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Abstract
Gaussian process regression (GPR) or kernel
ridge regression is a widely used and powerful
tool for nonlinear prediction. Therefore, active
learning (AL) for GPR, which actively collects
data labels to achieve an accurate prediction with
fewer data labels, is an important problem. How-
ever, existing AL methods do not theoretically
guarantee prediction accuracy for target distribu-
tion. Furthermore, as discussed in the distribu-
tionally robust learning literature, specifying the
target distribution is often difficult. Thus, this
paper proposes two AL methods that effectively
reduce the worst-case expected error for GPR,
which is the worst-case expectation in target dis-
tribution candidates. We show an upper bound
of the worst-case expected squared error, which
suggests that the error will be arbitrarily small by
a finite number of data labels under mild condi-
tions. Finally, we demonstrate the effectiveness
of the proposed methods through synthetic and
real-world datasets.

1. Introduction
Active learning (AL) (Settles, 2009) is a framework for
achieving high prediction performance with fewer data when
labeling new data is expensive. For this purpose, AL algo-
rithms actively acquire the label of data that improves the
prediction performance of some statistical model based on
acquisition functions (AFs). Many types of AFs have been
proposed, such as uncertainty sampling (US), random sam-
pling (RS), variance reduction, and information gain, as
summarized in (Settles, 2009).
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Gaussian process regression (GPR) model (Rasmussen &
Williams, 2005) is often used as a base statistical model for
AL algorithms due to its flexible prediction capability (Seo
et al., 2000; Yu et al., 2006; Guestrin et al., 2005; Krause
et al., 2008b; Hoang et al., 2014; Hübotter et al., 2024).
Standard AL methods for the GPR are based on information
gain (Guestrin et al., 2005; Krause et al., 2008b; Kirsch
et al., 2021; Kirsch & Gal, 2022; Bickford Smith et al.,
2023; Hübotter et al., 2024). Most information gain-based
approaches are heuristics without theoretical guarantees.
A notable exception is the work by (Guestrin et al., 2005;
Krause et al., 2008b), which shows that the US for the GPR
model is optimal to maximize the information gain from the
obtained data labels regarding the GP prior. Furthermore,
from the analysis of kernelized bandits (e.g., Srinivas et al.,
2010; Salgia et al., 2024), we can see that the US and RS
guarantee the convergence of the maximum of posterior
variance (See Proposition 2.3 for details). Another com-
monly used AF is variance reduction (Seo et al., 2000; Yu
et al., 2006; Shoham & Avron, 2023; Hübotter et al., 2024),
which can be computed efficiently in the GPR. However,
these AFs do not incorporate the importance of the unla-
belled dataset, that is, the prior information regarding the
target distribution. In addition, to our knowledge, except
for the worst-case analysis in Proposition 2.3, there are no
theoretical guarantees for the target prediction error.

Several studies have tackled the development of the target
distribution-aware AL (Kirsch et al., 2021; Kirsch & Gal,
2022; Bickford Smith et al., 2023). In particular, as an ex-
tension of the distributionally robust learning (Chen et al.,
2020), Frogner et al. (2021) proposed distributionally ro-
bust AL (DRAL), which aims to minimize the worst-case
error in the set of target distributions to obtain a robust
model. However, since these studies employed the heuristic
AL methods based on, e.g., information gain and expected
model change (Settles, 2009), the theoretical guarantee has
not been shown.

This paper develops a DRAL framework for the GPR model.
We aim to minimize the worst-case expected error, where
the worst-case scenario and the expectation are taken re-
garding the target distribution candidates and chosen target
distributions, respectively. Note that our formulation gener-
alizes target distribution-aware AL since it includes the case
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in which the unique target distribution can be specified. We
perform the theoretical analysis under two conditions called
Bayesian and frequentist assumptions (Srinivas et al., 2010),
in which we leverage several useful lemmas in kernelized
bandit literature (Srinivas et al., 2010; Vakili et al., 2021a;b;
Kusakawa et al., 2022).

Our contributions are summarized as follows:

1. We show several properties of the worst-case squared
error for the GPR model, which suggests that the error
can be bounded from above using the posterior vari-
ance even if the input domain is continuous. Along
the way to proving the error properties, we show the
Lipschitz constant of the posterior mean of GPs in
Lemmas 2.9 and 3.3, which may be of independent
interest.

2. We propose two DRAL methods for the GPR model,
inspired by the RS and the greedy algorithm. Our
proposed methods are designed to guarantee the con-
vergence of the (expected) posterior variance.

3. We show the probabilistic upper bounds of the error
incurred by the proposed algorithm, which suggests
that under mild conditions, the error can be arbitrarily
small by a finite number of data labels.

Finally, we demonstrate the effectiveness of the proposed
methods via synthetic and real-world regression problems.

2. Background
This section provides the known properties of the GPR.

2.1. GPR model

The GPR model (Rasmussen & Williams, 2005) is a kernel-
based regression model. Let us consider that we have
already obtained the training dataset of input-output pair
Dt = {(xi, yxi

)}ti=1, where ∀i,xi ∈ X ⊂ Rd, yxi
∈ R,

and d is an input dimension. The GPR model assumes that,
without loss of generality, f follows zero-mean GP, that
is, f ∼ GP(0, k), where k : X × X 7→ R is a predefined
positive semidefinite kernel function. In addition, the i-
th observation yxi is assumed to be contaminated by i.i.d.
Gaussian noise ϵi ∼ N (0, σ2) as yxi

= f(xi) + ϵi. Then,
the posterior distribution of f becomes again a GP, whose
mean and variance are analytically derived as follows:

µt(x) = kt(x)
⊤(K + σ2It

)−1
yt,

σ2
t (x) = k(x,x)− kt(x)

⊤(K + σ2It

)−1
kt(x),

(1)

where kt(x) :=
(
k(x,x1), . . . , k(x,xt)

)⊤ ∈ Rt,
K ∈ Rt×t is the kernel matrix whose (i, j)-element is

k(xi,xj), It ∈ Rt×t is the identity matrix, and yt :=
(yx1 , . . . , yxt)

⊤ ∈ Rt. Finally, for later use, let the pos-
terior variance at x∗ when xt = x be σ2

t (x
∗ | x) :=

σ2
t (x

∗ | xt = x). Note that the posterior variance calcula-
tion does not require yt. Furthermore, it is known that µt(x)
is equivalent to the kernel ridge regression estimator with
regularization parameter λ = σ2 (Kanagawa et al., 2018).

Maximum Information Gain (MIG): Further, we define
MIG (Srinivas et al., 2010; Vakili et al., 2021b):
Definition 2.1 (Maximum information gain). Let f ∼
GP(0, k) over X ⊂ [0, r]d. Let A = {ai}Ti=1 ⊂ X .
Let fA =

(
f(ai)

)T
i=1

, ϵA =
(
ϵi
)T
i=1

, where ∀i, ϵi ∼
N (0, σ2), and yA = fA + ϵA ∈ RT . Then, MIG γT
is defined as follows:

γT := max
A⊂X ;|A|=T

I(yA;fA),

where I is the Shannon mutual information.

It is known that MIG is sublinear for commonly used
kernel functions, for example, γT = O

(
d log T

)
for lin-

ear kernels, γT = O
(
(log T )d+1

)
for squared exponen-

tial (SE) kernels kSE(x,x
′) = exp

(
−∥x− x′∥22/(2ℓ2)

)
,

and γT = O
(
T

d
2ν+d (log T )

2ν
2ν+d

)
for Matérn-ν kernels

kMat = 21−ν

Γ(ν)

(√
2ν∥x−x′∥2

ℓ

)ν
Jν

(√
2ν∥x−x′∥2

ℓ

)
, where

ℓ, ν > 0 are the lengthscale and smoothness parameter, re-
spectively, and Γ(·) and Jν are Gamma and modified Bessel
functions, respectively (Srinivas et al., 2010; Vakili et al.,
2021b).

