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Abstract

The analysis of spatio-temporal sequences plays an important role in many real-
world applications, demanding a high model capacity to capture the interdepen-
dence among spatial and temporal dimensions. Previous studies provided separated
network design in three categories: spatial first, temporal first, and spatio-temporal
synchronous. However, the manually-designed heterogeneous models can hardly
meet the spatio-temporal dependency capturing priority for various tasks. To
address this, we proposed a universal modeling framework with three distinctive
characteristics: (i) Attention-based network backbone, including S2T Layer (spatial
first), T2S Layer (temporal first), and STS Layer (spatio-temporal synchronous).
(ii) The universal modeling framework, named UniST, with a unified architecture
that enables flexible modeling priorities with the proposed three different mod-
ules. (iii) An automatic search strategy, named AutoST, automatically searches
the optimal spatio-temporal modeling priority by network architecture search. Ex-
tensive experiments on five real-world datasets demonstrate that UniST with any
single type of our three proposed modules can achieve state-of-the-art performance.
Furthermore, AutoST can achieve overwhelming performance with UniST.

1 Introduction

Modeling and predicting the future of spatio-temporal (ST) sequences based on past observations has
been extensively studied and has been successfully applied in many fields, such as road traffic [13],
medical diagnosis [29], and meteorological research [24]. Traditional statistical methods typically
require input sequence satisfying certain assumptions, which limits its ability in capturing the
complex spatial-temporal dependency. Then, recurrent neural network (RNN) methods [15] leverage
the universal approximation property to build separated network branches to model dependency and
make predictions with fusion gate blocks from the stacking branches. The intrinsic gradient flow in the
back-propagation training process [7] may bring the ST dependency into incorrespondence with the
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Figure 2: Modeling orders of ST data. The stars are tasks with different spatial-temporal dependencies.
The red lines are spatio-temporal modeling procedure with anisotropic tendency. The red lines’ color
going darkness/lightness refers to the modeling ability of the model along with the current modeling
tendency.
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Figure 1: (a) Dependencies in ST sequence data:
Green arrows are spatial dependencies; Red arrows
are temporal dependencies; Blue arrows are depen-
dencies across both spatial and temporal. (b) Task
1 has high spatial dependency but low temporal
dependency; Task 3 has high temporal dependency
but low spatial dependency; Task 2 has equal spa-
tial and temporal dependencies.

network branches’ configuration, especially
for the deeper network [11]. Recently, the
Transformer-based models show larger model-
ing capacity in both spatial and temporal mod-
eling [21, 32, 31], which motivates us to find a
universal way to capture the ST dependency in
a universal framework simultaneously.

As shown in Fig.1, the ST dependency indi-
vidually exists in sequences: spatial correspon-
dences, temporal correspondences, and spatio-
temporal correspondences. Take the road traffic
forecasting as an example, previous research fall
into three typical paradigms. (a) Spatial-first

modeling [1, 27, 13]: Predicting the traffic for
next road junction, which has strong connec-
tions to previous intersections, stops, and surrounding traffic. (b) Temporal-first modeling [23, 5]:
Predicting the traffic of a high school on Friday afternoon, which shows strong periodic relationships
with the school’s times schedule. (c) Spatio-temporal synchronous modeling [19, 12, 28, 6]:
Analyzing the city-wide traffic, which is tightly entangled in both spatial and temporal. During the
sequences modeling, the main problem is to align the network design with the natural spatio-temporal
distribution.

However, the distribution of ST dependencies varies and depends on the forecasting task and corre-
sponding datasets. They are mixed in a compound way when modeling ST sequences, and the three
tasks in Fig.1(b) are the representative ones. What makes it worse is that, the prevalent modeling
methods show anisotropic tendency to capture the ST dependency. If we use the spatial-first models
on the three tasks in Fig.2(b), the task 1’s states are highly influenced by the surrounding information,
and the periodic pattern is the underlying factors, which makes the spatial-first model fits it properly.
We can compare the model ability (red lines) with the ideal one in Fig.2(a), this kind of model
will be insufficient for task 2 and task 3. Similarly, suppose we use the temporal-first models on
the three tasks in Fig.2(c). In that case, the model ability only matches task 3, where the periodic
pattern decides the states other than the spatial information. The previous analysis also applies to
the spatio-temporal synchronous situation, where the states are mainly influenced by the complex
associations across the spatial and temporal, like semantic relationships. In this paper, we aim to
propose a universal model that alleviates the the modeling gap on different tasks.

