
J., Dubois, Y., and Turner, R. E. Convolutional condi-
tional neural processes. In International Conference on
Learning Representations, 2019.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion prob-
abilistic models. In Neural Information Processing Sys-
tems, 2020.

Hoogeboom, E., Satorras, V. G., Vignac, C., and Welling,
M. Equivariant diffusion for molecule generation in 3D.
In International Conference on Machine Learning, pp.
8867–8887, 2022.

Kerrigan, G., Ley, J., and Smyth, P. Diffusion Generative
Models in Infinite Dimensions, 2022.

Kim, H., Mnih, A., Schwarz, J., Garnelo, M., Eslami, S.
M. A., Rosenbaum, D., Vinyals, O., and Teh, Y. W. At-
tentive neural processes. In International Conference on
Learning Representations, 2019.

Kong, Z., Ping, W., Huang, J., Zhao, K., and Catanzaro, B.
Diffwave: A versatile diffusion model for audio synthesis.
In International Conference on Learning Representations,
2020.

Kossen, J., Band, N., Gomez, A. N., Lyle, C., Rainforth,
T., and Gal, Y. Self-attention between datapoints: Going
beyond individual input-output pairs in deep learning.
arXiv:2106.02584, 2021.

Lalchand, V. and Rasmussen, C. E. Approximate infer-
ence for fully Bayesian Gaussian process regression. In
Advances in Approximate Bayesian Inference, 2020.

Lim, J. H., Kovachki, N. B., Baptista, R., Beckham, C.,
Azizzadenesheli, K., Kossaifi, J., Voleti, V., Song, J.,
Kreis, K., Kautz, J., Pal, C., Vahdat, A., and Anandkumar,
A. Score-based diffusion models in function space, 2023.

Liu, S., Sun, X., Ramadge, P. J., and Adams, R. P. Task-
agnostic amortized inference of Gaussian process hyper-
parameters. In Neural Information Processing Systems,
2020.

Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte,
R., and Van Gool, L. Repaint: Inpainting using denoising
diffusion probabilistic models. 2022.

Luo, S. and Hu, W. Diffusion probabilistic models for 3d
point cloud generation. In Computer Vision and Pattern
Recognition, 2021.

Mishra, S., Flaxman, S., Berah, T., Pakkanen, M., Zhu,
H., and Bhatt, S. pivae: Encoding stochastic process
priors with variational autoencoders. arXiv preprint
arXiv:2002.06873, 2020.

Neal, R. M. Regression and classification using gaussian
process priors. In Bernardo, J. M., Berger, J. O., Dawid,
J. W., and Smith, A. F. M. (eds.), International Confer-
ence on Learning Representations. Oxford University
Press, 1998.

Nichol, A., Dhariwal, P., Ramesh, A., Shyam, P., Mishkin,
P., McGrew, B., Sutskever, I., and Chen, M. Glide:

10

https://github.com/secondmind-labs/trieste
https://github.com/secondmind-labs/trieste
https://openreview.net/forum?id=OAsXFPBfTBh
https://openreview.net/forum?id=OAsXFPBfTBh
http://yanndubs.github.io/Neural-Process-Family/
http://yanndubs.github.io/Neural-Process-Family/

Neural Diffusion Processes

Towards photorealistic image generation and editing
with text-guided diffusion models. arXiv preprint
arXiv:2112.10741, 2021.

Phillips, A., Seror, T., Hutchinson, M., De Bortoli, V.,
Doucet, A., and Mathieu, E. Spectral Diffusion Pro-
cesses, November 2022. URL http://arxiv.org/
abs/2209.14125.

Pidstrigach, J., Marzouk, Y., Reich, S., and Wang, S. Infinite-
Dimensional Diffusion Models for Function Spaces,
February 2023. URL http://arxiv.org/abs/
2302.10130.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen,
M. Hierarchical text-conditional image generation with
CLIP latents. arXiv preprint arXiv:2204.06125, 2022.

Rasmussen, C. E. and Williams, C. K. Gaussian processes
for machine learning. MIT Press, 2006.

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and
De Freitas, N. Taking the human out of the loop: A review
of bayesian optimization. Proceedings of the IEEE, 2015.

Simpson, F., Davies, I., Lalchand, V., Vullo, A., Durrande,
N., and Rasmussen, C. E. Kernel identification through
transformers. In Neural Information Processing Systems,
2021a.

Simpson, F., Lalchand, V., and Rasmussen, C. E.
Marginalised Gaussian processes with nested sampling.
In Neural Information Processing Systems, 2021b.