Lipschitz Consatant of σt(x): We will use the following
useful result from Theorem E.4 in (Kusakawa et al., 2022):
Lemma 2.2 (Lipschitz constant for posterior standard de-
viation). Let k(x,x′) : Rd × Rd → R be linear, SE, or
Matérn-ν kernel and k(x,x) ≤ 1. Moreover, assume that a
noise variance σ2 is positive. Then, for any t ≥ 1 and Dt,
the posterior standard deviation σt(x) satisfies that

∀x,x′ ∈ Rd, |σt(x)− σt(x
′)| ≤ Lσ∥x− x′∥1,

where Lσ is a positive constant given by

Lσ =


1 if k(x,x′) is the linear kernel,√

2
ℓ if k(x,x′) is the SE kernel,

√
2
ℓ

√
ν

ν−1 if k(x,x′) is the Matérn kernel,

where ν > 1.

2.2. Uncertainty Sampling and Random Sampling

For the GPR model, the US selects the most uncertain input
as t-th input:

xt = argmax
x∈X

σ2
t−1(x).
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The RS randomly selects a t-th input by a fixed probability
distribution p(x) over X :

xt ∼ p(x).

For both algorithms, the upper bound of the maximum vari-
ance is known:

Proposition 2.3. Assume X is a compact subset of Rd. If
we run the US, the following inequality holds:

max
x∈X

σ2
T (x) ≤

C1γT
T

,

where C1 = 1/ log(1 + σ−2). Furthermore, if we run the
RS, the following inequality holds with probability at least
1− δ, where δ ∈ (0, 1), under several conditions:

max
x∈X

σ2
T (x) = O

(
σ2γT
T

)
.

Proof. For the US, see, e.g., Eq. (16) in (Vakili et al., 2021a)
and Lemma 5.4 in (Srinivas et al., 2010). For the RS, see
Theorem 3.1 in (Salgia et al., 2024).

When γT is sublinear, the above upper bounds suggest that
the maximum variance will be arbitrarily small within the
finite time horizons.

2.3. Regularity Assumptions and Predictive Guarantees

Here, we provide the details of Bayesian and frequentist
assumptions and predictive guarantees for both assumptions.

2.3.1. BAYESIAN ASSUMPTION

We consider the following assumption:

Assumption 2.4. The function f is a sample path f ∼
GP(0, k) and the i-th observation yxi

is contaminated by
i.i.d. Gaussian noise ϵi ∼ N (0, σ2) as yxi = f(xi)+ ϵi. In
addition, the kernel function is normalized as k(x,x′) ≤ 1
for all x,x′ ∈ X .

Furthermore, for continuous X , we assume the following
smoothness condition:

Assumption 2.5. Let X ⊂ [0, r]d be a compact set, where
r > 0. Assume that the kernel k satisfies the following
condition on the derivatives of a sample path f . There exist
the constants a, b > 0 such that,

Pr

(
sup
x∈X

∣∣∣∣∂f(u)∂uj

∣∣∣
u=x

∣∣∣∣ > L

)
≤ a exp

(
−L2

b2

)
,

for all j ∈ [d].

This assumption holds for stationary and four times differ-
entiable kernels (Theorem 5 of Ghosal & Roy, 2006), such
as SE kernel and Matérn-ν kernels with ν > 2 (Section 4
of Srinivas et al., 2010). These assumptions are commonly
used (Srinivas et al., 2010; Kandasamy et al., 2018; Paria
et al., 2020; Takeno et al., 2023; 2024).

As with Lemma 5.1 in (Srinivas et al., 2010), the credible
interval can be obtained as follows:

Lemma 2.6. Suppose that X is finite and Assumption 2.4
holds. Pick δ ∈ (0, 1) and t ∈ N. Then, for any given Dt,

Pr
(
|f(x)− µt(x)| ≤ β

1/2
δ σt(x),∀x ∈ X | Dt

)
≥ 1− δ,

where βδ = 2 log(|X |/δ).

2.3.2. FREQUENTIST ASSUMPTION

We assume that f is an element of the reproducing kernel
Hilbert space (RKHS) specified by the kernel k as with
(Srinivas et al., 2010; Chowdhury & Gopalan, 2017; Vakili
et al., 2021a; 2022; Li & Scarlett, 2022):

Assumption 2.7. Let f be an element of RKHSHk speci-
fied by the kernel k used in the GPR model. Furthermore,
the RKHS norm of f is bounded as ∥f∥Hk

≤ B < ∞ for
some B > 0, where ∥ · ∥Hk

denotes the RKHS norm ofHk.
In addition, the i-th observation yxi is contaminated by inde-
pendent sub-Gaussian noises {ϵi}i∈N as yxi = f(xi) + ϵi.
That is, for all i ∈ N, for all η ∈ R, and for some
R > 0, the moment generating function of ϵi satisfies
E[exp(ηϵi)] ≤ exp

(
η2R2

2

)
. Finally, the kernel function

is normalized as k(x,x′) ≤ 1 for all x,x′ ∈ X .

Furthermore, for continuous X , we assume the follow-
ing smoothness condition as with (Chowdhury & Gopalan,
2017; Vakili et al., 2021a; 2022):

Assumption 2.8. The kernel function k satisfies the follow-
ing condition on the derivatives. There exists a constant Lk

such that,

sup
x∈X

sup
j∈[d]

∣∣∣∣∂2k(u,v)

∂uj∂vj

∣∣∣∣
u=v=x

∣∣∣∣1/2 ≤ Lk.

This assumption provides the Lipschitz constant of f :

Lemma 2.9 (Lemma 5.1 in (De Freitas et al., 2012)). Sup-
pose that Assumption 2.8 holds. Then, any g ∈ Hk is
Lipschitz continuous with respect to ∥g∥Hk

Lk.

We rely on the confidence bounds for non-adaptive sampling
methods, which is a direct consequence of Theorem 1 in
(Vakili et al., 2021a) and the union bound:

Lemma 2.10. Suppose that X is finite and Assumption 2.7
holds. Pick δ ∈ (0, 1) and t ∈ N. Assume that (xi)i∈[t] is
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independent of (ϵi)i∈[t]. Then, the following holds:

Pr
(
|f(x)− µt(x)| ≤ β

1/2
δ σt(x),∀x ∈ X

)
≥ 1− δ,

where βδ =

(
B + R

σ

√
2 log(2|X |

δ )

)2

.

3. Problem Statement and Its Property
This section provides details on our problem setup and its
properties.

3.1. Problem Statement

We aim to minimize the worst-case expected errors regard-
ing the GP prediction µT (x) after T -th function evaluations:

ET := max
p∈P

Ep(x∗)

[
(f(x∗)− µT (x

∗))2
]
, (2)

where P is a set of target distributions over the input space
X called ambiguity set (Chen et al., 2020). We assume that
maxp∈P Ep(x∗) [g(x

∗)] exists for any continuous function
g : X → R. This paper concentrates on the setting where
the training input space from which we can obtain labels
includes the test input space.

Our problem setup can be seen as the generalization of
the target distribution-aware AL and the AL for the worst-
case error maxx∈X (f(x)− µT (x))

2. This is because our
problem is equivalent to the target distribution-aware AL if
we set |P| = 1 and to the worst-case error minimization if
P includes {p ∈ PX | ∃x ∈ X , p(x) = 1}, where PX is
the set of the distributions over X .

3.2. High Probability Bound of Error

If the input space X is finite, we can obtain the upper bound
of Eq. (2) as the direct consequence of Lemmas 2.6 and
2.10:

Lemma 3.1. Fix δ ∈ (0, 1) and T ∈ N. Suppose that
Assumption 2.4 holds and βδ is set as in Lemma 2.6, or
Assumption 2.7 holds and βδ is set as in Lemma 2.10. Then,
the following holds with probability at least 1− δ:

ET ≤ βδ max
p∈P

Ep(x∗)

[
σ2
T (x

∗)
]
.

