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ABSTRACT

Learning population dynamics involves recovering the underlying process that
governs particle evolution, given evolutionary snapshots of samples at discrete
time points. Recent methods frame this as an energy minimization problem in
probability space and leverage the celebrated JKO scheme for efficient time dis-
cretization. In this work, we introduce 1 JKOnet, an approach that combines the
JKO framework with inverse optimization techniques to learn population dynam-
ics. Our method relies on a conventional end-to-end adversarial training procedure
and does not require restrictive architectural choices, e.g., input-convex neural net-
works. We establish theoretical guarantees for our methodology and demonstrate
improved performance over prior JKO-based methods.

1 INTRODUCTION

Modeling population dynamics is a funda-
mental challenge in many scientific domains,
including biology (Schiebinger et al. 2019;
Moon et all 2019), ecology (Ayala et al.l
1973)), meteorology (Fisher et al., 2009 Sigrist
et al., |2015; Verma et al., 2024} Price et al.,
2023)), transportation flows in urban networks
(Medina-Salgado et al.l |2022), and epidemiol- JKO objective
ogy (Wang et al., 2021} |Kosma et all [2023)), level curves

among others.. The tasl.< is to infer the unde%‘- Figure 1: 1 JKOnet working scheme: our method
lying stochastic dynamics of a system — typi- minimizes the gap between the optimal values of
cally modeled by stochastic differential equa-  parametric (9) JKO functional and values
tions (SDEs) — from observed marginal distri- obtained at ground truth population measures.
butions at discrete time points. While this prob-

lem has been studied extensively in settings where individual trajectories are available (Krishnan
et al., 2017} |Li et al.,[2020; Brogat-Motte et al.,[2024), such data are often unavailable in practice. In
many real-world scenarios, we only observe population-level data, where it is infeasible to continu-
ously track individual entities. Instead, we are forced to rely on temporally separated and mutually
independent snapshots of the population.

=== predicted evolution <>

= true evolution

In single-cell genomics (Macosko et al.,[2015)), for example, measuring the state of individual cells
typically involves destructive sampling — a process where cells are destroyed during measurement,
preventing any further observation of their future behavior. As a result, the data consist only of
isolated profiles of cellular populations taken at discrete time points. Reconstructing the continuous
developmental trajectories of cells from such fragmented data poses a challenge. A similar situation
arises in financial markets (Gontis et al.,2010; |Yang et al., [2023)), where analysts often have access
only to marginal distributions of asset prices at specific times, making it necessary to infer the un-
derlying dynamics that govern these distributions. In crowd dynamics (Maury et al., 20105 2011}
Wan et al.||2023), modeling the temporal evolution of population densities is crucial for understand-
ing and managing pedestrian flows. In this case, data on individual trajectories are also typically
unavailable, and only aggregate distributions at various time points are observed.

A promising approach to address the absence of particle trajectories is the Jordan—Kinderlehrer—Otto
(JKO) scheme (Jordan et al.| [1998)), which models the evolution of a particle system as a sequence
of distributions that gradually approach the minimum of a total energy functional while remaining



Under review as a conference paper at ICLR 2026

close to the previous distributions. However, implementing the JKO scheme involves solving an
optimization problem over the space of probability measures, which is computationally demanding.
The first attempt to leverage JKO for learning population dynamics was introduced in (Bunne et al.,
2022b, JKOnet). While innovative, this approach relies on a complex learning objective and is
limited to potential energy functionals — meaning it cannot capture stochasticity in the dynamics. A
recent work, (Terpin et al.l 2024, JKOnet ™), proposes replacing the JKO optimization step with its
first-order optimality conditions. This relaxation allows modeling more general energy functionals
and reduces computational complexity, but it does not support end-to-end training. Instead, it re-
quires precomputing optimal transport couplings (Cuturi, 2013) between subsequent time snapshots,
which limits its scalability and generalization.

Contributions. In this work, we present a novel approach for recovering the system dynamics based
on observed population-level data. Our key contributions are as follows:

1. Methodology: In §3.2] we cast the problem of reconstructing energy functionals within the
JKO framework as an inverse optimization task. This perspective leads to a novel min-max
optimization objective for population dynamics recovery.

2. Algorithm: We equip our population dynamics methodology with a conventional end-to-end ad-
versarial learning procedure (§3.3)). Importantly, our practical scheme does not pose restrictions
on the architectures of the utilized neural networks, which contributes to the scalability.

3. Theoretical Guarantees: Under suitable assumptions, we show that our method can accurately
recover the underlying energy functional governing the observed population dynamics (§ [3.4).

In §5]and Appendix[B] we evaluate our approach on a range of synthetic and real-world datasets, in-
cluding single-cell genomics. The results show that our method demonstrates improved performance
over previous JKO-based approaches for learning population dynamics.

Notation. Let X' be a compact subset of RP equipped with the Euclidean norm || - ||2. Let P(X)
denote the set of probability measures on X, and let P,.(X’) denote its subset of probability mea-
sures absolutely continuous with respect to the Lebesgue measure. For p € P,.(X), we use p to
denote both the measure and its density function with respect to the Lebesgue measure. For mea-
sures i, v € P(X), we denote the set of couplings (transportation plans) between them by II(u, v).
For a measure p € P(X) and measurable map 7' : X — X, we denote by Tﬂp the associated

push-forward measure, and idy : X — X is the identity mapping. V - F' = Z =19 dF -4 denotes the
divergence operator for a continuously differentiable vector field F' : X — X.

2 BACKGROUND

To describe the evolution of population measures, we use the theoretical framework of Wasserstein
gradient flows (WGFs). In what follows, we first introduce the preliminary concept of Optimal
Transport between probability measures (Villani et al., 2008} |Santambrogio, 2015). Then we provide
sufficient theoretical background on WGFs; see (Santambrogio, |2017} [Figalli & Glaudol 2023)) for
an overview and (Ambrosio et al.,|2008) for a comprehensive study of WGFs theory. Finally, we get
the reader acquainted with the JKO scheme, which is the cornerstone of our approach.

Optimal Transport. The (squared) Wasserstein-2 distance dyy, between two probability measures
w, v € P(X) is defined as the solution to the Kantorovich problem (Kantorovich, |1942):

def .

) min [yl dn(a) 1)
Te€ll(p,v) Jxxx

where the distribution 7* delivering the minimum to (I) is called the opfimal coupling (or plan).

If 4 € Pue(X), then the Brenier’s theorem (Brenier, |1991) establishes equivalence between the

Kantorovich formulation (1) and Monge’s problem (Monge, |1781)):

B, ) = in | [ o = T(@) (o). @

where the optimal transport map 7™ is known as the Monge map. Moreover, there exists a unique
(up to an additive constant) convex potential )* : X — R such that 7* = V¢* and (Vy*)iu = v
(McCannl |{1995)). In this setting, the optimal coupling in (1)) is given by 7* = [idx, V¥ *]u.

Wasserstein Gradient Flows. For clarity, we first consider the concept of gradient flows in Eu-
clidean space R” and then move to the space of probability measures P(X'). For Euclidean space
RP, a gradient flow is an absolutely continuous curve z(t) starting at o € R? that minimizes
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an energy functional J : RP — R “as fast as possible”. To find such a curve, one needs to
solve an ordinary differential equation (ODE) (Teschl, 2012) of the form z'(t) = —VJ(z(t)) with
initial condition x(0) = xo. The same idea is applicable to the space of probability measures
P(X). If we equip P(X) with the Wasserstein-2 distance dyy,, we obtain the Wasserstein space
Wy (X) = (P(X),dw,) — a complete and separable metric space (Bogachev & Kolesnikov, 2012).
In this case, for an energy functional 7 : P(X) — R, the gradient flow in Wy(X'), called the
Wasserstein gradient flow (WGF), is an absolutely continuous curve p; : Ry — P(X) starting at pg
that follows the steepest descent direction of 7, i.e., solves

ohpr = =Vw, T (pt),  Pp=0) = po, (3)
where Vy, J (p¢) denotes the Wasserstein gradient in Wy, given by Vi, J (p) = —V- (pV%—*Z) with
%—‘Z denoting the first variation (Chewi et al., |2025) of energy 7. Thus, equation can be rewritten
in the form of the continuity equation, expressing mass conservation under the velocity field v;:

6
ope +V - (prvg) =0, v, = —V%(Pt)- “4)

There exists an intriguing connection between WGFs and certain partial differential equations
(PDEs) (Evans| 2022). In particular, different energy functionals in the Wasserstein space corre-
spond to distinct PDEs (Santambrogio,|2015)), some of which are associated with diffusion processes
appearing in practice (Gémez-Castrol 2024} Bailo et al.| [2024b)).

Examples of PDEs as WGFs. Consider the free energy functional (Carrillo et al., [2003, Eq. (1.3)):
Fep) = [ V@ doe)+ [ Wia-pap@idot)+ [ Ulpnds,
x

X
V(p) W(p) U(p)

where V, W, and U correspond to the system’s potential, interaction, and internal energies, respec-
tively. The PDE corresponding to the WGF driven by this functional is known as the aggregation-
diffusion equation (ADE). It describes the evolution of density p; under a corresponding velocity
field v; (@). This evolution reflects a balance of three effects: drift — driven by the potential V' (z),
modeling an external field (e.g., gravity, electric potential); interaction — governed by the symmetric
interaction kernel W (x — y), accounting for non-local effects (e.g., particle interactions, long-range
forces); and diffusion — modeled by the internal energy U(p), representing the energy associated
with the local state of the system (e.g., thermal energy, chemical energy). A weak solution to the
equation exists if the no-flux conditions: VV - i = 0 on 0X holds, where 7 is the outward normal
vector on the boundary, and if W € C(X x X), i.e. W is a continuous function on X x X. These
conditions ensure that no mass crosses the boundary of X’; mass can only be redistributed within X'.
For a detailed discussion of the existence and classification of solutions, see (Gomez-Castrol 2024).