Sohl-Dickstein, J., Weiss, E. A., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequilib-
rium thermodynamics. arXiv preprint arXiv:1503.03585,
2015.

Song, Y. and Ermon, S. Improved techniques for training
score-based generative models. In Neural Information
Processing Systems, volume 33, 2020.

van der Wilk, M., Dutordoir, V., John, S., Artemev, A.,
Adam, V., and Hensman, J. A framework for interdo-
main and multioutput Gaussian processes. arxiv preprint
arXiv:2003.01115, 2020.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Neural Information Processing
Systems, 2017.

Wang, C. and Neal, R. M. Gaussian process regression with
heteroscedastic or non-gaussian residuals. arXiv preprint
arXiv:1212.6246, 2012.

Wilson, A. G., Hu, Z., Salakhutdinov, R., and Xing, E. P.
Deep kernel learning. In Gretton, A. and Robert, C. C.
(eds.), Proceedings of the 19th International Conference
on Artificial Intelligence and Statistics, volume 51 of
Proceedings of Machine Learning Research, pp. 370–378,
Cadiz, Spain, 09–11 May 2016. PMLR.

Xu, M., Yu, L., Song, Y., Shi, C., Ermon, S., and Tang, J.
Geodiff: A geometric diffusion model for molecular con-
formation generation. arXiv preprint arXiv:2203.02923,
2022.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R. R., and Smola, A. J. Deep sets. In
Neural Information Processing Systems, 2017.

11

http://arxiv.org/abs/2209.14125
http://arxiv.org/abs/2209.14125
http://arxiv.org/abs/2302.10130
http://arxiv.org/abs/2302.10130

Neural Diffusion Processes

A. Derivation of the Loss
In this section we derive the objectives given in Eqs. (5) and (10), following a path similar to that presented in Ho et al.
(2020). Let st = (xt,yt) be the state that combines both the inputs and observations. We wish to find the set of parameters θ
which maximise the likelihood given the initial state, pθ(s0). While a direct evaluation of the likelihood appears intractable,

pθ(s0) =

∫
pθ(s0...T)ds1...T ,

this may be recast in a form which allows for a comparison to be drawn between the forward and reverse trajectories
(Sohl-Dickstein et al., 2015)

pθ(s0) =

∫
pθ(sT)q(s1...T |s0)

T∏

t=1

pθ(st−1|t)
q(st|st−1)

ds1...T .

The appeal of introducing the reverse process is that it is tractable when conditioned on the first state s0, taking a Gaussian
form

q(st−1 | st, s0) = N (st−1 | µ̃(st, s0), β̃tI).

Our loss function reflects a lower bound on the negative log likelihood

E[− log pθ(s0)] ≤ Eq(s0:T)

[
log

q(s1:T | s0)
pθ(s0:T)

]
:= Lθ ,

which may be decomposed into two edge terms and a sum over the intermediate steps, as follows

Lθ = Eq

[
LT +

T∑

t=2

Lt−1 + L0

]
,

where

L0 = − log pθ(s0 | s1) ,
Lt−1 = KL(q(st−1 | st, s0)∥pθ(st−1 | st)) ,
LT = KL(q(sT | s0)∥pθ(sT)) .

(11)

We can write

Lt−1 = Es0,ε

[
1

2σ2
∥µ̃(st, s0)− µθ(st, t)∥2

]
, (12)

where the mean is a function of the previous and first state

µ̃(st, s0) =

√
αt(1− ᾱt−1)

1− ᾱt
st +

√
ᾱt−1βt
1− ᾱt

s0

and the variance
β̃t =

1− ᾱt−1

1− ᾱt
βt .

It is helpful to consider the relationship between the initial and final states

s0 =
1√
ᾱt

(st −
√
1− ᾱtεs),

where εs = (εx, εy), so that we can rewrite the mean as

µ̃(st, εs) =
1√
αt

(st −
βt√
1− ᾱt

εs) . (13)

12

Neural Diffusion Processes

∼ Time embedding + Element-wise addition . Broadcasting — B: batch N: num. data D: dimension H: latent dim

P
re
p
ro
ce
ss

D
en
se

∼

D
en
se

D
en
se .

+

Multi-Head
Attention D

Multi-Head
Attention N

+ SiLU

+
+

∑
D

...

D
en
se

D
en
se

D
en
se

[B,N,D,2] [B,N,D,H]

st[B,N,D]
xt

[B,N,1]
yt

[B,1]
t

[B,128] [B,H]

At
[B,N,D,H]

[B,N,H]

[B,N,D,H]

[B,N,1]
ϵyθ

[B,N,D]

ϵxθ

Residual connection

Figure 8: Architecture of the NDP’s NN noise models ϵxθ and ϵyθ . Compared to Fig. 2 this architecture has two outputs, one
to predict the corruption on the inputs xt and one to predict the corruption on the function outputs yt. Both output share a
lot of weights in the network and only bifurcate in the last few layers.