For continuous X , the confidence parameter βδ ∝ log |X |
diverges if we apply Lemmas 2.6 and 2.10 directly. There-
fore, in this case, the Lipschitz property is often lever-
aged (Chowdhury & Gopalan, 2017; Vakili et al., 2021a).
The Lipschitz constant of f can be directly derived from the
Assumption 2.5, or Assumption 2.8 and Lemma 2.9 (Srini-
vas et al., 2010; De Freitas et al., 2012).

Furthermore, we need the Lipschitz constant of µT . In
the frequentist setting, the Lipschitz constant for µT can
be derived as O(Lk

√
t log t) by Lemma 4 in (Vakili et al.,

2021a) and Lemma 2.9. To obtain a slightly tighter upper
bound, we show the following lemma:

Lemma 3.2. Fix δ ∈ (0, 1) and t ∈ [T ]. Suppose that
Assumptions 2.7 and 2.8 hold. Then, µt(·) is Lipschitz
continuous with the Lipschitz constant,

Lk

(
B +

R

σ

√
2γt + 2 log

(
d

δ

))

with probability at least 1− δ.

We show the proof in Appendix A.1. Since the MIG γT
is sublinear for the kernels on which we mainly focus, the
upper bound O(Lk

√
γt) is tighter than O(Lk

√
t log t).

In the Bayesian setting, the upper bound of the Lipschitz
constant for µT has not been shown to our knowledge.
Therefore, we show the following lemma:

Lemma 3.3. Fix δ ∈ (0, 1) and t ∈ [T ]. Suppose that
Assumptions 2.4 and 2.5 hold and the kernel has mixed
partial derivative ∂2k(x,z)

∂xj∂zj
for all j ∈ [d]. Set a and b as in

Lemma 2.5. Assume that (xi)i∈[t] is independent of (ϵi)i∈[t]

and f . Then, µt and rt(x) := f(x) − µt(x) satisfies the
following:

Pr

(
sup
x∈X

∣∣∣∣∂µt(u)

∂uj

∣∣∣
u=x

∣∣∣∣ > L

)
≤ 2a exp

(
−L2

b2

)
,

Pr

(
sup
x∈X

∣∣∣∣∂rt(u)∂uj

∣∣∣
u=x

∣∣∣∣ > L

)
≤ 2a exp

(
−L2

b2

)
,

for all j ∈ [d].

See Appendix A.2 for the proof, in which we leverage
Slepian’s inequality (Proposition A.2.6 in van der Vaart &
Wellner, 1996) and the fact that the derivative of the sample
path follows GP jointly when the kernel is differentiable.

By leveraging the above results, even if X is continuous, we
can obtain the following upper bound of Eq. (2):

Lemma 3.4. Suppose that Assumptions 2.7 and 2.8 hold.
Fix δ ∈ (0, 1) and T ∈ N. Then, the following holds with
probability at least 1− δ:

ET ≤ 2βδ,T max
p∈P

Ep(x∗)

[
σ2
T (x

∗)
]
+O

(
max{γT , log(Tδ )}

T 2

)
.

where βδ,T =
(
B + R

σ

√
2d log (Tdr + 1) + 2 log

(
4
δ

))2
.

Lemma 3.5. Suppose that Assumptions 2.4 and 2.5 hold.
Fix δ ∈ (0, 1) and T ∈ N. Then, the following holds with
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probability at least 1− δ:

ET ≤ 2βδ,T max
p∈P

Ep(x∗)

[
σ2
T (x

∗)
]
+O

(
log(Tδ )

T 2

)
,

where βδ,T = 2d log(Tdr + 1) + 2 log(2/δ).

See Appendices A.3 and A.4 for the proof.

Consequently, we can minimize Eq. (2) by minimiz-
ing maxp∈P Ep(x∗)

[
σ2
T (x

∗)
]
. In this perspective, the

US and RS are theoretically guaranteed because of
maxp∈P Ep(x∗)

[
σ2
T (x

∗)
]
≤ maxx∈X σ2

T (x) and Propo-
sition 2.3. However, the US and RS do not incorporate the
information of P . Therefore, the practical effectiveness of
the US and RS is limited.

3.3. Other Performance Mesuares

Although we mainly discuss the squared error, other mea-
sures can also be bounded from above:
Lemma 3.6. The worst-case expected absolute error for
any T ∈ N is bounded from above as follows:

max
p∈P

Ep(x∗) [|f(x∗)− µT (x
∗)|] ≤

√
ET ,

where ET is defined as in Eq. (2).
Lemma 3.7. The worst-case expectation of entropy for any
T ∈ N is bounded from above as follows:

max
p∈P

Ep(x∗) [H [f(x∗) | DT ]] ≤
1

2
log
(
2πeẼT

)
,

where ẼT = maxp∈P Ep(x∗)

[
σ2
T (x

∗)
]

and H[f(x) |
DT ] = log

(√
2πeσT (x)

)
is Shannon entropy.

See Appendices A.5 and A.6 for the proof. Therefore, mini-
mizing maxp∈P Ep(x∗)

[
σ2
T (x

∗)
]

also provides the conver-
gence of the absolute error and the entropy1.

4. Proposed Methods and Analysis
We aim to design algorithms that enjoy both a similar con-
vergence guarantee as the US and RS and practical effective-
ness, incorporating the information of P . In particular, we
consider two algorithms inspired by the greedy algorithm
and the RS and show theoretical guarantees. Algorithm 1
shows the pseudo-code of the proposed algorithms.

4.1. Algorithms

First, we consider the RS-based algorithm. The algorithm
is straightforward as follows:

xt ∼ pt(x), (3)

1For the absolute error, we can design algorithms that directly
reduce σt, not σ2

t , and achieves the similar theoretical guarantee.

Algorithm 1 Proposed DRAL methods

Require: Domain X , GP prior µ and k, ambiguity set P
1: D0 ← ∅
2: for t = 1, . . . , T do
3: Update σ2

t−1(·) according to Eq. (1)
4: Compute xt according to Eq. (3) or Eq. (4)
5: end for
6: Observe y1, . . . , yT
7: Update µT (·) and σ2

T (·) according to Eq. (1)
8: return µT (·) and σ2

T (·)

where pt(x) = argmaxp∈P Ep(x∗)[σ
2
t−1(x

∗)] and we as-
sume that we can generate the sample from pt. By using the
worst-case distribution pt for each iteration, this algorithm
incorporates the information of P .

Second, we consider the greedy algorithm since its practical
efficiency has often been reported (e.g., Bian et al., 2017).
However, in our setup, the algorithm that greedily decreases
the expected posterior variance should be

argmin
x∈X

max
p∈P

Ep(x∗)[σ
2
t (x

∗ | x)],

which requires huge computational time in general due to
min-max optimization. Thus, we consider an approximately
greedy algorithm as follows:

argmin
x∈X

Ept(x∗)[σ
2
t (x

∗ | x)],

where pt(x) = argmaxp∈P Ep(x∗)[σ
2
t−1(x

∗)] is the worst-
case distribution defined by (xi)i∈[t−1]. On the other hand,
the theoretical guarantee for this algorithm is challenging for
us. Hence, inspired by the fact that the US has a theoretical
guarantee, we set the constraint so that the chosen input is
uncertain than Ept(x∗)[σ

2
t−1(x

∗)]:

xt = argmin
x∈Xt

Ept(x∗)[σ
2
t (x

∗ | x)], (4)

where Xt := {x ∈ X | σ2
t−1(x) ≥ Ept(x∗)[σ

2
t−1(x

∗)]}.
Note that |Xt| ≥ 1 holds due to the definition.