XXX

Such energy functionals are ubiquitous in real-world applications, including physics (Carrillo &
Gvalani, |2021), biology (Keller & Segel, |1971} |Potts & Painter, 2024; Potts| 2024), economics (Fi-
aschi & Ricci, 2025), machine learning (Suzuki et al., 2023} |Chizat et al.||2024; |[Nitandal 2024), and
nonlinear optimization (Bailo et al.| [2024al), to name a few. For further discussion and references,
see the recent surveys (Carrillo et al., 2019a; Gomez-Castro, |2024; Bailo et al., 2024b)).

To demonstrate the flexibility of the energy formulation in (3), we examine a few representative
cases. When the system’s energy is purely internal and given by the negative differential entropy,
U(p) = —H(p) &ef [ p(z)log p(x)dz, continuity equation (@) reduces to the classical heat equation:
Oyp = V?p (Vizquez, 2017). Alternatively, when the energy is Jrp(p) = V(p) — BH(p), the
resulting PDE is the linear Fokker-Planck equation with diffusion coefficient 3:

Oupe =V - (VV (@) pu) + BV p, (©)
A fruitful branch of theoretical and practical research stems from the connection between the Fokker-
Planck PDE and stochastic differential equations (SDEs) (Risken & Frankl [1996; Bogachev et al.,

2022), the latter describes the stochastic evolution of particles. In particular, equation (6)) is equiva-
lent (Weinan et al.| 2021)) to the following It6 SDE:

dXt = —VV(Xt) dt + \V 2ﬁ th7 (7)
where X = {X;};>¢ is a RP-valued stochastic process and W = {W,},>¢ is a standard Wiener
process (Sirkkéd & Solin,[2019). In other words, if X; ~ p; evolves according to (7)), then the density
pt evolves according to the Fokker-Planck equation (6)) in the space of probability measures.
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WGFs provide a compelling framework for modeling PDEs and their associated SDEs across various
domains, giving rise to a range of methods for approximating solutions to WGFs. These include deep
learning-based approaches (Mokrov et al.,[2021;|Alvarez-Melis et al.,|2022}; | Altekriiger et al.,|2023)),
particle-based methods such as Stein Variational Gradient Descent (SVGD) (Liu & Wang, 2016)
and its extensions (Das & Nagaraj, |2023; [Tankala et al., |2025)), as well as classical discretization
techniques in Wasserstein space (Carrillo et al., [2022] see §1.2). Many of these advances build on
the celebrated Jordan-Kinderlehrer-Otto (JKO) scheme (Jordan et al.,|1998)), which we review next.

The JKO Scheme. A classical method for solving ODEs in Euclidean space is the implicit Eu-

ler scheme. For an (Euclidean) gradient flow z'(¢) = —VJ(z(t)) and 7 > 0, this scheme ap-
proximately solves this ODE by iteratively applymg the proxunal operator (Parikh et al., 2014}
§1.1): 41 = prox, s (xx) = argmin,cgp { J(z) + 5=||z — x||3}. Compared to the explicit Eu-

ler scheme, this approach offers improved numerical stablhty (Butcher, 2016)). Jordan, Kinderlehrer,
and Otto (Jordan et al,[1998) extended this idea to the space of probability measures, introducing a
variational time discretization of the Fokker—Planck equation (@, now known as the JKO scheme:

1
Pky1 = argmin {J(p) + 5= i, (o, p%)} = JKO-7(pk),  po = po; (®)
pEP(X) T
where 7 > 0 is the time step. As 7 — 0, the sequence p7,k € N converges to the continuous
solution p; of the Fokker-Planck equation (6). Later, the JKO scheme’s convergence was gener-
alized (Ambrosio et al., 2008, Thm. 4.0.4) for the free energy functional Jrg (3). Note that since
3y, (p, p%;) = 0, the energy is non-increasing along the sequence: J (p7, ;) < J(p). This mono-
tonicity property is often utilized in JKO-based algorithms (Salim et al.| |2020) in Wasserstein space.

3 1JKONET METHOD

We begin by formally stating the problem addressed in our work (§3.1)), then we develop our method-
ology (§3.2). Finally, we discuss .

3.1 PROBLEM STATEMENT

In our work, we address the problem of recovering the underlying energy functional [J* that gov-
erns the evolution of a density p; € Py.(X) in @) based on marginal population measures (Bunne
et al.| [2022b; Lavenant et al.| |2024). Specifically, we are given independent samples from marginals
{pr}E_, of the evolving distribution p; at corresponding time points ¢y < ¢; < --- < tx. Impor-
tantly, each distribution p; may be represented by a different number of samples. As discussed in

the JKO scheme approaches the continuous-time dynamics as the step sizes Aty = t41 —ty are
small enough. This motivates our modeling assumption that the ground truth sequence of measures
{p Y, follows the scheme py+1 = JKOar, 7+ (pr).-

Although the time intervals Aty between observations may vary, corresponding to non-uniform step
sizes in the JKO scheme, we assume equal spacing At; = 7 in the remaining text for simplicity.

3.2 METHODOLOGY AND LOSS DERIVATION

In this section, we assume py, € P,.(X) and minimization is always taken over p € P,.(X) in order
to utilize Brenier’s theorem. The key idea of our method builds on inverse optimization techniques
(Chan et al., [2025) [l Thanks to assumption pj+1 = JKO; 7+ (pi),
we can derive an inequality that becomes an equality if a candidate functional J matches the ground
truth functional 7 *

1 1
min {7010+ oo ) < Toua) + 5o ©)

Moving the right-hand side to the left yields an expression that is always upper-bounded by zero,
regardless of the choice of J. Maximizing the resulting gap with respect to J encourages the
candidate functional to approximate the true functional 7 *. This yields the following objective:

K—-1
. 1 1
max Y [min {7 (") + 5=, (pr 1) } = T (o) = 5=, (or prn) | =
k=0 N——

independent of 7,



Under review as a conference paper at ICLR 2026

K-1

. L
max 2 min [j( ) — T (pr+1) + EdWQ (P, p)] + Const. (10)

@

1
m}mannnﬁ(j )4 maxmmz [ T (T pr)— (pk+1)+§/x||x—Tk(x)||§pk.(a:)dx . (1)

[

3.3 PRACTICAL ASPECTS: METHOD PARAMETRIZATION AND LEARNING PROCEDURE

We denote by § € © and ¢ € ® the parameters of sufficiently expressive function classes used to
approximate the candidate functional 7 and the transport maps 7%, respectively. Specifically, Jy
and T£ are their parameterized counterparts.

Mapping Parameterization. Building upon (Benamou et al., 2016), prior works (Mokrov et al.,
2021} |Alvarez-Melis et al., [2022; Bunne et al.| [2022b)) typically parameterize the transport maps
as T[j = V¥, where 1* are modeled using input-convex neural networks (ICNNs) (Amos et al.,
2017). However, ICNNs suffer from poor scalability in high-dimensional settings (Korotin et al.,
2021b). In contrast, since our objective (IT) imposes no convexity constraints, we parameterize
Ts’j directly using standard architectures like MLPs or ResNets (He et al., |2016) This relaxation
simplifies optimization and yields improved empirical stability.

Energy functional parametrization. Following (Terpin et al.| |2024)), we parameterize the energy

functional J as a specific instance of the free energy formulation in (§), where the internal energy
term is chosen to be scaled negative differential entropy:

- / V@ do@) + [ Wan(e — ) dp(@)dp(y) + 05 / log p(x) dp(z) . (12)
X XXX X

Vo, (p) Wa, (p) Uog (p)=—03H(p)

Here § = {01, 65,03} represents the set of learnable parameters: ¢; and 6, are parameters of neu-
ral networks that define the potential V5, : X — R and the interaction kernel Wy, : X — R,
respectively; 3 € R is a learnable scalar diffusion coefficient, see .

Entropy evaluation. All the terms in the objective function (IT)) can be estimated using Monte
Carlo integration (Metropolis & Ulam, 1949), except for the internal energy term Up,. To handle
this remaining component, we follow (Mokrov et al.,[2021] 1), (Alvarez-Melis et al .| 2022,
Eq. (11)) and apply the change-of-variables formula, yielding:

Us, (T tpr) = U, (pr) — b5 / log | det V, % ()| dpx (x), (13)
X

where VJ.T:; denotes the Jacobian of the invertible transport map Tj. We note that, during training,

the computation of log det — even for non-invertible mappings T£ — can be effectively handled by
modern programming tools; see Appendix for details. To efficiently compute the gradient of
the log det term in @I) with respect to ¢, one can use the Hutchinson trace estimator (Hutchinson,
1989)), as proposed by . However, in our experimental setting
(§5), we find that computing the full Jacobian is tractable and sufficient. For estimating the negative
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differential entropy H(px) in (I3), we employ the Kozachenko-Leonenko nearest-neighbor estima-
tor (Kozachenkol |1987} Berrett et al., [2019). Notably, entropy values for the population measures
{pk }1-, can be precomputed prior to training.

