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Abstract

Attention, as a core layer of the ubiquitous Transformer architecture, is the bottleneck
for large language models and long-context applications. FLASHATTENTION
elaborated an approach to speed up attention on GPUs through minimizing memory
reads/writes. However, it has yet to take advantage of new capabilities present
in recent hardware, with FLASHATTENTION-2 achieving only 35% utilization
on the H100 GPU. We develop three main techniques to speed up attention on
Hopper GPUs: exploiting asynchrony of the Tensor Cores and TMA to (1) overlap
overall computation and data movement via warp-specialization and (2) interleave
block-wise matmul and softmax operations, and (3) block quantization and
incoherent processing that leverages hardware support for FP8 low-precision. We
demonstrate that our method, FLASHATTENTION-3, achieves speedup on H100
GPUs by 1.5-2.0×with BF16 reaching up to 840 TFLOPs/s (85% utilization), and
with FP8 reaching 1.3 PFLOPs/s. We validate that FP8 FLASHATTENTION-3
achieves 2.6× lower numerical error than a baseline FP8 attention.

1 Introduction
For the Transformer architecture [58], the attention mechanism constitutes the primary computational
bottleneck, since computing the self-attention scores of queries and keys has quadratic scaling in
the sequence length. Scaling attention to longer context will unlock new capabilities (modeling
and reasoning over multiple long documents [24, 43, 49] and files in large codebases [30, 47]), new
modalities (high-resolution images [10], audio [23], video [25]), and new applications (user interaction
with long history [52], agent workflow with long horizon [61]). This has generated significant interest
in making attention faster in the long-context regime, including by approximation [13, 27, 55] and
software optimization ([16, 29, 45]), or even alternative architectures [22, 42, 54].

In this work, we build on the work of Dao et al. [16] on developing exact-attention algorithms that
integrate knowledge of the GPU’s execution model and hardware characteristics into their high-level
design. In [16], Dao et al. introduced FLASHATTENTION, a novel tiling strategy for parallelizing atten-
tion that eliminates intermediate reads/writes to slow global memory through fusing all of the attention
operations into a single GPU kernel. Dao [14] restructured the algorithm as FLASHATTENTION-2 to
also parallelize over the sequence length dimension and perform the inner loop of the forward pass over
blocks of the key and value matrices, thus improving the occupancy and distribution of work on the
GPU. However, we observe that FLASHATTENTION-2 nonetheless achieves poor utilization on newer
GPUs relative to optimized matrix-multiplication (GEMM) kernels, such as 35% vs. 80-85% on the
Hopper H100 GPU. Partially, this may be attributed to implementation-level differences, such as not
using Hopper-specific instructions in place of Ampere ones when targeting the Tensor Cores. Several
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work such as ThunkerKitten [51] and cuDNN 9 [39] has shown that with Hopper-specific instructions
and tile-based abstractions, one can speedup attention computation and simplify the implementation.

More fundamentally, FLASHATTENTION-2’s algorithm adheres to a simplified synchronous model
and makes no explicit use of asynchrony and low-precision in its design. Asynchrony is a result
of hardware specialization to accelerate the most important operations in a ML workload: specific
hardware units performing matrix multiplication (Tensor Cores) or memory loading (Tensor Memory
Accelerator – TMA), separate from the rest of the CUDA cores performing logic, integer, and floating
point computation. Low precision such as FP8 in Hopper and FP4 in Blackwell, continuing the
trend of FP16 (Pascal in 2017) and BF16 (Ampere in 2020), is a proven technique to get double or
quadruple throughput for the same power and chip area. We review the capabilities afforded by Hopper
in these directions in §2.2. The technical challenge is to redesign FLASHATTENTION-2 to make use of
these hardware features: asynchrony requires overlapping computation between matmul and softmax
even though one depends on the output of the other, and low-precision requires care to minimize
quantization error, especially in the case of outlier features in LLMs [20, 53].

To this end, we propose FLASHATTENTION-3, which contributes and synthesizes three new ideas
to further improve performance on newer GPU architectures:2

1. Producer-Consumer asynchrony: We define a warp-specialized software pipelining scheme that
exploits the asynchronous execution of data movement and Tensor Cores by splitting producers and
consumers of data into separate warps, thereby extending the algorithm’s ability to hide memory
and instruction issue latencies.

2. Hiding softmax under asynchronous block-wise GEMMs: We overlap the comparatively low-
throughput non-GEMM operations involved in softmax, such as floating point multiply-add and
exponential, with the asynchronous WGMMA instructions for GEMM. As part of this, we rework
the FLASHATTENTION-2 algorithm to circumvent certain sequential dependencies between softmax
and the GEMMs. For example, in the 2-stage version of our algorithm, while softmax executes on one
block of the scores matrix, WGMMA executes in the asynchronous proxy to compute the next block.

3. Hardware-accelerated low-precision GEMM: We adapt the forward pass algorithm to allow
for targeting the FP8 Tensor Cores for GEMM, nearly doubling the measured TFLOPs/s. This
requires bridging the different layout conformance requirements of WGMMA in terms of how
blocks of FP32 accumulator and FP8 operand matrices are assumed to be laid out in memory. We
use the techniques of block quantization and incoherent processing to mitigate the loss of accuracy
that results from moving to FP8 precision.

To validate our method empirically, we benchmark FLASHATTENTION-3 on the H100 SXM5 GPU
over a range of parameters and show that (1) BF16 achieves 1.5-2.0× speedup over FLASHATTENTION-
2 in the forward pass (reaching up to 840 TFLOPs/s) and 1.5-1.75× in the backward pass, (2) FP8
achieves 1.3 PFLOPs/s, and (3) for large sequence length, BF16 outperforms and FP8 is on par
compared to the state-of-the-art implementation of attention from NVIDIA’s cuDNN library. We also
validate that FP16 FLASHATTENTION-3 yields the same numerical error as FLASHATTENTION-2 and
is better than the standard attention implementation as intermediate results (e.g., softmax rescaling) are
kept in FP32. Moreover, FP8 FLASHATTENTION-3 with block quantization and incoherent processing
is 2.6×more accurate than standard attention with per-tensor quantization in cases with outlier features.

We open-source FLASHATTENTION-3 with a permissive license3 and plan to integrate it with PyTorch
to benefit the largest number of researchers and developers.

2 Background: Multi-Head Attention and GPU Characteristics
2.1 Multi-Head Attention

Let Q,K,V ∈ R𝑁×𝑑 be the query, key and value input sequences associated to a single head, where
𝑁 is the sequence length and 𝑑 is the head dimension. Then the attention output O is computed as:

S=𝛼QK> ∈R𝑁×𝑁 , P=softmax(S) ∈R𝑁×𝑁 , O=PV∈R𝑁×𝑑 ,

where softmax is applied row-wise and one typically sets 𝛼=1/
√
𝑑 as the scaling factor. In practice,

we subtract rowmax(S) from S to prevent numerical instability with the exponential function. For
2We describe our results in the context of NVIDIA’s Hopper architecture. However, our algorithm is operative

for any GPU architecture with sufficiently robust asynchronous execution and low-precision capabilities.
3FLASHATTENTION-3 is available at https://github.com/Dao-AILab/flash-attention
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multi-head attention (MHA), each head has its own set of query, key and value projections, and this
computation parallelizes across multiple heads and batches to produce the full output tensor.

Now let 𝜙 be a scalar loss function and let d(−) = 𝜕𝜙/𝜕 (−) be notation for the gradient. Given the
output gradient dO∈R𝑁×𝑑 , we compute dQ, dK, and dV according to the chain rule as follows:

dV=P>dO∈R𝑁×𝑑 , dP=dOV> ∈R𝑁×𝑁 ,

dS=dsoftmax(dP) ∈R𝑁×𝑁 , dQ=𝛼dSK∈R𝑁×𝑑 , dK=𝛼dS>Q∈R𝑁×𝑑 .

Here, we have that d𝑠= (diag(𝑝)−𝑝𝑝>)d𝑝 for 𝑝=softmax(𝑠) as a function of a vector 𝑠, and we write
dsoftmax(dP) for this formula applied row-wise. Finally, this computation again parallelizes across
the number of heads and batches for the backward pass of MHA.

2.2 GPU hardware characteristics and execution model

We describe the aspects of the GPU’s execution model relevant for FLASHATTENTION-3, with a focus
on the NVIDIA Hopper architecture as a concrete instantiation of this model.

Memory hierarchy: The GPU’s memories are organized as a hierarchy of data locales, with capacity
inversely related to bandwidth (Table 1)4. Global memory (GMEM), also known as HBM, is the off-
chip DRAM accessible to all streaming multiprocessors (SMs). Data from GMEM gets transparently
cached into an on-chip L2 cache. Next, each SM contains a small on-chip, programmer-managed
highly banked cache called shared memory (SMEM). Lastly, there is the register file within each SM.

Thread hierarchy: The GPU’s programming model is organized around logical groupings of
execution units called threads. From the finest to coarsest level, the thread hierarchy is comprised
of threads, warps (32 threads), warpgroups (4 contiguous warps), threadblocks (i.e., cooperative thread
arrays or CTAs), threadblock clusters (in Hopper), and grids.

These two hierarchies are closely interlinked. Threads in the same CTA are co-scheduled on the same
SM, and CTAs in the same cluster are co-scheduled on the same GPC. SMEM is directly addressable
by all threads within a CTA, whereas each thread has at most 256 registers (RMEM) private to itself.