The contributions are: 1) The first to raise and address the modeling order proplem in spatio-temperal
forecasting tasks by proposing a universal modeling framework UniST and an automatic structure
search strategy AutoST. 2) Proposing 3 replacable and unified attention-based modeling units named
S2T, T2S and STS, which model spatio-time sequence with three different priorities: spatial first,
temperal first and spatio-temperal synchronous. 3) Extensive experiments on 5 datasets and 3
sequence forcasting tasks demonstrate that only using our three modeling units (S2T, T2S, and
STS) outperforms the baseline methods, and our framework together with AutoST achieves the new
state-of-the-art performance.
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2 Related Work

Existing spatio-temporal forecasting methods can be roughly grouped into three categories: spatial-
first, temporal-first, and spatio-temporal synchronous methods. Spatial-first: STG2Seq [1] uses
stacking GCN layers to capture the entire inputs sequence, where each GCN layer operates on a
limited historical time window, and the final results are concatenated together to make forecasting.
In the view of this paper, it belongs to spatial-first modeling. STGCN [27] propose the blocks that
contains two temporal gated convolution layers with one spatial graph convolution layer in the middle,
which starts from a convolution-based temporal layer. DCRNN [13] is proposed to forecast traffic
flow using diffusion convolution and recurrent units to capture spatial and temporal information
successively. Temporal-first: Graph WaveNet [23] built the basic modeling layers with two gated
temporal convolution modules at the beginning and followed by a graph convolution module, which
models from temporal to spatial. GSTNet [5] builds several layers of spatial-temporal blocks to
produce the forecasting, which is consists of a multi-resolution temporal module followed by a
global correlated spatial module. Spatio-temporal synchronous: STSGCN [19] construct a spatio-
temporal synchronous extraction module composed of graph convolutional networks. STFGNN
[12] modeling spatio-temporal correlations simultaneously by fusing a dilated convolutional neural
network with a gating mechanism and a spatio-temporal fusion graph module. ST-ResNet [28]
using convolution on a sequence of image-like 2D matrices to model spatio-temporal at the same
time. ASTGCN [6] proposed a spatial-temporal convolution that simultaneously captures the spatial
patterns and temporal features.

3 Preliminary

3.1 Spatio-temporal Sequence Forecasting

Spatio-temporal sequence forecasting (STSF) is to predict the future sequence of spatio-temporal
inputs based on the historical observations. Specifically, given a graph G = (V,E,A), where V and
E are the node set and edge set, and N is the number of nodes, A 2 RN⇥N is the adjacency matrix
of G. If vi, vj 2 V and (vi, vj) 2 E, Aij = 1, otherwise Aij = 0. X = {X1,X2, . . . ,XT } is a ST
sequence of T time steps, where X 2 RT⇥N⇥C . The snapshot at time step t is denoted as xt 2 RN⇥C

, where C is the feature dimension of a node. Then the ST sequence forecasting problem can be
defined as: given S time steps historical observations of input graph G, the goal is to predict the future
sequence of the features on each node with a learning function f :

⇥
X(t�S):t, G]

f! X(t+1):(t+P ),
where X(t�S):t and X(t+1):(t+P ) are the ST sequence with length S and P respectively.

3.2 Network Architecture Search

Network (neural) architecture search (NAS) are automated methods for generating and optimizing
neural networks. A representative gradient-based approach is DARTS [16], which is the foundation
of our proposed training framework. DARTS aims to search optimal directed edge connections on a
directed acyclic graph with predefined computing cells as nodes. The result connections of node j is
denoted as x(j) =

P
i<j o

(i,j)
�
x
(i)
�
, where o

(i,j) is an operator, e.g. layers in a model, represented
by a directed edge from node i to node j. DARTS proposes a method to relax the discrete searching
space to be continuous, and uses bi-level optimization to learn a differentiable objective on the joint
optimization problem of both network architecture and model weights. The objective function is:
min↵ Lval (w⇤(↵),↵) s.t. w⇤(↵) = argminw Ltrain(w,↵), where ↵ is the architecture, and w is
the model weights. In Section 4.4, we improve the design of the directed acyclic graph of the search
architecture, and the two-stage optimization of the architecture parameters.