Necessity of Constraints: We considered that the con-
straint regarding σ2

t−1(x) makes the analysis easy since the
US that maximize σt−1(xt) achieves the error convergence,
as shown in Proposition 2.3. Therefore, we employ the
constraint on Xt. We set the threshold of the constraint
as Ept(x∗)[σ

2
t−1(x

∗)] sake of the analysis. On the other
hand, our experimental results suggest that the greedy (ap-
proximated) expected error reduction algorithm without the
constraint shows superior performance. Therefore, remov-
ing or alleviating the constraint can be important future
work.
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Computational Complexity: The computation of the GP
has O(T 3) computational complexity, which can be allevi-
ated by scalable GP learning approaches (Liu et al., 2020).
However, more careful proofs incorporating an approxi-
mation error in GP learning are required to derive similar
theoretical analyses as ours, as with (Vakili et al., 2022).
On the other hand, the computational complexity of the
maximization maxp∈P Ep(x∗)[σ

2
t−1(x

∗)], the expectation
Ept(x∗)[σ

2
t−1(x

∗)] and the sampling from pt(x) depends
on the ambiguity set P and may increase in proportion to
d. Although our experiments focus on the set of discrete
probability distributions with a moderate size of |X |, the
above computations may be complicated if P is the set of
continuous probability distributions or |X | is huge. Exten-
sions to such more computationally intractable ambiguity
sets P , e.g., the ball defined by Wasserstein distance and
Kullback–Leibler divergence (Hu & Hong, 2013; Frogner
et al., 2021), is crucial future work.

4.2. Analysis

Here, we show the error convergence by Eqs. (3) and (4):
Theorem 4.1. Fix δ ∈ (0, 1). Assume that X ⊂ Rd is a
compact subset. If we run Algorithm 1 with Eq. (3), the
following holds with probability at least 1− δ:

max
p∈P

Ep(x∗)[σ
2
T (x

∗)] ≤ 2C1γT
T

+O
(
log(1/δ)

T

)
,

where C1 = 1/ log(1 + σ−2).
Theorem 4.2. Assume that X ⊂ Rd is a compact subset. If
we run Algorithm 1 with Eq. (4), the following holds:

max
p∈P

Ep(x∗)[σ
2
T (x

∗)] ≤ C1γT
T

,

where C1 = 1/ log(1 + σ−2).

See Appendix B for the proof, in which Lemma 3 in
(Kirschner & Krause, 2018) is used to show Theorem 4.1.

Consequently, our proposed methods achieve almost the
same convergence as those of the US and RS shown in
Proposition 2.3. Furthermore, by combining Lemmas 3.1,
3.4, and 3.5, we can see that the upper bound of ET :
Corollary 4.3. Fix δ ∈ (0, 1) and T ∈ N. Then, if we run
Algorithm 1, the following hold with probability at least
1− δ:

1. When Assumption 2.4 or Assumptions 2.7 holds,

ET = O
(
log(|X |/δ)γT

T

)
;

2. When Assumptions 2.4 and 2.5 or Assumptions 2.7 and
2.8 hold,

ET = O
(
log(T/δ)γT

T

)
,

Proof. We can obtain the result by combining Lemmas 3.1,
3.4, and 3.5, Theorems 4.1 and 4.2, and the union bound.
Note that we assume |X | > T .

Thus, the error incurred by the proposed algorithms con-
verges to 0 with high probability for discrete and continuous
input domains, at least with linear, SE, and Matérn kernels.

5. Related Work
As discussed in Section 1, many AL algorithms have been
developed (Settles, 2009). The AL algorithms for classifi-
cation problems are heavily discussed compared with the
regression problem (for example, Houlsby et al., 2011;
Zhao et al., 2021; Bickford Smith et al., 2023). In particular,
theoretical properties for binary classification problems are
well-investigated (Hanneke et al., 2014). On the other hand,
the theoretical analysis of AL for the regression problem is
relatively limited.

AL is often referred to as optimal experimental design
(OED) (Lindley, 1956; Cohn, 1993; Chaloner & Verdinelli,
1995; Cohn et al., 1996; Ryan & Morgan, 2007). The
OED frameworks aim to reduce the uncertainty of target
parameters or statistical models. For this purpose, many
measures for the optimality have been proposed, such as
A-optimality (average), D-optimality (determinant), and V-
optimality (variance) (Pukelsheim, 2006; Allen-Zhu et al.,
2017). The OED methods for various models, such as
the linear model (e.g., Allen-Zhu et al., 2017), neural net-
work (e.g., Cohn, 1993), and GPs (e.g., Yu et al., 2006),
have been proposed. Our analysis concentrates on the V-
optimality of the GPR (Seo et al., 2000; Yu et al., 2006;
Shoham & Avron, 2023) and its DR variant, for which, to
our knowledge, a theoretical guarantee has not been shown.

In OED or AL, subset selection algorithms (Das & Kempe,
2008) are often leveraged. The subset selection is a general
problem whose goal is to find the subset that maximizes
some set function. Therefore, the AL can be seen as the sub-
set selection of x1, . . . ,xt ∈ X . In this literature, the sub-
modular property of the set function, for which the greedy
algorithm can be optimal, is commonly investigated (Das
& Kempe, 2008; Krause et al., 2008b; Guestrin et al., 2005;
Bian et al., 2017). The criteria for the AL, such as the D-
optimality of the GPR (Krause et al., 2008b; Guestrin et al.,
2005), sometimes satisfy the submodular property. Further-
more, Das & Kempe (2008) have shown sufficient condi-
tions for the greedy algorithms to be optimal in Theorem 3.4
(an assumption can be rephrased as k(x,x′) ≤ 1

4T in our
problem) and Section 8. However, even if we consider mini-
mizing Ep(x∗)

[
σ2
T (x

∗)
]

with |P| = 1, these conditions and
the submodularity do not hold in general. Therefore, the DR
maximization of submodular function (e.g., Krause et al.,
2008a; Staib et al., 2019) also cannot be applied directly.
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Figure 1. Result of the error ET in the synthetic data experiments with η = 0, 0.001, 0.01, 0.1. The horizontal and vertical axes show the
number of iterations and ET , respectively. The error bar shows mean and standard errors for 20 random trials regarding the random initial
point (and the algorithm’s randomness). The top and bottom columns represent the results of the SE and Matérn kernels, respectively.

Several studies have discussed the target distribution-aware
AL. At least from (Sugiyama, 2005), the effectiveness of AL
incorporating the information of target distribution for mis-
specified models has been discussed. Transductive AL (Seo
et al., 2000; Yu et al., 2006; Shoham & Avron, 2023) can be
interpreted as the expected error minimization when the uni-
formly random target distribution p(x) = 1/|X | is specified.
Kirsch et al. (2021); Kirsch & Gal (2022); Bickford Smith
et al. (2023) extended this setting so that an arbitrary target
distribution can be considered. These existing methods are
heuristic algorithms that do not guarantee the convergence
of the error. On the other hand, Hübotter et al. (2024) show
transductive AL methods with theoretical guarantees. How-
ever, for the VTR algorithm in (Hübotter et al., 2024), their
analysis assumes an assumption of submodularity, which
may not hold as discussed immediately after Assumption 3.2
of (Hübotter et al., 2024). Furthermore, their analysis for the
VTR algorithm results in maxx∈X σ2

T (x) = O(|X |γT /T ),
which is vacuous in the usual regime that T < |X | (see
Theorems 3.3 and C.13 and Section C.6.2 of Hübotter et al.
(2024)).

Frogner et al. (2021) further extended to DRAL using the
AF called expected model change (Settles, 2009) for the non-
Bayesian model. In addition, Liu et al. (2015) considers
DRAL for non-Bayesian classification models. However,
these methods are heuristic greedy algorithms and are not
theoretically guaranteed for the prediction error.

The DRAL is inspired by the DR learning (DRL) (Chen
& Paschalidis, 2018; Chen et al., 2020). DRL considers
learning a robust statistical model by optimizing the model

parameter so that the worst-case expected loss is minimized,
where the worst-case is taken regarding the target distribu-
tion candidates called an ambiguity set. Therefore, DRAL
is an intuitive extension of DRL to AL.