Learning Objective. To facilitate gradient-based optimization, we employ Monte Carlo estimation
to approximate the loss in (TI). At each time step ¢; (for k = 0,..., K), we draw a batch of By,

samples X, = {z}, ..., :ka *} ~ pi and optimize the following empirical loss objective:
K-1 | B '
L(0,0)=>_ | Jo(TE(X1)) — To(Xp41) + > >l = TEEDIS | (14)
k=0 j=1

where T:; (Xk) denotes the batched pushforward used to compute the empirical estimates jg of
the functional Jy. We optimize the objective in (I4) with respect to 6 and ¢ using a standard
gradient descent—ascent scheme; implementation details are provided in §5|and Appendix [C| with

the complete training procedure summarized in Algorithm|I] therein.

3.4 THEORETICAL ASPECTS

The central idea behind our loss formulation (§3.2) is to minimize the inverse gap in (@), which
measures the discrepancy between the optimal value (left-hand side) and the expected value (right-
hand side) of the JKO step for a candidate functional /7. While this objective is intuitively justified,
it remains to be shown whether the minimizer Jni, of (TI) truly approximates the ground-truth
energy functional 7*. Our Theorem 3.1 addresses this question, demonstrating that, under suitable
assumptions, optimizing (1)) indeed recovers J* up to an additive constant that does not affect the
dynamics governed by (@). and are provided in Appendix D]

We state our theorem for K = 1. When considering K > 1, the statement of the theorem holds true
independently for each timestep £ = 0,1, ..., K —1, and the results extend straightforwardly to this
more general setting. We further assume that both the ground-truth functional J* and the candidate
functional 7 are purely of potential energy form, i.e., 7*(p) = Jpg(p) = [, V*(x)dp(x); T(p) =
Jee(p) = [, V(x)dp(z). For notational simplicity, we denote the loss as £(V,T) in place of
L(Jpg, T). For technical purposes, we introduce the modified version of a potential as V,, := 7V +
211+ 13 : X — R; subscript ¢ stands for “quadratic*.

Theorem 3.1 (Quality bounds for recovered potential energy). Let (V) & LV* Ty )—L(V,Ty)
be the gap between the optimal and optimized value of inverse JKO loss with internal minp

problem solved exactly, i.e., Ty & ming L(V,T). Let X be a convex set; (modified) potentials V,
be strictly convex and %-smooth (see the definition in Appendix @ Then there exists C = C(1,3)
such that following inequality holds:

|19V = vvwlPane) < cxw). (15)

Notably, equation (I3) compares gradients of the recovered and ground truth potentials, hiding the
appearance of a redundant additive constant. Importantly, the assumptions of the theorem are not
particularly restrictive in practice. Specifically, the smoothness of potentials can be ensured by
employing smooth activation functions such as CELU (Barron| [2017), SiLU (Hendrycks & Gimpel,
2016), SoftPlus, and others. Strict convexity, in turn, can be enforced through architectural
design choices (Amos et al., 2017)). Furthermore, the strict convexity of the (modified) potentials
V; can often be assumed when the step size 7 is sufficiently small. In our experiments (, we
parameterize V' using standard MLPs and observe that this approach performs adequately.

To the best of our knowledge, this work is the first to provide a quality analysis (Theorem [3.1)) of
JKO-based solvers for population dynamics. At present, our analysis focuses exclusively on the
potential energy component. Extending this framework to incorporate interaction and internal ener-
gies presents an interesting direction for future research.

@]
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4 RELATED WORKS

This section reviews research directions most relevant to our work. For an extended discussion of
related works, see Appendix [A.T] First, we discuss existing methods for modeling the dynamics of
pr given a known energy functional 7 (84.1). Next, we focus on approaches closely related to our
setting — specifically, learning population dynamics from observed data (§4.2) via the JKO scheme.

4.1 SOLVING AGGREGATION-DIFFUSION EQUATION WITH GIVEN ENERGY

This line of research focuses on methods for solving aggregation-diffusion equations derived from
WGFs with given energy functionals of the form (3). A variety of numerical approaches exist,
including mesh-based schemes (Cances et al., [2023; Jiingel et al., [2024), particle methods (Craig &
Bertozzi, 2016} |Campos Pinto et al., 2018; (Carrillo et al., 2019b)), and JKO-based schemes (Carrillo
et al [2022)). For a comprehensive overview, see (Bailo et al. [2024b, §5). Recently, the research
field was empowered by deep learning techniques. In particular, (Alvarez-Melis et al.,[2022; Mokrov
et al.| [2021}; [Fan et al.| 2022; Park et al.| [2023; [Lee et al.,2024)) employ gradient-based optimization
and neural-network parametrization to solve WGFs with given energy J as to special cases of (5).

4.2 LEARNING ENERGY FOR AGGREGATION-DIFFUSION EQUATION VIA JKO SCHEME

This line of research focuses on methods for learning population dynamics (§3.1) using the JKO
scheme, as in JKOnet (Bunne et al., [2022b) and JKOnet™ (Terpin et al., [2024)). We discuss these
methods in detail below, as they are the most closely related to our approach. Additional methods
for learning population dynamics are reviewed in Appendix [A.T.1]

JKOnet (Bunne et al., 2022b) formulates the task of population dynamics recovery as a bi-level
optimization problem aimed at minimizing the discrepancy between observed distributions p;, and
model predictions py:

K—-1
Loonee (0,9) = > diy, (prspr)s st po=pos  Prar = Veitin,
k=0 (16)

i argmin (Vi) + 3= [ o= V0,01 dpu(o)
@:1p, ECVX

where CVX denotes the set of continuously differentiable convex functions from X to R. The trans-
port maps 1), are parametrized either using ICNNs (Bunne et al., 2022a)) or through the ‘Monge
gap’ approach (Uscidda & Cuturi, [2023)). However, the energy functional is limited to the potential
energy term Vy(p), excluding interaction and internal components. This framework has two key
limitations: (i) solving the bi-level optimization problem in (I6) is computationally challenging and
requires specific techniques like unrolling optimizer’s steps, and (ii) extending the method to more
realistic settings with richer energy structures is questionable due to computational complexity.

JKOnet* (Terpin et al.,[2024) addresses the limitations of the original JKOnet by replacing the full
JKO optimization problem (8) with its first-order optimality conditions. This reformulation allows
the use of more expressive energy functionals (I2). The method minimizes the following objective,
utilizing a precomputed optimal transport plans 7 between py, and pg1:

K-1
L net”™ ) = /
JKOnet ( ) ;} X

VVe, (Tr+1) +/ VU, (k1 — Yt1) dpr41(Yr+1)
X

a7
2

1
0 Vi1 (@41) dmg (Th, Trs)-

+03 + = (@1 — 21)
Pre1(Tesr) T

The authors emphasize several advantages over JKOnet, including reduced computational costs
and support for more general energy functionals. However, their method requires an additional op-
timization round to precompute optimal transport plans 7y, introducing extra sources of inaccuracy
and rendering the approach non-end-to-end. Moreover, the authors of (Terpin et al., 2024) employ
discrete OT solvers to compute 7, which may fail to accurately represent OT maps between the
underlying distributions, particularly in high-dimensional settings (Deb et al., 2021).

iJKOnet (Ours) integrates the strengths of both JKOnet and JKOnet*. From JKOnet, it inherits
parameterized models for the energy functional Jy and the transport map 7T, avoiding reliance on
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precomputed discrete optimal transport plans 7, which can hinder flexible mappings between py,
and py4+1. From JKOnet™, it adopts a more expressive formulation of the energy functional (12)) —
capable of capturing complex structures.

[0

5 EXPERIMENTS

Our implementation is primarily based on the publicly available code[]_-] from JKOnet™ (Terpin et al.}
2024])), written in JAX (Bradbury et al.l |2018)), and will be made publicly available. Since our
approach builds on the JKO framework, in 5.1} we first reproduce the experimental setup from
JKOnet™ for learning a known potential energy. Although we found the original codebase well-
structured and accessible, we identified several inconsistencies in the data generation process, which
we discuss in detail there. Finally, in §5.2] we compare our method against popular non-JKO base-
lines on single-cell RNA-seq datasets. Extended comparisons can be found in Appendix

JKO-based Models. B.I17 B 17

For a fair comparison, we also implemented a time-varying po-
tential energy parametrization, as described in Appendix B of the original paper, and denote this
variant by 1 JKOnet, y. However, as discussed in Appendix this parametrization does not cor-
respond to a single, consistent energy functional governing the dynamics. Instead, it actually solves
a sequence of K independent optimal transport problems between consecutive snapshots (Bunne
et al.l [2023). Moreover, because JKOnet (Bunne et al., [2022b)) is computationally expensive, we
limit our comparisons to experiments with moderate dimensionality, with the corresponding results
reported in Appendix [B.2} Technical details of model training are provided in Appendix [C|