4 Methods

In this section, we firstly introduce two basic modeling units: the time series linear self-attention, and
the high order mix graph convolution. Then we proposed three layers as different network backbones,
and we build a universal modeling framework based on the tree “atomic” layers. Next, we propose an
automatic searching strategy for spatio-temporal information fusion, which aimed for the optimal
order of spatio-temporal modeling on various downstream tasks.
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Figure 3: Three ST modeling modules of different modeling orders. (a) S2T Layer: firstly model
spatial information, then combine with temporal information within self-attention mechanism; (b)
T2S Layer: firstly model temporal information, then use the high-order graph convolution to capture
the complex dependency; (c) STS Layer: model the spatial and temporal information simultaneously,
and concatenate the two feature map as the final representation.

4.1 Spatial / Temporal Modeling Unit

4.1.1 Time Series Linear Self-Attention

Self-attention mechanism [21] has been widely used in nature language processing, computer
vision, and time series forecasting, which is defined as: Attention(Q,K,V) = V

0 =
Softmax(QK

>
/
p
d)V, where Q = XWQ,K = XWK ,V = XWV , and the projection ma-

trix WQ 2 RC⇥D
,WK 2 RC⇥D

,WV 2 RC⇥D.

However, the original self-attention suffers from high computational and memory cost. Because the
dot product computation of Q and K leads to O(N2) time and space complexity. [9] proposed linear
self-attention, which represents the similarity function of Q and K in the self-attention by a kernel
function: V

0
i = � (Qi)

T PN
j=1 � (Kj)VT

j /� (Qi)
T PN

j=1 � (Kj). Such that for each query Qi,
the two terms

PN
j=1 �(Kj)Vj and

PN
j=1 �(Kj) are the same and reused for efficient computing.

Following [31], we use the technique of linear self-attention in representing time series features.

4.1.2 High-order Mix Graph Convolution

To acquire better spatial information representation, we propose a high-order mix graph convolutional
operation for spatial information mixing and feature extraction of the original inputs, it is defined as:

HighOrder(X,A, order)

def
= H

order =

8
<

:

X if order = 0
MixGC(X,A) if order = 1
MixGC(H(order�1)

A) if order > 1,

(1)

where order denotes the total order of the graph convolution operations, i.e., to consider order-
hop neighbor relationship of each node. In this paper, we define the 1st-order mix convolutional
operation by combining the 1st-order ChebNet [10] and the Adaptive Diffusion Convolution [23]:
MixGC(X,A) = ChebNet(X,A) + AdapDC(X,A) = ÂXWg + PfXWf + PbXWb +

ÂadpXWadp, where Â = D
�1/2

ÃD
�1/2 is a normalized adjacency matrix with self-loop. ChebNet

focuses on 1st-order neighbor information, while AdapDC focuses on multi-hop information. Ã
is defined as Ã = A + I, where Dii =

P
j Ãij , I is an identity matrix. Pf = A

rowsum(A) ,

Pb =
A>

rowsum(A>) refers to a forward and backward state transition matrix, respectively. Âadp is an
adaptive matrix for complementary spatial state information, which is calculated by two learnable
node embedding matrices E1,E2 2 RN⇥C [20] as Âadp = Softmax(ReLU(E1E

>
2 )).

4



4.2 Unified Spatio-temporal Modeling Backbone

In order to solve the problem of spatio-temporal dependency distribution differences in the modeling
procedure, we first propose three novel modules: S2T Layer, T2S Layer, STS Layer, that are
suitable for three typical spatio-temporal dependencies: spatial-first, temporal-first, spatio-temporal
synchronous, respectively. We design all these three modeling module to have the same dimension of
inputs and outputs. This provides a solid foundation for our later flexible and universal modeling.

4.2.1 Spatial-first Modeling Layer

The spatial-first sequence modeling method, S2T Layer, models from spatial to temporal. The spatial
information between the nodes on the graph is first characterized on a single slice. After that, node
information at different times is exchanged along the time dimension, whose spatial information has
been shared with its neighbors.

As shown in Fig.3(a), S2T Layer first uses two high-order mix graph convolution defined in Eq.(1) to
process the input spatio-temporal sequences XL�1 to obtain two sequence representations with mixed
spatial information. Then the key K and value V of the input of the subsequent self-attention are
obtained by a transformation using the parameter matrix WK ,WV , respectively, while the query Q is
obtained by transforming the original input ST sequence using the parameter matrix as follows: Q =
XL�1WQ,K = HighOrder1(XL�1,A, order)WK ,V = HighOrder2(XL�1,A, order)WV .