Equation 12 can now be expressed as

Lt−1 = Es0,εs

[
β2
t

2σ2αt(1− ᾱt)
∥εs − ϵsθ∥2

]
. (14)

Finally, since the variance schedule is fixed, and the edge terms are not found to improve empirical performance, our
simplified training objective is given by

Lθ = Ex0,y0,εx,εy,t

[
∥εx − ϵxθ (xt,yt, t)∥2 + ∥εy − ϵyθ(xt,yt, t)∥2

]
. (15)

So far we have derived the objective of the ‘full’ NDP model (i.e., the model which diffuses both x and y) given in Eq. (10)
of the main paper. In Fig. 8 we detail the architecture for the noise models ϵxθ (·) and ϵyθ(·).

B. Algorithms
In this section we list pseudo-code for training and sampling NDPs.

B.1. Training

Algorithm 1 Training

input Input distribution q(x0) and covariance function kψ, with prior over hyperparameters pψ. Noise schedule βt for
t ∈ {1, 2, . . . , T}. A loss function L (e.g., MSE or MAE).

begin
Precompute γt =

√
1− ᾱt and ᾱt =

∏t
j=1(1− βj).

for i = 1, 2, · · · , Niter do
Sample x0 ∼ q(x0), ψ ∼ pψ , y0 ∼ N (0, kψ(x0,x0) + σ2I).
Sample ε ∼ N (0, I), and t ∼ U({1, . . . , T}).
Compute yt =

√
ᾱty0 + γtε.

Update θ using gradient ∇θL(ε, ϵθ(x0,yt, t)).
end for

B.2. Prior and Conditional Sampling

In practice, the code to sample the prior is a special case of the conditional code with an empty context dataset and U = 1.
However, here we list them both for the clarity of the exposition.

13

Neural Diffusion Processes

Algorithm 2 Prior Sampling

input A set of input locations x0, a NDP noise model ϵθ(·). γt and ᾱt for a given noise schedule βt.

begin
Sample a random initial state and yT from N (0, I).
for t = T, T − 1, . . . , 1 do

Sample using backward kernel:

yt−1 ∼ N
(1√

1− βt
(yt −

βt
γt

ϵθ(x0,yt, t)),
γ2t
γ2t−1

βtI
)
.

end for
output (x0,y0)

Algorithm 3 Conditional Sampling

input A context dataset D = {([xc0]i ∈ X , [yc0]i ∈ R)}Ni=1. A NDP noise model ϵθ(·). γt and ᾱt for a given noise schedule
βt.

begin
Sample y∗

T ∼ N (0, I).
Let x0 = [xc0,x

∗
0]

for t = T, T − 1, . . . , 1 do
for u = 1, . . . , U do

Sample context points t steps forward

yct ∼ N
(√

ᾱty
c
0, (1− ᾱt) I

)
. (16)

Let yt = [yct ,y
∗
t].

Sample backward Eq. (3)

yt−1 ∼ N
(1√

1− βt
(yt −

βt
γt

ϵθ(x0,yt, t)),
γ2t
γ2t−1

βtI
)
.

Diffuse forward by one step
yt ∼ N

(√
1− βtyt−1, βtI

)

end for
end for

output (x0,y0)

C. Proofs
In this section, we shall formally demonstrate that NDP’s noise model adheres to the symmetries associated with permutations
of the datapoint orderings and the permutations of the input dimensions. We focus our attention to the full noise model
of Fig. 8 because Fig. 2 is a simplification of it in which we only keep a single output. We start by proving properties of
its main building block: the bi-dimensional attention block. We can then straightforwardly prove the equivariance and
invariance properties that hold for the NDP’s noise model. Before that, we start by setting the notation.

C.1. Notation, Definitions and Preliminary lemmas

Notation. Let s ∈ RN×D×H be a tensor of rank (or dimension) three, where we refer to each dimension according to the
following convention:

shape(s) = [N,D,H],

14

Neural Diffusion Processes

where N stands for the sequence length, D the input dimensionality and H the embedding.

In the next definitions we will use NumPy-based indexing and slicing notation. We assume the reader is familiar with this
convention. Most notably, we use a colon (:) to reference every element in a dimension.