Table 1: Thread-Memory hierarchy for the NVIDIA Hopper H100 SXM5 GPU.
Hardware Level Parallel Agent Data Locale Capacity @ Bandwidth

Chip Grid GMEM 80 GiB @ 3.35 TB/s
GPC Threadblock Clusters L2 50 MiB @ 12 TB/s

SM Threadblock (CTA) SMEM 228 KiB per SM, 31TB/s per GPU
Thread Thread RMEM 256 KiB per SM

Asynchrony and warp-specialization: GPUs are throughput processors that rely on concurrency
and asynchrony to hide memory and execution latencies. For async memory copy between GMEM
and SMEM, Hopper has the Tensor Memory Accelerator (TMA) as a dedicated hardware unit [38,
§7.29]. Furthermore, unlike prior architectures such as Ampere, the Tensor Core of Hopper, exposed
via the warpgroup-wide WGMMA instruction [40, §9.7.14], is also asynchronous and can source
its inputs directly from shared memory.

Hardware support for asynchrony allows for warp-specialized kernels, where the warps of a CTA are
divided into producer or consumer roles that only ever issue either data movement or computation.
Generically, this improves the compiler’s ability to generate optimal instruction schedules [4]. In
addition, Hopper supports the dynamic reallocation of registers between warpgroups via setmaxnreg
[40, §9.7.17.1], so those warps doing MMAs can obtain a larger share of RMEM than those just issuing
TMA (for which only a single thread is needed).

Low-precision number formats: Modern GPUs have specialized hardware units for accelerating
low-precision computation. For example, the WGMMA instruction can target the FP8 Tensor Cores
on Hopper to deliver 2x the throughput per SM when compared to FP16 or BF16.

4Luo et al. [34] reports shared memory bandwidth of 128 bytes per clock cycle per SM, and we multiply that
by 132 SMs and the boost clock of 1830 MHz.
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However, correctly invoking FP8 WGMMA entails understanding the layout constraints on its
operands. Given a GEMM call to multiply 𝐴×𝐵> for an 𝑀×𝐾-matrix 𝐴 and an 𝑁×𝐾-matrix 𝐵, we
say that the 𝐴 or 𝐵 operand is mn-major if it is contiguous in the outer 𝑀 or 𝑁 dimension, and k-major
if is instead contiguous in the inner 𝐾-dimension. Then for FP16 WGMMA, both mn-major and
k-major input operands are accepted for operands in SMEM, but for FP8 WGMMA, only the k-major
format is supported. Moreover, in situations such as attention where one wants to fuse back-to-back
GEMMs in a single kernel, clashing FP32 accumulator and FP8 operand layouts pose an obstacle
to invoking dependent FP8 WGMMAs.

In the context of attention, these layout restrictions entail certain modifications to the design of an
FP8 algorithm, which we describe in §3.3.

2.3 Standard Attention and Flash Attention

Following Dao et al. [16], we let standard attention denote an implementation of attention on the GPU
that materializes the intermediate matrices S and P to HBM. The main idea of FLASHATTENTION was
to leverage a local version of the softmax reduction to avoid these expensive intermediate reads/writes
and fuse attention into a single kernel. Local softmax corresponds to lines 18-19 of the consumer
mainloop in Algorithm 1 together with the rescalings of blocks of O. The simple derivation that this
procedure indeed computes O can be found in [14, §2.3.1].

3 FlashAttention-3: Algorithm
In this section, we describe the FLASHATTENTION-3 algorithm. For simplicity, we focus on the
forward pass, with the backward pass algorithm described in Appendix B.1. We first indicate
how to integrate warp-specialization with a circular SMEM buffer into the base algorithm of
FLASHATTENTION-2. We then explain how to exploit asynchrony of WGMMA to define an
overlapped GEMM-softmax 2-stage pipeline. Finally, we describe the modifications needed for FP8,
both in terms of layout conformance and accuracy via block quantization and incoherent processing.

3.1 Producer-Consumer asynchrony through warp-specialization and pingpong scheduling

Warp-specialization As with FLASHATTENTION-2, the forward pass of FLASHATTENTION-3
is embarrassingly parallel in the batch size, number of heads, and query sequence length. Thus,
it will suffice to give a CTA-level view of the algorithm, which operates on a tile Q𝑖 of the query
matrix to compute the corresponding tile O𝑖 of the output. To simplify the description, we first
give the warp-specialization scheme with a circular SMEM buffer that does not have in addition the
GEMM-softmax overlapping. Let 𝑑 be the head dimension, 𝑁 the sequence length, and fix a query
block size 𝐵𝑟 to divide Q into𝑇𝑟 = d 𝑁𝐵𝑟

e blocks Q1,..,Q𝑇𝑟 .

For our implementation of Algorithm 1 on Hopper, we use setmaxnreg for (de)allocations, TMA
for loads of Q𝑖 and {K 𝑗 ,V 𝑗 }0≤ 𝑗<𝑇𝑐 , and WGMMA to execute the GEMMs in the consumer mainloop,
with the SS or RS prefix indicating whether the first operand is sourced from shared memory or register
file. For interpreting the execution flow of Algorithm 1, note that issuing TMA loads does not stall
on the completion of other loads due to asynchrony. Moreover, in the producer mainloop, no waits
will be issued for the first 𝑠 iterations as the buffer gets filled.

Pingpong scheduling The asynchronous nature of WGMMA and TMA, along with warp-
specialization, opens up the opportunity to overlap the softmax computation of one warpgroup with
the GEMM of another warpgroup. To motivate this, notice that non-matmul operations have much
lower throughput than matmul operations on modern hardware accelerators. As an example, the H100
SXM5 GPU has 989 TFLOPS of FP16 matmul but only 3.9 TFLOPS of special functions such as
exponential5 (necessary for softmax). For the attention forward pass in FP16 with head dimension 128,
there are 512x more matmul FLOPS compared to exponential operations, but the exponential has 256x
lower throughput, so exponential can take 50% of the cycle compared to matmul. The situation is even
worse with FP8, where the matmul throughput doubles but the exponential throughput stays the same.

5The CUDA programming guide specifies that 16 operations of special functions can be performed per
streaming multiprocessor (SM) per clock cycle. We multiply 16 by 132 SMs and 1830 MHz clock speed to get 3.9
TFLOPS of special functions.
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Algorithm 1 FLASHATTENTION-3 forward pass without intra-consumer overlapping – CTA view

Require: Matrices Q𝑖 ∈R𝐵𝑟×𝑑 and K,V∈R𝑁×𝑑 in HBM, key block size 𝐵𝑐 with𝑇𝑐 = d 𝑁𝐵𝑐
e.

1: Initialize pipeline object to manage barrier synchronization with 𝑠-stage circular SMEM buffer.
2: if in producer warpgroup then
3: Deallocate predetermined number of registers.
4: Issue load Q𝑖 from HBM to shared memory.
5: Upon completion, commit to notify consumer of the load of Q𝑖 .
6: for 0≤ 𝑗 <𝑇𝑐 do
7: Wait for the ( 𝑗%𝑠)th stage of the buffer to be consumed.
8: Issue loads of K 𝑗 ,V 𝑗 from HBM to shared memory at the ( 𝑗%𝑠)th stage of the buffer.
9: Upon completion, commit to notify consumers of the loads of K 𝑗 ,V 𝑗 .

10: end for
11: else
12: Reallocate predetermined number of registers as function of number of consumer warps.
13: On-chip, initialize O𝑖 = (0) ∈R𝐵𝑟×𝑑 and ℓ𝑖 ,𝑚𝑖 = (0),(−∞) ∈R𝐵𝑟 .
14: Wait for Q𝑖 to be loaded in shared memory.
15: for 0≤ 𝑗 <𝑇𝑐 do
16: Wait for K 𝑗 to be loaded in shared memory.
17: Compute S( 𝑗)

𝑖
=Q𝑖K𝑇

𝑗
(SS-GEMM). Commit and wait.

18: Store𝑚old
𝑖

=𝑚𝑖 and compute𝑚𝑖 =max(𝑚old
𝑖
,rowmax(S( 𝑗)

𝑖
)).

19: Compute P̃( 𝑗)
𝑖

=exp(S( 𝑗)
𝑖
−𝑚𝑖) and ℓ𝑖 =exp(𝑚old

𝑖
−𝑚𝑖)ℓ𝑖+rowsum(P̃( 𝑗)

𝑖
).

20: Wait for V 𝑗 to be loaded in shared memory.
21: Compute O𝑖 =diag(exp(𝑚old

𝑖
−𝑚𝑖))O𝑖+P̃( 𝑗)

𝑖
V 𝑗 (RS-GEMM). Commit and wait.