Then the original ST sequence and the new sequence with mixed spatial information are processed
using a multi-head linear self-attention, from which it learns temporal dependencies and exchanges
information at different time slices to obtain further representations of the ST sequence:

Z = Attention(Q,K,V) . (2)

The output is concatenated with the initial input once for residuals and processed a layer normalization,
followed by a two-layer fully connected network for further ST representation learning. This
network is applied separately and identically to each point-in-time position in the ST sequence,
thus maintaining the continuous transfer of position-encoded information. Finally, the resulting
ST sequence representation is again connected to the initial input with one residual and layer
normalization to obtain the output XL = Norm(max(0,Norm(Z+XL�1)W1 + b1)W2 + b2).

4.2.2 Temporal-first Modeling Layer

This module is designed to model the ST sequence from temporal to spatial, named T2S Layer.
Different from spatial-first modeling, at the beginning, the original inputs are projected into Q,K,V

by three weight matrices as Q = XL�1WQ, K = XL�1WK , and V = XL�1WV . The projection
results are used to calculate temporal representations at first, using the time series linear self-attention
in Eq.(2). Then the temporal representation on each node are send to the high-order mix graph
convolution, together with the adjacency matrix, to fusion the temporal information from every
neighbors. Z0 = HighOrder(Z,A, order). Finally, the output representations are executed with the
feed forward and layer normalization operations the same way as the S2T Layer.

4.2.3 Spatial-temporal Synchronous Layer

This module named STS Layer, which aims to model the spatial and temporal information si-
multaneously. Different from the former two modules, the inputs are directly used to calcu-
late spatial and temporal representations at the same time. For temporal modeling part, it still
project the original inputs into Q,K,V, and execute a linear self-attention operation for a tem-
poral representation. For the spatial part, it accepts the original inputs and the spatial infor-
mation and uses high-order mix graph convolution operation to construct spatial representation.
Temporal  Z1 = Attention(Q,K,V), Spatial  Z2 = HighOrder(XL�1,A, order). The
outputs are concatenated together as: Z0 = concat[Z1,Z2]. Then it is executed with the following
operations and output as XL similar with the former two modules.

4.3 Universal Modeling Framework
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Figure 4: Overview of the UniST framework,
starting with an embedding layer and followed
by an encoder and a decoder. The embedding
layer generates the sum of four embeddings. The
encoder consists of multiple spatio-temporal ex-
tractors, including S2T, T2S or STS Layer.

Targeting to the ST sequence forecasting task, we
propose a unified ST sequence modeling frame-
work (UniST) with the proposed unified modeling
backbones in Fig.4, which follows the encoder-
decoder architecture. It uses a unified architecture
with interchangeable and replaceable mode units.

4.3.1 Spatio-temporal Embedding Layer

Since the Transformer model solely relies on the
self-attention for global alignments, the positional
embedding [21] and extra embeddings [32] are
needed to capture spatio-temporal dependency.
Then we introduce four types of embeddings EP ,
EV , ES , ET in Appendix A.

Fusion embedding. The four embeddings are
summed together as the final embedding added to
the inputs: EF = EP +EV +ES +ET , note that
the shape of token embedding EV 2 RT⇥N⇥d,
while other embeddings’ shape are EP 2 R1⇥1⇥d,
ES 2 R1⇥N⇥d, ET 2 RT⇥1⇥d. When calculat-
ing the summation, they will be replicated and
expanded with broadcast on the respective missing dimensions.

4.3.2 Encoder

The encoder of UniST consists of multiple Spatio-Temporal Extractors (STE(·)), which can be
arbitrarily chosen from {T2S Layer, S2T Layer, STS Layer}. All extractors are connected end to
end, i.e., the output of the previous one is the input of the next one. To acquire a more diversity
representation, the outputs of each extractor are added to form the final output of the encoder. Let the
outputs of the embedding layer be X0, the encoder is computed as: Xen =

PL
i=1 STE

i(X0), where
L refers to the number of spatio-temporal extractors.