Metrics. We evaluate the next-step distribution py1 from pj and compare it to the ground-truth
distribution pg41 using the following metrics: (a) Earth Mover’s Distance (EMD) (or W;) (Rub-
ner et al.l [1998) and W, (b) Bures-Wasserstein Unexplained Variance Percentage (Bd%/Vo -UVP)
(Korotin et al.l[2021c), (¢) L3-based Unexplained Variance Percentage (L2-UVP) (Korotin et al.,
2021al), which measures the discrepancy between the ground-truth functional F™* and its reconstruc-
tion F', and (d) Maximum Mean Discrepancy (MMD) (Gretton et al., 2012). Formal definitions and
implementation details for all metrics are provided in Appendix

5.1 LEARNING POTENTIAL ENERGY

As discussed in 81} the population dynamics setting assumes that particle trajectories are not tracked
across time — i.e., each time snapshot should consist of independently sampled particles without
temporal correlation. This implies that data at each time step should be regenerated from scratch.
However, we identified an inconsistency in the original codebasel: particle trajectories are preserved
across time steps, resulting in temporally correlated samples. We refer to this as the paired setup,
where each particle xy, is directly linked to x; along a trajectory. In contrast, the intended, tem-
porally uncorrelated setting is referred to as the unpaired setup. Table [3]in Appendix [B.1.1]

that switching setup

[A3]

Following (Terpin et al., 2024} 84.1), we begin by examining how our method learns potentials in the
2D paired setup, which allows for a direct visual comparison with JKOnet*. These experiments
are conducted on the synthetic dataset from (Terpin et al.| | 2024, Appendix B), with results presented
in Figure A and further provided in Appendix We then repeat the same procedure in
the 2D unpaired setup, analyzing how performance scales with the number of samples (2K and
10K). The corresponding results are shown in Figure 2| They indicate that our method outperforms

'"https://github.com/antonioterpin/jkonet-star
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Figure 2: Numerical results from for the unpaired setup. The reported absolute values show

that, while increasing the number of samples generally improves performance across metrics, certain
potentials remain challenging, highlighting the difficulty of this setup.

JKOnet™ on nearly all potentials, and that for certain cases, increasing the number of samples does
not improve performance, highlighting the difficulty of the unpaired setup.

5.2 LEARNING POPULATION DYNAMICS FOR SINGLE-CELL DATA

Following (Chen et al.,|2023)) and (Shen et al.||2025), in this section, we apply our method to mod-
eling the dynamics of single-cell RNA data, with extended comparisons provided in Appendix

Dataset. We use the Embryoid Body (EB) dataset (Moon et al.,2019) and follow the preprocessing
pipeline described in (Tong et al., 2020). The EB dataset comprises a collection of 5 timepoints

sampled over a period of 30 days.

Non-JKO Models. We evaluate
our method against classic algo-
rithms for trajectory inference such

Table 1:

experiment.

distance (]) comparison

across to and t4. Results for baselines (Shen et al., [2025)).

as (Tong et al.,  Method to ta
2020), (Huguet_et_al =, Lilla-sB 149+0.063  1.55+0.034
2022), (Chen et al.l 2023),
. DMSB 1.13 +0.082 1.45+0.16
(Koshizuka & Sato), [2023)) and .

TrajectoryNet 2.03 £0.04 1.93 £0.08
the recently proposed MMSB (Shen MMSB 1.97 + 0.028 1.57 + 0.048
et al.| 2025)). For these methods, the : : : :
reported metrics are taken from the  Static
corresponding referenced papers. JKOnetj, 1.145 £ 0.033 2.529 +£0.014
Leave-two-out in 5D. Following 1.099 £ 0.119 2.537+0.054
(Shen et all, [2025), we perform 1.419£0.173 2.510 +0.094
experiments using a leave-two-out 1.887 +0.017 1.739 +0.037
setup. Since the EB dataset contains 1.361 + 0.257 2.557 + 0.042
five timesteps, we remove the second  Static (Ours)
(t2) and fourth (t4) timesteps iJKOnety/ 1.082+£0.011  1.147 £+ 0.001

, and then evaluate how 1.065 £0.018 1.150 & 0.004

well our method can reconstruct the 2.865 + 0.166 1.376 £ 0.015
data from the remaining t; and tg 1.649 + 0.005 0.868 + 0.005
timesteps. The results are demon- 3.577 +0.166 1.395 £ 0.032
strated in Table [Tl - .

Time-varying

JKOnet; 4.414 + 1.499 2.771 +£0.197

iJKOnet; v (Ours) 0.983 £0.037 0.849 £0.021

corresponds to the IPF (GP)
method (Vargas et al., 2021); further details are provided in Appendix B.6 of (Shen et al.| [2025)).
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Our method outperforms previous approaches both in terms of reconstruction metrics and execution
time, as can be seen by comparing Table 12 in Appendix E of (Shen et al.,2025) with Table

Leave-one-out in 100D. Following (Chen et al., 2023), we conduct experiments using a leave-one-
out setup. One of the timesteps t2, t3, or t4 is omitted, and we evaluate the method’s ability to
reconstruct the distribution of the left-out timestep. The results are shown in Table

1

Table 2: experiment. MMD distance (). Comparison of methods across different leave-one-
out splits. The results are averaged across 3 runs. Results for baseline methods: (Chen et al.|[2023)).

Method LO-t» LO-t3 LO-t4 w/o LO
NLSB (Koshizuka & Sato|[2023) 0.38 0.37 0.37 0.66
MIOFLOW (Huguet et al.|[2022) 0.23 0.90 0.23 0.23
DMSB (Chen et al.[[2023) 0.042 +£0.020 0.033 +£0.003 0.040+0.020 0.032+0.003
JKOnetj, (Terpin et al.|[2024) 0.220 £ 0.025 0.293 £0.018 0.235 £ 0.006 0.229 £ 0.052
iJKOnety (Ours) 0.137+£0.001 0.123 £0.001  0.097+£0.002 0.085 + 0.024
JKOnet;V (Terpin et al.|[2024) 0.575 £ 0.119 0.619 £ 0.157 0.456 £ 0.056 0.477 4 0.098
iJKOnet; vy (Ours) 0.848 +0.043 0.370 £0.233  0.0556 £0.007 0.124 £0.243

6 DISCUSSION

Contributions. We introduce the novel i JKOnet method, which provides a general framework
for recovering any type of energy functional governing the evolution of a system; in this work, we
focus on the free energy parametrization. Our work bridges the gap between inverse optimization
theory and computational gradient flows. The proposed method outperforms previous JKO-based
approaches in all comparisons and achieves comparable results to non-JKO methods on real-world
tasks. We also establish theoretical guarantees for recovering dynamics driven solely by potential
energy.

Limitations.

EQ

LLM Usage. Large Language Models (LLMs) were used exclusively to assist with sentence
rephrasing and improving text clarity. All scientific content, results, and interpretations in this paper
were produced solely by the authors.
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A EXTENDED DISCUSSION

We first review related work in g§A.1]and then discuss the validity of time-varying potentials pro-
posed by [Terpin et al. m) in 5 [A.2]in contrast to the stationary setting considered in this paper.
Finally, in §A.3] we discuss p()tentlal reasons for the performance gap between the paired and un-

paired setups 1nt1 oduced in §5.1]

A.1 RELATED WORKS

In this section, we first provide an extended discussion of related work on learning population dy-
namics (also known as trajectory inference) in §A.1.1} followed by an overview of applications of
the JKO scheme (Jordan et al} [I998)) in deep learning in §A.1.2)]

A.1.1 LEARNING POPULATION DYNAMICS

In contrast to our approach, which models population dynamics as a Wasserstein gradient flow

(WGF) (Ambrosio et al, 2008) of the free-energy functional (EI) (GSmez-Castro, [2024), several

other fruitful approaches have been proposed in the literature. We review these alternatives below.

RNNs and Neural ODEs. One of the first works on learning population dynamics is (Hashimoto|
2016), which used recurrent neural networks (RNNs) to learn the SDE (7)) as a WGF of a poten-
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tial energy functional. Later, (Chen et al.,|2018a, CNF) introduced neural ODE:s as the continuous-
time limit of RNNs for learning ODE-based dynamics, and (L1 et al., 2020) subsequently extended
this approach to handle SDEs. Building on these ideas, (Erbe et al., 2023, RNAForecaster) ap-
plied neural ODEs to predict future transcriptomic states of single cells (Battich et al., 2020)).

Static OT. Another line of work models population dynamics by directly learning K independent
transport maps from time-snapshot data, using the static optimal transport formulation or [2),
without attempting to recover the unifying energy functionals guiding the system evolution. For
example, (Schiebinger et al., 2019, Waddington—-0T) employs discrete transport maps, whereas
(Bunne et al., 2023, Ce110T) learns neural transport maps, as in (Fan et al., 2023, Eq.(6)), (Rout
et al.| 2022| Eq.(14)), and (Korotin et al., 2023 Eq.(15)), see Appendix[@]for more details.

Dynamic OT. (Tong et al.l 2020, TrajectoryNet) models population dynamics using the dy-
namic optimal transport formulation of (Benamou & Brenier, 2000), parameterized by a regularized
CNF. The work (Huguet et al.| [2022) MIOF low) later extended this approach by incorporating a
geodesic autoencoder to better capture manifold structure. More recently, (Wan et al., [2023)) pro-
posed computational techniques that make dynamic OT scalable to higher-dimensional settings.