Definition C.1. Let ΠN be the set of all permutations of indices {1, . . . , N}. Let πn ∈ ΠN and s ∈ RN×D×H . Then
(πn ◦ s) ∈ RN×D×H denotes a tensor where the ordering of indices in the first dimension are reshuffled (i.e., permuted)
according to πn. We write

πn ◦ s = sπn(1),πn(2),...,πn(N); : ; :

Definition C.2. Let ΠD be the set of all permutations of indices {1, . . . , D}. Let πd ∈ ΠD and s ∈ RN×D×H . Then
(πd ◦ s) ∈ RN×D×H denotes a tensor where the ordering of indices in the second dimension are reshuffled (i.e., permuted)
according to πd. We write

πd ◦ s = s: ;πd(1),πd(2),...,πd(D); :.

Definition C.3. A function f : RN×D×H → RN×D×H is equivariant to Π if for any permutation π ∈ Π, we have

f(π ◦ s) = π ◦ f(s).

Definition C.4. A function f : RN×D×H → RN×D×H is invariant to Π if for any permutation π ∈ Π, we have

f(π ◦ s) = f(s).

Invariance in layman’s terms means that the output is not affected by a permutation of the inputs.

Lemma C.5. The composition of equivariant functions is equivariant.

Proof. Let f and g be equivariant to Π, then for all π ∈ Π:

(f ◦ g)(π ◦ s) = f(g(π ◦ s)) = f(π ◦ g(s)) = π ◦ f(g(s)),

which shows that the composition, f ◦ g, is equivariant as well.

Lemma C.6. An element-wise operation between equivariant functions remains equivariant.

Proof. Let f and g be equivariant to Π, then for all π ∈ Π and an element-wise operation ⊕ (e.g., addition), we have

(f ⊕ g)(π ◦ s) = f(π ◦ s)⊕ g(π ◦ s) = (π ◦ f(s))⊕ (π ◦ g(s)) = π ◦ (f ⊕ g).

which shows that the composition, f ⊕ g, is equivariant as well.

Lemma C.7. A function f : RN×D×H → RN×D×H which applies the same function g to all its rows, i.e. f : s 7→
[g(s1;:;:), g(s2;:;:), . . . , g(sN ;:;:)] with g : RD×H → RD×H is equivariant in the first dimension.

Proof. Follows immediately from the structure of f .

C.2. Bi-Dimensional Attention Block

With the notation, definitions and lemmas in place, we now prove that the bi-dimensional attention block is equivariant
in its first and second dimension, respectively to permutations in the set ΠN and ΠD. We start this section by formally
defining the bi-dimensional attention block and its main components attention components AttnN and AttnD. Finally, in
Appendix C.3 we prove the properties of the noise models ϵxθ and ϵyθ making use of the results in this section.

Definition C.8. Ignoring the batch dimension B, let At : RN×D×H → RN×D×H ; s 7→ At(s) be the bi-dimensional
attention block. As illustrated in Fig. 8, it operates on three dimensional tensors in RN×D×H and applies attention across
the first and second dimension using AttnN and AttnD, respectively. The final output At(s) is obtained by summing the
two attention outputs, before applying an element-wise non-linearity.

We now proceed by defining the component AttnD and its properties. Subsequently, in Definition C.11 we define AttnN and
its properties. Finally, we combine both to prove Proposition 4.1 in the main paper about the bi-dimensional attention block.

15

Neural Diffusion Processes

Definition C.9. Let AttnD : RN×D×H → RN×D×H be a self-attention block (Vaswani et al., 2017) acting across D. Let
σ be a softmax activation function operating on the last dimension of a tensor. Then, AttnD is defined as

AttnD(s)[n, d, h] =
D∑

d′=1

Σn,d,d′(s)s
v
n,d′,h, where Σn,d,d′(s) = σ

(1√
H

∑

l

skn,d,ℓs
q
n,d′,ℓ

)

given a linear projection of the inputs s which maps them into keys (k), queries (q) and values (v)

skn,d,ℓ =
∑

j

sn,d,jW
k
j,ℓ, sqn,d′,ℓ =

∑

j

sn,d,jW
q
j,ℓ, svn,d′,h =

∑

j

sn,d,jW
v
j,ℓ.

Proposition C.10. AttnD is equivariant to ΠN and ΠD (i.e., across sequence length and input dimensionality).

Proof. We prove the equivariance to ΠN and ΠD separately. First, from the definition we can see that AttnD is a function
that acts on each element row of s separately. Thus, by Lemma C.7, AttnD is equivariant to ΠN .

Next, we want to prove equivariance to ΠD. We want to show that for all πd ∈ ΠD:

AttnD(πd ◦ s) = πd ◦ AttnD(s).