4.3.3 Decoder

The decoder accepts the output of encoder, i.e., L outputs from L spatio-temporal extractors. They
are firstly added as a unified spatio-temporal representation. Then the results are through two
times of ReLU activation and Linear projection, and produce the final sequence forecasting result.
Denote X` as the output of extractor `, we have the calculation of decoder as: Ȳ = Xde =
Linear(ReLU(Linear(ReLU(

P
` X`)))).

4.4 Automated Search for UniST

With the proposed unified ST sequence modeling framework UniST, it still suffers from the poten-
tial wrong network configuration problem, where we build an arbitrary modeling order with the
replaceable model units {T2S Layer, S2T Layer, STS Layer}. Considering the various downstream
tasks, how can we build a universal model with an optimal configuration? Here we propose the
Automated Spatio-Temporal modeling approach (AutoST), which learns the optimal combinatorial
order that suits the spatio-temporal dependency of the current task. We designed two schemes for
layer combination. In this section, we first define the basic searching unit of AutoST, then we
introduce two designs of AutoST with different searching schemes.

4.4.1 AutoST Cell

The basic searching unit in AutoST is the network cell. Here we define its structure and computing
process.
Definition 1. AutoST Cell. Let G = (V, E) be a direct acyclic graph (DAG), V denotes the node set,

each node refers to a representation comes from the outputs of a computation layer. The representation

on node i is defined as H
i 2 RT⇥|V|⇥d

, where T is the length of spatio-temporal seqence, d is the
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Figure 5: Two AutoST searching schemes. (a) AutoST1 is the sequential stacking scheme. Only
search for one of the three modeling layers to build the AutoST Cell. The cells are stacking
sequentially to form the encoder, and each cell is skip-connected. (b) AutoST2 is the hybrid
assembling scheme, with only one AutoST Cell in the encoder. The cell consists of multiple nodes
for intermediate representations. The connections between nodes are candidate layers.

feature dimension. The input of each AutoST Cell is denoted as H
0
, and the output of each cell is

the summation of all nodes, i.e., all interval representations: Hout =
P|V|

i H
i

. On graph G, the

directed edge (i, j) from node i to node j stands for a mixture of all candidate modeling modules

O = {T2S Layer, S2T Layer, STS Layer}, and it is represented as o
(i,j)

. So that the representation

between node j and other nodes can be written as: Hj =
P

i<j o
(i,j)

H
i
. On each directed edge,

there exist a set of weight parameters ↵
(i,j) = {↵(i,j)

o |o 2 O}, which indicates the probability of

the corresponding modeling module should be retained. Every weight parameters of the candidate

modeling module is calculated as: H
j =

P
i<j

P
o2O

exp(↵(i,j)
o )

P
o02O

exp
⇣
↵(i,j)

o0

⌘o
�
H

i
�
.

4.4.2 Sequential Stacking Search
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Figure 6: Searching process of the AutoST Cell.
The searching goal is to choose the optimal one
from the candidate modules between the given
computation node H

i and H
j .

Based on the proposed UniTS, we propose two
searching schemes to find better combination of
the modeling layers. The proposed searching
schemes are lossless replacements for the encoder
of UniTS. We simply replace the encoder’ spatio-
temporal extractor with the AutoST Cell.

The first one is multi-layer sequential stacking
searching scheme, with which the whole model is
named AutoST1. As illustrated in Fig.5(a), it has
simple structure within each AutoST Cell, while
has more complicated stacking structure between
cells. Each cell holds a DAG with three nodes,
one input node H0, one output node Hout and an intermediate node H

1. And two directed edges are
pre-defined between the former two nodes’ output and the output node: (H0

,Hout) and (H1
,Hout).

The searching space of this scheme is shown as the directed red dotted line. The red dashed box is
the search candidate set, including {T2S Layer, S2T Layer, STS Layer}. We conduct two gradient
based network architecture search methods in the experiments, i.e., DARTS [16], PAS [22]. After
searching, the cell essentially becomes one of the three model units. This scheme allows multiple
stacking of cells, therefore, the new encoder of the whole model will become the sequential stacking
between different modeling layers.

4.4.3 Hybrid Assembling Search

The another searching scheme is called hybrid assembling searching. The structure is similar with the
sequential stacking searching. However, in this scheme, the encoder only consists of a single AutoST
Cell. The cells are not stacked layer-by-layer, it will conduct searching on a more complicated DAG
on a single AutoST Cell.