22: Release the ( 𝑗%𝑠)th stage of the buffer for the producer.
23: end for
24: Compute O𝑖 =diag(ℓ𝑖)−1O𝑖 and 𝐿𝑖 =𝑚𝑖+log(ℓ𝑖).
25: Write O𝑖 and 𝐿𝑖 to HBM as the 𝑖th block of O and 𝐿.
26: end if

Since the exponential is performed by a separate hardware unit (the multi-function unit), ideally we’d
want the exponential calculation to be scheduled when the Tensor Cores are performing the matmul. To
do so, we use synchronization barriers (bar.sync instructions) to force the GEMMs (GEMM1 – PV
of one iteration, and GEMM0 – QK> of the next iteration) of warpgroup 1 to be scheduled before the
GEMMs of warpgroup 2. As a result, the softmax of warpgroup 1 will be scheduled while warpgroup
2 is performing its GEMMs. Then the roles swap, with warpgroup 2 doing softmax while warpgroup
1 doing GEMMs (hence, “pingpong” scheduling). This is illustrated in Fig. 1. Though in practice
the pingpong scheduling is not as clean as depicted in the figure, we generally find this to improve
performance (e.g., from 570 TFLOPS to 620-640 TFLOPS for FP16 forward with head dimension
128 and sequence length 8192).

Figure 1: Pingpong scheduling for 2 warpgroups to overlap softmax and GEMMs: the softmax of one warpgroup
should be scheduled when the GEMMs of another warpgroup are running. The same color denotes the same
iteration.

Attention variants For multi-query attention [50] and grouped query attention [3], we follow the
approach in FLASHATTENTION-2 and adjust the tensor indexing to avoid duplicating K and V in HBM.
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3.2 Intra-warpgroup overlapping GEMMs and softmax

Even within one warpgroup, we can overlap some instructions in the softmax with some instructions
in the GEMMs. We describe one technique to do so.

In the attention algorithm, operations within the inner loop (main loop) have sequential dependencies
that impede parallelization within a single iteration. For example, (local) softmax (lines 18 to 19)
relies on the output S( 𝑗)

𝑖
of the first GEMM, while the second GEMM takes its result P̃( 𝑗)

𝑖
as an

operand. Indeed, the wait statements in lines 17 and 21 of Algorithm 1 serialize the execution of
softmax and GEMMs. However, we can break these dependencies by pipelining across iterations
through additional buffers in registers. Pursuing this idea, we propose the following two-stage6

GEMM-softmax pipelining algorithm:

Figure 2: 2-stage WGMMA-softmax pipelining

Algorithm 2 FLASHATTENTION-3 consumer warpgroup forward pass

Require: Matrices Q𝑖 ∈R𝐵𝑟×𝑑 and K,V∈R𝑁×𝑑 in HBM, key block size 𝐵𝑐 with𝑇𝑐 = d 𝑁𝐵𝑐
e.

1: Reallocate predetermined number of registers as function of number of consumer warps.
2: On-chip, initialize O𝑖 = (0) ∈R𝐵𝑟×𝑑 and ℓ𝑖 ,𝑚𝑖 = (0),(−∞) ∈R𝐵𝑟 .
3: Wait for Q𝑖 and K0 to be loaded in shared memory.
4: Compute Scur=Q𝑖K𝑇

0 using WGMMA. Commit and wait.
5: Release the 0th stage of the buffer for K.
6: Compute𝑚𝑖 , P̃cur and ℓ𝑖 based on Scur, and rescale O𝑖 .
7: for 1≤ 𝑗 <𝑇𝑐−1 do
8: Wait for K 𝑗 to be loaded in shared memory.
9: Compute Snext=Q𝑖K𝑇

𝑗
using WGMMA. Commit but do not wait.

10: Wait for V 𝑗−1 to be loaded in shared memory.
11: Compute O𝑖 =O𝑖+P̃curV 𝑗−1 using WGMMA. Commit but do not wait.
12: Wait for the WGMMA Q𝑖K𝑇

𝑗
.

13: Compute𝑚𝑖 , P̃next and ℓ𝑖 based on Snext.
14: Wait for the WGMMA P̃curV 𝑗−1 and then rescale O𝑖

15: Release the ( 𝑗%𝑠)th, resp. ( 𝑗−1%𝑠)th stage of the buffer for K, resp. V.
16: Copy Snext to Scur.
17: end for
18: Wait for V𝑇𝑐−1 to be loaded in shared memory.
19: Compute O𝑖 =O𝑖+P̃lastV𝑇𝑐−1 using WGMMA. Commit and wait.
20: Epilogue: Rescale O𝑖 based on𝑚𝑖 . Compute 𝐿𝑖 based on𝑚𝑖 and ℓ𝑖 . Write O𝑖 and 𝐿𝑖 to HBM as

the 𝑖-th block of O and 𝐿.

Algorithm 2 functions as a replacement for the consumer path of Algorithm 1 to comprise the complete
FLASHATTENTION-3 algorithm for FP16 precision. At a high-level, we use WGMMA as a metonym
for asynchronous GEMM. Within the mainloop (lines 8 to 16), the second WGMMA operation of
iteration 𝑗 (line 11) is overlapped with softmax operations from iteration 𝑗+1 (line 13).

While the pipelined structure illustrated above offers theoretical performance gains, there are several
practical aspects to consider:

6Note that the number of stages of the overlapping scheme is bounded by, but need not equal, the number 𝑠 of
stages in the circular SMEM buffer.
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T0 {d0, d1} T1 {d0, d1} T0 {d4, d5} T1 {d4, d5}T2 {d0, d1} T3 {d0, d1} T2 {d4, d5} T3 {d4, d5}
T0 {d2, d3} T1 {d2, d3} T0 {d6, d7} T1 {d6, d7}T2 {d2, d3} T3 {d2, d3} T2 {d6, d7} T3 {d6, d7}

Figure 3: FP32 accumulator register WGMMA layout – rows 0 and 8, threads 0-3, entries 0-7.

T0 {a0, a1} T0 {a2, a3} T1 {a0, a1} T1 {a2, a3} T2 {a0, a1} T2 {a2, a3} T3 {a0, a1} T3 {a2, a3}
T0 {a4, a5} T0 {a6, a7} T1 {a4, a5} T1 {a6, a7} T2 {a4, a5} T2 {a6, a7} T3 {a4, a5} T3 {a6, a7}

Figure 4: FP8 operand A register WGMMA layout – rows 0 and 8, threads 0-3, entries 0-7.

Compiler reordering The pseudocode represents an idealized execution order but the compiler
(NVCC) often rearranges instructions for optimization. This can disrupt the carefully crafted WGMMA
and non-WGMMA operation pipelining sequence, potentially leading to unexpected behavior or
diminished performance gains. An analysis of the SASS code shows that the compiler generates
overlapped code as expected (Section B.2).

Register pressure To maintain optimal performance, register spilling should be minimized.
However, the 2-stage pipeline requires additional registers to store intermediate results and maintain
context between stages. Specifically, an extra Snext must be kept in registers, leading to extra register
usage of size 𝐵𝑟×𝐵𝑐×sizeof(float) per threadblock. This increased register demand may conflict with
using larger block sizes (another common optimization), which is also register-hungry. In practice,
trade-offs should be made based on profiling results.

3-stage pipelining Extending the 2-stage algorithm described above, we propose a 3-stage variant
that would further overlap the second WGMMA with softmax. While this approach offers the potential
for even higher Tensor Core utilization, it requires even more registers due to an additional stage in
the pipeline, making the trade-off between tile size and pipeline depth more difficult to balance. A
detailed description of the 3-stage algorithm and its evaluation results can be found in Appendix B.3.

3.3 Low-precision with FP8

Efficiency: FP8 layout for accumulator and operand. Computing the forward pass of
FLASHATTENTION-3 in FP8 precision poses two additional challenges not encountered for FP16 in
terms of layout conformance. The first relates to the datatype conversion of the first WGMMA’s FP32 ac-
cumulator to the second WGMMA’s lower-precision (FP16 or FP8) operand, which was left implicit in
Algorithm 1. Specifically, after downcasting to FP8, we need to transform the register ownership pattern
from that depicted in Fig. 3 into Fig. 4, repeated per every four threads of the consumer warpgroups.

In Appendix B.7, we give a solution for this in code using shuffle instructions.

Secondly, the k-major constraint on FP8 WGMMA explained in §2.2 entails clashing assumptions
on how Q, K, and V are laid out in global memory, since the TMA load cannot change the contiguous
dimension. Namely, Q and K should be contiguous in the head dimension, whereas V should be
contiguous in the sequence length dimension. We perform in-kernel transposition of the V 𝑗 tiles
in SMEM prior to invoking the second FP8 WGMMA, since in practice, V is typically assumed to
be contiguous in the head dimension. In Appendix B.8, we describe in details how to perform the
V transpose as part of the attention kernel itself.

Accuracy: block quantization and incoherent processing. With FP8 (e4m3) format, one only
uses 3 bits to store the mantissa and 4 bits for the exponent. This results in higher numerical error
than FP16/BF16. Moreover, large models typically have outlier values [20, 53] that are much larger
in magnitude than most other values, making quantization difficult. One typically use per-tensor
scaling [37] by keeping one scalar per tensor (e.g., one for Q, for K, and for V). To reduce the
numerical error of attention in FP8, we employ two techniques:

1. Block quantization: we keep one scalar per block, so that for each of Q, K, V we split the tensor
into blocks of size 𝐵𝑟 ×𝑑 or 𝐵𝑐×𝑑 and quantize them separately. This quantization can be fused
with an operation right before attention (e.g., rotary embedding) with no additional slow down
(since rotary embedding is memory-bandwidth bound). As the FLASHATTENTION-3 algorithm
naturally operates on blocks, we can scale each block of S to account for this block quantization
at no computation cost.
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2. Incoherent processing: to even out outliers, we multiply Q and K with a random orthogonal matrix
M before quantizing to FP8. Since M is orthogonal, MM> = 𝐼 and so (QM) (KM)> =QK>, i.e.,
multiplying both Q and K with M does not change the attention output. This serves to “spread out”
the outliers since each entry of QM or KM is a random sum of entries of Q or K, thus reducing quanti-
zation error. In practice, we follow Chee et al. [8] and Tseng et al. [57] and choose M to be the product
of random diagonal matrices of ±1 and a Hadamard matrix, which can be multiplied in𝑂 (𝑑log𝑑)
instead of𝑂 (𝑑2), and can also be fused with the rotary embedding at no extra computation cost.