The self-attention mechanism consists of a matrix multiplication of the attention matrix Σ and the projected inputs. We start
by showing that the attention matrix is equivariant to permutations in ΠD

Σn,d,d′(πd ◦ s) = σ
(1√

H

∑

ℓ

(
πd ◦ s

)k
n,d,ℓ

(
πd ◦ s

)q
n,d,ℓ

)

= σ
(1√

H

∑

ℓ,j

(
sn,πd(d),jW

k
j,ℓ

)(
sn,πd(d′),jW

q
j,ℓ

))

= Σn,πd(d),πd(d′)(s)

It remains to show that the final matrix multiplication step restores the row-equivariance

AttnD(πd ◦ s) =
∑

d′

Σn,d,d′(πd ◦ s)
(
πd ◦ s

)v
n,d′,h

=
∑

d′

Σn,πd(d),πd(d′)(s)s
v
n,πd(d′),h

=
∑

d′

Σn,πd(d),d′(s)s
v
n,d′,h = πd ◦ AttnD(s).

This concludes the proof.

We continue by defining and proving the properties of the second main component of the bi-dimensional attention block:
AttnN .

Definition C.11. Let AttnN : RN×D×H → RN×D×H be a self-attention block (Vaswani et al., 2017) acting across N (i.e.
the sequence length). Let σ be a softmax activation function operating on the last dimension of a tensor. Then AttnN is
defined as

AttnN (s)[n, d, h] =

N∑

n′=1

Σn,d,n′(s)svn′,d,h, where Σn,d,n′(s) = σ
(1√

H

∑

l

skn,d,ℓs
q
n′,d,ℓ

)

given a linear projection of the inputs s which maps them into keys (k), queries (q) and values (v)

skn,d,ℓ =
∑

j

sn,d,jW
k
j,ℓ, sqn′,d,ℓ =

∑

j

sn′,d,jW
q
j,ℓ, svn′,d,h =

∑

j

sn′,d,jW
v
j,ℓ.

Proposition C.12. AttnN is equivariant to ΠN and ΠD (i.e., across sequence length and input dimensionality).

16

Neural Diffusion Processes

Proof. Follows directly from Proposition C.10 after transposing the first and second dimension of the input.

Finally, we have the necessary ingredients to prove Proposition 4.1 from the main paper.

Proposition C.13. The bi-dimensional attention block At is equivariant to ΠD and ΠN .

Proof. The bi-dimensional attention block simply adds the output of AttnD and AttnN , followed by an element-wise non-
linearity. Therefore, as a direct application of Lemma C.6 the complete bi-dimensional attention block remains equivariant
to ΠN and ΠD.

C.3. NDP Noise Model

By building on the equivariant properties of the bi-dimensional attention block, we prove the equivariance and invariance of
the NDP’s noise models, denoted by ϵxθ and ϵyθ , respectively. We refer to Fig. 8 for their definition. In short, ϵxθ consists
of adding the output of several bi-dimensional attention blocks followed by dense layers operating on the last dimension.
Similarly, ϵyθ is constructed by summing the bi-dimensional attention blocks, but is followed by a summation over D before
applying a final dense layer.

The following propositions hold:

Proposition C.14. The function ϵxθ is equivariant to ΠD and ΠN .

Proof. The output ϵxθ is formed by element-wise summing the output of bi-dimensional attention layers. Directly applying
Lemma C.5 and Proposition C.13 completes the proof.

Proposition C.15. The function ϵyθ is equivariant to ΠN .

Proof. The summation over D does not affect the equivariance over ΠN from the bi-dimensional attention blocks as it can
be cast as a row-wise operation.

Proposition C.16. The function ϵyθ is invariant to ΠD.

Proof. Follows from the equivariance of the bi-dimensional blocks and (Zaheer et al., 2017, Thm. 7).

D. A Primer on Neural Processes
While Neural Diffusion Processes (NDPs) and Neural Processes (NPs) share a similar goal, they differ significantly in their
approach.

NPs learn a function that maps inputs x ∈ Rd to outputs y ∈ R. NPs specifically define a family of conditional distributions
that allows one to model an arbitrary number of targets x∗ by conditioning on an arbitrary number of observed contexts,
referred to as the context dataset D = {(xi, yi)}ni=1.

NPs use an encoder-decoder architecture to define the conditional distributions. The encoder is a NN which operates on the
context dataset to output a dataset representation r = enc(D). Using this representation, a decoder predicts the function
output at a test location. Conditional NPs (Garnelo et al., 2018a) define the target distribution as a Gaussian which factorises
over the different target points

p(y∗ | x∗,D) =

n∏

i=1

N (y∗i | decµ(x∗i , r), decσ2(x∗i , r)), (17)

where the mean and variance of the Gaussians are given by decoding the context dataset representation r and targets x∗i .
When the context dataset is empty D = ∅, NPs typically set the representation r to a fixed vector.