In this searching scheme, the DAG of AutoST Cell is shown as Fig.5(b). There are multiple nodes in
the cell, generally, it will be set as 4-7 nodes in the experiments. The pre-defined connections are
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each node’s output to the output node. The multiple directed red dotted lines show the searching
space of this scheme. The candidate set is expanded with two operations: Identity and Zero. Identity

means no modeling module in this edge, i.e., build directly connection with no operation. Zero means
to set all the data passing through it to zero, i.e., no connection is made. This scheme makes the entire
DAG form a complex and deep network structure. Through the complex structure design inside the
cell, multiple spatio-temporal modeling modules are combined to fit the spatio-temporal dependency
distribution in a target task.

5 Experiments

This section empirically evaluates the effectiveness of UniST and AutoST models with short-term,
medium-term, and long-term ST sequence forecasting tasks on five real-world datasets. Platform:
Intel(R) Xeon(R) CPU 2.40GHz ⇥ 2 + NVIDIA Tesla V100 GPU (32 GB) ⇥ 4. The code is
available at https://github.com/shuaibuaa/autost2022.

5.1 Datasets

In order to study the effect of various ST sequence forecasting methods under complex spatio-
temporal distribution, five real-world datasets with different tasks and data states are selected. The
statistic information of the five datasets are listed in Table 3.

METR-LA [8]: The traffic speed dataset contains 4 months of data from March 1, 2012 to June 30,
2012, recorded by sensors at 207 different locations on highways in Los Angeles County, USA. The
data granularity is 5 minutes per point, and the spatial information provided by the dataset includes
the coordinates of each sensor and the distance between the sensors.

PEMS-BAY [14]: The traffic speed dataset comes from the California Transportation Agencies
(CalTrans) Performance Evaluation System (PeMS). The dataset contains data recorded by 325
sensors in the Bay area for a total of 6 months from January 1, 2017 to May 31, 2017, and the data
granularity is 5 minutes per point. The spatial information provided by the dataset includes the
coordinates of each sensor and the distance between the sensors.

PEMS-03/04/08 [3]: The three traffic datasets are also from the PeMS system of the California
Transportation Agency, and each dataset is data recorded by sensors in a certain area of California.
The PEMS-03 dataset contains data recorded by 358 sensors for 3 months from September 1, 2018
to November 30, 2018. PEMS-04 dataset contains 2 months of data recorded by 307 sensors from
January 1, 2018 to February 28, 2018. PEMS-08 dataset contains 2 months of data recorded by
170 sensors from July 1, 2016 to August 31, 2016. The data granularity of these three datasets is 5
minutes per point, and the spatial information provided by the datasets only includes the connectivity
between sensors.

5.2 Main Results

Table 1 summarizes the ST sequence forecasting results. UniSTS , UniSTT , UniSTST stands for our
UniST framework with three same stacking layers of S2T Layer, T2S Layer, STS Layer, respectively.

The results in bold font in Table 1 show that our proposed UniST outperforms all baseline methods and
achieves State-of-the-Art on all 9 tasks of 5 datasets, with all three proposed layers. This demonstrates
our proposed unified spatio-temporal modeling layers and the unified forecasting framework are more
expressive than traditional methods. Specifically, compared with GMAN, which is also based on
self-attention mechanism, our methods achieve at most 18.41%, 15.31%, 13.82% MAE decreases on
the short-term, medium-term, and long-term forecasting task, respectively. Compared with the most
advanced method STFGNN, our methods gain 12.06%, 10.61%, 9.43% MAE decreases on the short,
medium, long-term forecasting tasks.

From the last two columns of Table 1, we can see that both of AutoST1 and AutoST2 beat all other
methods on every metric of every task, including our proposed UniST. Recall that the difference
between AutoST and UniST is the encoder part, UniST uses all same layers from {S2T Layer, T2S

Layer, STS Layer}, while AutoST aims to search for a better combination and connection using
the three types of layers. This demonstrates that combining and integrating modules with different
spatio-temporal modeling abilities can better deal with uncertainty spatio-temporal dependency and
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Table 1: Spatio-temporal sequence forecasting performance. The bold and shaded numbers are the
best results of all methods. The bold numbers are the best results of manually designed models.