Flow Matching. The works in this paragraph extend Flow Matching (FM) techniques (Lipman
et al.l 2023} |Albergo & Vanden-Eijnden, 2023} [Liu et al., [2023) in several directions. Conditional
Flow Matching (Tong et al.,[2024a, CF'M) introduce simulation-free objectives for learning determin-
istic flows. Building on the celebrated work of (Otto, 2001), the Wasserstein space can be nominally
(i.e., heuristically) viewed as a Riemannian manifold. Motivated by this observation, Wasserstein
Flow Matching (Haviv et al., 2025, WEM) applies the idea of Riemannian Flow Matching (Chen &
Lipman, 2024, RFM) to the Wasserstein space, i.e., performing FM over a distribution of distribu-
tions. Further developments, such as Meta Flow Matching (Atanackovic et al., 2025, Meta FM),
embed the population of samples with a Graph Neural Network (GNN) (Liu et al [2025) and use
these embeddings as conditioning inputs for the learning vector field. Finally, Multi-Marginal Flow
Matching (Rohbeck et al.l 2025, MMFM) constructs a flow using smooth spline-based interpolation
across time points and conditions, and regresses it with a neural network under the classifier-free
guided Flow Matching framework (Zheng et al.l [2023)). For a broader overview of FM for learning
population dynamics, see the recent surveys (Morehead et al., 2025} L1 et al., 2025b)).

Action Matching. (Neklyudov et al.| [2023, AM) introduced Action Matching (AM), a method that
optimizes an action-gap objective. In contrast to Flow Matching, AM learns a vector field expressed
as the gradient of an action, Vsj, which uniquely defines the velocity field that transports particles
optimally in the sense of optimal transport. Building on this idea, (Berman et al.| 2024)) conditioned
the action s; ,, on physical parameters /1, used (Berman & Peherstorfer,[2024, CoLoRa) for efficient
action parametrization, and demonstrated its utility for surrogate modeling of classical numerical
solvers, enabling fast prediction of system behavior across different physics parameter settings.
Most recently, (Neklyudov et al., 2024b, WLF) proposed Wasserstein Lagrangian Flows, a unifying
framework that minimizes Lagrangian action functionals over the space of probability densities
rather than the ground space, thereby encapsulating AM as a special case.

Schrodinger bridges. Two seminal works, |Vargas et al.| (2021, IPF (GP) ) and |De Bortoli et al.
(2021, TPF (NN) ), proposed solving the Schrodinger bridge problem using the Iterative Propor-
tional Fitting (IPF) algorithm (Gramer, |2000) in application to generative modeling, which alter-
nates between forward and backward processes. The first approach employed Gaussian processes
as parametrization, whereas the second relied on score-based neural networks. Later, bridge match-
ing methods was developed (Peluchetti, |2023bjaj Liu & Wul 2023; |Shi et al.| [2023). [Tong et al.
(2024b}, [SF]2M) introduced simulation-free objectives for both deterministic and stochastic flows,
further reducing computational overhead. Additional contributions include generalized setups for
Schrodinger bridges (Koshizuka & Sato, 2023} [Liu et al.l |2024), multi-marginal generalizations
of the problem (Chen et al.l 2023, DMSB), (Shen et al.l 2025, MMSB), (Hong et al., 2025), and
momentum-accelerated formulations (Theodoropoulos et al., [2025, 3MSBM).
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Unbalanced OT. Several works jointly model marginal transitions and growth dynamics by mini-
mizing the action in the Wasserstein-Fisher-Rao (WFR) metric (Chizat et al.,[2018a)), i.e., by solving
the dynamical unbalanced optimal transport problem (Chizat et al., 2018b). (Tong et al.,|2023) pro-
posed BEMIOf1low, an extension of (Huguet et al, 2022, MIOf1low), that incorporates a neural
network to predict cell growth and death rates continuously in time, thereby augmenting optimal
transport with population-size dynamics. Later, (Chen et al.| 2022b) formulated an unbalanced
Schrodinger Bridge problem, which was applied in practice by (Zhang et al.| 2025b, DeepRUOT),
following the developments in (Sha et al.l 2024, TIGON). DeepRUOT was further simplified into
a single-network formulation, Var—RUOT (Sun et al., 2025), by exploiting optimality conditions;
extended to include interaction modeling in (Zhang et all |2025d, CytoBridge); and adapted to
use two independent networks to separately model distributional drift and mass growth (Wang et al.}
2025, VGFM), (Zhang et al.,2025a)). In a different direction, (Klein et al.,[2024, GENOT) generalized
OT to simultaneously handle stochasticity, entropy regularization, and unbalanced mass transport,
enabling applications to cross-modal and heterogeneous data. For a broader survey of trajectory
inference methods and their applications to biology data, see (Zhang et al., 2025eic).

The concurrent work (Andrade et al., 2025 1 JKO) also connects inverse optimization with the JKO
scheme (8) but in the unbalanced setting. However, their focus is on sample complexity, the method
addresses only potential energy, and experiments are restricted to low-dimensional cases.

Riemannian perspective. (Scarvelis & Solomon, 2023) proposed learning a metric tensor A(z)
that minimizes the average 1-Wasserstein distance on the learned manifold between pairs of con-
secutive population snapshots. Furthermore, (Kapusniak et al., 2024, MFM) introduced Metric Flow
Matching (MFM), which learns interpolants x¢ ,, = (1 —t)zo +tx1 +t(1 — t) s n (20, 1), Where 7
are the parameters of a neural network ¢, ,, providing a nonlinear “correction” to straight-line inter-
polants (Albergo & Vanden-Eijnden,2023). The resulting velocity field minimizes a data-dependent
Riemannian metric, assigning lower transport cost to regions with higher data density.

Splines in Wasserstein Space. In the seminal work of (Schiebinger et al., 2019)), a piecewise lin-
ear OT interpolation method was proposed to infer cell trajectories. Subsequent works introduced
higher-order piecewise polynomials (e.g., cubic splines) in Wasserstein space: (Chen et al.,[2018bj
Benamou et al.,2019) formulated a global cubic spline minimization problem, which was later ex-
tended by (Chewi et al., 2021) to use Euclidean interpolation algorithm in R” after a finding optimal
Monge map between samples from consecutive measures, with further refinements by (Clancy
& Suarez, 2022; Justiniano et al., [2024). More recently, (Banerjee et al., 2025, WLR) proposed the
Wasserstein Lane—Riesenfeld method, leveraging the classical subdivision algorithm of (Lane &
Riesenfeld, [ 1980). In parallel, (Dyn & Sharon, [2025)) developed subdivision schemes for general
metric spaces, including the Wasserstein space. (Baccou & Liandrat, 2024} Kawano et al.| [2025)
combines subdivision schemes with OT.

A.1.2 JKO SCHEME MEETS DEEP LEARNING

Generative Modeling. (Vidal et al., 2023, JKO-Flow) and (Xu et al., 2023, JKO-1iFlow) rein-
terpret the JKO scheme (8) through the framework of CNFs (Chen et al [2018b)), applying it to 2D
synthetic data and image generation tasks, respectively. Subsequently, (Cheng et al.|[2024) provided
theoretical convergence guarantees for this approach. (Choi et al.l [2024, S—JKO) further acceler-
ated WGF-based generative modeling by leveraging a semi-dual unbalanced OT formulation. They
constructed the WGF of an f-divergence Dy and used an (Song et al.}|2021, NCSN++) backbone —
similar to (Zhu et al., 2024, NSGF), who designed a generative model as the WGF with respect to
the Sinkhorn divergence (Peyré et al., 2019).
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entropically regularized JKO scheme. The approach discretizes the resulting coupled heat equations
on a high-dimensional grid and solves them using accelerated fixed-point methods combined with
low-rank TT representations. Related work includes (Chertkov & Oseledets| [2021)), which applies
TT approximations to the Fokker-Planck equation with drift and diffusion, and [2025),

which employs entropy-regularized proximal steps with TT-cross for particle-based evolution.

Variational Inference. (Lambert et al., [2022) and (Diao et al., 2023) study variational inference
through the lens of Bures—Wasserstein gradient flows. (Cheng et al.}[2023] GWG) introduce a gener-

alized minimizing movement scheme on the space P, (R”), where the transport cost is defined as
cn(z,y) = g(%2) h with g a continuously differentiable Young function, and apply this framework
to particle-based variational inference.

Datasets/Weights Learning. (Bonet et all,[2025)) propose a explicit scheme that is computationally
more efficient in practice than the implicit JKO scheme on the space Pa(P2(RP)), and apply this
approach to modeling flow datasets viewed as random measures. (Saragih et al} [2025) train a
meta-model, based on JKO as well as other flow- and diffusion-based approaches, that generates
dataset-conditioned classifiers by producing the neural network weights in a single forward pass.

A.2 TIME-VARYING POTENTIALS DISCUSSION

In this section, we examine the validity of using time-varying potentials, as proposed in (Terpin et al.,
§4.4). We demonstrate that under this formulation, the original problem of reconstructing
energy functionals (Bunne et al., 2022b)) via JKO Scheme reduces to learning K independent neural
optimal transport maps (Fan et al., Eq.(6)), Eq.(14)) between the data
snapshots py, and p1. To illustrate this, consider the loss in (L)) and assume that, instead of a single
functional 7, we now assign a separate only potential energy functional Jp; = [, V*(z) dpy(x)
for each time step k:

K-1
def

1
inl k:’ Tk: det : k Tk _ 7k - / o Tk 2 dzl.
II}?EXH%I,CH (J ) H}?EXH}IICHI;) |:«7PE( fok) — Tee(pr+1) + 2 /. || (2)||50k () a:}

It then becomes clear that the loss optimization decomposes into K independent terms £* (7% T*):

1 .
ck(Th, Tk)d:efJPkE(Tkﬁpk) — T (pry1) + o7 / |z — T"(x)||2p(x) dz — maxmin. (18)
T Jx Tk Tk

By replacing V* with the dual potential f,, and T* with Tj, we recover Equation (6) from (Fan
et al.,[2023)), which aligns with the objective proposed in (Bunne et al,[2023] Eq. (9)) for modeling
single-cell dynamics. Thus, (Terpin et all, [2024) introduces a new strategy for minimizing this loss
rather than directly addressing the recovery of ground-truth energy functionals (Bunne et al ] 2022b).