A latent NP (Garnelo et al., 2018b) relies on a similar encoder-decoder architecture but now the encoder is used to
parameterise a global latent variable z. Conditioned on z the likelihood factorises over the target points

p(y∗ | x∗,D) =

∫

z

n∏

i=1

N (y∗i | decµ(x∗i , r, z), decσ2(x∗i , r, z)) p(z | r) dz. (18)

17

Neural Diffusion Processes

Table 2: Variability in the violin plots of Fig. 10 measured by the standard deviation on the means.

model µ σ2 q50 q90 − q10 q75 − q25

GP 0.005687 0.001491 0.005245 0.010979 0.011858
NDP 0.019796 0.002985 0.018961 0.018718 0.010045

The idea behind having a global latent variable is to model various instances of the stochastic process.

The encoder and decoder networks are trained by maximising a lower bound to the log likelihood over different function
realisations, where a random subset of points is placed in the context and target sets. In all experiments we use an existing
opensource package https://github.com/wesselb/neuralprocesses for the NP baselines as it provides
well-tested and finely-tuned model configurations for a variety of tasks.

E. On Marginal Consistency of Neural Processes and Neural Diffusion Processes
When discussing marginal consistency, there are two different settings that one needs to consider.

1. For a given context dataset, does marginal consistency, p(y0 | D) =
∫
p(y0, y1, . . . , yn | D) dy1:n, hold?

2. Are the conditional distributions related through Bayes’ rule: p(y0 | D) =
∫
p(y0 | D)p(y1 | y0,D) dy1?

It is straightforward to prove that the family of NP models satisfy the first condition. This follows directly from the
factorisation of the target distribution in Eqs. (17) and (18). We refer to Dubois et al. (2020) for a concise overview of the
proofs. As a result, NPs will for a given context dataset satisfy the KET conditions. However, it is important to note that
consistency of NPs is not satisfied within contexts (Kim et al., 2019). To see this, consider the case where we marginalise
over y1 and apply Bayes’ rule

p(y0 | D) =

∫

y1

p(y1 | D) p(y0 | y1,D) dy1. (19)

The distribution produced by the NP on the LHS of the equation need not match the distribution one would obtain if
you append the additional point (x1, y1) to the context dataset on the RHS. This is a consequence of the NNs, which are
responsible for encoding and decoding the context dataset, and can not guarantee consistency when their input changes.
This holds true for latent and conditional NPs, which means neither of them are marginally consistent when their context
dataset changes.

NDPs can not mathematically guarantee marginal consistency as defined by Eq. (2) for an arbitrary number of points n and
sequences {xi}ni=1. Hence, they do not satisfy the criteria for Kolmogorov Extension Theorem. However, it is important to
note that NDPs differ from NPs in their approach to constructing a predictive distribution. In NPs, the predictive distribution
is generated directly by the NN. In NDPs, on the contrary, the predictive distribution is constructed through conditioning the
joint.

E.1. Empirical Evaluation

While NDPs do not mathematically satisfy marginal consistency for arbitrary sequences, the following experiment demon-
strates that they approximate consistency through meta-learning. Similar to NPs, we argue that this behaviour is induced by
the maximum log-likelihood objective, which can be seen as minimising the KL between the consistent samples from the
data-generating process and the NDP’s output.

To illustrate this behaviour, let us sample from the joint p(y0∪{yi}ni=1) | D), and investigate the dependence of the marginal
p(y0) as we vary the other test inputs {xi}ni=1. We set y0 to correspond to the prediction at x = 0 and study 5 different
random configurations for the other input locations {xi}ni=1, numbered #1 to #5. In Fig. 9, we show the posterior samples
p(y0 ∪ {yi}ni=1 | D), the difference between the 5 plots is that we evaluate the posterior at different locations {xi}ni=1 in
[−1, 1]. For each configuration we make sure that x = 0.0 is included such that we can investigate the marginal p(y0).