Another related literature is core-set selection (Sener &
Savarese, 2018), which selects the subset of the training
dataset to maintain prediction accuracy while reducing the
computational cost. Our proposed methods can be applied
to the core-set selection for the GPR. However, its effective-
ness may be limited since the information on training labels
is not leveraged.

Other highly relevant literature is kernelized bandits, also
called Bayesian optimization (BO) (Kushner, 1964; Srinivas
et al., 2010; Shahriari et al., 2016). BO aims for efficient
black-box optimization using the GPR model. For this
purpose, several properties of GPs, such as the confidence
intervals and the MIG, have been analyzed (Srinivas et al.,
2010; Vakili et al., 2021a;b). Our analyses heavily depended
on the existing results in this field.

In addition, level set estimation (LSE) (Gotovos et al., 2013;
Bogunovic et al., 2016; Inatsu et al., 2024) is an AL frame-
work using the GPR model, which aims to classify the test in-
put set by whether or not a black-box function value exceeds
a given threshold. In particular, Inatsu et al. (2021) consider
the variant of LSE, which aims to classify by whether or not
the DR measure defined by the black-box function exceeds
a given threshold. Thus, our problem setup differs from the
problem of (Inatsu et al., 2021).
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Figure 2. Result of the expected squared error ET in the real-world data experiments with η = 0, 0.001, 0.01, 0.1. The horizontal and
vertical axes show the number of iterations and ET , respectively. The error bar shows mean and standard errors for 20 random trials
regarding the random initial point (and the algorithm’s randomness). The top, middle, and bottom rows represent the results of the King
County house sales dataset, red wine quality dataset, and auto MPG dataset, respectively.

6. Experiments
In this section, we demonstrate the effectiveness of the pro-
posed methods via synthetic and real-world datasets. We
employ RS, US, variance reduction (Yu et al., 2006), and ex-
pected predictive information gain (EPIG) (Bickford Smith
et al., 2023) as the baseline. Note that we do not employ
the method of (Frogner et al., 2021) since adapting their
method to GPR models is not apparent, and they focus on
the ambiguity sets defined by Wasserstein distance over a
continuous input domain. We show the implementation de-
tails of EPIG in Appendix C.2. Furthermore, as the ablation
study, we performed the method, referred to as DR variance
reduction, that greedily minimizes Ept(x∗)

[
σ2
t (x

∗ | x)
]
,

that is, the unconstrained version of Eq. (4). We referred to
the proposed methods as DR random and constrained DR
variance reduction (CDR variance reduction). We evaluate
the performance by the error ET defined in Eq. (2). Fur-
thermore, for the synthetic dataset, we show the result of
maxp∈P Ep(x)

[
σ2
t (x) | Dt

]
in Appendix C.1.

In these experiments, by some η ≥ 0, we define the ambi-
guity set as follows:

P = {p ∈ PX | ∥pref − p∥∞ ≤ η},

where PX and pref are sets of all distributions over X and
some reference distribution, respectively, and ∥ ·∥∞ denotes

L∞ norm. Note that η = 0 matches the case that the unique
target distribution pref is specified. Since we consider the
case of discrete X , maximization over P can be written as
linear programming for which we used CVXPY (Diamond
& Boyd, 2016; Agrawal et al., 2018).

The aim of our experiments is to show that the proposed al-
gorithms are consistently well-performing for any size of P ,
i.e., η, in contrast to the baselines, which can deteriorate for
some η. The same parameter η is used for the computation
of the performance measure ET and the actual algorithm.
Therefore, we expect that our proposed algorithms show
good performance among all η = 0, 0.001, 0.01, 0.1. On
the other hand, if η is large, then P starts to include more
distributions. Therefore, the proposed algorithms behave
similarly to the US when η is large. Hence, the proposed
algorithms have comparable performance to the usual AL
methods when η is large, though the proposed algorithms
are superior to those if η is small. On the other hand, EPIG
is designed for the case of η = 0, that is, the test distribution
is explicitly specified. However, EPIG aims to decrease the
entropy Ep(x)[log(σt−1(x))], not Ep(x)[σ

2
t−1(x)]. There-

fore, EPIG is not suitable for decreasing ET and can be
inefficient in our experiments even for the case of η = 0.
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6.1. Synthetic Data Experiemnts

We setX = {−1,−0.8, . . . , 1}3, where |X | = 113 = 1331.
The target function f is the sample path from GPs, where
we use SE and Matérn-ν kernels with ν = 5/2. We use
the fixed hyperparameters of the kernel function in the GPR
model, which is used to generate f , and fix σ2 = 10−4. The
first input x1 is selected uniformly at random, and T is set
to 400. Furthermore, we set pref = N (0, 0.2I3).

Figure 1 shows the result. We can see that DR and CDR
variance reductions show superior performance consistently
for all the kernel functions and η, although the DR ran-
dom is often inferior to those due to the randomness. This
result suggests that the DR and CDR variance reductions
effectively incorporate the information of P . Furthermore,
although the constraint by Xt is required for the theoret-
ical analysis in CDR variance reduction, we can confirm
that it does not sacrifice the practical effectiveness. On the
other hand, the usual AL methods, such as US and variance
reduction, deteriorate when η is small since they do not
incorporate the information of P . When η is large, since our
problem approaches the worst-case error minimization, the
US and variance reduction result in relatively good results.
On the other hand, the EPIG designed for the case η = 0
is inferior for all η since the EPIG is based on the entropy
O (log(σt(x))), not the squared error.

6.2. Real-World Dataset Experiments

We use the King County house sales2, the red wine qual-
ity (Cortez & Reis, 2009), and the auto MPG datasets (Quin-
lan, 1993) (See Appendix C.3 for details). For all experi-
ments, we used SE kernels, where the hyperparameters ℓ
and σ2 are adaptively determined by the marginal likelihood
maximization (Rasmussen & Williams, 2005) per 10 itera-
tions. The first input is selected uniformly at random. Fur-
thermore, we normalize the inputs and outputs of all datasets
before the experiments and set pref = N (0, 0.3Id).

Figure 2 shows the result. We can confirm the same ten-
dency that DR and CDR variance reductions show superior
performance consistently, as the synthetic data experiments
shown in Figure 1. Note that the fluctuations come from the
hyperparameter estimation.

7. Conclusion
This paper investigated the DRAL problem for the GPR,
in which we aim to reduce the worst-case error ET . We
first showed several properties of this problem for the GPR,
which implies that minimizing the variance guarantees a
decrease in ET . Therefore, we designed two algorithms

2https://www.kaggle.com/datasets/
harlfoxem/housesalesprediction

that reduce the target variance and incorporate information
about target distribution candidates for practical effective-
ness. Then, we proved the theoretical error convergence
of the proposed methods, whose practical effectiveness is
demonstrated via synthetic and real-world datasets.

Limitation and Future Work: We can consider several
future research directions. First, since we do not show the
optimality of the convergence rate, developing a (near) opti-
mal algorithm for ET is vital. For this goal, the approximate
submodularity (Bian et al., 2017) may be relevant from the
empirical superiority of DR variance reduction. Second,
since the expectation over p(x∗) may be intractable, an
analysis incorporating the approximation error or develop-
ing an efficient algorithm without expectation computation
may be crucial (DR random does not require the expectation
but is often inefficient). Third, although our analyses only
require the existence of the maximum over P , our exper-
iments are limited to the discrete distribution set defined
by the L∞ ball. Thus, more general experiments regarding,
e.g., the continuous probability distributions and the ambi-
guity sets defined by Kullback-Leibler divergence (Hu &
Hong, 2013) and Wasserstein distance (Frogner et al., 2021),
are interesting from the practical perspective.
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necessarily be highlighted here.
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A. Proofs for Section 3
A.1. Proof of Lemma 3.2

From the definition of µt, we obtain

µt(·) ≤ v⊤
t (·)yt

≤ v⊤
t (·)f t + v⊤

t (·)ϵt,

where vt(x) =
(
k⊤
t (x)(Kt + σ2It)

−1
)⊤

, f t =
(
f(x1), . . . , f(xt)

)⊤
, and ϵt = (ϵ1, . . . , ϵt)

⊤. Therefore, the Lipschitz

constant of µt is bounded from above by the Lipscthiz constants of v⊤
t (·)f t and v⊤

t (·)ϵt.