We validate that these two techniques reduces numerical error by up to 2.6× in §4.3.

4 Empirical Validation
We use the primitives from CUTLASS [56] such as WGMMA and TMA abstractions to implement
FLASHATTENTION-3 and evaluate its efficiency and accuracy.

• Benchmarking attention. We measure the runtime of FLASHATTENTION-3 across different
sequence lengths and compare it to a standard implementation in PyTorch, FLASHATTENTION-2,
FLASHATTENTION-2 in Triton (which uses H100-specific instructions), as well as a vendor’s
implementation of FLASHATTENTION-2 optimized for H100 GPUs from cuDNN. We confirm
that FLASHATTENTION-3 is up to 2.0× faster than FLASHATTENTION-2 and 1.5× faster than
FLASHATTENTION-2 in Triton. FLASHATTENTION-3 reaches up to 840 TFLOPs/s, 85% of the
theoretical maximum TFLOPs/s on H100 GPUs.

• Ablation study. We confirm that our algorithmic improvements with warp-specialization and
GEMM-softmax pipelining contribute to the speedup of FLASHATTENTION-3.

• Accuracy of FP8 attention. We validate that block quantization and incoherent processing reduces
the numerical error of FP8 FLASHATTENTION-3 by 2.6×.

4.1 Benchmarking Attention

We measure the runtime of different attention methods on an H100 80GB SXM5 GPU for different
settings (without / with causal mask, head dimension 64 or 128) for BF16 inputs. We report the
results in Fig. 5 and Fig. 6, showing that FLASHATTENTION-3 is around 1.5-2.0× faster than
FLASHATTENTION-2 in the forward pass and 1.5-1.75× faster in the backward pass. Compared to
a standard attention implementation, FLASHATTENTION-3 can be up to 3-16× faster. For medium
and long sequences (1k and above), FLASHATTENTION-3 even surpasses the speed of a vendor’s
library (cuDNN – closed source) that has been optimized for H100 GPUs.

Benchmark settings: We vary the sequence length as 512, 1k, ..., 16k, and set batch size so that the
total number of tokens is 16k. We set the hidden dimension to 2048, and head dimension to be either 64,
128, or 256 (i.e., 32 heads, 16 heads, or 8 heads). To calculate the FLOPs of the forward pass, we use:

4·seqlen2 ·head dimension·number of heads.

With causal masking, we divide this number by 2 to account for the fact that approximately only half
of the entries are calculated. To get the FLOPs of the backward pass, we multiply the forward pass
FLOPs by 2.5 (since there are 2 matmuls in the forward pass and 5 matmuls in the backward pass,
due to recomputation).

We also measure the runtime for FP8 for the forward pass under similar settings. We report the results
for headdim 256 in Fig. 7 and give the full results in Appendix C.2.

4.2 Ablation Study: 2-Stage Pipelining Experiments

We ablate both the 2-stage WGMMA-softmax pipelining and warp-specialization for non-causal FP16
FLASHATTENTION-3 with fixed parameters {batch,seqlen,nheads,hdim} = {4,8448,16,128}. The
result in Table 2 confirms that our algorithmic improvements (asynchrony with warp-specialization
and overlapping between GEMM and softmax) lead to significant speedup, from 570 to 661 TFLOPs.

4.3 Numerical Error Validation

As there has been interest in the numerical error [21] of FLASHATTENTION, we compare
FLASHATTENTION-2, FLASHATTENTION-3, and a standard implementation of attention against
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(b) Forward, with causal mask, head dim 64
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(e) Forward, without causal mask, head dim 256
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Figure 5: Attention forward speed (BF16) on H100 GPU

Table 2: Pipelining ablation measurements
Configuration Time TFLOPs/s
FLASHATTENTION-3 3.538 ms 661
No GEMM-Softmax Pipelining, Warp-Specialization 4.021 ms 582
GEMM-Softmax Pipelining, No Warp-Specialization 4.105 ms 570

a reference implementation in FP64. To simulate outlier features and activations in LLMs [20, 53],
we generate the entries of Q,K,V with the following distribution:

N(0,1)+N (0,100) ·Bernoulli(0.001).
That is, each entry is normally distributed with zero mean and standard deviation 1, but for 0.1% of
entries we add an independent term that’s normally distributed with standard deviation 10. We then
measure the root mean squared error (RMSE) in Table 3. In FP16, both FLASHATTENTION-2 and
FLASHATTENTION-3 achieves 1.7× lower RMSE compared to the standard implementation since inter-
mediate results (softmax) are kept in FP32. The baseline attention in FP8 uses per-tensor scaling, with
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Figure 6: Attention backward speed (BF16) on H100 GPU
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Figure 7: Attention forward speed (FP8) on H100 GPU

matmul accumulator in FP32 and intermediate softmax results kept in FP16. Thanks to block quantiza-
tion and incoherent processing, FLASHATTENTION-3 in FP8 is 2.6×more accurate than this baseline.

Table 3: Numerical error comparisons in FP16 and FP8 (e4m3).
Method Baseline FP16 FLASHATTENTION-2 FP16 FLASHATTENTION-3 FP16
RMSE 3.2e-4 1.9e-4 1.9e-4

Method Baseline FP8 FLASHATTENTION-3 FP8 No block quant No incoherent processing
RMSE 2.4e-2 9.1e-3 9.3e-3 2.4e-2

5 Dicussion, Limitations, Conclusion
With FLASHATTENTION-3, we have demonstrated that new programming techniques and hardware
features such as asynchrony and low-precision can have a dramatic impact on the efficiency
and accuracy of attention. We are able to speed up attention by 1.5-2.0× times compared to
FLASHATTENTION-2, and reduce FP8 numerical error by 2.6× compared to standard per-tensor
quantization. Some limitations of our work that we hope to address in the future include: optimizing
for LLM inference, and understanding the effects of low-precision attention in large-scale training.
Though we have focused on Hopper GPUs in this work, we expect that the techniques developed here
will apply to other hardware accelerators. We hope that a faster and more accurate primitive such as
attention will unlock new applications in long-context tasks.

10



References
[1] Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, and Jack Dongarra. Performance, design,

and autotuning of batched gemm for gpus. pages 21–38, 06 2016. ISBN 978-3-319-41320-4.
doi: 10.1007/978-3-319-41321-1_2.

[2] AI21. Introducing jamba: Ai21’s groundbreaking ssm-transformer model. AI21 blog, 2024.

[3] Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and
Sumit Sanghai. Gqa: Training generalized multi-query transformer models from multi-head
checkpoints. arXiv preprint arXiv:2305.13245, 2023.

[4] Michael Bauer, Henry Cook, and Brucek Khailany. CudaDMA: Optimizing GPU Memory
Bandwidth via Warp Specialization. In Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’11, New York, NY, USA, 2011.
Association for Computing Machinery. ISBN 9781450307710. doi: 10.1145/2063384.2063400.
URL https://doi.org/10.1145/2063384.2063400.

[5] Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xlstm: Extended
long short-term memory. arXiv preprint arXiv:2405.04517, 2024.

[6] Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

[7] William Brandon, Aniruddha Nrusimha, Kevin Qian, Zachary Ankner, Tian Jin, Zhiye Song, and
Jonathan Ragan-Kelley. Striped attention: Faster ring attention for causal transformers. arXiv
preprint arXiv:2311.09431, 2023.

[8] Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-bit quantization
of large language models with guarantees. Advances in Neural Information Processing Systems,
36, 2024.

[9] Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scatterbrain:
Unifying sparse and low-rank attention. In Advances in Neural Information Processing Systems
(NeurIPS), 2021.

[10] Richard J Chen, Chengkuan Chen, Yicong Li, Tiffany Y Chen, Andrew D Trister, Rahul G
Krishnan, and Faisal Mahmood. Scaling vision transformers to gigapixel images via hierarchical
self-supervised learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 16144–16155, 2022.

[11] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with
sparse transformers. arXiv preprint arXiv:1904.10509, 2019.

[12] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane,
Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking
attention with performers. In The International Conference on Learning Representations (ICLR),
2021.

[13] Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser, et al.
Rethinking attention with performers. In International Conference on Learning Representations
(ICLR), 2020.

[14] Tri Dao. FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning, 2023.
URL https://arxiv.org/abs/2307.08691.

[15] Tri Dao and Albert Gu. Transformers are SSMs: Generalized models and efficient algorithms with
structured state space duality. In International Conference on Machine Learning (ICML), 2024.

[16] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast
and memory-efficient exact attention with IO-awareness. In Advances in Neural Information
Processing Systems, 2022.

11

https://doi.org/10.1145/2063384.2063400
https://arxiv.org/abs/2307.08691


[17] Tri Dao, Daniel Y Fu, Khaled K Saab, Armin W Thomas, Atri Rudra, and Christopher Ré. Hungry
hungry hippos: Towards language modeling with state space models. In The International
Conference on Learning Representations (ICLR), 2023.