Figure 10 shows the empirical distribution across samples of the mean µ, variance σ2, median q50 and quantile widths of
p(y1) for each of the different input configurations. As a reference, we also add the statistics of GP at x = 0 samples, which

18

https://github.com/wesselb/neuralprocesses

Neural Diffusion Processes

1.0 0.5 0.0 0.5 1.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

(0.0) = 0.56, 2(0.0) = 0.03

1.0 0.5 0.0 0.5 1.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5

(0.0) = 0.60, 2(0.0) = 0.03

1.0 0.5 0.0 0.5 1.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5

(0.0) = 0.56, 2(0.0) = 0.03

1.0 0.5 0.0 0.5 1.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(0.0) = 0.59, 2(0.0) = 0.03

1.0 0.5 0.0 0.5 1.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
(0.0) = 0.53, 2(0.0) = 0.02

Figure 9: Samples (blue) from the NDP with empirical 25 and 75th quantiles (black). In each of the 5 plots we vary the
locations at which the posterior is evaluated. We make sure that x = 0 is included in the test points, which allows us to
compute the empirical mean, variance and quantiles of y0, which corresponds to the sample evaluated at x = 0.

#1 #2 #3 #4 #5
Shuffled inputs

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

(0)
model

ndp
gp

#1 #2 #3 #4 #5
Shuffled inputs

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
2(0)

#1 #2 #3 #4 #5
Shuffled inputs

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

q50(0)

#1 #2 #3 #4 #5
Shuffled inputs

0.0

0.1

0.2

0.3

0.4

0.5

q90(0) q10(0)

#1 #2 #3 #4 #5
Shuffled inputs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

q75(0) q25(0)

Figure 10: Boxplot of the empirical mean, variance, median and quantile widths of Fig. 9 by repeating the experiment 20
times for each random input configuration. We compare the NDP across different input configurations and agains a GP.

are drawn from a consistent distribution, to the figure. Consistency is observed when the violin plots of the statistics do not
change as of a result of varying {x}ni=1 (i.e., #1, #2, ..., #5 for each model appear the same).

We can quantify this variability by computing the standard deviation on the means of the violin plots across the varying
inputs. The numerical values of this are given in Table 2. We observe that variation in the quantiles are found to be lower
than 10%. By comparing with the equivalent performance of a GP, we find that the bulk of the variations are due to stochastic
fluctuations as a result of finite sample size as opposed to the inconsistencies associated with the NDP.

F. Additional Information on the Experiments
F.1. Experimental Setup and Overview

Here we provide more detailed information describing how the numerical experiments were conducted.

All experiments share the same model architecture illustrated in Figure 2, there are however a number of model parameters
that must be chosen. An L1 (i.e., Mean Absolute Error, MAE) loss function was used throughout. We use four or five
bi-dimensional attention blocks, each consisting of multi-head self-attention blocks (Vaswani et al., 2017) containing a
representation dimensionality of H = 64 and 8 heads. Each experiment used either 500 or 1000 diffusion steps, where we
find larger values produce more accurate samples at the expense of computation time. Following Nichol et al. (2021) we
use a cosine-based scheduling of βt during training. The Adam optimiser is used throughout. Our learning rate follows
a cosine-decay function, with a 20 epochs linear learning rate warm-up to a maximum learning rate of η = 0.001 before
decaying. All NDP models were trained for 250 epochs with the exception of the lengthscale marginalisation experiment,
which was trained for 500 epochs. Each epoch contained 4096 example training (y0,x0) pairs. Training data was provided
in batches of 32, with each batch containing data with the same kernel hyperparameters but different realisations of prior GP
samples. The complete configuration for each experiment is given in Table 3

Experiments were conducted on a 32-core machine and utilised a single Tesla V100-PCIE-32GB GPU. Training of each

19

Neural Diffusion Processes

model used in the experiments takes no longer than 30 minutes, except for the image regression experiments.

Table 3: Experiment configuration and training time.

Experiment Symthetic data Hyperparameter Step High dim 1D opt Image
regression marginalisation BO regression

Epochs 250 500 250 250 250 100
Total samples seen 1024k 2048k 1024k 1024k 1024k -
Batch size 32 32 32 32 32 32
Loss L1 L1 L1 L1 L1 L1
LR decay cosine cosine cosine cosine cosine cosine
LR init 2e−5 0.001 0.001 0.001 0.001 2e−5

LR warmup epochs 20 20 20 20 20 20
Num blocks 4 5 5 5 5 5
Representation dim (H) 64 64 64 64 64 64
Num heads 8 8 8 8 8 8
Num timesteps (T) 500 1000 1000 500 2000 500
β schedule cosine cosine cosine cosine cosine cosine
Num points (N) 60/70/80 100 100 256 100 H ×W
Deterministic inputs True True True True False True