Dataset Metric VAR SVR ARI. WAV. DCR. STG. G.WV. STF. GMA. UniSTS UniSTT UniSTST AutoST1 AutoST2

M
ET

R
-L

A 15
m

in RMSE 7.89 8.45 8.21 5.89 5.38 5.74 5.15 4.73 5.48 4.39 4.43 4.47 4.38 4.33

MAE 4.42 3.99 3.99 2.99 2.77 2.88 2.69 2.57 2.77 2.25 2.29 2.33 2.23 2.19

MAPE 10.20 9.30 9.60 8.04 7.30 7.62 6.90 6.51 7.25 5.63 5.75 5.89 5.58 5.51
30

m
in RMSE 9.13 10.87 10.45 7.28 6.45 7.24 6.22 5.46 6.34 5.20 5.12 5.22 5.09 5.02

MAE 5.41 5.05 5.15 3.59 3.15 3.47 3.07 2.83 3.07 2.57 2.53 2.61 2.50 2.44

MAPE 12.70 12.10 12.70 10.25 8.80 9.57 8.37 7.46 8.35 6.88 6.76 6.97 6.64 6.54

60
m

in RMSE 10.11 13.76 13.23 8.93 7.60 9.40 7.37 6.40 7.21 6.09 6.07 6.23 6.03 6.00

MAE 6.52 6.72 6.90 4.45 3.60 4.59 3.53 3.18 3.40 2.91 2.89 3.02 2.85 2.78

MAPE 15.80 16.70 17.40 13.62 10.50 12.70 10.01 8.81 9.72 8.17 8.12 8.47 7.88 7.79

PE
M

S-
BA

Y 15
m

in RMSE 3.16 3.59 3.30 3.01 2.95 2.96 2.74 2.33 2.82 2.26 2.27 2.32 2.21 2.16

MAE 1.74 1.85 1.62 1.39 1.38 1.36 1.30 1.16 1.34 1.11 1.12 1.14 1.09 1.07

MAPE 3.60 3.80 3.50 2.91 2.90 2.90 2.73 2.41 2.81 2.21 2.25 2.28 2.16 2.12

30
m

in RMSE 4.25 5.18 4.76 4.21 3.97 4.27 3.70 3.02 3.72 2.94 2.96 2.92 2.89 2.85

MAE 2.32 2.48 2.33 1.83 1.74 1.81 1.63 1.39 1.62 1.33 1.36 1.32 1.29 1.27

MAPE 5.00 5.50 5.40 4.16 3.90 4.17 3.67 3.02 3.63 2.83 2.81 2.79 2.73 2.70

60
m

in RMSE 5.44 7.08 6.50 5.43 4.74 5.69 4.52 3.74 4.32 3.66 3.67 3.64 3.60 3.58

MAE 2.93 3.28 3.38 2.35 2.07 2.49 1.95 1.66 1.86 1.62 1.63 1.61 1.57 1.52

MAPE 6.50 8.00 8.30 5.87 4.90 5.79 4.63 3.77 4.31 3.59 3.60 3.58 3.52 3.48

PE
M

S3

60
m

in RMSE 38.26 35.29 34.98 33.65 30.31 30.12 32.94 28.34 33.21 26.75 26.61 27.09 26.26 25.71

MAE 23.65 21.97 21.42 20.43 18.18 17.49 19.85 16.77 17.21 15.60 15.67 15.76 15.45 15.29

MAPE 24.51 21.51 21.12 20.19 18.91 17.15 19.31 16.30 18.27 16.08 16.14 16.24 15.98 15.77

PE
M

S4

60
m

in RMSE 36.66 44.56 43.92 41.27 38.12 35.55 39.70 31.88 33.34 31.35 31.21 31.31 30.68 30.59

MAE 23.75 28.70 28.45 26.88 24.70 22.70 25.45 19.83 20.93 19.60 19.45 19.67 19.05 19.01

MAPE 18.09 19.20 18.90 17.95 17.12 14.59 17.29 13.02 14.06 12.90 12.89 12.95 12.76 12.68

PE
M

S8

60
m

in RMSE 36.33 36.16 35.34 33.62 27.83 27.83 31.05 26.22 26.70 24.53 24.39 24.67 23.99 23.63

MAE 23.46 23.25 22.76 21.59 17.86 18.02 19.13 16.64 16.97 15.60 15.44 15.63 14.90 14.72

MAPE 15.42 14.64 14.51 14.10 11.45 11.40 12.68 10.60 11.32 10.53 10.42 10.63 10.19 10.01

Count 0 0 0 0 0 0 0 0 0 8 13 6 0 27

more comprehensively model spatio-temporal sequences. At the same time, AutoST2 beats AutoST1

on every task. It shows that using a single-layer but complex internal connection searching method
for these tasks is more effective.