Fortunately, the theoretical framework developed by [Ferreira & Valencia-Guevara| (2018)) and later
extended by [Plazotta & Zinsl| (2016)) establishes the validity of this approach even for time-varying
free energy functionals (3), not only for the potential energy case, in the limit as the time discretiza-
tion tends to zero. However, this connection is not acknowledged in (Terpin et al} 2024).

A.3 PAIRED VS. UNPAIRED SETUPS

In this section, we discuss the substantial performance gap observed between the paired and unpaired
setups, as illustrated in Table[J] We suggest that this discrepancy stems from the intrinsic connection
between the considered solvers, 1 JKOnet and JKOnet*, and the underlying OT problem ().

Both solvers are designed to recover the optimal transport mappings 7%* between consecutive dis-
. . R . . k% .

lrlbull_ons pr and Ph+1s sau'sl'ymg the pushlorw'ard relation TJ ipr = pr+1. In JKOnet™, lhe§e
mappings are obtained explicitly by precomputing the OT maps between pj, and py41, whereas in
our method, they are learned implicitly via neural networks Tf

In practice, the continuous distributions pj, are replaced by their empirical counterparts, constructed
from truining samples {:1‘,1\.:. 3.2 = X ~ Pk This is precisely where the distinction be-
tween the paired and unpaired setups becomes critical:
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* Paired. When samples are paired, they follow the ground-truth transport mappings, i.e.,
T()“’*(‘T%)) - Ll,‘i, Tl*("lll) - ‘LZZ sy Tkx(‘ﬁs) - wi:—&-lv

In this case, estimating T%* becomes substantially simpler and can be viewed as a supervised
regression problem over the given sample pairs.

 Unpaired. In contrast, when the samples Xy, k € {0,..., K}, are mutually independent, the
quality of the estimated OT maps degenerate significantly. This degradation stems from the high
sample complexity of Wasserstein-2 distances and maps (known to be relatively poor, see [Hiitter]
(2021)), as well as from the increased variance of the estimated transport mappings.

A deeper theoretical analysis of this gap between paired and unpaired setups remains an interesting
direction for future work. To quantify how performance changes when transitioning from unpaired
to paired data, we conducted the following ablation study.

Experimental Setup. Following Appendix we used the same set of potentials and focused
solely on the potential parametrization. In the 2D setting with K = 5, we trained for 5K iterations
using N = 2K training samples per time step and a 40% test split. The fraction of full trajectories
in the training set was gradually increased from 0.0 (unpaired) to 1.0 (paired) in steps of 0.25.

Results. Figure 3] shows the results. As the fraction of paired samples decreases, the performance
of JKOnet™ degrades more rapidly than that of our method. For the Bohachevsky potential, both
methods show reduced accuracy in both paired and unpaired scenarios.
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Figure 3: Ablation study comparing paired (1.0) and unpaired (0.0) setups. As the proportion
of paired samples (i.e. full trajectories in the dataset) decreases, the performance of JKOnet*
degenerate more rapidly than that of our method.

B EXTENDED COMPARISONS

In this section, we first present extended synthetic experiments in §B.1] followed by results on real-
world single-cell data in §B.2]

B.1 SYNTHETIC COMPARISONS

In this section, we further investigate our method’s ability to learn potential energy (§B.1.1)), inter-

action energy (§B.1.2), and internal energy (§B.1.3).
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Since our approach builds on the JKO framework for modeling population dynamics, we adopt the
experimental setup from JKOnet* and compare our method against both JKOnet
(2022b) and JKOnet * [Terpin et al| (2024) on corresponding synthetic evaluation tasks.

Styblinski-Tang er table Flowers

Ishigami

Figure 4: Level curves of the true (green) and estimated (blue) potentials for the paired setup,
following (Terpin et al., Appendix F). These results can be directly compared with those in
(Terpin et al., [2024] Figure 6). Note that for the flar potential, the value range is near zero, as
expected for the ground-truth potential.

B.1.1 LEARNING POTENTIAL ENERGY

Paired Setup. Following [Terpin et al] (2024], §4.1), we evaluate our method in the paired setup (see
details in §5.1)), which enables a direct visual comparison with JKOnet* (Terpin et al,[2024). The
experiments are conducted on the synthetic dataset from [Terpin et al.| (2024, Appendix B), using a
step size of 7 = 0.01, K = 5 time steps, and N = 2000 samples per step with 40% of test samples.
FigureElpresents the ground-truth potentials V' (z) (green), defined in Terpin et al.| (2024, Appendix
F, Egs. (31)-(45)), alongside the reconstructed potentials Vp(x) (blue) learned by our method. As
shown, our approach achieves performance comparable to JKOnet* in the paired setup.

Unpaired Setup. We repeat the experiments on a corrected version of the synthetic dataset, where
samples are not temporally correlated. We select the six most challenging potentials in terms of
convergence. Table f]reports the ratio of the final metrics between the unpaired and paired setups.
As shown, switching to the unpaired setup significantly affects the method’s performance.
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Table 3: Comparison of paired and unpaired setups. Each value indicates the ratio of the final metric
in the unpaired setup to that in the paired setup. Most ratios significantly exceed 1, highlighting the
increased difficulty of the unpaired setting.

iJKOnety JKOnetj,
Alias  Potential Name ~Bdg, -UVP  EMD  L;-UVP Bd, -UVP EMD L,-UVP
FL Flowers 8066 90 297 135325 305 5809
FN Friedman 556 5 2 263 6 3
1G Ishigami 2259 38 36 4276 64 210
WS Watershed 18135 220 1509 512720 1014 102592
Wwp Wavy plateau 2 2 7 1 2 29
ZR Zigzag ridge 158 23 13 155 25 31

B.1.2 LEARNING INTERACTION ENERGY

In this section, we evaluate how accurately our method and JKOnet* (Terpin et all, [2024) can
approximate the interaction energy in the unpaired setup. We exclude JKOnet from comparison,
as its design does not support learning interaction energies.

We identified an inconsistency in the theoretical formulation presented in the JKOnet ™ paper (Ter
[pin et al] 2024). Specifically, as discussed in §2](see also (Santambrogio] 2013] §7.2)), the ground-
truth interaction functional must be symmetric; that is, in (), the interaction kernel should satisfy
W (z) = W (—z). Incorporating this correction, we conducted an experiment to assess the ability of
both methods to recover the interaction energy in a 2D unpaired setting.

Experimental Setup. The ground-truth interaction kernels are defined as W(z) = %(UL(:) +
TT},(fz)), where W), denotes the base functionals listed in Tablc Both methods were restricted
to use only the interaction energy component Wj, in the energy parameterization (I2). The corre-
sponding variants are denoted as 1 JKOnety, and JKOnety,. Similar to § Wwe use a step size
of 7 = 0.01, K = 5 time steps, and two sample size settings: a small-scale setup with 12K total
samples (N = 2K per step, with 40% reserved for testing) and a large-scale setup with 60K total
samples (/N = 10K per step, with 40% reserved for testing).

Results. Qualitative results are shown in Figure [5| for the paired setup and in Figure [6| for the
unpaired setup, with quantitative L£,-UVP metrics reported in Table f] (see §C.1] for details). In
the paired setup, most potentials are accurately restored, although Waby Plateau, Friedmann, and
Flowers are not. In the unpaired setup, neither method successfully recovers the interaction energy,
likely due to biases introduced by the batched estimation of the interaction term W,, in (I2), which
involves squaring the input. This approximation seems to cause both models to converge to batch-
specific minima.

Table 4: Quantitative Lo-UVP results for the unpaired setup in 2D interaction energy learning.
Increasing the number of samples improves performance, though the effect is relatively limited.

Sample size: 2K Sample size: 10K
Potential iJKOnetw (Ours) JKOnetj,; 1JKOnetyw (Ours) JKOnety,
Flowers 0.0032 0.0101 0.0009 0.0069
Friedman 0.0087 0.0010 0.0024 0.0093
Ishigami 0.0046 0.0087 0.0008 0.0066
Watershed 0.0043 0.0086 0.0009 0.0081
Zigzag Ridge 0.0060 0.0104 0.0017 0.0034

B.1.3 LEARNING INTERNAL ENERGY
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1616 (a) Ground-truth W* (b) i JKOnetw recovery of W* (¢) JKOnetjy recovery of W*
1617
161 Figure 5: Qualitative results from in the paired setup, using 10K samples per time step (with

1619  40% reserved for testing). Compared to Figure [l which shows the unpaired setup, the model per-
forms noticeably better: nearly all potentials are accurately reconstructed, highlighting the relative
simplicity of the paired scenario.
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energy WW*, likely due to biases introduced in the estimation of the integral in (T2).
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In this section, we assess how accurately our method and JKOnet* (Terpin et al}[2024) can estimate
the diffusion coefficient #5 in (I2)) corresponding to the internal energy term under the unpaired
setup. We exclude JKOnet from comparison, as its design does not support learning internal energy.