[18] Tri Dao, Daniel Haziza, Francisco Massa, and Grigory Sizov. Flash-Decoding for long-context
inference, 2023. URL https://pytorch.org/blog/flash-decoding/.

[19] DeepSeek-AI. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language
model. arXiv preprint arXiv:2405.04434, 2024.

[20] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm. int8 (): 8-bit matrix
multiplication for transformers at scale. CoRR abs/2208.07339, 2022.

[21] Alicia Golden, Samuel Hsia, Fei Sun, Bilge Acun, Basil Hosmer, Yejin Lee, Zachary DeVito,
Jeff Johnson, Gu-Yeon Wei, David Brooks, et al. Is flash attention stable? arXiv preprint
arXiv:2405.02803, 2024.

[22] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. 2023.

[23] Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu, Wei Han,
Shibo Wang, Zhengdong Zhang, Yonghui Wu, et al. Conformer: Convolution-augmented
transformer for speech recognition. arXiv preprint arXiv:2005.08100, 2020.

[24] Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung,
and Yinfei Yang. Longt5: Efficient text-to-text transformer for long sequences. arXiv preprint
arXiv:2112.07916, 2021.

[25] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and
David J Fleet. Video diffusion models. Advances in Neural Information Processing Systems,
35:8633–8646, 2022.

[26] Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun Sophia
Shao, Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm
inference with kv cache quantization. arXiv preprint arXiv:2401.18079, 2024.

[27] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers
are RNNs: Fast autoregressive transformers with linear attention. In International Conference
on Machine Learning, pages 5156–5165. PMLR, 2020.

[28] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
The International Conference on Machine Learning (ICML), 2020.

[29] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with PagedAttention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pages 611–626, 2023.

[30] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source
be with you! arXiv preprint arXiv:2305.06161, 2023.

[31] Hao Liu, Matei Zaharia, and Pieter Abbeel. Ring attention with blockwise transformers for
near-infinite context. arXiv preprint arXiv:2310.01889, 2023.

[32] Hao Liu, Wilson Yan, Matei Zaharia, and Pieter Abbeel. World model on million-length video
and language with ringattention. arXiv preprint arXiv:2402.08268, 2024.

[33] Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024.

[34] Weile Luo, Ruibo Fan, Zeyu Li, Dayou Du, Qiang Wang, and Xiaowen Chu.
Benchmarking and Dissecting the Nvidia Hopper GPU Architecture, 2024. URL
https://arxiv.org/abs/2402.13499.

12

https://pytorch.org/blog/flash-decoding/
https://arxiv.org/abs/2402.13499


[35] Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan
May, and Luke Zettlemoyer. Mega: Moving average equipped gated attention. In The
International Conference on Learning Representations (ICLR), 2023.

[36] Xuezhe Ma, Xiaomeng Yang, Wenhan Xiong, Beidi Chen, Lili Yu, Hao Zhang, Jonathan May,
Luke Zettlemoyer, Omer Levy, and Chunting Zhou. Megalodon: Efficient llm pretraining and
inference with unlimited context length. arXiv preprint arXiv:2404.08801, 2024.

[37] Paulius Micikevicius, Dusan Stosic, Neil Burgess, Marius Cornea, Pradeep Dubey, Richard
Grisenthwaite, Sangwon Ha, Alexander Heinecke, Patrick Judd, John Kamalu, et al. Fp8 formats
for deep learning. arXiv preprint arXiv:2209.05433, 2022.

[38] NVIDIA. CUDA Programming Guide Version 12.4, 2024. URL https://docs.nvidia.com/
cuda/cuda-c-programming-guide/index.html.

[39] Nvidia. Accelerating transformers with nvidia cudnn 9. Nvidia
blog, 2024. URL https://developer.nvidia.com/blog/
accelerating-transformers-with-nvidia-cudnn-9/.

[40] NVIDIA. Parallel Thread Execution ISA Version 8.4, 2024. URL https:
//docs.nvidia.com/cuda/pdf/ptx_isa_8.4.pdf.

[41] Muhammad Osama, Duane Merrill, Cris Cecka, Michael Garland, and John D. Owens. Stream-k:
Work-centric parallel decomposition for dense matrix-matrix multiplication on the gpu. In
Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of
Parallel Programming, PPoPP ’23, pages 429–431, New York, NY, USA, 2023. Association
for Computing Machinery. ISBN 9798400700156. doi: 10.1145/3572848.3577479. URL
https://doi.org/10.1145/3572848.3577479.

[42] Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Huanqi Cao, Xin
Cheng, Michael Chung, Matteo Grella, Kranthi Kiran GV, et al. RWKV: Reinventing RNNs
for the Transformer era. arXiv preprint arXiv:2305.13048, 2023.

[43] Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context
window extension of large language models. arXiv preprint arXiv:2309.00071, 2023.

[44] Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A Smith, and Lingpeng Kong.
Random feature attention. In The International Conference on Learning Representations (ICLR),
2021.

[45] Markus N Rabe and Charles Staats. Self-attention does not need𝑂 (𝑛2) memory. arXiv preprint
arXiv:2112.05682, 2021.

[46] Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based
sparse attention with routing Transformers. arXiv preprint arXiv:2003.05997, 2020.

[47] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models
for code. arXiv preprint arXiv:2308.12950, 2023.

[48] Rya Sanovar, Srikant Bharadwaj, Renee St. Amant, Victor Rühle, and Saravan Rajmohan. Lean
attention: Hardware-aware scalable attention mechanism for the decode-phase of transformers.
2024.

[49] Uri Shaham, Elad Segal, Maor Ivgi, Avia Efrat, Ori Yoran, Adi Haviv, Ankit Gupta, Wenhan
Xiong, Mor Geva, Jonathan Berant, et al. Scrolls: Standardized comparison over long language
sequences. arXiv preprint arXiv:2201.03533, 2022.

[50] Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

[51] Benjamin Spector, Aaryan Singhal, Simran Arora, and Christopher Ré, 2024. URL
https://github.com/HazyResearch/ThunderKittens.

13

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://developer.nvidia.com/blog/accelerating-transformers-with-nvidia-cudnn-9/
https://developer.nvidia.com/blog/accelerating-transformers-with-nvidia-cudnn-9/
https://docs.nvidia.com/cuda/pdf/ptx_isa_8.4.pdf
https://docs.nvidia.com/cuda/pdf/ptx_isa_8.4.pdf
https://doi.org/10.1145/3572848.3577479
https://github.com/HazyResearch/ThunderKittens


[52] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec:
Sequential recommendation with bidirectional encoder representations from transformer.
In Proceedings of the 28th ACM international conference on information and knowledge
management, pages 1441–1450, 2019.

[53] Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang Liu. Massive activations in large language
models. arXiv preprint arXiv:2402.17762, 2024.

[54] Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang,
and Furu Wei. Retentive network: A successor to transformer for large language models. arXiv
preprint arXiv:2307.08621, 2023.

[55] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey.
arXiv preprint arXiv:2009.06732, 2020.

[56] Vijay Thakkar, Pradeep Ramani, Cris Cecka, Aniket Shivam, Honghao Lu, Ethan Yan, Jack
Kosaian, Mark Hoemmen, Haicheng Wu, Andrew Kerr, Matt Nicely, Duane Merrill, Dustyn
Blasig, Fengqi Qiao, Piotr Majcher, Paul Springer, Markus Hohnerbach, Jin Wang, and Manish
Gupta. CUTLASS, January 2023. URL https://github.com/NVIDIA/cutlass.

[57] Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#:
Even better llm quantization with hadamard incoherence and lattice codebooks. arXiv preprint
arXiv:2402.04396, 2024.

[58] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[59] Roger Waleffe, Wonmin Byeon, Duncan Riach, Brandon Norick, Vijay Korthikanti, Tri Dao,
Albert Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak Narayanan, et al. An empirical study
of mamba-based language models. arXiv preprint arXiv:2406.07887, 2024.

[60] Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li,
and Vikas Singh. Nyströmformer: A nystöm-based algorithm for approximating self-attention.
In Proceedings of the AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial
Intelligence, volume 35, page 14138, 2021.

[61] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

[62] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers
for longer sequences. Advances in Neural Information Processing Systems, 33, 2020.

[63] Zyphra. Zyphra unveils zamba: A compact 7b ssm hybrid model. Zyphra blog, 2024.

14

https://github.com/NVIDIA/cutlass


A Related Work
Attention variants and distributed attention Ever since attention became popular with the Trans-
former architecture [58], there has been a large body of work on approximating attention to scale it to
longer sequences. These approximation methods can generally be categorized into two classes: sparse
and low-rank. Sparse attention only computes some entries of the attention matrix (softmax(QK𝑇 ))
and assumes that other entries are zero. Different methods have different ways of choosing which
entries should be zero, either with a fixed pattern [11], with a sliding window [6], or with a dynamic
pattern through hashing [28] or routing [46]. The low-rank approach instead assumes that the attention
matrix has a low-rank structure, and apply a pointwise nonlinearity to the query and key [27] with
random projection [12, 44, 60]. One can also combine the sparse and low-rank approximation for
better quality [9, 62]. However, these approximation methods typically do not offer the same model
quality as standard attention [55], and so most large-scale models do not employ these techniques.