Training time 17m 33m 16m 21m 16m 10h

Time embedding The diffusion step t is a crucial input of the NN noise estimator as the model needs to be able to
differentiate between noise added at the start or the end of the process. Following Vaswani et al. (2017) we use a cyclic
128-dimensional encoding vector for each step

t 7→ [sin(10
0×4
63 t), sin(10

1×4
63 t), . . . , sin(10

64×4
63 t), cos(10

0×4
63 t), . . . , cos(10

64×4
63 t)] ∈ R128

F.2. Illustrative Figure

For the creation of Figs. 1 and 11, we use GPflow (van der Wilk et al., 2020) for the GP regression model using a kernel that
matches the training data: a squared exponential with lengthscale set to 0.2. The other baseline, the Attentive Latent NP,
is a pre-trained model which was trained on a dataset with the same configuration. The ALNP model originates from the
reference implementation of Dubois et al. (2020).

F.3. Hyperparameter Marginalisation

In this experiment, we provide training data to the NDP in the form of unique prior samples from a ground truth GP model.
The input for each prior sample, x0, is deterministically spaced across [−1, 1] with N = 100. The corresponding output y0

is sampled from a GP prior y0|x0 ∼ N
(
0, k(x0,x0) + σ2

)
where the kernel is a stationary Matern- 32 kernel. The noise

variance is set to σ2 = 10−6 and the kernel variance is fixed to σ2
k = 1.0 throughout. We place a log-normal prior on the

lengthscale logN (log 0.5,
√
0.5).

F.4. Non-Gaussian Posteriors

The step function training data is created synthetically by drawing u ∼ U [−1, 1] and letting

f(x) = 0 for x ≤ u, and f(x) = 1 for x > u. (20)

For completeness, we show the performance of two GP models on this data in Fig. 12. As per the definition, each marginal
of a GP is Gaussian which makes modelling this data impossible.

20

Neural Diffusion Processes

(a) GP Regression

(b) Attentive Latent Neural Process

(c) Neural Diffusion Process (ours)

Figure 11: 1D regression: The blue curves are posterior samples from different probabilistic models. We also plot the
empirical mean and two standard deviations of the samples in black. From left to right we increase the number of data points
(black dots) and notice how the process gets closer to the true underlying function.

F.5. Image Regression

In this experiment we train a NDP on two image datasets: MNIST and CelebA. We treat an image as a function with 2D
inputs in [1, H]× [1,W] and 1D grey-scale outputs (MNIST) or 3D RGB output (CelebA). For both datasets we re-scale
the 2D inputs to the unit box [−2, 2]× [−2, 2] and the outputs to normalised.

F.6. Regression on Synthetic Data

We adopt the same experimental setup as Wang & Neal (2012) to generate synthetic data, which includes Gaussian process
(Squared Exponential (SE), MAT’ERN- 52) sample paths. Figure 13 displays samples from each of these datasets, which are
corrupted with observation noise having a variance of σ2 = 0.052. We use a single lengthscale across all dimensions set to
ℓ = 0.25

√
D.

The training data is composed of 214 sample paths, whereas the test dataset comprises 128 paths. For each test path, we
sample the number of context points within a range of 1 and 10D. We fix the number of target points to 50. The input range
for both the training and test datasets, covering both context and target sets, is set to [−2, 2].

F.7. Bayesian Optimisation

In this experiment, we perform Bayesian optimisation on the Hartmann 3D & 6D, Rastrigin 4D and Ackley 5D objectives.
We re-scale, without loss of generality, the inputs of the objectives such that the search space is [−1, 1]D.

The baseline models, GPR and Random, originate from Trieste (Berkeley et al., 2022) —a TensorFlow/GPflow-based
Bayesian Optimisation Python package. We benchmark two NDP models: Fixed and Marginalised. The Fixed NDP model
is trained on Matérn- 52 samples with a fixed lengthscale set to 0.5 along all dimensions. The Marginalised NDP model is
trained on Matérn- 52 samples originating from different lengthscales, drawn from a log-Normal prior.

21

Neural Diffusion Processes

(a) Squared Exponential kernel

(b) Spectral Mixture kernel

Figure 12: Performance of Gaussian process models on step function data. The left panel shows samples from the prior. The
middle panel shows conditional samples where the data is given by the black dots. The right panel shows the marginal at
x = 0.

22

Neural Diffusion Processes

mean ±95% confidence interval samples context target

−2

−1

0

1

2

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−2

−1

0

1

2

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

(a) Squared Exponential

−2

−1

0

1

2

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−2

−1

0

1

2

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

(b) Matérn– 5
2

Figure 13: Model predictions on 1D synthetic datasets. Black dots: random number of context points. Red crosses: 50
target points. Blue lines: samples of the model, mean and 95% confidence intervals using the samples.

23