Experimental Setup. Following the protocol of [Terpin et al.| (2024}, §4.3), we estimate the diffusion
coefficient 63 in 2D and 20D settings using both 1 JKOnet and JKOnet*, i.e., the full parameter-
ization in (I2). The same functional from Appendix [C.7]is used for both potential and interaction
energies. The ground-truth diffusion levels are set to 5* € {0.0,0.1,0.2}.

Results. Figure[7]shows that 1 JKOnet fails to recover the ground-truth 5* values, while JKOnet*
provides a closer approximation. However, all predicted 05 values tend to converge toward 0, devi-
ating from the true levels 8* € {0.0,0.1,0.2}. This indicates that accurately learning the internal
energy remains challenging for both models. We assume that such behavior stems from difficulties
of entropy estimation developed methods.
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Figure 7: Estimation error of the diffusion coefficient 03 relative to the ground-truth values S3*.
Blue bars correspond to i JKOnet and orange bars to JKOnet*. The Y-axis indicates the absolute
deviation between the estimated 03 and true 5* values.

B.2 LEARNING SINGLE-CELL DYNAMICS

In this section, we present extended comparisons on real-world single-cell datasets, starting with 5D
results and then considering 50D and 100D.

Datasets. Following §5.2] we consider the Embryoid Body (EB) dataset (Moon et al., [2019) and
additionally the Multiome (Multi) dataset (Burkhardt et al.} 2022)). For both datasets, we apply the

preprocessing pipeline of 2020). The Multi dataset contains single-cell measurements
across four time points (days 2, 3, 4, and 7), which we use for high-dimensional experiments.

5D. Following (NeklIyudov et al] 2024a] Table 2) and (Terpin et al} 2024] §4.4), we conducted

experiments on the EB dataset in 5D. At each time step, we train for 1000 epochs on 60% of the
data and compute the dy, distance between the observed distribution pj, (remaining 40% of the data)
and the one-step-ahead prediction pj. The results are shown in Table Our method outperforms
several previous approaches when using a time-varying potential parametrization.

50D and 100D data. Following|Neklyudov et al|(2024a), we conducted experiments on the Multi
dataset in 50D and 100D using a leave-one-out setup, averaged over three runs. Models were trained
on marginals from timepoint partitions [2,4,7] and [2,3,7], and evaluated on the corresponding left-
out marginals at timepoints [3] and [4]. Training was performed for 5000 epochs.

The results are presented in Table[f} Our method achieves comparable performance for the left-out
[3] marginal. However, performance on the [4] marginal is poor, leading to a lower overall average.
This is likely due to the longer time intervals between the learned marginals, which violate our
assumption that consecutive marginals are obtained from JKO steps (see §3.1), thereby reducing the
accuracy of predicting the [4] marginal.
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Table 5: The results for the EB dataset in 5D are obtained by training on all time steps, evaluated
for next-time-step prediction using the dy, metric. Results for non-JKO methods are taken from
(Neklyudov et al.,|[2024a, Table 2):

Model t1 to t3 ta Mean
Neural SDE (Li et al., 2020) 069 091 085 081 0.82
TrajectoryNet (Tong et al.,|[2020) 073 1.06 090 1.01 0.93
SB-FBSDE (Chen et al.| [2022al) 056 080 1.00 1.00 0.84
NLSB (Koshizuka & Sato, [2023) 068 0.84 081 079 0.78
OT-CFM (Tong et al.;[2024a) 078 076 0.77 075 0.77
WLE-OT (Neklyudov et al.,|2024a) 0.65 0.78 0.76 0.75 0.74
WLEF-SB (Neklyudov et al.,[2024a) 0.63 0.79 0.77 0.74 0.73
JKOnet (Bunne et al., 2022b) 1.53 127 1.13 141 1.34
JKOnet;, [Terpin et al.|(2024) 099 1.11 1.06 130 1.12
iJKOnety (Ours) 092 1.11 095 1.21 1.05
JKOnet;"V (Terpin et al., 2024) 069 077 0.69 078 0.73
iJKOnet; i, (Ours) 0.51 0.58 0.57 064 0.58

Table 6: The results for Multi dataset for direct comparison with from (Neklyudov et al.| [2024a,
Table 1), averaged for 3 runs for leave-one-out setup, dyy, metric.

Dimension 50 100

Metric BW-UVP EMD MMD BW-UVP EMD MMD
JKOnet;, 128.729 +78.307 68.406 = 6.055 0.0003 92.512 +£38.075 72.639 £+ 3.161 0.0002
iJKOnety (Ours) 38.318 + 18.325  50.560 + 7.187 0.0003 38.991 + 16.918 59.216 + 6.869  0.0002
JKOnet; - 89.264 +38.372  68.600 +9.846 0.0003 93.429 +34.332 78.674 + 8.236  0.0002
JKOnet; s (Ours)  36.156 + 16.515  50.026 £7.727 0.0003  38.387 4 18.525 59.318 &= 7.365  0.0002

C TRAINING AND MODEL DETAILS

C.1 METRIC COMPUTATION DETAILS

In this section, we provide details on the evaluation metrics used in our experiments.

L5-UVP. When the ground-truth functional F'* (e.g., V or W) is available, we assess the discrepancy

between it and its reconstruction F' using the backward Lo-based Unexplained Variance Percentage
(L2-UVP) metric introduced by [Korotin et al.|(2021a)), defined as follows:

2||VF — VF*HikJrl %
Var(px) ’

is computed with respect to the ground-truth distribution pg1, and 7

Lo-UVP(F*, F) =100 -

19)

where the norm || - ||,

denotes the time step size. Values close to 0% indicate that VE closely approximates V F'™*.

Bd%h -UVP. The Bures-Wasserstein UVP introduced by (Korotin et al.,[2021c) is defined as

def ) Bd%vz (Prs Pr)

Bd3,,-UVP(py, pr,) = 100 - — %, (20)
Var(py)
where the Bures-Wasserstein distance is given by
def

Bdiy, (P,Q) = diy, (N (up, Tp), N (ng, o)) @1
with pp and ¥p denoting the mean and covariance of distribution P, respectively.
EMD or dw, . The Earth Mover’s Distance (EMD) (Rubner et al.,|1998) is defined as

~ Ay def .

EMD(pr, ) = i (1) & _min [ o =y dn(a.y), (22)
T€l(pr,pr) Jxxx
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where pg and pj denote the ground truth and predicted distributions at time step k.

MMD. Maximum Mean Discrepancy (MMD) (Gretton et al, 2012) between two distributions py,
and py, is defined as

MMD?(px, pre) = [[Eanpy [A(2)] = Eanp, [R(E)] 7, (23)

where h is the feature map associated with the reproducing kernel H, and || - || denotes the norm in
the corresponding RKHS (Ghojogh et al.,[2021). Here, p, and p;, are defined as in the EMD metric.

C.2 TRAINING DETAILS

Energy. To ensure stability, we accumulate gradients across all time steps £ = 0,..., K, using

mini-batch estimates jg of the energy function Jy (see Eq. (12)). For each time step 5, we sample
a mini-batch X;, = {z},..., 2P} ~ p;, with a fixed batch size B. The energy is then estimated as:

B

B
Jo(pr) = To(Xr) _EZ Vo, (xx) E;] w—ay)| - 0sH(Xy),  (24)

where ”;Q(X «) denotes the estimated entropy of pj, discussed in the following section.

Map. In practice, we use two strategies to parameterize each transport map T»I;: for large-scale
tasks, we assign a separate network to each time step, for moderate-dimensional tasks, we encode
the time index k as an additional input, i.e., Tk (x) = T, (x, k), which helps prevent overfitting. This
approach performs better than using a network w1th0ut any time embedding. Thanks to Optax
(IDeelend et al, l, |202()|) the inference of all T," can be performed in parallel, treating them as a
single “generator’ step. We also experimented with 1n1t1ahzlng the maps during the early training
epochs by aligning them with discrete OT maps computed using the OTT—JAX (Cuturi et al,l,m.

Training. We aggregate gradients for [, and T* across all time steps. We also experimented with
alternative aggregation strategies, but found that equal aggregation across all time steps was the
most effective. During optimization, we perform multiple update steps for the transport maps Té’,
parameterized by ¢, while updating the energy function [Jy, parameterized by 6, only once. This
follows standard practice in min—max optimization (Goodfellow et al}[2020). The overall procedure
is summarized in the pseudocode in Algorithm [T}

Stability. The main challenge was avoiding suboptimal energy functionals that did not converge
to zero. We found that the simplest setup (combined with careful hyperparameter tuning using the
Optuna framework (Akiba et al] P019)) was the most effective. We additionally experimented
with common stabilization techniques from GAN training, including gradient penalties
et al] 2017), spectral normalization (Miyato et al} 2018} Jiang et al} 2018)), and extragradient up-
dates (Daskalakis et al] 2018]). Overall, we perform optimization for single energy functional, this
naturally acts as a regularizer, improving the stability of the training.