For the first term v⊤
t (·)f t, we follow the proof of Lemma 4 of (Vakili et al., 2021a). Recall the RKHS-based definition of

kernel ridge estimator:

µt = argmin
µ∈Hk

t∑
i=1

(
yxi
− µ(xi)

)2
+ σ2∥µ∥Hk

.

Therefore, we can derive

min
µ∈Hk

t∑
i=1

(
f(xi)− µ(xi)

)2
+ σ2∥µ∥Hk

=

t∑
i=1

(
f(xi)− v⊤

t (xi)f t

)2
+ σ2∥v⊤

t (·)f t∥Hk

≤
t∑

i=1

(
f(xi)− f(xi)

)2
+ σ2∥f∥Hk

(∵ f ∈ Hk)

= σ2∥f∥Hk
.

Hence, we obtain ∥v⊤
t (·)f t∥Hk

≤ ∥f∥Hk
≤ B. By combining Lemma 2.9, v⊤

t (·)f t is BLk Lipschitz continuous.

For the second term v⊤
t (·)ϵt, we leverage the confidence bounds of kernel ridge estimator (Theorem 3.11 in Abbasi-Yadkori,

2013). Let g : X × {0, 1} → R as g(x, 0) = g(x, 1) = 0 and fix j ∈ [d]. Then, the zero function g belongs to the RKHS
with any kernel function k. Thus, we design the following kernel function k:

k ((x, 0), (z, 0)) = k(x, z),

k ((x, 1), (z, 1)) =
∂2k(x, z)

∂xj∂zj
,

k ((x, 0), (z, 1)) =
∂k(x, z)

∂zj
,

for all x, z ∈ X . Note that since the kernel function, k has partial derivatives due to Assumption 2.8, the derivative
of the kernel and the kernel itself are the kernels again as discussed in, e.g., Sec. 9.4 in (Rasmussen & Williams, 2005)
and Sec. 2.2 in (Adler, 1981). Thus, we can interpret v⊤

t (·)ϵt as the kernel ridge estimator for g(x, 1), where vt(x) =(
∂k⊤

t (x)
∂xj

(Kt + σ2It)
−1
)⊤

. In addition, ∥g∥Hk
= 0. Therefore, from Theorem 3.11 in (Abbasi-Yadkori, 2013) and

|g(x, 1)− v⊤
t (x)ϵt| = |v⊤

t (x)ϵt|, we obtain

Pr

(
|v⊤

t (x)ϵt| ≤ σt(x)
R

σ

√
2γt + 2 log (1/δ),∀x ∈ X

)
≥ 1− δ,

where δ ∈ (0, 1) and σt(x) = k ((x, 1), (x, 1))− ∂k⊤
t (x)
∂xj

(Kt + σ2It)
−1 ∂kt(x)

∂xj
is the posterior variance that corresponds

to this kernel ridge estimation. Note that since the kernel matrix Kt is defined by k(x, z), the MIG is the usual one defined
by X and t. In addition, due to the monotonic decreasing property of the posterior variance, σt(x) ≤ Lk, we obtain

Pr

(
|v⊤

t (x)ϵt| ≤
LkR

σ

√
2γt + 2 log (1/δ),∀x ∈ X

)
≥ 1− δ,
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and thus,

Pr

(
sup
x∈X
|v⊤

t (x)ϵt| ≤
LkR

σ

√
2γt + 2 log (1/δ)

)
≥ 1− δ.

Consequently, by using the union bound for all j ∈ [d], we derive

Pr

(
sup
j∈[d]

sup
x∈X
|v⊤

t (x)ϵt| ≤
LkR

σ

√
2γt + 2 log (d/δ)

)
≥ 1− δ,

which shows that v⊤
t (x)ϵt is LkR

σ

√
2γt + 2 log (d/δ) Lipschitz continuous.

Combining the Lipschitz constants of v⊤
t (·)f t and v⊤

t (·)ϵt, we can obtain the result.

A.2. Proof of Lemma 3.3

First, we fix (xi)i∈[t] without loss of generality since

Pr

(
sup
x∈X

∣∣∣∣∂µt(u)

∂uj

∣∣∣
u=x

∣∣∣∣ > L

)
= E(xi)i∈[t]

[
Pr

(
sup
x∈X

∣∣∣∣∂µt(u)

∂uj

∣∣∣
u=x

∣∣∣∣ > L

∣∣∣∣(xi)i∈[t]

)]
.

That is, the upper bound of the conditional probability given any (xi)i∈[t] directly suggests the upper bound of the target
probability on the left-hand side. Note that from the assumption (xi)i∈[t] is independent of (ϵi)i∈[t] and f , the observations
yt follows Gaussian distribution even if (xi)i∈[t] is fixed.

We leverage Slepian’s inequality shown as Proposition A.2.6 in (van der Vaart & Wellner, 1996):

Lemma A.1 (Slepian, Fernique, Marcus, and Shepp). Let X and Y be separable, mean-zero Gaussian processes indexed
by a common index set T such that

E[(Xs −Xt)
2] ≤ E[(Ys − Yt)

2],

for all s, t ∈ T . Then,

Pr

(
sup
t∈T

Xt ≥ λ

)
≤ Pr

(
sup
t∈T

Yt ≥ λ

)
,

for all λ > 0.

The separability (Definition 5.22 in Handel, 2016) holds commonly. As discussed in Remark 5.23 in (Handel, 2016), for
example, if the sample path is almost surely continuous, then the separability holds. Furthermore, the sample path defined by
the commonly used kernel functions, such as linear, SE, and Matérn-ν kernels with ν ≥ 1, is continuous almost surely (Costa
et al., 2024). In addition, if the kernel function is continuous, the posterior mean function is also continuous, almost surely.

First, we provide the proof of the result regarding µt(x). Since yt | (xi)i∈[t] ∼ N (0,Kt + σ2It), we can see that

µt | (xi)i∈[t] ∼ GP
(
0, kµt

(x, z)
)
, where kµt

(x, z) = kt(x)
⊤(K + σ2It

)−1
kt(z). Furthermore, it is known that if the

kernel has mixed partial derivative ∂2k(x,z)
∂xj∂zj

, f and its derivative ∂f(x)/∂xj jointly follow GPs (Rasmussen & Williams,
2005; Adler, 1981). Specifically, the derivative is distributed as

f (j) :=
∂f(x)

∂xj
∼ GP

(
0, k̃(x, z) :=

∂2k(u,v)

∂uj∂vj

∣∣∣∣
u=x,v=z

)
,

for all j ∈ [d]. Note that since the prior mean of f is zero, the prior mean of f (j) is also zero. As with f , the derivative of µt

is distributed as

µ
(j)
t :=

∂µt(x)

∂xj
| (xi)i∈[t] ∼ GP

(
0, k̃µt

(x, z) :=
∂2kµt

(u,v)

∂uj∂vj

∣∣∣∣
u=x,v=z

)
,
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for all j ∈ [d]. In addition, the covariance is given as

Cov
(
f(x), f (j)(z)

)
=

∂k(x,u)

∂uj

∣∣∣∣
u=z

.

Then, we see that the posterior variance of the derivative can be obtained in the same way as the usual GP calculation, as
follows:

Var
(
f (j)(x) | Dt

)
= k̃(x,x)− k̃µt

(x,x),

Cov
(
f (j)(x), f (j)(z) | Dt

)
= k̃(x, z)− k̃µt

(x, z).