There are other variants of attention aimed at reducing the size of the KV cache to improve inference
efficiency. Multi-query attention [50] and grouped query attention [3] tie different heads of K and
V, and multiple query heads interact with the same key and value head. Multi-head latent attention [19]
parameterizes the K and V as low-rank projections of a shared matrix to further reduce the KV
cache size. However, all of these approaches do not change the core computation softmax(QK𝑇 )V
during training and simply change how Q,K,V are obtained. As a result, any efficiency or accuracy
improvement to the standard attention computation benefits these methods.

To extend to even longer context, attention computation can be distributed across multiple GPUs.
Methods such as Ring attention [31, 32] and variants [7] can reach a context length of up to 1 million.
They use FLASHATTENTION (or FLASHATTENTION-2) as a primitive, and so the improvement from
FLASHATTENTION-3 would benefit these distributed attention methods as well.

Alternative architectures Motivated by the limitations of attention, a variety of alternative
architectures have been proposed. They build on the connection between linear attention [27] and
recurrent neural networks (RNNs). RWKV [42], H3 [17], MEGA [35], Retnet [54] enhance the
expressivity of the simple cumulative sum in linear attention with more sophisticated recurrences.
Mamba [22] and xLSTM [5] use learnable weighting for the recurrence and can match the quality
of Transformers in language modeling at small or medium scale. These approaches can be connected
to generalizations of linear attention through the lens of the structure of the token-mixing matrix [15].
These models have started to see some traction, seeing usage in some medium to large-scale models
such as Jamba [2], Zamba [63], Megalodon [36], and Mamba2-hybrid [59]. For the highest quality,
these SSM- and RNN-based models still employ many layers of attention. We expect that techniques
to speed up attention presented in this work will be useful to speedup these alternative architectures.

Low-precision attention Quantization is a promising approach to speed up attention, but they
have mostly focused on reducing the space for KV cache for inference efficiency. QuIP [8] and
QuIP#[57] use incoherent processing to reduce the quantization, and we adapted this technique for FP8
FLASHATTENTION-3. Recent work suggests that for inference the KV cache is highly compressible
down to 4-, 3-, or even 2-bits [26, 33]. However, quantization during training is still challenging as
higher precision is typically required for stable training.

Hardware-aware Algorithms Our work presented in this paper focuses on the micro-architecture
specific tuning to leverage new instruction sets and adopt a natively asynchronous programming model.
There are other orthogonal axes for hardware-aware algorithm co-design being explored. A recent
example of this is LeanAttention [48], which recognizes the poor GPU occupancy and high memory
bandwidth requirements of the sequential token generation phase as primary bottlenecks for inference
and optimizes it via a smarter load balancing strategy similar to Stream-K load balancing [41] to
achieve nearly peak occupancy. There is a large literature on optimizing GEMM for specific hardware
that employs many of the same techniques. As an example, Abdelfattah et al. [1] presents a high
performance batched GEMM kernel on K40c Graphics Processing Units (GPU) for both fixed and
variable sizes, proposing specialized GEMM designs and a comprehensive autotuning process to
deliver state-of-the-art performance.

15



B Addition Details on Algorithms
B.1 Asynchrony Through Warp Specialization for the Backward Pass

Similar to the forward pass §3.1, we use warp specialization to handle asynchrony. Instead of just
a simple producer-consumer pattern in the forward pass, we add one extra role of a dQ writer, since
we need to accumulate the value of dQ produced by each thread block to the global value of dQ. This
dQ accumulation introduces memory contention (many thread blocks writing to the same location)
so having a separate warp to handle this (along with asynchrony) will avoid blocking the rest of the
warps in the thread block to perform the next computation (matmul).

We include the backward pass with warp specialization in Algorithm 3.

Algorithm 3 FLASHATTENTION-3 backward pass with warp specialization

Require: Matrices Q,K,V,O,dO ∈R𝑁×𝑑 in HBM, logsumexp vector 𝐿 ∈R𝑁 in HBM, block sizes
𝐵𝑐 , 𝐵𝑟 .

1: In a preprocessing kernel, compute 𝐷 = rowsum(dO◦O) ∈R𝑑 (pointwise multiply), write 𝐷 to
HBM and divide it into𝑇𝑟 blocks 𝐷1,...,𝐷𝑇𝑟 of size 𝐵𝑟 each.

2: Divide Q into 𝑇𝑟 =
⌈
𝑁
𝐵𝑟

⌉
blocks Q1, ...,Q𝑇𝑟 of size 𝐵𝑟 × 𝑑 each, and divide K,V in to 𝑇𝑐 =

⌈
𝑁
𝐵𝑐

⌉
blocks K1,...,K𝑇𝑐 and V1,...,V𝑇𝑐 , of size 𝐵𝑐×𝑑 each.

3: Divide dO into𝑇𝑟 blocks dO𝑖 ,...,dO𝑇𝑟 of size 𝐵𝑟×𝑑 each, and divide 𝐿 into𝑇𝑟 blocks 𝐿𝑖 ,...,𝐿𝑇𝑟
of size 𝐵𝑟 each.

4: Initialize pipeline object to manage barrier synchronization with 𝑠-stage circular SMEM buffer.
5: if in producer warpgroup then
6: Deallocate predetermined number of registers.
7: Issue load K 𝑗 and V 𝑗 from HBM to shared memory.
8: Upon completion, commit to notify consumer of the load of K 𝑗 and V 𝑗 .
9: for 1≤ 𝑖≤𝑇𝑟 do

10: Wait for the (𝑖%𝑠)th stage of the buffer to be consumed.
11: Issue loads of Q𝑖 ,dO𝑖 from HBM to shared memory at the (𝑖%𝑠)th stage of the buffer.
12: Upon completion, commit to notify consumers of the loads of Q𝑖 ,dO𝑖 .
13: end for
14: else if in consumer warpgroups then
15: Reallocate predetermined number of registers as function of number of consumer warps.
16: On-chip, Initialize dK 𝑗 = (0)𝐵𝑐×𝑑 ,dV 𝑗 = (0)𝐵𝑐×𝑑 .
17: Wait for K 𝑗 and V 𝑗 to be loaded in shared memory.
18: for 1≤ 𝑖≤𝑇𝑟 do
19: Wait for Q𝑖 to be loaded in shared memory.
20: Load 𝐿𝑖 ,𝐷𝑖 from HBM to on-chip SRAM.
21: On chip, compute S( 𝑗)

𝑖
=Q𝑖K𝑇

𝑗
∈R𝐵𝑟×𝐵𝑐 (SS-GEMM). Commit.

22: Wait for dO𝑖 to be loaded in shared memory.
23: On chip, compute dP( 𝑗)

𝑖
=dO𝑖V>𝑗 ∈R𝐵𝑟×𝐵𝑐 (SS-GEMM). Commit.

24: On chip, wait for S( 𝑗)
𝑖

, then compute P( 𝑗)
𝑖

=exp(S𝑖 𝑗−𝐿𝑖) ∈R𝐵𝑟×𝐵𝑐 .
25: On chip, wait for dP( 𝑗)

𝑖
, then compute dS( 𝑗)

𝑖
=P( 𝑗)

𝑖
◦(dP( 𝑗)

𝑖
−𝐷𝑖) ∈R𝐵𝑟×𝐵𝑐 .

26: On chip, compute dV 𝑗←dV 𝑗+(P( 𝑗)𝑖
)>dO𝑖 ∈R𝐵𝑐×𝑑 (RS-GEMM). Commit.

27: On chip, compute dK 𝑗←dK 𝑗+dS( 𝑗)
𝑖

>
Q𝑖 ∈R𝐵𝑐×𝑑 (RS-GEMM). Commit and wait for both

dV 𝑗 and dK 𝑗 .
28: On chip, compute dQ(local)

𝑖
= dS( 𝑗)

𝑖
K 𝑗 ∈R𝐵𝑟×𝑑 (SS-GEMM), and write dQ(local)

𝑖
to smem.

Notify the dQ-writer.
29: end for
30: else if in dQ-writer warp then
31: for 1≤ 𝑖≤𝑇𝑟 do
32: Wait for dQ(local)

𝑖
to be ready in smem.

33: Using a semaphore, atomically add dQ(local)
𝑖

to dQ𝑖 in global memory.
34: end for
35: end if
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B.2 2-Stage Pipelining SASS Analysis

We give simplified SASS code for the inside of the consumer warpgroup mainloop.

// Compute row_max
FMNMX.FTZ R0, R24, R6, !PT ;
SHFL.BFLY PT, R185, R2, 0x2, 0x1f ;
... FMNMX and SHFL.BFLY ...

// Apply exp2 and row_sum. Rescale O.
FMUL.FTZ R2, R4, UR9 ;
MUFU.EX2 R185, R184 ;
FFMA.FTZ R24, R24, UR9, -R6.reuse ;
FADD.FTZ R24, R211, R24 ;
... FMUL, FFMA, FMUL, MUFU.EX2, FADD ...

// FP32 -> FP16 conversion are interleaved with exp2, row_sum and O rescaling.
F2FP.F16.F32.PACK_AB R231, R25, R231 ;
... F2FP, FMUL, MUFU, FFMA, FADD ...

// Start the first WGMMA. Broken down into 8 HGMMAs.
// The first 7 HGMMAs are packed together.
WARPGROUP.ARRIVE ;
HGMMA.64x192x16.F32 R24, gdesc[UR44], RZ, !UPT ;
... HGMMA x 6 ...