Scalability. Our method scales well with the number of time points. Leveraging JAX
and Opt ax (DeepMind et al][2020), we avoid memory issues even for large batches and
many time steps, since we do not backpropagate through time as in JKOnet (Bunne et al] 2022b).
Each step is processed independently, and the loss is computed by averaging outputs from separate
networks, avoiding large computation graphs. Training time on GPU is comparable to JKOnet*, but
our approach eliminates the costly precomputation of OT couplings. In high-dimensional settings
(50D-100D), JKOnet* exceeds GPU memory limits and requires CPU-based precomputations,
making it substantially slower.

C.3 ENTROPY ESTIMATION DETAILS

Prior to training, we estimated ﬁ(pk) for each k£ = 0,..., K using the Kozachenko-Leonenko
nearest-neighbor estimator (Kozachenko|, [T987} [Berrett et alL 2019) with 5 nearest nelghbors We
used the publicly available implementation from (Butakov et al. |2024[ﬂ As discussed in §3.3 we

1https://github.com/VanessB/mutinfq
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Algorithm 1: 1 JKOnet Training
Input:
Sequence of measures { Pk}kK:o (accessible via samples);
Mapping networks TJ; X = A&
Potential network V3, : X — R, interaction network Wy, : X — R;
Diffusion coefficient §3 € RY, time step 7, max inner iterations Ir;
Output:
Learned parameters 8 = (61, 62, 63) and ¢;
while not converged do

for i < 1to I do
// Update transport maps Tf
for k< Oto K —1do
Sample batch Xy ~ pr, Xg41 ~ pr413
red
X,fH <—T£(X5); )
‘Cgka — jB(lefl )+ %Hngl — Xitl3;
| o0 — Vo> L
// Update energy parameters 60
for k< 0to K —1do
Sample batch X ~ pg;
XUt TH(X);
| LE e —Tp(XP) + To(V):
| 0+ 0V, Lk
use the following equation for estimating ﬁ(TJ; goK):
ATEzp) = Al — [ Jog | det V. T @] dou o). es)
x

Since our map is not required to be invertible during training, as is the case for gradient-based ICNN
(Amos et al, [2017) parameterizations (Bunne et al., 2022b), we compute the sign and the natural
logarithm of the absolute value of the Jacobian determinant, both of which are supported by modern
computational frameworks (Bradbury et al.,|2018}; |Paszke, [2019).

C.4 OPTIMIZER

We optimize two loss functions with respect to 7y and Tglj using the Adam optimizer (Kingma,

2014). For Jp, we use parameters 81 = 0.9, B = 0.999, ¢ = 1 x 10~8, and a constant learning
rate of 5 x 10~4, with gradient clipping applied using a maximum global norm of 10. For T*, we

use parameters 5, = 0.5, 82 = 0.9,and e = 1 x 1078, with a learning rate of 1 x 1073, Training
is performed with mini-batches of size 500.

C.5 NETWORK ARCHITECTURE

The neural networks for the potential Vjp, and interaction Wy, energies are multi-layer percep-
trons (MLPs) with two hidden layers of size 64, using softplus activation functions, and a
one-dimensional output layer. The neural network for the optimal transport maps Tj is also an

MLP with two hidden layers of size 64. The time step k is concatenated with the input 7, and the
network uses selu activations, with an output layer that matches the input dimension of x7},.
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C.6 HARDWARE

Experiments were conducted on a CentOS Linux 7 (Core) system with NVIDIA A100 GPUs. Most
of the computation time was spent on metric evaluation. Leveraging JAX’s just-in-time compilation,
our method completed 100 training epochs in approximately one minute.

Table 7: Training time (in hours) for EB (Moon et al.;, [2019) dataset for 5 and 100 dimensions.

Solver Dimension mean std

iJKOnety 100 0.333  0.020
iJKOnet, v 100 0.338 0.023
iJKOnety 5 0.321 0.005
iJKOnet; 5 0.332  0.001

C.7 FUNCTIONALS

For easier representation of our experimental results, we use abbreviations for each potential, each
abbreviation being shown in parentheses and the definitions can be found in (Terpin et al., 2024}
Appendix F): Wavy Plateau (WP), Double Exponential (DE), Rotational (RO), ReLU (RE), Flat
(FT), Friedman (FN), Watershed (WS), Ishigami (IG), Flowers (FL), Bohachevsky (BC), Sphere
(SP), Styblinski-Tang (ST), Oakley—Ohagan (0QO), Zigzag Ridge (ZR), and Holder Table (HT).

D PROOFS

To begin with, we recall the notion of strong smoothness, see (Beckl 2017, §5.1). A functional
F: X — Riscalled % - strongly smooth if it is continuously differentiable on X" and it holds:

BIVF(z) = VE(y)l2 < lz —yll2 Va,y € X.

Now we proceed to some auxiliary results.

Lemma D.1 (Solution to the JKO problem with potential energy is unique). Let J*(p) =
fX V* dp( ) pPo € 732410(2() and P1 = JKOTJ" (PO)~ Then TV* = arg minT:X—)X ’C(V*aT) is
the (umque) optimal transport map between pg and p1. In particular, Ty -8py = p1.

Proof. Consider the functional p — dg,_(po, p), where p € Pa(X). In what follows, we prove that
this functional is strictly convex.

Consider pg, pp € P2(X); « > 0. Let p = ap, + (1 — ) pp. Note that pg is absolutely continuous.
By the Brenier’s theorem, it holds:

iy, (Po, Pa) /Ilfc— x)||3dpo () ; d@vz(pmpb)=/||w—Tb(w)H§dpo(x)

for the corresponding (unique) OT maps T, : Tofipo = pa; Ty : Tolipo = po.

Now consider the weighted sum:
adiy, (po; pa) + (1 — @)diy, (po, py) = /X (ollz = Ta(@)[13 + (1 = @)z — Ty(x)|3) dpo(x)

— [ o= ylBdmanten).
X
where plan 7,;, € II(po, p) has the following conditionals:

(ylz) = ad(y = Ta(2)) + (1 — a)d(y = Ti()).

Since the OT map between pg and p is unique (and deterministic), we have

Boylporp) = min / 2 — T(2)|2dp(a / e — yl3dmas(2,y),
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which yields the strict convexity of p — d3_(po, p).

The main statement of the Lemma follows from the strict convexity of
p— [ V*(x)dp(x) + diy, (po, p) and Brenier’s theorem.

Now we are ready to prove our main quality bound theorem.

Proof. (Theorem[3.T).

Prelimiary Note: The facts from convex analysis (properties of convex functions and their conju-
gates) which we use below could be found in (Kornilov et al., {2024, Lemma 1).

At first, we simplify the expression for the JKO loss:

Lv.tv) = [VEy@)dmis) [ VEdn) + 5 [ e~ Tv(@) Bdp(z)

~ > [V @)iot) - - / Vo) - T [@ T o)

b 1y, [ ey,
2T

“©C(po,p1)

where V, = 7V + 1| - |I3.

From (26) we note that Ty = argming [ (Vo(Ty (2)) — (z,Tv(x)))dpo(z). From the convex

analysis, it follows that T (z) = V'V, (z) delivers the minimum; Vj is the (Fenchel) conjugate of
V. Note that Ty, is measurable since it is continuous almost surely (Rockafellar, 1970, Theorem

25.5). Substituting VV into on par with Fenchel-Young equality yields:
1 (= 1
£.1y) = = [Va@hdoo(@) ~ = [ Vilwdon () + Clou. o). @

Note that Ty« fipg = p1 (Lemma|D.1). Therefore, eq. (26) for £(V*, Ty +) could be simplified:
LV Ty-) =
1 . 1 . 1
= | Vi (@Tv-(@))dpo(@) = [ Vg (y)dpr(y) — — [ (2, Ty~ (2))dpo(x) + C(po, p1) =

T

=/ Vy(y)dpi(y)

2 [ T @)dpo(@) + Clonp0). - 28)

Now we analyze the gap (V') between optimal and optimized JKO losses. Leveraging and (28)
yields:

re(V) = rL(V*, Ty-) — 7L(V, Ty) = / Vo(@)dpo(a) + / Vo(y)dpr () — / (. Ty~ ())dpola).
(29)

Now we note that Ty« = VW X — RP. From the properties of convex functions it follows that

VV/: X — RP defines the inverse Optimal Transport mapping. In particular (we assume V, tobe
convex) VV, tp1 = po. Then, changing the variables in (29) results in:

/ VoYV (0))dpa (y) + / Vy(y)dpr () — / (VVE W), y)dpa (9)

Va(VV; () + Valy) = (V5 (1),9) | doa (9): (30)

LI

- /X Do (VV (), YV, ()i (9), 31)
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where qu( -, -) is the Bregman divergence, see (Banerjee et al., 2005, Def. 1) for the definition
and (Banerjee et al., [2005, Appendix A) for the “Dual Divergences” property used in the transition

from (30) to (31).

Since Vj, is %-smooth, then V, is S3-strongly convex. Therefore, by the property of strongly convex
functions (we pick y € supp(p1)):

g\lVVq*(y) = VVa)II3 < Va(VVy (1) = Va(VVa(y)) = (VVa(VVe(1)), VV (y) = VVy(y))
= DyA(VV/(¥), VVq(y))- (32)
Combining and yields:

(V)2 5 [ 19V ) = Vi) ).

To complete the proof, we are left to note that VV,* (y) — VV,(y) = 7(VV*(y) — VV(y)). O
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