Moreover, we can see that the best methods among all baselines are STFGNN, the only method in
spatio-temporal synchronous modeling. Comparing GMAN and Graph WaveNet, the two represen-
tative methods in spatial-first modeling and temporal-first modeling, respectively, we can see that
although they beat other baselines, while our proposed Uni- series model shows a better performance.
From this perspective, the proposed method matches the design.

5.3 Ablation Study

In AutoST, we design to use gradient-based network architecture search methods to optimize the
connections of the modeling modules, and we choose DARTS and PAS as the NAS methods. At the
same time, we also conduct experiments to compare the method of random search and AutoSTG [17],
which also uses the network architecture search technology for ST sequence prediction. The results
are shown in Table 2. We can conclude that our proposed AutoST can outperform AutoSTG with
all searching methods. That is because AutoSTG uses more fine-grained temporal convolution and
graph convolution structure as the candidates, while AutoST’s candidate layers are designed to model
the three different spatio-temporal dependencies, which can make better use of the modeling ability
of the three layers on different temporal and spatial relations. It reduces the searching space and the
search time simultaneously so that AutoST can make better efficiency and accuracy.

5.4 Result Visualization

Forecasting Visualization: We randomly selected one day from the PEMS-BAY dataset and com-
pared our methods’ forecasting results and baseline methods in a visualization way. Typical results
are shown in Fig.8, the time span is selected from 13:00 to 19:00, which can represent the most
typical scene of the rush hour from afternoon to evening. From the forecasting lines compared to the
ground truth, we can see that our proposed methods outperform the two typical baseline methods
mostly when forecasting smooth traffic and traffic jam. The bar lies on the bottom of the figures
is the forecasting error of each method. We can find that all methods encountered accuracy drop
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Table 2: The results of network searching methods.
Method METR-LA (60 min) PEMS-BAY (60 min)

RMSE MAE MAPE RMSE MAE MAPE

AutoSTG 7.27 3.47 / 4.38 1.92 /

AutoST1-R 6.12 2.97 8.32 3.69 1.62 3.65
AutoST2-R 6.08 2.92 8.26 3.68 1.62 3.66

AutoST1-D 6.09 2.85 7.96 3.74 1.68 3.72
AutoST2-D 6.16 3.25 8.48 3.64 1.60 3.61

AutoST1-P 6.03 2.85 7.88 3.60 1.57 3.52
AutoST2-P 6.00 2.78 7.79 3.58 1.52 3.48

(a) The search results of
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Figure 7: The learned architectures of AutoST.

Figure 8: The forecasting visualization in the rush hour of PEMS-BAY dataset. The red and yellow
bars on the bottom show the difference between the result and the ground truth at each time step.

around 14:00 and 17:30. That is because the status of the road is changed dramatically. However, our
methods are more stable with the changes and can quickly be adapted to the new road state. For the
complete data visualization of the day, please refer to Fig.9 in the appendix.

Learned Architecture Visualization: The learned architectures of the AutoST1 and AutoST2 on
PEMS-08 dataset are shown in Fig.7. We can find that although UniSTT has a better effect when
modeling with single type modeling module, the search result of AutoST1 show that the STS Layer

occupies a larger number, and the model achieves better performance than UniSTT . This demonstrates
that combining and stacking multiple spatio-temporal dependency modeling methods reasonably can
better fit the real spatio-temporal dependencies.

In addition, we can find that AutoST2 obtains a complex connections between the four computation
nodes in a single cell. And this learned architecture helps AutoST2 achieve state-of-the-art on this
task. Although we cannot yet explain why stacking the modules leads to better results, we can see a
potentially broad range of applications [25] for unified architecture searching in this way.

6 Conclusion

In this work, we illustrated the existence of the modeling gap problem, especially the modeling order,
in the spatio-temporal analysis. Moreover, we build three different layers, namely S2T, T2S, and STS,
as new network modeling backbones. Then, an automatic searching strategy is proposed to search the
optimal modeling priority automatically. Extensive experiments on five real-world datasets show the
overwhelming performance over SOTA baselines.
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