// FP32->FP16, exp2, row_sum, O rescaling are interleaved with HGMMA.
F2FP.F16.F32.PACK_AB R214, R214, R187 ;
MUFU.EX2 R234, R5 ;
FADD.FTZ R237, R187, R2 ;
... F2FP, MUFU, FADD ...

// The last HGMMA is issued here. No need to wait.
HGMMA.64x192x16.F32 R24, gdesc[UR44], R24, gsb0 ;

// Start the second WGMMA. Broken down into 12 HGMMAs.
// All 12 HGMMAs are packed together. Not interleaved with other instructions.
WARPGROUP.ARRIVE ;
HGMMA.64x128x16.F32 R120, R228, gdesc[UR8].tnspB, R120 ;
... HGMMA x 10 ...
HGMMA.64x128x16.F32 R120, R184, gdesc[UR8].tnspB, R120, gsb0 ;

// wgmma.wait_group at the end.
WARPGROUP.DEPBAR.LE gsb0, 0x0 ;

We make the following observations:

1. Softmax is reordered to the very beginning, even before the first WGMMA.

2. The first WGMMA is interleaved with softmax and FP32→ FP16 datatype conversion of
S. This indicates that WGMMA and non-WGMMAs are executed in parallel.

3. exp2, row\_sum, O rescaling and FP32→ FP16 conversions are interleaved together.

4. The second WGMMA is not overlapped with other instructions, as expected.

Overall, SASS shows that the 2-stage pipelining idea works as expected.

B.3 3-Stage Pipelining Algorithm

We experiment with a 3-stage pipelining algorithm to parallelize the first WGMMA from iteration 𝑗+2,
softmax from iteration 𝑗+1, and the second WGMMA from iteration 𝑗 . We describe this algorithm in Al-
gorithm 4. This algorithm behaves worse than the 2-stage pipelining algorithm due to the reasons below:
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Figure 8: 3-Stage Pipelining

Algorithm 4 FLASHATTENTION 3-stage pipelining consumer warpgroup forward pass

Require: Matrices Q,K,V∈R𝑁×𝑑 in HBM, block sizes 𝐵𝑐 , 𝐵𝑟 . Each warpgroup reads 1 block Qi of
size 𝐵𝑟 ×𝑑, 𝑇𝑐 =

⌈
𝑁
𝐵𝑐

⌉
blocks K1,...,K𝑇𝑐 and V1,...,V𝑇𝑐 of size 𝐵𝑐×𝑑. Each warpgroup writes 1

output block O𝑖 of size 𝐵𝑟×𝑑, and 1 logsumexp block 𝐿𝑖 of size 𝐵𝑟 .
1: Initialization. Load Q𝑖 from HBM to on-chip SRAM. Initialize O𝑖 ,ℓ𝑖 ,𝑚𝑖 ,𝑠𝑐𝑎𝑙𝑒_𝑜.
2: Wait for the producer warpgroup loading K0 from HBM to on-chip SRAM.
3: Compute S=Q𝑖K𝑇

0 using WGMMA. Commit and wait.
4: Compute𝑚𝑖 , P̃𝑖 , ℓ𝑖 , 𝑠𝑐𝑎𝑙𝑒_𝑜 based on S.
5: Wait for the producer warpgroup loading K1 from HBM to on-chip SRAM.
6: Compute S=Q𝑖K𝑇

1 using WGMMA. Commit and wait.
7: for 2≤ 𝑗 <𝑇𝑐−2 do
8: Wait for the producer warpgroup loading K 𝑗 from HBM to on-chip SRAM.
9: Compute S_𝑛𝑒𝑥𝑡=Q𝑖K𝑇

𝑗
using WGMMA. Commit but do not wait.

10: Wait for the producer warpgroup loading V 𝑗−2 from HBM to on-chip SRAM.
11: Rescale O𝑖 based on 𝑠𝑐𝑎𝑙𝑒_𝑜.
12: Compute O𝑖 =O𝑖+P̃𝑖V 𝑗−2 using WGMMA. Commit but do not wait.
13: Compute𝑚𝑖 , P̃𝑖_𝑛𝑒𝑥𝑡, ℓ𝑖 , 𝑠𝑐𝑎𝑙𝑒_𝑜 based on S.
14: Wait for all previous WGMMAs.
15: Copy S_𝑛𝑒𝑥𝑡 to S.
16: Copy P̃𝑖_𝑛𝑒𝑥𝑡 to P̃𝑖 .
17: end for
18: Wait for the producer warpgroup loading V𝑇𝑐−2 from HBM to on-chip SRAM.
19: Rescale O𝑖 based on 𝑠𝑐𝑎𝑙𝑒_𝑜.
20: Compute O𝑖 =O𝑖+P̃𝑖V𝑇𝑐−2 using WGMMA. Commit and wait.
21: Compute𝑚𝑖 , P̃𝑖 , ℓ𝑖 , 𝑠𝑐𝑎𝑙𝑒_𝑜 based on S.
22: Wait for the producer warpgroup loading V𝑇𝑐−1 from HBM to on-chip SRAM.
23: Rescale O𝑖 based on 𝑠𝑐𝑎𝑙𝑒_𝑜.
24: Compute O𝑖 =O𝑖+P̃𝑖V𝑇𝑐−1 using WGMMA. Commit and wait.
25: Epilogue. Rescale O𝑖 based on ℓ𝑖 . Compute 𝐿𝑖 based on ℓ𝑖 and𝑚𝑖 . Write O𝑖 and 𝐿𝑖 to HBM as the

𝑖-th block of O and 𝐿.

Overlapping. We expected that softmax can be overlapped with (the first WGMMA + the second
WGMMA). However, the compiler doesn’t cooperate in this way. SASS code shows that only the
first WGMMA is overlapped with softmax, while the second WGMMA is not. It’s not clear why the
compiler chooses to reorder instructions in this way.

Register pressure. This algorithm requires more registers compared to the 2-stage pipelining
algorithm. In theory, it needs to store an extra P̃𝑖 and 𝑠𝑐𝑎𝑙𝑒_𝑜, which is of size 𝐵𝑟 × 𝐵𝑐 ×
sizeof(input_data_type)+𝐵𝑟×sizeof(float). As a result, a smaller block size needs to be chosen.

B.4 Variable Sequence Length

Some optimizations mentioned above cannot be directly used for variable sequence lengths and require
special handling.

TMA To enable TMA to handle variable sequence lengths directly, additional steps are required.
These include modifying a tensormap using the PTX instruction ’tensormap.replace’ and store the
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tensormap in global memory, which adds overhead and complexity. To address this, during the forward
pass when loading Q, we make TMA consistently loads tile_size rows of data. For out-of-bound
access, TMA sets zeros for rows beyond the original tensor, while S tensor masking masks out unused
rows in a tile. When writing O, we leverage memory-coalesced writes directly, as this is the final step
and does not require asynchrony. In the backward pass, a preprocess kernel pads each sequence in
dQ, dPSum, and LSE tensors with an additional 128 (tile_size) elements, allowing us to utilize TMA
store for efficient data transfer.

Threadblock cluster and TMA multi-cast We utilize TMA multi-cast with a cluster size of 2
for fixed sequence length data loads, allowing every 2 threadblocks processing the same sequence
to collaboratively read KV tensors. However, this approach is not well-suited for variable sequence
lengths or cases like causal masking and window attention, where some threadblocks may exit earlier
and cannot collaborate with other threadblocks in the same cluster. Not utilizing clustering for variable
sequence lengths results in a performance drop of around 2% compared to fixed sequence lengths.

B.5 Masks: causal, local attention, variable sequence length

We apply masks to the S tensor to handle causal and local attention, as well as out-of-bound access for
variable sequence lengths. Since masking is expensive, we apply it only when necessary. For instance,
in the forward pass, the minimum and maximum KV block indices are calculated and iterated over
in the main loop. For causal or variable sequence lengths, masking is applied only to the maximum
K block index. For local attention, masking is applied only to the first and last few K block indices
based on local attention configurations. Masking is skipped for other K block indices.

B.6 Persistent Kernel

During the execution of the attention kernel, there is a prologue (loading 𝑄) and epilogue (writing
output) where the Tensor Cores are not running. To maximize efficiency, we implement a persistent
kernel that can overlap the epilogue of one iteration with the prologue of the next iteration to reduce
this overhead and keep the Tensor Cores busy. In particular, we launch as many thread blocks as there
are streaming multiprocessors (e.g., 132 on the H100 SXM5) and implement a scheduler that assigns
tiles to each of the thread block. Each thread block might perform attention for more than one tile.

B.7 Register data exchange required for second WGMMA in FP8 FLASHATTENTION-3

T0 T1 T2 T3T0 T1 T2 T3T0 T1 T2 T3T0 T1 T2 T3

T0 T3T1 T2T0 T3T1 T2T0 T3T1 T2T0 T3T1 T2

T0 T3 T1 T2T0 T3 T1 T2T1 T2 T0 T3T1 T2 T0 T3

T0 T2 T0 T2T0 T2 T0 T2T1 T3 T1 T3T1 T3 T1 T3

Figure 9: Register data movement to satisfy layout conformance requirements of FP8 WGMMA.