On the other hand, we can obtain that

E
[(
f (j)(x)− f (j)(z)

)2]
= k̃(x,x) + k̃(z, z)− 2k̃(x, z),

E
[(
µ
(j)
t (x)− µ

(j)
t (z)

)2 | (xi)i∈[t]

]
= k̃µt

(x,x) + k̃µt
(z, z)− 2k̃µt

(x, z),

for all x, z ∈ X . Then, we obtain

E
[(
f (j)(x)− f (j)(z)

)2]− E
[(
µ
(j)
t (x)− µ

(j)
t (z)

)2 | (xi)i∈[t]

]
= k̃(x,x) + k̃(z, z)− 2k̃(x, z)−

(
k̃µt(x,x) + k̃µt(z, z)− 2k̃µt(x, z)

)
= Var

(
f (j)(x) | Dt

)
+Var

(
f (j)(z) | Dt

)
− 2Cov

(
f (j)(x), f (j)(z) | Dt

)
≥ 0.

Consequently, by applying Lemma A.1, we obtain

Pr

(
sup
x∈X

µ
(j)
t (x) ≥ λ

∣∣∣∣ (xi)i∈[t]

)
≤ Pr

(
sup
x∈X

f
(j)
t (x) ≥ λ

)
.

Since µ
(j)
t (x) and f

(j)
t (x) follow centered GPs, we obtain

Pr

(
sup
x∈X

∣∣∣µ(j)
t (x)

∣∣∣ ≥ λ

∣∣∣∣ (xi)i∈[t]

)
≤ 2Pr

(
sup
x∈X

µ
(j)
t (x) ≥ λ

∣∣∣∣ (xi)i∈[t]

)
≤ 2Pr

(
sup
x∈X

∣∣∣f (j)
t (x)

∣∣∣ ≥ λ

)
.

Hence, from Lemma 2.5, we obtain the desired result.

We can obtain the result regarding f (j)(x)− µ
(j)
t (x) in almost the same proof. We can see that

f (j)(x)− µ
(j)
t (x) ∼ GP(0, k̃(x, z)− k̃µt

(x, z)).

Then,

E
[(
f (j)(x)− f (j)(z)

)2]− E
[(

f (j)(x)− µ
(j)
t (x)−

(
f (j)(x)− µ

(j)
t (x)

))2 ∣∣∣∣ (xi)i∈[t]

]
= k̃µt

(x,x) + k̃µt
(z, z)− 2k̃µt

(x, z) ≥ 0.

The remaining proof is the same as the case of µ(j)
t .

A.3. Proof of Lemma 3.4

As with the existing studies (e.g., Srinivas et al., 2010), we consider the discretization of input space. Let X ⊂ X be a finite
set with each dimension equally divided into ⌈τdr⌉, where τ > 0. Therefore, |X | = ⌈τdr⌉d and supx∈X ∥x− [x]∥1 ≤ 1

τ ,
where [x] is the nearest input in X , that is, [x] = argminx̃∈X ∥x̃− x∥1. Note that we leverage X purely for the analysis,
and X is not related to the algorithm.
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From Assumption 2.8 and Lemma 2.9, we see that f is BLk Lipschitz continuous. Furthermore, from Lemma 3.2, µt is

Lk

(
B + R

σ

√
2γt + 2 log

(
d
δ

))
Lipschitz continuous with probability at least 1 − δ. Combining the above, we see that

f − µt is Lk

(
2B + R

σ

√
2γt + 2 log

(
d
δ

))
Lipschitz continuous with probability at least 1− δ.

From the above arguments, by combining Lemma 2.10 and the union bound, the following events hold simultaneously with
probability at least 1− δ:

1. f(x)− µT (x) is Lres(T ) Lipschitz continuous, where Lres(T ) = Lk

(
2B + R

σ

√
2γT + 2 log

(
2d
δ

))
.

2. The confidence bounds on X hold; that is,

∀x ∈ X , |f(x)− µT (x)| ≤ β
1/2
δ,τ σT (x),

where βδ,τ =
(
B + R

σ

√
2d log (τdr + 1) + 2 log

(
4
δ

))2
.

Then, we can obtain the upper bound as follows:

ET = max
p∈P

Ep(x∗)

[
(f(x∗)− µT (x

∗))
2
]

≤ max
p∈P

Ep(x∗)

[
(f([x∗])− µT ([x

∗]) + Lres(T )∥x∗ − [x∗]∥1)2
]

(∵ The above event 1)

≤ max
p∈P

Ep(x∗)

[(
f([x∗])− µT ([x

∗]) +
Lres(T )

τ

)2
] (

∵ The definition of X
)

≤ max
p∈P

Ep(x∗)

[(
β
1/2
δ,τ σT ([x

∗]) +
Lres(T )

τ

)2
]

(∵ The above event 2)

≤ max
p∈P

Ep(x∗)

(β1/2
δ,τ σT (x

∗) +
β
1/2
δ,τ Lσ + Lres(T )

τ

)2
 (∵ Lemma 2.2)

≤ 2βδ,τ max
p∈P

Ep(x∗)

[
σ2
T (x

∗)
]
+ 2

(
β
1/2
δ,τ Lσ + Lres(T )

τ

)2

.
(
∵ (a+ b)2/2 ≤ a2 + b2

)
If we set τ = T , noting that Lres(T ) = O(

√
γT ) and β

1/2
δ,τ = O(log(T/δ)), we obtain the following:

ET ≤ 2βδ,T max
p∈P

Ep(x∗)

[
σ2
T (x

∗)
]
+O

(
max{γT , log(T/δ)}

T 2

)
.

Although by setting τ = Ω(T ), we can make the second term small arbitrarily, βδ,T = Θ(log(T/δ)) and Ep(x∗)

[
σ2
T (x

∗)
]
=

Ω(1/T ) (Lemma 4.2 in Takeno et al., 2024). Therefore, since the first term is Ω
(

log(T/δ)
T

)
and max{γT ,log(T/δ)}

T 2 =

O
(

log(1/δ)
T

)
if γT is sublinear, we do not set τ more large value for simplicity.

A.4. Proof of Lemma 3.5

As with the existing studies (e.g., Srinivas et al., 2010), we consider the discretization of input space. Let X ⊂ X be a finite
set with each dimension equally divided into ⌈τdr⌉, where τ > 0. Therefore, |X | = ⌈τdr⌉d and supx∈X ∥x− [x]∥1 ≤ 1

τ ,
where [x] is the nearest input in X , that is, [x] = argminx̃∈X ∥x̃− x∥1. Note that we leverage X purely for the analysis,
and X is not related to the algorithm.

In addition, from Lemma 3.3, the following inequality holds with probability at least 1− δ:

sup
j∈d

sup
x∈X

∣∣∣∣∂rt(u)∂uj

∣∣∣
u=x

∣∣∣∣ ≤ b
√
log(2ad/δ),

16



Distributionally Robust Active Learning for Gaussian Process Regression

which implies that Lres, the Lipschitz constant of rt(x) = f(x)− µT (x), can be bounded from above.

Then, by combining the above argument, Lemma 2.6, and the union bound, the following events hold simultaneously with
probability at least 1− δ:

1. f(x)− µT (x) is Lres Lipschitz continuous, where Lres = b
√

log(4ad/δ).

2. The confidence bounds on X hold; that is,

∀x ∈ X , |f(x)− µT (x)| ≤ β
1/2
δ,τ σT (x),

where βδ,τ = 2d log(τdr + 1) + 2 log(2/δ).