In code, we can effect the register-to-register data exchange that transforms the register ownership
pattern of Fig. 3 into Fig. 4 through invoking a combination of the following two CUDA intrinsics:

• byte_perm: Given two 32-bit unsigned integers x and y and selector s, the byte permute instruction
returns 4 bytes from the 8 input bytes as specified by s.

• shfl_sync: The shuffle instruction exchanges register data from a source lane index j into its own
destination register.

Our method is illustrated in Fig. 9. First, we can swap the order of data held within a thread’s registers by
using byte permute as follows. Referring to the top row of Fig. 9, for a given thread letupperbe the first 4
bytes (those in light and dark blue) and letlowerbe the last 4 bytes (those in light and dark yellow). Then
for the data held by threads 1 and 2, we do the swap by calling byte_perm with the indicated selectors:

auto upper_mid = __byte_perm(upper, lower, 0x7654);
auto lower_mid = __byte_perm(upper, lower, 0x3210);
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Now between the second and third rows, we exchange data among threads by using shuffle instructions.
Observe that the upper and lower blocks of 4 bytes should be each exchanged among themselves.
Moreover, the shuffling of the upper blocks differs from that of the lower blocks, and both shuffles
depend on the thread index (mod 4). We account for this using two pre-defined arrays to call
__shfl_sync with the correct srcLane parameter as follows:

int upper_map[4] = {0,3,1,2};
int lower_map[4] = {1,2,0,3};
upper_mid = __shfl_sync(uint32_t(-1), upper_mid, upper_map[threadIdx.x%4], 4);
lower_mid = __shfl_sync(uint32_t(-1), lower_mid, lower_map[threadIdx.x%4], 4);

Finally, between the third and fourth rows, we repeat the technique with byte_perm, but now for all
four threads and with the selector depending on the thread index (mod 4). For threads 0 and 3, we have:

upper_last = __byte_perm(upper_mid, lower_mid, 0x5410);
lower_last = __byte_perm(upper_mid, lower_mid, 0x7632);

whereas for threads 1 and 2, we have:

upper_last = __byte_perm(upper_mid, lower_mid, 0x1054);
lower_last = __byte_perm(upper_mid, lower_mid, 0x3276);

B.8 In-kernel transposition of V for FP8 FLASHATTENTION-3

We describe how to fuse the memory transpose of V needed for the second FP8 WGMMA into
FLASHATTENTION-3. This is handled as an out-of-place SMEM to RMEM to SMEM transfer that
is executed in the producer warpgroup.

Specifically, within the producer mainloop, after issuing the TMA load of a tile of V, the producer
warpgroup waits for the load to complete. Then, producer warps effect the transpose by issuing LDSM
(ldmatrix) and STSM (stmatrix) instructions, which involve a warp of threads collectively loading
SMEM to RMEM and storing RMEM to SMEM at a granularity of 128 bytes. Finally, we have an addi-
tional pipeline object to manage synchronization between the producer warpgroup and consumers, since
the producer pipeline for the TMA load of V now instead has the producer warpgroup as its consumer.

We choose LDSM/STSM instructions as they are both register efficient, allowing us to execute them in
the producer warpgroup even after register deallocation, and capable of transposing layouts when doing
memory copy. Note that as SMEM requirements are first reduced by the smaller memory footprint of
the FP8 datatype, we find that we have enough SMEM for the separate buffer used to store the transpose.

There is a technical obstacle to using LDSM and STSM in the context of FP8 datatype that is worth
mentioning. Note that in the PTX documentation, LDSM/STSM are described as copying 8 × 8
matrices with 16-bit entries [40, §9.7.13.4.15-16], but we can pack 8-bit entries two at a time to use
LDSM/STSM in the context of FP8 precision. However, the transpose versions of LDSM/STSM
cannot split packed 8-bit entries, which necessitates certain register movements in between LDSM and
STSM to actually perform a tile-wise transpose. The use of byte permute to split and reorder packed
8-bit entries in between LDSM and STSM is depicted in the following code snippet:

cute::copy(tiled_copy_ldsm, tXsX, tXrX);
auto data = tXrX.data();
#pragma unroll
for (int n = 0; n < size(tXrX); n += 8) {
uint32_t *data_32bit = reinterpret_cast<uint32_t *>(&data[n]);
auto upper = data_32bit[0];
auto lower = data_32bit[1];
data_32bit[0] = __byte_perm(upper, lower, 0x6420);
data_32bit[1] = __byte_perm(upper, lower, 0x7531);

}
cute::copy(tiled_copy_stsm, tXrX, tXsX_out);

Since this permutes the eventual rows of the transposed V tile, we also need to modify the register
movements on the consumer side that transform accumulator to operand P. We exploit the mathematical
fact that

20



P·V=colperm𝜎 (P) ·rowperm𝜎 (V)

for 𝜎 a permutation of the common inner dimension of P and V. Moreover, for the modified register
exchange, we can eliminate the use of warp shuffles, but not byte permute, as each thread will already
own all the entries it needs for WGMMA.

B.9 FLASHATTENTION-3 for inference

For decoding inference, the query sequence length is much shorter than the key/value sequence length,
typically on the order of one or a few tokens compared to the thousands stored in the KV cache. In
this situation, attention becomes a memory-bound workload, and the relevant metric is not tensor
core utilization as measured by FLOPs/s, but loading the KV cache as fast as possible as measured
by memory bandwidth. Furthermore, since the FLASHATTENTION-3 algorithm described in §3.1
parallelizes over the query sequence length, it can suffer from a lack of parallelism for decoding.

We make two modifications to FLASHATTENTION-3 to introduce more parallelism for decoding:

1. Split KV (or Flash-Decoding): We split the attention kernel along the key/value sequence length,
with the number of splits determined by a heuristic at launch, and combine the resulting outputs
using a separate post-processing reduction kernel. “Splitting” according to a parameter 𝑛means
that 𝑛 threadblocks load the same tile of Q and 𝑛 different segments of the KV cache, computing
𝑛 different output tiles O1,...,O𝑛 and lse vectors lse1,...,lse𝑛, which we then use to compute O in
the reduction kernel. We also allow for early exit of threadblocks whose given segment of the KV
cache doesn’t contribute to the final output, in which case the threadblock writes out −∞ as its lse.
This amounts to essentially the same implementation as described in [18].

2. GQA packing: For multi-query attention or grouped-query attention, we can restructure the
attention mainloop in order to pack multiple query heads per KV head, where each threadblock now
loads its Q tile across different query heads. When query length is short, this achieves additional
parallelism “for free” thanks to the large width of the first operand WGMMA tile, given as 64 per
warpgroup. For example, we could have a model architecture with 16 query heads per KV head
and a query sequence length of 8, in which case a threadblock can pack all 16 query heads into
its Q tile without any change to Algorithm 2. In practice, this yields up to 𝑁x speedup over an
implementation that doesn’t do GQA packing, where 𝑁 is the GQA ratio.

FLASHATTENTION-3 for inference also features an implementation of PagedAttention [29] that was
contributed by Kai Londenberg. Recall that PagedAttention is a memory optimization technique for
efficiently storing the KV cache in terms of fixed-size pages. This entails separating the logical position
of KV blocks from their physical addresses, with a block table defining the address translation [29, §4.2].

Now, prior implementations of TMA load in CUTLASS construct the tensor map object such that
TMA tensor coordinates are determined using the physical GMEM tensor. To use a block table with
TMA, Londenberg defines a new SM90_TMA_LOAD_PAGED_OP class and a tensor map constructor
that instead determines TMA tensor coordinates in terms of the virtual shape. The block table is then
passed into the TMA copy method as an additional argument.

C Addition Details on Experiments and Benchmarking
C.1 System and libraries

We benchmark the speed on an H100 80GB SXM5 (700W). We generally use the latest versions of
the libraries, at the time of writing (October 2024). Specifically, we use:

• CUDA 12.3

• cuDNN 9.5.0.50

• CUTLASS 3.6

• FLASHATTENTION 2.6.3

• Triton 3.1

• PyTorch 2.5.0
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To reduce variability, we fix the GPU clock speed to 1830MHz (clock speed used to calculate the 989
TFLOPS FP16 theoretical max throughput). We repeat the benchmarks 10 times and take the average
timing.

C.2 FP8 Attention Full Results

We use following sequence lengths: 512, 1024, 2048, 4096, 8192, 16384.
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(a) Forward, without causal mask, head dim 64
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(b) Forward, with causal mask, head dim 64
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(c) Forward, without causal mask, head dim 128
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(d) Forward, with causal mask, head dim 128
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(e) Forward, without causal mask, head dim 256
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Figure 10: Attention forward speed (FP8) on H100 GPU
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Abstract and intro reflects the paper’s contribution.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Discussed in §5
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend
on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used
by reviewers as grounds for rejection, a worse outcome might be that reviewers
discover limitations that aren’t acknowledged in the paper. The authors should use
their best judgment and recognize that individual actions in favor of transparency play
an important role in developing norms that preserve the integrity of the community.
Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
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Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and

cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Detailed information in Appendix C.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [No]
Justification: The code will be released with a permissive license in the near future.
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Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be pos-
sible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to
run to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperpa-
rameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [NA]
Justification: The paper does not include training models.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Not necessary for speed benchmarks since we already take average of a large
number (30) of trials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: In Appendix C.1
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require

a deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special

consideration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: The paper focuses on foundational research and not tied to a particular
application.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No release of high-risk data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets.

Guidelines:
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing or human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No crowdsourcing or human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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