Hence, we can obtain the upper bound as follows:

ET = max
p∈P

Ep(x∗)

[
(f(x∗)− µT (x

∗))
2
]

≤ max
p∈P

Ep(x∗)

[
(f([x∗])− µT ([x

∗]) + Lres∥x∗ − [x∗]∥1)2
]

(∵ The above event 1)

≤ max
p∈P

Ep(x∗)

[(
f([x∗])− µT ([x

∗]) +
Lres

τ

)2
] (

∵ The definition of X
)

≤ max
p∈P

Ep(x∗)

[(
β
1/2
δ,τ σT ([x

∗]) +
Lres

τ

)2
]

(∵ The above event 2)

≤ max
p∈P

Ep(x∗)

(β1/2
δ,τ σT (x

∗) +
β
1/2
δ,τ Lσ + Lres

τ

)2
 (∵ Lemma 2.2)

≤ 2βδ,τ max
p∈P

Ep(x∗)

[
σ2
T (x

∗)
]
+ 2

(
β
1/2
δ,τ Lσ + Lres

τ

)2

.
(
∵ (a+ b)2/2 ≤ a2 + b2

)
Then, by setting τ = T , we can see that

ET ≤ 2βδ,T max
p∈P

Ep(x∗)

[
σ2
T (x

∗)
]
+O

(
log(T/δ)

T 2

)
.

Although by setting τ = Ω(T ), we can make the second term small arbitrarily, we do not do so since the first term is
dominant compared with O

(
log(T/δ)

T 2

)
term.

A.5. Proof of Lemma 3.6

Since the maximum p̃T (x
∗) = argmaxp∈P Ep(x∗) [|f(x∗)− µT (x

∗)|] exists, we obtain

max
p∈P

Ep(x∗) [|f(x∗)− µT (x
∗)|] = Ep̃T (x∗) [|f(x∗)− µT (x

∗)|] ,

≤
√

Ep̃T (x∗) [(f(x∗)− µT (x∗))2],

≤
√

max
p∈P

Ep(x∗) [(f(x∗)− µT (x∗))2],

where we used Jensen’s inequality.

17



Distributionally Robust Active Learning for Gaussian Process Regression

A.6. Proof of Lemma 3.7

Since the maximum pT (x
∗) = argmaxp∈P Ep(x∗) [H[f(x) | Dt]] exists, we obtain

max
p∈P

Ep(x)[H[f(x) | Dt]] =
1

2
EpT (x∗)[log(2πeσ

2
T (x))]

≤ 1

2
log(2πeEpT (x∗)[σ

2
T (x)]) (∵ Jensen’s inequality)

≤ 1

2
log

(
2πemax

p∈P
Ep(x)[σ

2
T (x)]

)
.

B. Proofs for Section 4
B.1. Proof of Theorem 4.1

From the definition, σ2
t (x) is monotonically decreasing along with Dt−1 ⊂ Dt. Therefore, for all t ≤ T and x1, . . . ,xT ,

max
p∈P

Ep(x∗)[σ
2
T (x

∗) | x1, . . . ,xT ] ≤ max
p∈P

Ep(x∗)[σ
2
t (x

∗) | x1, . . . ,xt].

Note that x1, . . . ,xT are random variables due to the randomness of the algorithm. Hence, we obtain

max
p∈P

Ep(x∗)[σ
2
T (x

∗) | x1, . . . ,xT ] ≤
1

T

T∑
t=1

max
p∈P

Ep(x∗)[σ
2
t−1(x

∗) | x1, . . . ,xt−1]

≤ 1

T

T∑
t=1

Ept(xt)[σ
2
t−1(xt) | x1, . . . ,xt−1]. (∵ Definition of pt)

Then, we apply the following lemma (Lemma 3 in Kirschner & Krause, 2018):

Lemma B.1. Let Yt be any non-negative stochastic process adapted to a filtration {Ft}, and define mt = E[Yt | Ft−1].
Further assume that Yt ≤ bt for a fixed, non-decreasing sequence (bt)t≥1. Then, if bT ≥ 1, with probability at least 1− δ
for any T ≥ 1, it holds that,

T∑
t=1

mt ≤ 2

T∑
t=1

Yt + 4bT log
1

δ
+ 8bT log(4bT ) + 1.

The random variable Ept(x)[σ
2
t (x) | x1, . . . ,xt] satisfies the condition of this lemma by setting bt = 1 for all t ∈ [T ].

Therefore, with probability at least 1− δ,

max
p∈P

Ep(x∗)[σ
2
T (x

∗) | x1, . . . ,xT ] ≤
1

T

(
2

T∑
t=1

σ2
t−1(xt) + 4 log

1

δ
+ 8 log(4) + 1

)

≤ 1

T

(
2C1γT + 4 log

1

δ
+ 8 log(4) + 1

)
.

Here, we use
∑T

t=1 σ
2
t−1(xt) ≤ C1γT (Lemma 5.2 in Srinivas et al., 2010).

B.2. Proof of Theorem 4.2

From the definition, σ2
t (x) is monotonically decreasing along with Dt−1 ⊂ Dt. Therefore, for all t ≤ T and x1, . . . ,xT ,

max
p∈P

Ep(x∗)[σ
2
T (x

∗) | x1, . . . ,xT ] ≤ max
p∈P

Ep(x∗)[σ
2
t (x

∗) | x1, . . . ,xt].
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Figure 3. Result of maxp∈P Ep(x∗)

[
σ2
t (x

∗)
]

in the synthetic data experiments with η = 0, 0.001, 0.01, 0.1. The horizontal and vertical
axes show the number of iterations and maxp∈P Ep(x∗)

[
σ2
t (x

∗)
]
, respectively. The error bar shows mean and standard errors for 20

random trials regarding the random initial point (and the algorithm’s randomness). The top and bottom rows represent the results of the
GPR model with SE and Matérn kernels, respectively.

Hence, we obtain

max
p∈P

Ep(x∗)[σ
2
T (x

∗) | x1, . . . ,xT ] ≤
1

T

T∑
t=1

max
p∈P

Ep(x∗)[σ
2
t−1(x

∗) | x1, . . . ,xt−1]

≤ 1

T

T∑
t=1

σ2
t−1(xt) (∵ Definition of Xt)

≤ C1γT
T

. (∵ Lemma 5.2 in (Srinivas et al., 2010))

C. Other Experimental Settings and Results
C.1. Results for Variance

Figure 3 shows the result of maxp∈P Ep(x∗)

[
σ2
t (x

∗)
]
, which suggests that the proposed methods effectively minimize

maxp∈P Ep(x∗)

[
σ2
t (x

∗)
]
.

C.2. Details on Implementation of EPIG

EPIG is defined as follows (Bickford Smith et al., 2023):

xt = argmax
x∈X

Ep(x∗) [H[yx∗ | Dt−1,x]−H[yx∗ | Dt−1]] .

Although Bickford Smith et al. (2023) have discussed the efficient computation for EPIG, in the regression problem, the
EPIG can be computed analytically except for the expectation over p(x∗) as follows:

xt = argmax
x∈X

Ep(x∗)

log
 σ2

t−1(x,x
∗)√

σ2
t−1(x) + σ2

√
σ2
t−1(x

∗) + σ2

 ,

where σ2
t−1(x,x

∗) is the posterior covariance between x and x∗. Since we focus on the discrete input domain in
the experiments, the expectation over p(x∗) can also be computed analytically. We used the above equation for the
implementation.
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C.3. Details on Real-World Datasets

The King County house sales dataset is a dataset used to predict house prices in King County by 7-dimensional features,
such as the area and the number of rooms. This dataset has been used for testing the regression (Park et al., 2020), and a
similar dataset has also been used for the AL studies (Park & Kim, 2020). Although this dataset includes 20000 data points,
we used a random sample of 1000 data points for simplicity.

Red wine quality dataset (Cortez & Reis, 2009) is a dataset used to predict the quality of wines from the wine ingredients
expressed by 11-dimensional features. This dataset includes 1600 data points and has been used for the regression
problem (Cortez et al., 2009).

Auto MPG dataset (Quinlan, 1993) is a dataset used to predict automobile fuel efficiency from 6-dimensional features, such
as the weight of the automobile and engine horsepower. Auto MPG dataset has been used for the AL research (Park & Kim,
2020). This dataset includes 399 data points.
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